九年级数学下册(北师大版)配套教学教案: 1.3 三角函数的计算
北师大版数学九年级下册1.3《三角函数的有关计算》教学设计
北师大版数学九年级下册1.3《三角函数的有关计算》教学设计一. 教材分析《三角函数的有关计算》是北师大版数学九年级下册第1.3节的内容,主要包括正弦、余弦、正切函数的定义及其简单性质。
本节内容是学生对三角函数的基本认识,是后续学习三角函数图像和性质的基础。
教材通过具体的实例引入三角函数的概念,引导学生通过观察、分析、归纳得出三角函数的性质。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。
但是,对于三角函数的定义和性质,学生可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和生活中的问题,激发学生的学习兴趣,引导学生积极参与课堂讨论,从而更好地理解和掌握三角函数的知识。
三. 教学目标1.理解三角函数的定义,掌握正弦、余弦、正切函数的性质。
2.能够运用三角函数解决实际问题,提高学生的数学应用能力。
3.培养学生的观察、分析、归纳能力,提高学生的数学思维能力。
四. 教学重难点1.三角函数的定义和性质。
2.运用三角函数解决实际问题。
五. 教学方法1.情境教学法:通过具体的实例和生活中的问题,引导学生理解和掌握三角函数的知识。
2.问题驱动法:通过提出问题,引导学生观察、分析、归纳,从而得出三角函数的性质。
3.合作学习法:学生进行小组讨论,培养学生的团队合作能力和交流能力。
六. 教学准备1.PPT课件:制作三角函数的定义和性质的PPT课件。
2.实例和问题:准备一些具体的实例和问题,用于引导学生理解和掌握三角函数的知识。
3.练习题:准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的三角函数实例,如电梯上升时的速度、音乐器材的音调等,引导学生关注三角函数在生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍三角函数的定义,引导学生通过观察、分析、归纳得出三角函数的性质。
3.操练(10分钟)学生分组讨论,每组选取一个实例,运用三角函数的知识解决问题,培养学生的团队合作能力和交流能力。
北师大版数学九年级下册1.3《三角函数的有关计算》教案
北师大版数学九年级下册1.3《三角函数的有关计算》教案一. 教材分析北师大版数学九年级下册1.3《三角函数的有关计算》这一节主要让学生了解正弦、余弦、正切函数的定义,掌握三角函数的计算方法。
通过学习,让学生能够运用三角函数解决实际问题,为后续学习三角函数的图像和性质打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了锐角三角函数的概念,对三角函数有一定的认识。
但部分学生对函数的计算方法还不够熟练,尤其是一些特殊角的三角函数值。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导。
三. 教学目标1.了解正弦、余弦、正切函数的定义;2.掌握三角函数的计算方法;3.能够运用三角函数解决实际问题。
四. 教学重难点1.重点:正弦、余弦、正切函数的定义,三角函数的计算方法;2.难点:特殊角的三角函数值,三角函数在实际问题中的应用。
五. 教学方法采用讲授法、案例分析法、小组合作法等多种教学方法,引导学生通过自主学习、合作探讨,掌握三角函数的计算方法,提高学生解决实际问题的能力。
六. 教学准备1.教学课件;2.练习题;3.三角板。
七. 教学过程1.导入(5分钟)利用三角板展示一些生活中的三角函数应用场景,如测量高度、角度等,引导学生思考三角函数的作用和意义。
2.呈现(10分钟)讲解正弦、余弦、正切函数的定义,通过示例让学生了解特殊角的三角函数值。
3.操练(10分钟)让学生独立完成一些三角函数的计算题目,教师巡回指导,解答学生疑问。
4.巩固(10分钟)小组合作,探讨如何运用三角函数解决实际问题。
教师选取一些典型的例子进行讲解,帮助学生巩固所学知识。
5.拓展(10分钟)引导学生思考三角函数在现实生活中的其他应用,如工程测量、航海导航等。
6.小结(5分钟)对本节课的主要内容进行总结,强调三角函数的计算方法和实际应用。
