数学《3.3.2函数的极值与导数》学案(第2课时)_新人教版选修1-1

合集下载

高二数学3.3.2函数的极值与导数学案新人教A版选修1-1

高二数学3.3.2函数的极值与导数学案新人教A版选修1-1
高中数学 3.3.2 函数的极值与导数学案
?基础梳理
1.极值的概念.
如果函数 y = f ( x) 在点 x= a 的函数值 f ( a) 比它在点 x= a 附近其他点的函数值 都小,f ′ ( a)
=0,而且在点 x= a 附近的左侧 f ′(x ) < 0,右侧 f ′(x) > 0,则把点 a 叫做 y = f ( x) 的极小值
a 的取值范围是 ________ .
解析: f ′(x) = x2+ 2x+ a,∵ f ( x ) 在 R 上没有极值点,∴Δ= 4- 4a≤0,∴ a≥ 1.
答案: a≥1 4.求函数 f ( x) =- x( x -2) 2 的极值.
解析: 函数 f ( x ) 的定义域为 R. f ( x) =- x( x2- 4x + 4) =- x3+ 4x2- 4x, ∴ f ′ ( x) =- 3x2+ 8x - 4=- ( x - 2)(3 x- 2) ,
1
a=- ,
解得
2
b=- 2. 即 f ′(x ) = 3x2- x- 2= (3 x + 2)( x - 1) .函数 f ′ ( x) ,f ( x) 的变化情况见下表:
2
2
所以函数 f ( x ) 的递增区间是 -∞,- 3 与 (1 ,+∞ ) ,递减区间是 - 3, 1 .
1. f ′(x 0) = 0 是函数 y =f ( x) 在 x = x0 处有极值点的 ( C) A.充分不必要条件 B .充要条件
点, f ( a) 叫做函数 y = f ( x) 的极小值;如果函数 y= f ( x ) 在点 x= b 的函数值 f ( b) 比它在点 x = b
附近其他点的函数值都大, f ′( b) = 0,而且在点 x= b 附近的左侧 f ′(x) > 0,右侧 f ′(x ) < 0,

高中数学人教版选修1-1 3.3.2函数的极值与导数 教案2

高中数学人教版选修1-1 3.3.2函数的极值与导数 教案2

3.3.2函数的极值与导数教学目标:1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤;教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 创设情景观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数()h t 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?放大t a =附近函数()h t 的图像,如图3.3-9.可以看出()h a ';在t a =,当t a <时,函数()h t 单调递增,()0h t '>;当t a >时,函数()h t 单调递减,()0h t '<;这就说明,在t a =附近,函数值先增(t a <,()0h t '>)后减(t a >,()0h t '<).这样,当t 在a 的附近从小到大经过a 时,()h t '先正后负,且()h t '连续变化,于是有()0h a '=.对于一般的函数()y f x =,是否也有这样的性质呢?附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 新课讲授 一、导入新课观察下图中P 点附近图像从左到右的变化趋势、P 点的函数值以及点P 位置的特点3.3-83.3-9函数图像在P 点附近从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),在P 点附近,P 点的位置最高,函数值最大 二、学生活动学生感性认识运动员的运动过程,体会函数极值的定义. 三、数学建构极值点的定义:观察右图可以看出,函数在x =0的函数值比它附近所有 各点的函数值都大,我们说f (0)是函数的一个极大值;函数在x =2的函数值比它附近所有各点的函数值都小,我们说f (2)是函数的一个极小值。

高中数学 3.3.2函数的极值与导数学案 新人教A版选修1-1 学案

高中数学 3.3.2函数的极值与导数学案 新人教A版选修1-1 学案

河北省唐山市开滦第二中学高中数学 3.3.2函数的极值与导数学案 新人教A 版选修1-1【学习目标】1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤. 【重点难点】 求可导函数的极值的步骤 【学习内容】 学习过程 一、课前准备复习1:设函数y=f(x) 在某个区间内有导数,如果在这个区间内0y '>,那么函数y=f(x) 在这个区间内为 函数;如果在这个区间内0y '<,那么函数y=f(x) 在为这个区间内的 函数.复习2:用导数求函数单调区间的步骤:①求函数f (x )的导数()f x '. ②令 解不等式,得x 的范围就是递增区间.③令 解不等式,得x 的范围,就是递减区间 .二、新课导学 ※ 学习探究 探究任务一:问题1:如下图,函数()y f x =在,,,,,,,a b c d e f g h 等点的函数值与这些点附近的函数值有什么关系?()y f x =在这些点的导数值是多少?在这些点附近,()y f x =的导数的符号有什么规律?看出,函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其它点的函数值都 ,()f a '= ;且在点x a =附近的左侧()f x ' 0,右侧()f x ' 0. 类似地,函数()y f x =在点x b =的函数值()f b 比它在点x b =附近其它点的函数值都 ,()f b '= ;而且在点x b =附近的左侧()f x ' 0,右侧()f x '0. 新知:我们把点a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值;点b 叫做函数()y f x =的极大值点,()f b 叫做函数()y f x =的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值.极值反映了函数在某一点附近的 ,刻画的是函数的 .试试:(1)函数的极值 (填“是”,“不是”)唯一的. (2) 一个函数的极大值是否一定大于极小值.(3)函数的极值点一定出现在区间的 (内,外)部,区间的端点 (能,不能)成为极值点.反思:极值点与导数为0的点的关系:导数为0的点是否一定是极值点.比如:函数3()f x x =在x=0处的导数为 ,但它 (是或不是)极值点.即:导数为0是点为极值点的 条件.※ 典型例题例1 求函数31443y x x =-+的极值.变式1:已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数()y f x '=的图象经过点(1,0),(2,0),如图所示,求 (1) 0x 的值(2)a ,b ,c 的值.o12 y小结:求可导函数f(x)的极值的步骤:变式2:已知函数32()3911f x x x x=--+.(1)写出函数的递减区间;(2)讨论函数的极大值和极小值,如有,试写出极值;(3)画出它的大致图象.※动手试试练1. 求下列函数的极值:(1)2()62f x x x=--;(2)3()27f x x x=-;(3)3()612f x x x=+-;(4)3()3f x x x=-. 练2. 下图是导函数()y f x'=的图象,试找出函数()y f x=的极值点,并指出哪些是极大值点,哪些是极小值点.三、总结提升※学习小结1. 求可导函数f(x)的极值的步骤;2. 由导函数图象画出原函数图象;由原函数图象画导函数图象.※知识拓展函数在某点处不可导,但有可能是该函数的极值点.由些可见:“有极值但不一定可导”课后作业1. 函数232y x x=--的极值情况是()A.有极大值,没有极小值B.有极小值,没有极大值C.既有极大值又有极小值D.既无极大值也极小值2. 三次函数当1x=时,有极大值4;当3x=时,有极小值0,且函数过原点,则此函数是()A.3269y x x x=++ B.3269y x x x=-+C.3269y x x x=-- D.3269y x x x=+-3. 函数322()f x x ax bx a=--+在1x=时有极值10,则a、b的值为()A.3,3a b==-或4,11a b=-=B .4,1a b =-=或4,11a b =-=C .1,5a b =-=D .以上都不正确4. 函数32()39f x x ax x =++-在3x =-时有极值10,则a 的值为5. 函数32()3(0)f x x ax a a =-+>的极大值为正数,极小值为负数,则a 的取值范围为6.如图是导函数()y f x '=的图象,在标记的点中,在哪一点处(1)导函数()y f x '=有极大值? (2)导函数()y f x '=有极小值?(3)函数()y f x =有极大值?(4)导函数()y f x =有极小值?7. 求下列函数的极值: (1)2()62f x x x =++;(2)3()48f x x x =-.8.已知函数2()()f x x x c =-在2x =处有极大值,求c 的值.。