7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。
8.板书(5分钟)展示本节课的板书,包括教学内容和重要公式。
北师大版九年级数学下册:1.3《三角函数的计算》教学设计
北师大版九年级数学下册:1.3《三角函数的计算》教学设计一. 教材分析《三角函数的计算》是北师大版九年级数学下册第一章第三节的内容。
本节内容是在学生已经掌握了锐角三角函数的定义和性质的基础上进行学习的,主要让学生了解和掌握各种三角函数的计算方法,进一步培养学生的运算能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数有一定的了解。
但是,对于较复杂的三角函数计算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生理解三角函数的计算方法,并通过大量的练习让学生熟练掌握。
三. 教学目标1.让学生掌握三角函数的计算方法。
2.培养学生的运算能力和解决问题的能力。
3.提高学生对数学的兴趣和自信心。
四. 教学重难点1.重点:三角函数的计算方法。
2.难点:灵活运用三角函数的计算方法解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和解决问题。
2.通过大量的例题和练习,让学生在实践中掌握三角函数的计算方法。
3.利用多媒体辅助教学,直观地展示三角函数的计算过程。
六. 教学准备1.多媒体教学设备。
2.教学PPT。
3.练习题。
七. 教学过程1.导入(5分钟)通过提问方式复习锐角三角函数的定义和性质,引导学生思考:如何计算一个角的三角函数值?2.呈现(10分钟)讲解三角函数的计算方法,并通过PPT展示相应的例题。
引导学生跟随老师的讲解,逐步理解三角函数的计算过程。
3.操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时解答学生的疑问。
4.巩固(10分钟)让学生分组讨论,互相讲解练习题,教师随机抽取学生回答问题,检查学生对三角函数计算方法的掌握程度。
5.拓展(10分钟)让学生举例说明三角函数在实际生活中的应用,引导学生学会将所学知识运用到实际问题中。
6.小结(5分钟)教师总结本节课所学内容,强调三角函数计算方法的重要性,并鼓励学生在课后继续练习。
北师大版九年级数学下册:1.3《三角函数的计算》教学设计2
北师大版九年级数学下册:1.3《三角函数的计算》教学设计2一. 教材分析《三角函数的计算》是北师大版九年级数学下册第一章第三节的内容。
本节内容是在学生已经掌握了锐角三角函数的概念和性质的基础上进行的,主要让学生了解和掌握特殊角的三角函数值,以及会运用三角函数解决实际问题。
本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于锐角三角函数的概念和性质已经有了一定的了解。
但是,对于特殊角的三角函数值,以及如何运用三角函数解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重学生的参与和实践,通过大量的练习来帮助学生理解和掌握。
三. 教学目标1.了解特殊角的三角函数值,并能运用到实际问题中。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生合作学习的精神,提高学生的数学素养。
四. 教学重难点1.特殊角的三角函数值的记忆和运用。
2.如何运用三角函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究。
2.运用实例教学,让学生感受数学与生活的紧密联系。
3.采用小组合作学习,培养学生合作意识。
4.通过练习巩固所学知识,提高学生的实践能力。
六. 教学准备1.准备相关的教学课件和练习题。
2.准备特殊角的三角函数值的图片和实例。
3.准备小组合作学习的任务单。
七. 教学过程1.导入(5分钟)通过提问方式复习锐角三角函数的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)呈现特殊角的三角函数值,如30°、45°、60°等,引导学生观察和思考。
3.操练(10分钟)让学生通过计算特殊角的三角函数值,巩固所学知识。
可以采用个人练习或小组练习的形式。