高中数学 3.2 函数的极值与导数教案 新人教版选修1-1

高中数学 3.2 函数的极值与导数教案 新人教版选修1-1

第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

【数学】3.3.2《函数的极值、最值与导数》教案(新人教A版选修1-1)

【数学】3.3.2《函数的极值、最值与导数》教案(新人教A版选修1-1)

§3.3.2-3函数的极值与最大(小)值与导数【成功细节】叶枝谈导数的计算的方法本节主要研究函数的极值、最值与函数导数之间的关系,导数作为研究函数的一种重要工具,在学习时应引起充分重视,这部分知识点不多,但涉及的题型比较多,在学习过程中我认为应该注意以下几个方面的问题:(1)理解函数极值的概念,函数极值刻画的是函数的局部性质,而函数的最值刻画的是函数的整体性质;(2)注意比较极值与最值的概念以及它们之间的联系,可导函数在极值点两侧导函数的符号相反,极大值不一定是最大值,极大值可能小于极小值,连续可导函数闭区间上的最值就是端点值与极值中的最大值、最小值等结论要熟练准确记忆;(3)可导函数有极值是该点处的导数值等于零的充分不必要条件,如函数3y x =,为R 上的增函数,不存在极值点,但0|0x y ='=;(4)若函数不可导,也可能存在极值,如()||f x x =在0x =处不可导,但0x =是函数的一个极小值;(5)要熟练掌握求解函数极值与最值的方法.如本题主要考查函数在闭区间上的最值的概念以及求解方法,解题时,我先利用导数求解函数()f x 在这个区间内的极值,因为22()3123(4)f x x x '=-=-,由()0f x '=求得2x =,或2x =-,而(2)82488f =-+=-,(2)824824f -=-++=,再求出函数在闭区间上的端点值,(3)273690f -=-+=,(3)2736817f =-+=,所以函数在闭区间上的最大值等于(2)24M f =-=,最小值(2)8m f ==-,所以24(8)32M m -=--=.【高效预习】(核心栏目)“要养成学生阅读书籍的习惯就非教他们预习不可”。

——叶圣陶【精读·细化】1.用10分钟的时间详细阅读教材93~96页,理解函数极小值与极大值的概念,可导函数的导数在极值点两侧的符号同号还是异号?在函数图象上是如何体现的?函数在某点有极值与该点处的导数【领会·感悟】1.函数在某点处的导数值等于零,该点不一定是函数的极值点,必须检验函数在该点两侧的符号是否相异.如函数3()f x x =,虽(2007年江苏13题)已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__.2007年江苏省文科状元叶枝【学习细节】(核心栏目)A .基础知识导数的计算知识点1 函数极值与导数【情景引入】如图为表示高台跳水运动员的高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图象,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数()h t 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?【探究】如图,放大t a =附近函数()h t 的图像,可以看出()h a ';在t a =,当t a <时,函数()h t 单调递增,()0h t '>;当t a >时,函数()h t 单调递减,()0h t '<;这就说明,在t a =附近,函数值先增(t a <,()0h t '>)后减(t a >,()0h t '<).这样,当t 在a 的附近从小到大经过a 时,()h t '先正后负,且()h t '连续变化,于是有()0h a '=.【关注·思考】2.阅读教材第96—98页,理解最小值和最大值的概念?这些概念与极大值或极小值有什么关系?细节提示:最值刻画的是函数在某个闭区间上的一个整体性质,而极值缺某点【提升·解决】2.最值的求解可以把所有的极值点和端点处的函数值求解出来,然后相互比较即可.【思考】 对于一般的函数()y f x =,是否也有这样的性质呢?【想一想】如图,函数()y f x =在,a b 处的函数值与这两个点附近的函数值有什么关系?()y f x =在这两个点处的导数值是多少?在这两个点附近,()y f x =的导数的符号有什么规律?【探究】 由函数图象可知,函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都小,()0f a '=;而且在点x a =附近左侧,()0f x '<,在点x a =附近右侧,()0f x '>.函数()y f x =在点x b =的函数值()f b 比它在点x b =附近其他点的函数值都大,()0f b '=;而且在点x b =附近左侧,()0f x '>,在点x b =附近右侧,()0f x '<.我们把图中的点a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值;点b 叫做函数()y f x =的极大值点,()f b 叫做函数()y f x =的极大值.【总结】设函数()y f x =在点0x 附近有定义,如果对0x 附近的所有的点,都有0()()f x f x <,则称0()f x 是函数()y f x =的一个极大值,记作y 极大值=0()f x ;如果对0x 附近的所有的点,都有0()()f x f x >,则称0()f x 是函数()y f x =的一个极小值,记作y 极小值=0()f x .极大值与极小值统称为极值(extreme value ). 【想一想】如图为函数()y f x =的图象,,,,,x c d e f g =是否为函数的极值点?如果是,请分析原因,如果不是,是说明理由.【探究】由函数图象可知,函数()y f x =在点,,x c e g =的函数值(),(),()f c f e f g 比它在点,,x c e g =附近其他点的函数值都小,()()()0f c f e f g '''===;而且在这些点附近左侧,()0f x '<,在这些点附近右侧,()0f x '>,由极值的定义可知这些点为函数()y f x =的极小值点,对应的函数值(),(),()f c f e f g 为函数()y f x =的极小值;函数()y f x =在点,,x d f h =的函数值(),(),()f d f f f h 比它在点,,x g f h =附近其他点的函数值都大,()()()0f d f f f h '''====;而且在这些点附近左侧,()0f x '>,在这些点附近右侧,()0f x '<.由极值的定义可知这些点为函数()y f x =的极大值点,对应的函数值(),(),()f d f f f h 为函数()y f x =的极大值.【提示】 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号。

3.3.2函数的极值与导数

3.3.2函数的极值与导数
2
(2) f ( x) x 27 x; 3 (4) f ( x) 3x x .
3
当 x = 2 时, f (x)有极大值 22 .
(4) 令f ( x) 3 3x 2 0,
解得
x1 1, x2 1.
所以, 当 x = –1 时, f (x)有极小值 – 2 ; 当 x = 1 时, f (x)有极大值 2 .
-2 -4/3
o
2
+ x
1 解:f(x)= x, 所以x 0 x 1 x2 1 f '( x) 2 1 2 , f '( x) 0时,x 1 x x 当x变化时,f'(x),f(x)变化如下表
1 y x x
导函数的正负是 交替出现的吗?
不是
x
f '( x)
X<-1
<b + 单调 递增 =b 0 极大值 >b -
y
a
o b
x y=f(x)
单调 f(a) 递减
定义
一般地, 设函数 f (x) 在点x0附近有定 义, 如果对x0附近的 所有的点, 都有
y
f (a) 0 f (a x) 0
x 0
f (a x) 0 f (b x) 0 f (b x) 0
例1 求函数
解:
因为
令 当
当 当 x 变化时, f / x , f (x) 的变化状态如下表:
1 3 的极值. f ( x) x 4 x 4 3 1 3 2 f ( x) x 4 x 4,所以 f ( x) x 4. 3 f ( x) 0, 解得 x 2或 x 2. , , ; f ( x) 0, 即 x 2 或 x 2 f ( x) 0, 即 2 x 2.

人教版高中数学选修(1-1)-3.3《函数的极值与导数》教学设计

人教版高中数学选修(1-1)-3.3《函数的极值与导数》教学设计

3.3.2 函数的极值与导数(周雪敏)一、教学目标1.核心素养通过学习函数的极值与导数,形成基本的数学抽象、逻辑推理和数学运算能力,并依据运算法则解决数学问题.2.学习目标(1)理解函数极值的概念.(2)理解函数极值与导数的关系.(3)掌握求函数极值的方法,并能应用极值解决求参数值、参数取值范围、判断函数零点的个数等问题.3.学习重点极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.4.学习难点函数在某一点取得极值的必要条件与充分条件.二、教学设计(一)课前设计1.预习任务任务1在群山之中,各个山峰的顶端,虽然不一定是群山之中的最高处,但它却是其附近点的最高点.同样,各个谷底虽然不一定是群山之中的最低处,但它却是其附近点的最低点.假设如图是群山中各个山峰的一部分图像,观察如图中P 点附近图像从左到右的变化趋势,P 点的函数值以及点P 位置各有什么特点.想一想:图中P 点,Q 点的函数值与其附近的函数值有何关系?任务2预习教材P93—P96,完成P96相应练习题,并找出疑惑之处.2.预习自测1.已知0)(0='x f ,则下列结论中正确的是( )A.0x 一定是极值点B.如果在0x 附近的左侧0)(0>'x f ,右侧0)(0<'x f ,那么)(0x f 是极大值C.如果在0x 附近的左侧0)(0>'x f ,右侧0)(0<'x f ,那么)(0x f 是极小值D.如果在0x 附近的左侧0)(0<'x f ,右侧0)(0>'x f ,那么)(0x f 是极大值 解:B 直接根据极值概念判断,也可画出图象进行分析 .2.函数23bx ax y +=取得极大值和极小值时的x 的值分别为0和31,则( ) A.02=-b a B.02=-b a C.02=+b a D.02=+b a解:D bx ax y 232+=',据题意,0和31是方程0232=+bx ax 的两根,∴3132=-a b ,∴02=+b a . 3.若函数m x x y ++-=236的极大值为13,则实数=m .解:19- x x y 1232+-=',由0='y ,得0=x 或4=x ,容易得出当4=x 时函数取得极大值,所以1342643=+⨯+-m ,解得19-=m .4.若kx x y +=3在R 上无极值,则k 的取值范围为 .解:),0[+∞ k x y +='23,∵kx x y +=3在R 上无极值,∴0≥'y 恒成立,∴),0[+∞∈k .(二)课堂设计1.知识回顾⑴常见函数的导数公式及导数的四则运算法则.⑵函数的导数与函数的单调性的关系.⑶用导数求函数单调区间的步骤.2.问题探究问题探究一 函数极值的概念 ●活动一 探求新知如图观察,函数)(x f y =在d 、e 、f 、g 、h 、i 等点处的函数值与这些点附近的函数值有什么关系?如:以d 、e 两点为例,函数)(x f y =在点d x =处的函数值)(d f 比它在点d x =附近其他点的函数值都小;函数)(x f y =在点e x =处的函数值)(e f 比它在e x =附近其他点的函数值都大.探究:)(x f y =在这些点处的导数值是多少?在这些点附近,y =f(x)的导数的符号有什么规。

人教版选修1-1 3.3.2 函数的极值与导数 导学案

人教版选修1-1  3.3.2 函数的极值与导数  导学案

3. 3. 2 《函数的极值与导数》导学案制作人侯海燕审核高二数学组 2016.03.08 【学习目标】1.了解函数极值的概念,会从几何直观理解函数极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.【学习重点】掌握函数极值的判定及求法.【学习难点】掌握函数在某一点取得极值的条件【预习导航】函数的极值反映的是函数在某点附近的性质,是局部性质.函数极值可以在函数图象上“眼见为实”,通过研究极值初步体会函数的导数的作用【问题探究】1.极值点与极值(1)极小值点与极小值 如图,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧,右侧,则把点a叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.2.求函数y =f (x )的极值的方法解方程f ′(x )=0,当f ′(x 0)=0时:(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是.(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是.引言 “横看成岭侧成峰,远近高低各不同”,说的是庐山的高低起伏,错落有致,在群山中,各个山峰的顶端,虽然不一定是群山的最高处,但它却是其附近的最高点.那么每个山峰附近的走势如何?与导数有什么关系?探究活动一:探究点一函数的极值与导数的关系问题1如图观察,函数y =f (x )在d 、e 、f 、g 、h 、i 等点处的函数值与这些点附近的函数值有什么关系?y =f (x )在这些点处的导数值是多少?在这些点附近,y =f (x )的导数的符号有什么规律?问题2函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是唯一的吗?一般地,求函数的极值的方法是:(小组讨论总结)【思考】求函数31()443f x x x =-+的极值探究活动二:若某点处的导数值为零,那么,此点一定是极值点吗?举例说明问题:思考函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象 如图所示,则函数f (x )在开区间(a ,b )内有个极小值点.【当堂检测】求函数3()612f x x x =+-的极值【总结概括】 本节课的收获:【课后作业】必做题:1.教材第96页练习1,22. 教材第98页习题3.3 A 组第3,4,5题.选做题:同步练习册课后作业提升习题.。

(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1

(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1
第17页,共29页。
规律方法 已知函数极值情况,逆向应用确定函数的解析式, 进而研究函数性质时注意两点: (1)常根据极值点处导数为 0 和极值两个条件列方程组,利用待 定系数法求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用 待定系数法求解后必须验证根的合理性.
第18页,共29页。
第22页,共29页。
如图(1),此时曲线 f(x)与 x 轴恰有两个交点,即方程 f(x)=0 恰 好有两个实数根,所以 a+2=0,a=-2.(10 分) 如图(2),当极小值等于 0 时,有极大值大于 0,此时曲线 f(x) 与 x 轴恰有两个交点,即方程 f(x)=0 恰好有两个实数根,所以 a-2=0,a=2.综上,当 a=2,或 a=-2 时方程恰有两个实数 根.(12 分)
第8页,共29页。
2.极值点与导数的关系 (1)可导函数的极值点一定是导数为 0 的点,但导数为 0 的点不 一定是函数的极值点. (2)导数为 0 的点可能是函数的极值点,如 y=x2,y′(0)=0,x =0 是极小值.导数为 0 的点也可能不是函数的极值点,如 y =x3,y′(0)=0,x=0 不是极值点.
第23页,共29页。
【题后反思】 用求导的方法确定方程根的个数是一种很有效的 方法,它是通过函数的变化情况,运用数形结合的思想来确定 函数的图象与 x 轴的交点个数.
第24页,共29页。
【变式 3】 设函数 f(x)=x3-6x+5,x∈R. (1)求函数 f(x)的单调区间和极值; (2)若关于 x 的方程 f(x)=a 有三个不同的实数根,求实数 a 的取 值范围. 解 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x=- 2或 x= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0, 所以 f(x)的单调递增区间为(-∞,- 2),( 2,+∞); 单调递减区间为(- 2, 2).