4.巩固(10分钟)通过解决实际问题,让学生运用三角函数值。
如计算直角三角形的边长,解决几何问题等。
5.拓展(10分钟)引导学生思考:如何运用三角函数解决实际问题?让学生举例说明,并进行讲解。
九年级数学下册:1.3三角函数的有关计算教案(北师大版)
BA20cm 30cm第三节三角函数的有关计算(一)教学核心1.经历用计算器由已知锐角求三角函数值的过程及由三角函数求相应锐角的过程,进一步体会三角函数的意义;2.能够用计算器进行有关三角函数值的计算;3.能够用计算器辅助解决含三角函数值计算的实际问题,提高用现代工具解决实际问题的能力;(二)课时安排2课时(三)教材分析上节课我们探索了特殊角(30°、45°、60°角)的三角函数值,但在实际应用中一般锐角三角函数的计算问题较为广泛,所以,本节课是将特殊的三角函数值一般化的过程,而计算一般锐角三角函数,那就需要用计算器来解决,本节课较详细地介绍了如何用计算器求锐角三角函数值及由三角函数求相应锐角的过程,并且提供了相应的训练和解决问题的机会。
◆第一课时(一)教学内容课本由需要计算缆车上升高度的问题,引出一般锐角的三角函数值的问题,计算一般锐角的三角函数值需要计算器的帮助,所以接下来,课本详细地介绍了如何用计算器求三角函数值的方法,最后通过想一想深化所求内容,如上升的高度、水平的距离等。
(二)教学建议1.不同的计算器的按键方式可能不同,教学时可引导学生利用自己所使用的计算器探索计算三角函数值的具体步骤,也可以鼓励同学们互相交流用计算器计算三角函数的方法。
2.用计算器计算三角函数值时,可以以小组为单位,展开竞赛,看哪一组更快更准确。
(三)教学素材1.如图,某公园入口处原有三级台阶,台阶的起点为A,每级台阶高为20cm,深为30cm.,为方便残疾人士,拟将台阶改为斜坡,斜坡的起始点为C,坡角∠BCA设计为12°,求AC的长度.(精确到1cm)C◆第二课时(一)教学内容上节课我们用计算器由已知锐角求出它的三角函数值,本节课首先由天桥所需建的斜道出发,引出直角三角形中已知边长计算角度的问题;根据直角三角形的边求角,也要借助于计算器。
所以,接下来就是探索如何使用计算器计算角度的问题;例1(V型槽问题)与例2(放射性治疗问题)这两个实际应用问题,确实需要知道角度,而这一角度又不易测量,所以,通过这两个例题的讲解,进一步体会三角函数的意义,巩固直角三角形如何求角问题。
2024北师大版数学九年级下册1.3《三角函数的计算》教学设计
2024北师大版数学九年级下册1.3《三角函数的计算》教学设计一. 教材分析《三角函数的计算》是北师大版数学九年级下册1.3节的内容,本节课主要让学生了解并掌握锐角三角函数的定义及计算方法,学会使用计算器进行三角函数值的计算。
通过本节课的学习,学生能够进一步理解函数的概念,提高解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了函数的基本概念和一次函数、二次函数的相关知识,具备了一定的函数思维。
但他们对三角函数的认识较为陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生对于使用计算器进行函数计算还不太熟悉,需要在课堂上进行引导和练习。
三. 教学目标1.知识与技能目标:让学生掌握锐角三角函数的定义及计算方法,能使用计算器进行三角函数值的计算。
2.过程与方法目标:通过观察、实验、探究等活动,培养学生的动手操作能力和合作交流能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索、积极向上的学习态度。
四. 教学重难点1.重点:锐角三角函数的定义及计算方法。
2.难点:熟练使用计算器进行三角函数值的计算。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等多种教学方法,引导学生主动探究、合作交流,提高学生解决问题的能力。
六. 教学准备1.准备相关课件和教学素材。
2.准备计算器,确保每个学生都能使用。
3.安排学生预习锐角三角函数的相关知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的函数知识,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了哪些函数?它们有什么特点?”2.呈现(10分钟)利用课件展示锐角三角函数的定义及计算方法,让学生直观地了解三角函数的概念和计算方式。