2019高中数学 第三章 3.3.2 函数的极值与导数学案 新人教A版选修1-1

2019高中数学 第三章 3.3.2 函数的极值与导数学案 新人教A版选修1-1

3.3.2 函数的极值与导数学习目标:1.了解极值的概念、理解极值与导数的关系.(难点)2.掌握利用导数求函数极值的步骤,能熟练地求函数的极值.(重点)3.会根据函数的极值求参数的值.(难点)[自主预习·探新知]1.极小值点与极小值若函数f(x)满足:(1)在x=a附近其他点的函数值f(x)≥f(a);(2)f′(a)=0;(3)在x=a附近的左侧f′(x)<0,在x=a附近的右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.极大值点与极大值若函数f(x)满足:(1)在x=b附近其他点的函数值f(x)≤f(b);(2)f′(b)=0;(3)在x=b附近的左侧f′(x)>0,在x=b附近的右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.思考:(1)区间[a,b]的端点a,b能作为极大值点或极小值点吗?(2)若函数f(x)在区间[a,b]内存在一点c,满足f′(c)=0,则x=c是函数f(x)的极大值点或极小值点吗?[提示](1)不能,极大值点和极小值点只能是区间内部的点.(2)不一定,若在点c的左右两侧f′(x)符号相同,则x=c不是极大值点或极小值点,若在点c的左右两侧f′(x)的符号不同,则x=c是函数f(x)的极大值点或极小值点.3.极值的定义(1)极小值点、极大值点统称为极值点.(2)极大值与极小值统称为极值.4.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值.(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.[基础自测]1.思考辨析(1)导数值为0的点一定是函数的极值点.()(2)函数的极大值一定大于极小值.( )(3)在可导函数的极值点处,切线与x轴平行或重合.( )(4)函数f (x )=1x有极值.( )[答案] (1)× (2)× (3)√ (4)× 2.函数y =x 3+1的极大值是( )A .1B .0C .2D .不存在D [y ′=3x 2≥0,则函数y =x 3+1在R 上是增函数,不存在极大值.] 3.若x =-2与x =4是函数f (x )=x 3+ax 2+bx 的两个极值点则有( )【导学号:97792153】A .a =-2,b =4B .a =-3,b =-24C .a =1,b =3D .a =2,b =-4B [f ′(x )=3x 2+2ax +b ,依题意有x =-2和x =4是方程3x 2+2ax +b =0的两个根,所以有-2a 3=-2+4,b3=-2×4,解得a =-3,b =-24.][合 作 探 究·攻 重 难]函数f (x )的极小值是( )图3­3­8A .a +b +cB .3a +4b +cC .3a +2bD .c(2)求下列函数的极值: ①f (x )=13x 3-x 2-3x +3;②f (x )=2xx 2+1-2. [解析] (1)由f ′(x )的图象知,当x <0时,f ′(x )<0, 当0<x <2时,f ′(x )>0,当x >2时,f ′(x )<0 因此当x =0时,f (x )有极小值,且f (0)=c ,故选D. [答案] D(2)①函数的定义域为R ,f ′(x )=x 2-2x -3.令f ′(x )=0,得x =3或x =-1.当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘↗∴x =-1是f (x )的极大值点,x =3是f (x )的极小值点,且f (x )极大值=3,f (x )极小值=-6.②函数的定义域为R ,f ′(x )=x 2+-4x 2x 2+2=-x -x +x 2+2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:↘↗↘当x =-1时,函数f (x )有极小值,且f (-1)=-22-2=-3;当x =1时,函数f (x )有极大值,且f (1)=22-2=-1.1.求下列函数的极值. (1)f (x )=2x +8x;(2)f (x )=3x+3ln x .[解] (1)因为f (x )=2x +8x,所以函数的定义域为{x |x ∈R 且x ≠0},f ′(x )=2-8x2,令f ′(x )=0,得x 1=-2,x 2=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:当x =2时,f (x )有极小值8.(2)函数f (x )=3x+3ln x 的定义域为(0,+∞),f ′(x )=-3x 2+3x=x -x 2,令f ′(x )=0,得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,当x =1【导学号:97792154】[思路探究] f (x )在x =-1处有极值0有两方面的含义:一方面x =-1为极值点,另一方面极值为0,由此可得f ′(-1)=0,f (-1)=0.[解] ∵f ′(x )=3x 2+6ax +b 且函数f (x )在x =-1处有极值0,∴⎩⎪⎨⎪⎧f -=0,f -=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,此时函数f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f ′(x )>0,此时f (x )为增函数;当x ∈(-3,-1)时,f ′(x )<0,此时f (x )为减函数; 当x ∈(-1,+∞)时,f ′(x )>0,此时f (x )为增函数. 故f (x )在x =-1处取得极小值. ∴a =2,b =9.2.(1)函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( ) A .a =3,b =-3或a =-4,b =11 B .a =-4,b =2或a =-4,b =11 C .a =-4,b =11 D .以上都不对C [f ′(x )=3x 2-2ax -b .由题意知⎩⎪⎨⎪⎧f =3-2a -b =0,f=1-a -b +a 2=10,解得⎩⎪⎨⎪⎧a =3,b =-3或⎩⎪⎨⎪⎧a =-4,b =11.当a =3,b =-3时,f ′(x )=3(x +1)2≥0,不合题意,故a =-4,b =11.] (2)函数f (x )=13x 3-x 2+ax -1有极值点,求a 的取值范围.[解] f ′(x )=x 2-2x +a ,由题意,方程x 2-2x +a =0有两个不同的实数根,所以Δ=4-4a >0,解得a <1.所以a 的取值范围为(-∞,1).1.如何画三次函数f (x )=ax 3+bx 2+cx +d (a ≠0)的大致图象?提示:求出函数的极值点和极值,根据在极值点左右两侧的单调性画出函数的大致图象. 2.三次函数f (x )=ax 3+bx 2+c (a ≠0)的图象和x 轴一定有三个交点吗?提示:不一定,三次函数的图象和x 轴交点的个数和函数极值的大小有关,可能有一个也可能有两个或三个.已知a 为实数,函数f (x )=-x 3+3x +a (1)求函数f (x )的极值,并画出其图象(草图)(2)当a为何值时,方程f(x)=0恰好有两个实数根.[思路探究] (1)求出函数f(x)的极值点和极值,结合函数在各个区间上的单调性画出函数的图象.(2)当极大值或极小值恰好有一个为0时,方程f(x)=0恰好有两个实数根.[解] (1)由f(x)=-x3+3x+a,得f′(x)=-3x2+3,令f′(x)=0,得x=-1或x=1.当x∈(-∞,-1)时,f′(x)<0;当x∈(-1,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.所以函数f(x)的极小值为f(-1)=a-2;极大值为f(1)=a+2.由单调性、极值可画出函数f(x)的大致图象,如图所示,(2)结合图象,当极大值a+2=0时,有极小值小于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰有两个实数根,所以a=-2满足条件;当极小值a-2=0时,有极大值大于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰好有两个实数根,所以a=2满足条件.综上,当a=±2时,方程恰有两个实数根.的图象有三个不同的交点,即方程1.下列四个函数中,能在x=0处取得极值的是( )①y=x3;②y=x2+1;③y=cos x-1;④y=2x.A.①②B.②③C.③④ D.①③B[①④为单调函数,不存在极值.]2.函数f(x)的定义域为R,导函数f′(x)的图象如图3­3­9所示,则函数f(x)( )图3­3­9A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点C[当f′(x)的符号由正变负时,f(x)有极大值,当f′(x)的符号由负变正时,f(x)有极小值.由函数图象易知,函数有两个极大值点,两个极小值点.]3.函数y=-3+48x-x3的极小值是__________;极大值是________.-131 125[y′=-3x2+48=-3(x+4)(x-4),∵当x∈(-∞,-4)∪(4,+∞)时,y′<0;当x∈(-4,4)时,y′>0,∴x=-4时,y取到极小值-131,x=4时,y取到极大值125.]4.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.(-∞,-1)∪(2,+∞) [f ′(x )=3x 2+6ax +3(a +2), ∵函数f (x )既有极大值又有极小值, ∴方程f ′(x )=0有两个不相等的实根. ∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.] 5.已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值.(2)判断函数f (x )的单调区间,并求极值.【导学号:97792155】[解] (1)因为f (x )=ax 2+b ln x , 所以f ′(x )=2ax +b x. 又函数f (x )在x =1处有极值12.故⎩⎪⎨⎪⎧f =0,f =12,即⎩⎪⎨⎪⎧2a +b =0,a =12,解得a =12,b =-1.(2)由(1)可知f (x )=12x 2-ln x .其定义域为(0,+∞). 且f ′(x )=x -1x=x +x -x.令f ′(x )=0,则x =-1(舍去)或x =1. 当x 变化时,f ′(x ),f (x )的变化情况如表:所以函数f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞),且函数在定义域上只有极小值f (1)=12,无极大值.。

高二数学选修1-1《3.3.2函数的极值与导数》学案(第2课时)

高二数学选修1-1《3.3.2函数的极值与导数》学案(第2课时)

3.3.2函数的极值与导数(第2课时)[自学目标]:1。

理解函数的极大值、极小值、极值点的意义;2.掌握函数极值的判别方法。

进一步体验导数的作用。

[重点]:极大、极小值的概念和判别方法。

[难点]:严格套用求极值的步骤[教材助读]一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有________我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有的点,都有________,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).利用导数判别函数的极大(小)值:一般地,当函数f(x)在点x0处连续时,判别f(x0)是极大(小)值的方法是:⑴如果在x0附近的左侧f ’(x)>0,右侧f '(x)<0,那么,f(x0)是________⑵如果在x0附近的左侧f ’(x)<0,右侧f ’(x)>0,那么,f(x0)是________注意:导数为0的点不一定是极值点.[预习自测]1.函数y=f(x)的导数y/与函数值和极值之间的关系为()A、导数y/由负变正,则函数y由减变为增,且有极大值B、导数y/由负变正,则函数y由增变为减,且有极大值C、导数y/由正变负,则函数y由增变为减,且有极小值D 、导数y /由正变负,则函数y 由增变为减,且有极大值2.求函数xe x y -=2的极值,待课堂上与老师和同学探究解决。

[合作探究 展示点评]探究一:极值点两侧导数正负符号有何规律?1.求()31443f x x x =-+的极值填写下表并求极值探究二:极值点处导数值(即切线斜率)有何特点? 2.求y=(x2-1)3+1的极值[当堂检测]1.求下列函数的极值:(1)2f x x x=-()27 ()62f x x x=--(2)3(3)3f x x x=-()3 ()612f x x x=+-(4)3。

高中数学 3.2 函数的极值与导数教案 新人教版选修1-1 教案

高中数学 3.2 函数的极值与导数教案 新人教版选修1-1 教案

§1.3.2函数的极值与导数(1课时)【学情分析】:在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。

在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。

【教学目标】:(1)理解极大值、极小值的概念.(2)能够运用判别极大值、极小值的方法来求函数的极值.(3)掌握求可导函数的极值的步骤【教学重点】:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.【教学难点】:极大、极小值概念的理解,熟悉求可导函数的极值的步骤【教学过程设计】:教学环节教学活动设计意图利用教材在§3.3.1中的例1引入函数的极值概念①观察y=f(x)的图像在x=1点的函数值f(1)与x=1附近的其他点的函数值的特征,并描述在x=1点及其附近导数的正负:f(1)在x=1点及其附近是最小——'(1)0f=;y=f(x)在x=1附近的左侧是单减的——'()0f x<;y=f(x)在x=1附近的右侧是单增的——'()0f x>;考虑到极值与最值容易混淆,学生对已有知识的同化易接受,我们以§3.3.1中的例1引出极值的概念,具体直观,同时对极值与最值区分是一目了然的。

提问:y=f(x)在x=1处是否整个函数的最小值?不是,只是y=f(x)在x=1处附近的局部最小值②观察y=f(x)的图像在x=4点的函数值f(4)与x=4附近的其他点的函数值的特征,并描述在x=4点及其附近导数的正负:学生模仿完成概念抽象y=f(x)在定义域上可导,①若'()0f a=,且y=f(x)在x=a附近的左侧满足'()0f x<;在x=a附近的右侧满足'()0f x>,则称点a叫做y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值②若'()0f b=,且y=f(x)在x=b附近的左侧满足'()0f x>;在x=b附近的右侧满足'()0f x<,则称点b叫做y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值由具体函数图像抽象上升到一般极值概念函数极值概念强化练习概念判断练习:(1)函数的极大值是函数在定义域上的最大值(2)函数在某个区间或定义域上的极大值是唯一的(3)函数某区间上的极大值一定大于极小值(4)函数的极值点,导数一定为零(5)导数为零的点一定是函数的极值点答案:(1)错(2)错(3)错(4)对(5)错深化学生对函数极值的概念,以及函数取极值与'()0f a=的逻辑关系极值概念理解的总结提高(ⅰ)极值是一个局部概念。