同时,给出一些实例,让学生尝试计算。
3.操练(10分钟)让学生分组进行实验,使用计算器计算不同角度的三角函数值。
在实验过程中,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
北师大版九年级数学下册:第一章 1.3《三角函数的计算》精品教学设计
北师大版九年级数学下册:第一章 1.3《三角函数的计算》精品教学设计一. 教材分析北师大版九年级数学下册第一章《三角函数的计算》的内容包括正弦、余弦、正切函数的定义,三角函数的图像和性质,以及三角函数在实际问题中的应用。
本节课的重点是让学生掌握三角函数的定义和计算方法,理解三角函数的图像和性质,能够运用三角函数解决实际问题。
二. 学情分析九年级的学生已经学习了初中阶段的代数和几何知识,对函数的概念和性质有一定的了解。
但是,三角函数作为一种新的函数类型,对学生来说还是相对陌生的。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握三角函数的概念和性质。
三. 教学目标1.了解三角函数的定义,掌握正弦、余弦、正切函数的计算方法。
2.理解三角函数的图像和性质,能够运用三角函数解决实际问题。
3.培养学生的逻辑思维能力和创新能力,提高学生的数学素养。
四. 教学重难点1.三角函数的定义和计算方法。
2.三角函数的图像和性质。
五. 教学方法1.情境教学法:通过实际问题引入三角函数的概念,让学生在解决问题的过程中理解和掌握三角函数的性质。
2.数形结合法:通过绘制三角函数的图像,让学生直观地理解三角函数的性质。
3.小组合作学习:引导学生分组讨论和探究,培养学生的团队合作能力和创新能力。
六. 教学准备1.教学课件:制作三角函数的图像和性质的课件,以便在课堂上进行展示和讲解。
2.练习题:准备一些有关三角函数计算和应用的练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个实际问题引入三角函数的概念,如在直角三角形中,边长为a、b、c的三角形的面积可以表示为S=1/2ab sinC,让学生思考sinC的定义和计算方法。
2.呈现(15分钟)讲解三角函数的定义,引导学生从已有的知识出发,理解三角函数的概念。
然后,通过绘制三角函数的图像,让学生直观地理解三角函数的性质。
3.操练(15分钟)让学生分组讨论和探究,运用三角函数的性质解决实际问题。
北师大版九年级数学下册:1.3《三角函数的计算》教学设计
北师大版九年级数学下册:1.3《三角函数的计算》教学设计一. 教材分析北师大版九年级数学下册1.3《三角函数的计算》是学生在学习了锐角三角函数的概念、正弦、余弦、正切的定义和性质的基础上进行的一节实践活动课。
本节课通过计算一些具体的三角函数值,让学生进一步理解和掌握三角函数的概念和性质,提高学生的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经掌握了锐角三角函数的基本概念和性质,对正弦、余弦、正切的定义和性质有一定的了解。
但是,学生在计算三角函数值时,可能会对一些特殊角的三角函数值记忆不牢,需要在教学中进行巩固。
此外,学生在解决实际问题时,可能对如何运用三角函数的性质和公式进行计算还不够熟练,需要通过本节课的教学进行提高。
三. 教学目标1.让学生理解和掌握三角函数的概念和性质。
2.让学生能够熟练计算常见角的三角函数值。
3.培养学生运用三角函数解决实际问题的能力。
四. 教学重难点1.重点:让学生理解和掌握三角函数的概念和性质,能够熟练计算常见角的三角函数值。
2.难点:培养学生运用三角函数解决实际问题的能力。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,以学生为主体,教师为指导,引导学生通过自主学习、合作学习、探究学习,提高学生的数学思维能力和解决问题的能力。
六. 教学准备1.教师准备PPT,内容包括:三角函数的概念和性质,常见角的三角函数值,实际问题案例。