高中数学选修1-1优质学案:3.3.2 函数的极值与导数

高中数学选修1-1优质学案:3.3.2 函数的极值与导数

3.3.2 函数的极值与导数学习目标1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.知识点一 极值点与极值的概念 思考 观察函数f (x )=13x 3-2x 的图象.f ′(-2)的值是多少?在x =-2左、右两侧的f ′(x )有什么变化? f ′(2)的值是多少,在x =2左、右两侧的f ′(x )又有什么变化?[答案] f ′(-2)=0,在x =-2的左侧f ′(x )>0,在x =-2的右侧f ′(x )<0; f ′(2)=0,在x =2的左侧f ′(x )<0,在x =2的右侧f ′(x )>0. 梳理 (1)极小值点与极小值如图,函数y =f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则把点a叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值. (2)极大值点与极大值如(1)中图,函数y =f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 的左侧f ′(x )>0,右侧f ′(x )<0,则把点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.知识点二 求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.1.导数值为0的点一定是函数的极值点.( × ) 2.极大值一定比极小值大.( × ) 3.函数f (x )=1x有极值.( × )4.函数的极值点一定是其导函数的变号零点.( √ )类型一极值与极值点的判断与求解命题角度1知图判断函数的极值例1已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值考点函数极值的应用题点函数极值在函数图象上的应用[答案] C[解析]由导函数的图象可知:当x∈(-∞,0)∪(2,4)时,f′(x)>0,当x∈(0,2)∪(4,+∞)时,f′(x)<0,因此f(x)在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以在x=0处取得极大值,在x=2处取得极小值,在x=4处取得极大值,故选C.反思与感悟通过导函数值的正负号确定函数单调性,然后进一步明确导函数图象与x轴交点的横坐标是极大值点还是极小值点.跟踪训练1如图为y=f(x)的导函数的图象,则下列判断正确的是()①f(x)在(-3,-1)上为增函数;②x=-1是f(x)的极小值点;③f(x)在(2,4)上为减函数,在(-1,2)上为增函数;④x=2是f(x)的极小值点.A.①②③B.②③C.③④D.①③④考点函数极值的应用题点函数极值在函数图象上的应用[答案] B[解析]当x∈(-3,-1)时,f′(x)<0,当x∈(-1,2)时,f′(x)>0,∴f(x)在(-3,-1)上为减函数,在(-1,2)上为增函数,∴①不对;x=-1是f(x)的极小值点;当x∈(2,4)时,f′(x)<0,f(x)是减函数;x=2是f(x)的极大值点,故②③正确,④错误.命题角度2求函数的极值或极值点例2求下列函数的极值.(1)f(x)=2x3+3x2-12x+1;(2)f(x)=x2-2ln x.考点函数的极值与导数的关系题点不含参数的函数求极值问题解(1)函数f(x)=2x3+3x2-12x+1的定义域为R,f′(x)=6x2+6x-12=6(x+2)(x-1),解方程6(x +2)(x -1)=0,得x 1=-2,x 2=1. 当x 变化时,f ′(x )与f (x )的变化情况如下表:所以当x =-2时,f (x )取极大值21; 当x =1时,f (x )取极小值-6.(2)函数f (x )=x 2-2ln x 的定义域为(0,+∞), f ′(x )=2x -2x =2(x +1)(x -1)x ,解方程2(x +1)(x -1)x =0,得x 1=1,x 2=-1(舍去).当x 变化时,f ′(x )与f (x )的变化情况如下表:因此当x =1时,f (x )有极小值1,无极大值. 反思与感悟 求可导函数f (x )的极值的步骤 (1)确定函数的定义域,求导数f ′(x ). (2)求f (x )的拐点,即求方程f ′(x )=0的根.(3)利用f ′(x )与f (x )随x 的变化情况表,根据极值点左右两侧单调性的变化情况求极值. 特别提醒:在判断f ′(x )的符号时,借助图象也可判断f ′(x )各因式的符号,还可用特殊值法判断.跟踪训练2已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y =4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.考点函数的极值与导数的关系题点不含参数的函数求极值问题解(1)f′(x)=e x(ax+b)+a e x-2x-4=e x(ax+a+b)-2x-4,f′(0)=a+b-4=4,①又f(0)=b=4,②由①②可得a=b=4.(2)f(x)=e x(4x+4)-x2-4x,则f′(x)=e x(4x+8)-2x-4=4e x(x+2)-2(x+2)=(x+2)(4e x-2).解f′(x)=0,得x1=-2,x2=-ln2,当x变化时,f′(x)与f(x)的变化情况如下表:f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).类型二已知函数极值求参数例3 (1)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a =________,b =________. (2)若函数f (x )=13x 3-x 2+ax -1有极值点,则a 的取值范围为________.考点 根据函数的极值求参数值 题点 已知极值求参数 [答案] (1)2 9 (2)(-∞,1)[解析] (1)∵f ′(x )=3x 2+6ax +b ,且函数f (x )在x =-1处有极值0,∴⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,此时函数f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f ′(x )>0,此时f (x )为增函数; 当x ∈(-3,-1)时,f ′(x )<0,此时f (x )为减函数; 当x ∈(-1,+∞)时,f ′(x )>0,此时f (x )为增函数. 故f (x )在x =-1处取得极小值,∴a =2,b =9. (2)∵f ′(x )=x 2-2x +a ,由题意得方程x 2-2x +a =0有两个不同的实数根, ∴Δ=4-4a >0,解得a <1.