2.学生准备笔记本,用于记录知识点和做练习。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾锐角三角函数的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT呈现常见角的三角函数值,让学生自主学习,理解并掌握三角函数的概念和性质。
3.操练(10分钟)教师给出一些具体问题的案例,让学生运用三角函数的性质和公式进行计算,提高学生的实际操作能力。
4.巩固(10分钟)教师引导学生通过小组合作,共同解决一些实际问题,巩固学生对三角函数的理解和运用。
1.3 三角函数的计算(教案)-北师大版数九年级下册
第3节三角函数的计算1.经历用计算器由已知锐角求三角函数值及由三角函数值求相应的锐角的过程,进一步体会三角函数的意义.2.能够运用计算器进行有关三角函数的计算.3.能够运用计算器辅助解决含三角函数计算的实际问题.1.借助计算器,解决含三角函数的实际问题,提高用现代工具解决实际问题的能力.2.发现实际问题中的边角关系,提高学生有条理地思考和表达的能力.1.通过积极参与数学活动,体会解决问题后的快乐.2.感悟计算器的计算功能和三角函数的应用价值.【重点】1.用计算器由已知锐角求三角函数值.2.能够用计算器辅助解决含三角函数计算的实际问题.【难点】用计算器辅助解决含三角函数计算的实际问题.【教师准备】多媒体课件.【学生准备】1.科学计算器.2.复习三角函数的计算方法.导入一:同学们小的时候都玩过跷跷板吧?如图所示,跷跷板AB的一端B碰到地面时,AB与地面的夹角为15°,且OA=OB=3m.你能求出此时另一端A离地面的高度吗?【问题】要求A离地面的高度,实际上就是求直角三角形的直角边,所以只要求出sin B的值即可,但是15°不是特殊角怎么办呢?可以使用计算器进行解决.[设计意图]用多媒体演示学生熟悉的现实生活中的问题,进而引出非特殊角的三角函数值,自然地引出本节课的课题.导入二:如图所示,已知一商场自动扶梯的长l为13m,高度h为5m,自动扶梯与地面所成的夹角为θ,你能求出夹角θ的度数吗?【教师活动】要求学生注意观察夹角θ,l,h三者之间的关系,确定夹角θ的三角函数.【学生活动】通过观察发现sinθ==,由于不是特殊角的三角函数值,尝试使用科学计算器求夹角θ的方法.[设计意图]通过对非特殊角的三角函数值的分析,让学生初步感知非特殊角的三角函数的计算方法——使用科学计算器,在引出课题的同时,又引导学生初步掌握了利用三角函数值求角度的方法.[过渡语]日常生活中我们经常会遇到含有角度的运算,并且有些角度并非我们上节课所学的30°,45°,60°角等特殊角,对于非特殊角我们如何求出它们的三角函数值呢?一、用计算器计算非特殊角的三角函数值课件出示:如图所示,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01m)教师引导学生回答:1.缆车垂直上升的距离是线段.2.本题的已知条件是,需要求出的条件是.3.这三个量之间的关系是.学生思考并反馈:1.缆车垂直上升的距离是线段BC.2.已知条件是∠α=16°,AB=200m,需要求出的是线段BC的长.3.这三个量之间的关系为sinα=.根据学生分析,师课件出示解题过程:解:在Rt△ABC中,∠α=16°,AB=200m,根据正弦的定义,得sin16°==,∴BC=AB sin16°=200·sin16°.想一想:200·sin16°中的“sin16°”是多少呢?我们需借助于科学计算器求出这个锐角的三角函数值,怎样用科学计算器求三角函数值呢?用科学计算器求三角函数值时,需要用到sin,cos键和tan键.【教师活动】例如,求sin16°,cos72°38'25″,tan85°的按键顺序如下表所示.(课件演示操作步骤)【学生活动】同学们用自己的计算器按上述按键顺序计算sin16°,cos72°38'25″,tan 85°.看显示的结果是否和表中显示的结果相同.【教师强调】1.不同的计算器按键方式可能不同,所以同学们可以利用自己所使用的计算器探索计算三角函数值的具体步骤,也可以和其他同学互相交流其他计算器计算三角函数值的方法.2.用计算器求三角函数值时,计算结果一般精确到万分位.【做一做】下面就请同学们利用计算器求出本节刚开始提出的问题.生得出:BC=200sin16°≈55.12(m).[设计意图]引导学生利用计算器求三角函数值的具体步骤,并注意在使用计算器求值的过程中出现的问题.[知识拓展]用计算器求三角函数值的按键顺序:第一步:按相应的三角函数键,即按下“sin,cos或tan”键;第二步:按下角度;第三步:按“=”键得到相应的三角函数值.【议一议】在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面的夹角为∠β=42°,由此你还能算出什么?【教师活动】留出时间和空间让学生思考问题如何解决,不要代替学生思考,进而培养学生的思维能力.【学生活动】生独立思考后,小组交流,代表发言:思路一缆车从A→B→D上升的垂直高度:在Rt△DBE中,∠β=42°,BD=200m,所以缆车上升的垂直高度DE=BD sin42°=200sin42°≈133.83(m),所以缆车从A→B→D上升的垂直高度为BC+DE≈55.12+133.83=188.95(m).思路二缆车从A→B→D移动的水平距离:在Rt△ABC中,∠α=16°,AB=200m,AC=AB cos16°≈192.25(m).在Rt△DBE中,∠β=42°,BD=200m,BE=BD·cos42°≈148.63(m).所以缆车从A→B→D水平移动的距离为AC+BE≈192.25+148.63=340.88(m).[设计意图]让学生学会从数学角度提出问题、分析问题,并能综合运用所学知识解决问题,发展学生的应用意识,让学生进一步体会在实际问题中用计算器求锐角三角函数值的过程.三、利用计算器根据三角函数值求锐角的度数[过渡语]同学们已经掌握了用计算器计算一个锐角的三角函数值.如果知道了一个角的三角函数值,那么我们如何运用计算器求出这个角度呢?道(如图所示).这条斜道的倾斜角是多少?【教师活动】由已知条件如何求出倾斜角∠A的度数?【学生活动】生思考后,展示:解:如图所示,在Rt△ABC中,BC=10m,AC=40m,∴sin A===.【议一议】我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?【教师总结】我们曾学习过两个直角三角形的判定定理——HL定理.在上图中,斜边AC和直角边BC是定值,根据HL定理可知这样的直角三角形形状和大小是唯一确定的,当然∠A的大小也是唯一确定的.【教师点拨】和第一部分探究活动一样,如果已知三角函数值我们同样可以利用计算器求角度.【师生活动】.已知三角函数值求角度,要用到sin,cos,tan键的第二功能“sin-1,cos-1,tan-1”和2ndf键.例如,已知sin A,cos B,tan C,.学生根据课本和说明书,自己探究计算器的操作方法:给学生充分交流的时间和空间,及时引导学生根据自己使用的计算器,探索具体操作步骤.学生按照教师展示的按键顺序,进行练习.【教师强调】1.显示结果是以“度”为单位的.再按°'″键即可显示以“度、分、秒”为单位的结果.2.,计算结果精确到1″即可.【做一做】你能求出上图中∠A的大小吗?【学生展示】sin A==0.25.按键顺序为:2ndf sin0·25=,sin-10.25=14.47751219,再按°'″键可显示14°28'39.04″,即∠A≈14°28'39″.[设计意图]相信学生完全可以通过自学、互助,求出锐角的度数,可由学生讲解调动其主动性,尤其让那些动手能力强的来做这项工作.然后再总结利用计算器由三角函数值求角度的按键顺序,让学生学会及时总结规律,为进一步的学习与应用做好基础.[知识拓展]用计算器根据三角函数值求角度的按键顺序:第一步:按2ndf键;第二步:,即按下“sin,cos或tan”键;第三步:按已知的三角函数值;第四步:;第五步:按°'″键即可显示以“度、分、秒”为单位的结果.1.运用计算器求锐角的三角函数值及根据三角函数值求角度的方法.2.运用三角函数解决实际问题的方法.1.四位学生用计算器求sin62°20'的值正确的是(小数点后保留四位)()A.0.8857B.0.8856C.0.8852D.0.8851解析:根据科学计算器给出的结果进行判断,sin62°20'≈0.8857.故选A.2.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24m,则旗杆的高度约为()A.24mB.20mC.16mD.12m解析:如图所示,∵AB⊥BC,BC=24m,∠ACB=27°,∴AB=BC·tan27°,把BC=24,tan27°≈0.51代入,得AB≈24×0.51≈12(m).故选D.3.