反思与感悟 已知函数极值的情况,逆向应用确定函数的[解析]式时,应注意以下两点: (1)根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.跟踪训练3 已知函数f (x )的导函数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是( ) A .(-∞,-1)B .(0,+∞)C.(0,1) D.(-1,0)考点根据函数的极值求参数值题点已知极值求参数[答案] D[解析]若a<-1,∵f′(x)=a(x+1)(x-a),∴f(x)在(-∞,a)上单调递减,在(a,-1)上单调递增,∴f(x)在x=a处取得极小值,与题意不符;若-1<a<0,则f(x)在(-1,a)上单调递增,在(a,+∞)上单调递减,从而在x=a处取得极大值.若a>0,则f(x)在(-1,a)上单调递减,在(a,+∞)上单调递增,与题意矛盾,故选D.类型三函数极值的综合应用例4已知函数f(x)=x3-3ax-1(a≠0).若函数f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.考点函数极值的应用题点函数的零点与方程的根解因为f(x)在x=-1处取得极值且f′(x)=3x2-3a,所以f′(-1)=3×(-1)2-3a=0,所以a=1,所以f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.当x<-1时,f′(x)>0;当-1<x<1时,f′(x)<0;当x>1时,f′(x)>0.所以f(x)的单调增区间为(-∞,-1),(1,+∞);单调减区间为(-1,1),f(x)在x=-1处取得极大值f(-1)=1,在x =1处取得极小值f (1)=-3. 作出f (x )的大致图象如图所示.因为直线y =m 与函数y =f (x )的图象有三个不同的交点,结合f (x )的图象可知,m 的取值范围是(-3,1). 引申探究若本例“三个不同的交点”改为“两个不同的交点”结果如何?改为“一个交点”呢? 解 由本例[解析]可知当m =-3或m =1时,直线y =m 与y =f (x )的图象有两个不同的交点;当m <-3或m >1时,直线y =m 与y =f (x )的图象只有一个交点.反思与感悟 利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.跟踪训练4 已知函数f (x )=x 3-6x 2+9x +3,若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围. 考点 函数极值的应用 题点 函数的零点与方程的根 解 由f (x )=x 3-6x 2+9x +3, 可得f ′(x )=3x 2-12x +9,∴13f ′(x )+5x +m =13(3x 2-12x +9)+5x +m=x 2+x +3+m ,则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根,即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点. ∵g ′(x )=3x 2-14x +8=(3x -2)(x -4), ∴令g ′(x )=0,得x =23或x =4.当x 变化时,g (x ),g ′(x )的变化情况如下表:则函数g (x )的极大值为g ⎝⎛⎭⎫23=6827-m ,极小值为g (4)=-16-m . ∴由y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同交点,得⎩⎪⎨⎪⎧g ⎝⎛⎭⎫23=6827-m >0,g (4)=-16-m <0,解得-16<m <6827.即m 的取值范围为⎝⎛⎭⎫-16,6827.1.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 考点 函数极值的应用题点 函数极值在函数图象上的应用 [答案] C[解析] f ′(x )的符号由正变负,则f (x 0)是极大值,f ′(x )的符号由负变正,则f (x 0)是极小值,由图象易知有两个极大值点,两个极小值点. 2.已知函数f (x )=x +1x ,则f (x )( )A .有极大值2,极小值-2B .有极大值-2,极小值2C .无极大值,但有极小值-2D .有极大值2,无极小值 考点 函数的极值与导数的关系 题点 不含参数的函数求极值问题 [答案] B[解析] 函数的定义域为{x |x ≠0},因为f (x )=x +1x ,所以f ′(x )=1-1x 2,令f ′(x )=1-1x 2=0,得x =±1.当x <-1或x >1时,f ′(x )>0;当-1<x <0或0<x <1时,f ′(x )<0.所以当x =-1时函数有极大值-2;当x =1时函数有极小值2.3.已知函数f (x )=x 3+ax 2+3x -9,且f (x )在x =-3时取得极值,则a 等于( )A.5B.3C.4D.2考点根据函数的极值求参数值题点已知极值求参数[答案] A[解析]因为f′(x)=3x2+2ax+3,则f′(-3)=3×(-3)2+2a×(-3)+3=0,所以a=5.4.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为() A.-1<a<2 B.-3<a<6C.a<-1或a>2 D.a<-3或a>6考点根据函数的极值求参数值题点已知极值求参数[答案] D[解析]f′(x)=3x2+2ax+a+6,因为f(x)既有极大值又有极小值,则Δ=(2a)2-4×3×(a+6)>0,解得a>6或a<-3.5.求函数f(x)=x-1+ae x(a∈R,e为自然对数的底数)的极值.考点函数的极值与导数的关系题点含参数的函数求极值问题解f′(x)=1-ae x,①当a≤0时,f′(x)>0,f(x)在(-∞,+∞)上是单调递增函数,所以函数f(x)无极值.②当a>0时,令f′(x)=0,得e x=a,x=ln a.当x∈(-∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0,所以f(x)在(-∞,ln a)上是单调递减的,在(ln a,+∞)上是单调递增的,故f(x)在x=ln a处取得极小值,且极小值为f(ln a)=ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,f(x)在x=ln a处取得极小值ln a,无极大值.1.在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值.2.函数的极值是函数的局部性质.可导函数f(x)在点x=x0处取得极值的充要条件是f′(x0)=0且在x=x0两侧f′(x)符号相反.3.利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.。