利用计算器求下列各角(精确到1').(1)sin A=0.75,求∠A;(2)cos B=0.8889,求∠B;(3)tan C=45.43,求∠C;解:(1)∵sin A=0.75,∴∠A≈48°35'.(2)∵cos B=0.8889,∴∠B≈27°16'.(3)∵tan C=45.43,∴∠C≈88°44'.4.有人说,数学家就是不用爬树或者把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高,如图所示,她测得BC=10m,∠ACB=50°,请你帮助她算出树高AB约为多少米?(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)解:在Rt△ABC中,BC=10,∠ACB=50°,则AB=BC×tan50°≈12,即树高约为12m.3三角函数的计算1.用计算器求锐角的三角函数值2.用计算器根据三角函数值求锐角的度数一、教材作业【必做题】1.教材第14页随堂练习第1~4题.2.教材第15页习题1.4第1~3题.【选做题】教材第15页习题1.4第4,5,6题.二、课后作业【基础巩固】1.(2015·威海中考)如图所示,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5,若用科学计算器求边AC的长,则下列按键顺序正确的是()2.用计算器求sin20°+tan54°33'的结果等于(结果精确到0.01)()A.2.25B.1.55C.1.73D.1.753.(2014·陕西中考)用科学计算器计算:+3tan56°≈.(结果精确到0.01)4.如图所示,为测量旗杆AB的高度,在与B距离为8m的C处测得旗杆顶端A的仰角为56°,那么旗杆的高度约是m(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)【能力提升】5.在Rt△ABC中,∠C=90°,BC∶AC=3∶4,运用计算器计算,则∠A的度数是(精确到1°)()A.30°B.37°C.38°D.39°6.(2015·南昌中考)如下左图所示的是小志同学书桌上的一个电子相框,将其侧面抽象为如下右图所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm.(参考数据:sin 20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器)7.用计算器求下列各式的值(结果精确到0.0001):(1)sin47°;(2)cos25°18';(3)tan44°59'59″.8.如图所示,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高;(精确到0.01)(2)∠B的度数.(精确到1')9.如图所示,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0m,∠PAB=38.5°,∠PBA=26.5°.请帮助小张求出小桥PD的长并确定小桥在小道AB上的位置(以A,B为参照点,结果精确到0.1m).(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)【答案与解析】1.D(解析:由tan B=,得AC=BC·tan B=5×tan26°.故选D.)2.D(解析:sin20°+tan54°33'≈0.3420+1.4045=1.7465≈1.75.故选D.)3.10.02(解析:≈5.5678,tan56°≈1.4826,则+3tan56°≈5.5678+3×1.4826≈10.02.故填10.02.)4.12(解析:由题意知BC=8,∠C=56°,故AB=BC·tan56°≈8×1.483≈12(m).故填12.)5.B(解析:∵BC∶AC=3∶4,∴设BC=3x,则AC=4x,由勾股定理得AB=5x,∴sin A===0.6,运用科学计算器得∠A≈37°.故选B.)6.14.1(解析:如图所示,作BE⊥CD于E,∵BC=BD,∠CBD=40°,∴∠CBE=20°.在Rt△CBE中,cos∠CBE=,∴BE=BC·cos∠CBE≈15×0.940=14.1(cm).故填14.1.)7.解:(1)sin47°≈0.7314.(2)cos25°18'≈0.9041.