高中数学选修1-1优质学案2:3.3.2函数的极值与导数

高中数学选修1-1优质学案2:3.3.2函数的极值与导数

3.3.2 函数的极值与导数学习目标:1.理解极值的定义.2.掌握利用导数求函数极值的步骤,能熟练地求函数的极值.3.会根据函数的极值求参数的值.预习提示:1.如图观察,函数y=f(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规律?2.函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是惟一的吗?3.已知f(x)=x3求f′(0),x=0是f(x)的极值点吗?f′(x0)=0与x=x0为f(x)的极值点有何关系?4.函数的极大值一定大于极小值吗?课堂探究:例1、求下列函数的极值点和极值:(1)f(x)=13x3-x2-3x+3;(2)f(x)=3x+3ln x.变式训练:求函数y=2x+8x的极值.例2、已知f(x)=x3+ax2+bx+c在x=1与x=-23时都取得极值,且f(-1)=32,求a、b、c的值.变式训练:已知f(x)=x3+3ax2+bx+a2在x=-1和x=3处有极值,求a、b的值.例3、已知函数f(x)=x3-3ax-1(a≠0).若函数f(x)在x=-1处取得极值,直线y=m与y =f(x)的图象有三个不同的交点,求m的取值范围.变式训练:已知a为实数,函数f(x)=-x3+3x+a.(1)求函数f(x)的极值,并画出其图象(草图);(2)当a为何值时,方程f(x)=0恰好有两个实数根?当堂达标:1.下列说法正确的是()A.函数在闭区间上的极大值一定比极小值大B.函数在闭区间上的极大值一定比极小值小C.函数f(x)=|x|只有一个极小值D.函数y=f(x)在区间(a,b)上一定存在极值2.函数f(x)的定义域为区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在(a,b)内的极小值的个数为()A.1B.2C.3D.43.函数y=f(x)是定义在R上的可导函数,则f′(x0)=0是x0为函数y=f(x)的极值点的() A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件4.求函数y =x +1x的极值.[答案]1.【提示】 以d 、e 两点为例,函数y =f (x )在点x =d 处的函数值f (d )比它在点x =d 附近其他点的函数值都小,f ′(d )=0;在x =d 的附近的左侧f ′(x )<0,右侧f ′(x )>0.类似地函数y =f (x )在点x =e 的函数值f (e )比它在x =e 附近其他点的函数值都大,f ′(e )=0;在x =e 附近的左侧f ′(x )>0,右侧f ′(x )<0.2.函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是惟一的吗? 【提示】 函数的极大值与极小值并无确定的大小关系,一个函数的极大值未必大于极小值;在区间内可导函数的极大值或极小值可以不止一个.3.已知f (x )=x 3求f ′(0),x =0是f (x )的极值点吗?f ′(x 0)=0与x =x 0为f (x )的极值点有何关系?【提示】 可导函数的极值点处导数为零,但导数值为零的点不一定是极值点.可导函数f (x )在x 0处取得极值的充要条件是f ′(x 0)=0且在x 0两侧f ′(x )的符号不同.4.函数的极大值一定大于极小值吗?【提示】 不一定,极值刻画的是函数的局部性质,反映了函数在某一点附近的大小情况,极大值可能比极小值还小.课堂探究:例1、【自主解答】 (1)f ′(x )=x 2-2x -3.令f ′(x )=0,得x 1=3,x 2=-1,如下表所示:x (-∞,-1)-1 (-1,3) 3 (3,+∞) f ′(x ) + 0 - 0 + f (x )极大值143极小值-6∴f (x )极大值=143,f (x )极小值=-6.(2)函数f (x )=3x +3ln x 的定义域为(0,+∞),f ′(x )=-3x 2+3x=3x -1x 2, ∴f (x )极大值=143,f (x )极小值=-6.(2)函数f (x )=3x +3ln x 的定义域为(0,+∞),f ′(x )=-3x 2+3x =3x -1x 2, 令f ′(x )=0得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,+∞) f ′(x ) - 0 +f (x )极小值3变式训练:【解】 函数的定义域为(-∞,0)∪(0,+∞). y ′=2-8x 2,令y ′=0,得x =±2.y ′=2-8x 2,令y ′=0,得x =±2.当x 变化时,y ′、y 的变化情况如下表:x (-∞,-2) -2 (-2,0) (0,2) 2 (2,+∞) y ′ + 0 - - 0 +y-88由表知:当x 极大值当x =2时,y 极小值=8.例2、 【自主解答】 f ′(x )=3x 2+2ax +b ,令f ′(x )=0,由题设知x =1与x =-23为f ′(x )=0的解.∴⎩⎨⎧1-23=-23a ,1×⎝⎛⎭⎫-23=b 3.解得a =-12,b =-2.,,1×\b\lc\(\rc\)(\a\vs4\al\co1(-\f(2,3)))=\f(b,3).)) 解得a =-12,b =-2.∴f ′(x )=3x 2-x -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎫-∞,-23-23 ⎝⎛⎭⎫-23,1 1 (1,+∞) f ′=(x )+-+由上表知,函数在x =1与-23处取得极值.∴a =-12,b =-2.∴f (x )=x 3-12x 2-2x +c ,由f (-1)=-1-12+2+c =32,由上表知,函数在x =1与-23处取得极值.∴a =-12,b =-2.∴f (x )=x 3-12x 2-2x +c ,由f (-1)=-1-12+2+c =32,得c =1.变式训练:【解】 由f (x )=x 3+3ax 2+bx +a 2,得f ′(x )=3x 2+6ax +b . 又f (x )在x =-1和x =3处有极值, ∴f ′(-1)=3+b -6a =0, ① f ′(3)=27+18a +b =0.②联立①②,得⎩⎪⎨⎪⎧ a =-1,b =-9.又f (x )在x =-1和x =3处有极值, ∴f ′(-1)=3+b -6a =0, ① f ′(3)=27+18a +b =0.②联立①②,得⎩⎪⎨⎪⎧a =-1,b =-9.∴f ′(x )=3x 2-6x -9=3(x +1)(x -3). 当x 变化时,f ′(x )、f (x )的变化情况如下:∴f (x )在-1,3∴a =-1,b =-9符合题意.例3、 【自主解答】 ∵f (x )在x =-1处取得极值, ∴f ′(-1)=3×(-1)2-3a =0,∴a =1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0解得x1=-1,x2=1.当x<-1时,f′(x)>0;当-1<x<1时,f′(x)<0;当x>1时,f′(x)>0.∴由f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x)的单调性可知,m的取值范围是(-3,1).变式训练:【解】(1)由f(x)=-x3+3x+a,得f′(x)=-3x2+3,令f′(x)=0,得x=1或x=-1.当x变化时,f′(x),f(x)的变化情况如下表:x (-∞,-1)-1(-1,1)1(1,+∞)f′(x)-0+0-f(x)a-2a+2由表可知函数极大值为f(1)=a+2.由单调性、极值可画出函数f(x)的大致图象,如图所示,这里,极大值a+2大于极小值a-2.(2)结合图象,当极大值a+2=0时,有极小值小于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰有两个实数根,所以a=-2满足条件;当极小值a-2=0时,有极大值大于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰好有两值之间无确定的大小关系,单调函数在区间(a,b)上没有极值,故A、B、D错误,C 正确,函数f(x)=|x|只有一个极小值为0.[答案] C2.[解析]在(a,b)内,f′(x)=0的点有A、B、O、C.要为函数的极小值点,则在该点处的左、右两侧导函数的符号满足左负右正,只有点B符合.[答案] A3.[解析]f′(x0)=0⇒/ y=f(x)在x0处有极值,但y=f(x)在x0处有极值⇒f′(x0)=0,应选B. [答案] B4.【解】y′=1-1x2=x2-1x2,令y′=0解得x=±1,而原函数的定义域为{x|x≠0},∴当x变化时,y′,y的变化情况如下表:所以当x=-1时,y极大值=-2,当x=1时,y极小值=2.人教版高中数学选修1-1学案77。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的极值预学案
一、学习目标:
1.理解函数的极大值、极小值、极值点的意义;
2.掌握函数极值的判别方法.进一步体验导数的作用.
二、自主学习:
1、极值的定义:
一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有________我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0点为 ________ ;如果对x0附近的所有的点,都有________,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0点为________
2、判别函数的极大(小)值的方法:
当函数f(x)在点x0处连续时,
⑴如果在x0附近的左侧f '(x)>0,右侧f '(x)<0,那么,f(x0)是_____
⑵如果在x0附近的左侧f '(x)<0,右侧f '(x)>0,那么,f(x0)____ 注意:导数为0的点不一定是极值点.
3、求函数极值的步骤:
(1)
(2)
(3)
(4)
4、预习检测:
1.函数y =f (x )的导数 f '(x ) 与函数值和极值之间的关系为( ) A 、导数 f '(x ) 由负变正,则函数 f (x )由减变为增,且有极大值 B 、导数f '(x ) 由负变正,则函数f (x )由增变为减,且有极大值 C 、导数f '(x ) 由正变负,则函数f (x )由增变为减,且有极小值 D 、导数f '(x ) 由正变负,则函数 f (x )由增变为减,且有极大值 2.函数 的定义域为区间(a ,b ),导函数 在(a ,b )内的图如下图所示,则函数 在(a ,b )内的极小值有( )
A .1个
B .2个
C .3个
D .4个 三、例题解析
1.求()31
443
f x x x =-+的极值。

2、已知函数bx ax x x f 23)(23+-=在1=x 处有极小值1-,试确定b a ,的值,
并求出)(x f 的单调区间.
四、课堂练习 1.求下列函数的极值:
(1)2()62f x x x =-- (2)3()27f x x x =-
2.求函数x e x y -=2的极值
3、已知函数223)(a bx ax x x f +++=在1=x 处有极值10,求b a ,的值.
4、函数b x
a
x x f ++
=)(有极小值2,求b a ,应满足的条件.
5、已知c bx ax x f +-=35)(在1±=x 处有极值,且极大值为4,极小值为0,试确定c b a ,,的值.
五、当堂检测 1.求下列函数的极值
(1)2)(3--=x x x f (2)343
1)(x x x f -=
2、函数2
()ln 3f x a x bx x =++的极值点为11x =,22x =,求a = ,
b = .
3.已知32
()(0)f x ax bx cx a =++≠在x =±1时取得极值,且f (1)=-1,
(1)试求常数a 、b 、c 的值;
(2)试判断x =±1时函数取得极小值还是极大值,并说明理由.
4.已知函数32()32f x x ax bx =-+在1x =处有极小值1-,试求,a b 的值,并求出()f x 的单调区间.。

相关文档
最新文档