(3)tan44°59'59″≈1.0000.8.解:(1)如图所示,过C作AB边上的垂线CH,垂足为H,∵在Rt△ACH中,sin A=,∴CH=AC·sin A=9sin 48°≈6.69.(2)∵在Rt△ACH中,cos A=,∴AH=AC·cos A=9cos48°,∴在Rt△BCH中,tan B===≈3.382,∴∠B≈73°32'.9.解:设PD=x,∵PD⊥AB,∴∠ADP=∠BDP=90°,在Rt△PAD中,tan∠PAD=,∴AD=≈=x,在Rt△PBD中,tan ∠PBD=,∴DB=≈=2x.又∵AB=80.0,∴x+2x=80.0,解得x≈24.6,即PD≈24.6m,∴DB≈2x=49.2(m).答:小桥PD的长度约为24.6m,小桥位于AB上距B点约49.2m处.本节是学习用计算器求三角函数值并加以实际应用的内容,通过本节的学习,使学生充分认识了三角函数知识在现实世界中有着广泛的应用.虽然本节课的知识点不是很多,但是学生通过积极参与课堂活动,提高了分析问题和解决问题的能力,并且在意志力、自信心和理性思维等方面得到了良好的发展.教学时把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.对于新知的应用,由于学生缺乏经验和思考能力,容易产生困惑,所以教师要恰当地利用好信息技术,既有利于及时点拨和调控,又有利于学生的“直接体验”,增加学生空间想象能力以及解题能力,有利于学生突破难点、提高学习效率,更有助于减轻学生的压力,进而改善教学的效果.由于学生使用的科学计算器型号不统一,所以按键的顺序不一样,这样就给教学工作带来了麻烦,要分别给学生说明,耽误了一些时间,造成后面的教学环节处理得稍显紧张.第一,力争使用型号统一的科学计算器;第二,对于计算器的使用,再多给学生一些练习的时间,使学生对计算器的操作达到熟练的程度.随堂练习(教材第14页)1.(1)0.8290(2)0.9367(3)1.0000(4)4.75442.∠θ≈56°1″3.山高约242.8m.4.约为51°19'4″习题1.4(教材第15页)1.(1)0.6249(2)0.9097(3)0.8844(4)0.82912.(1)1.5087(2)-0.24323.(1)71°30'2″(2)23°18'35″(3)38°16'46″(4)41°53'54″4.解:如图所示,在Rt△ADB中,BD=AD tan45°=60×1=60(m).在Rt△ADC中,DC=AD tan37°≈60×0.7536≈45.22(m),∴BC=BD+DC≈105.2(m).答:大厦的高度约为105.2m.5.约2°51'58″6.甲、乙两地间的坡角为5°8'34″.本节课学生学习的重点是熟练掌握利用计算器求三角函数值和根据三角函数值求角度的操作步骤,在学习的过程中,一定要通过对计算器的实际操作,体会其操作步骤,并进行及时总结,力求做到熟练运用;在利用非特殊角的三角函数值解决实际问题时,要掌握分析问题的基本步骤和选用合适的三角函数求未知量的方法,锻炼综合分析问题的能力.(2014·荆门中考)钓鱼岛自古以来就是中国的领土.如图所示,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B 处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B 处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20n mile/h,18n mile/h,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,cos44°≈0.72)〔解析〕过点C作CD⊥AB于点D,如图所示,由题意得∠ACD=59°,∠DCB=44°,设CD的长为a n mile,分别在Rt△ACD中和Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比较即可确定答案.解:如图所示,过点C作CD⊥AB于点D,由题意得∠ACD=59°,∠DCB=44°.设CD的长为a n mile,∵在Rt△ACD中,cos∠ACD=,∴AC=≈≈1.92a.∵在Rt△BCD中,cos∠BCD=,∴BC=≈≈1.39a.∵其平均速度分别是20n mile/h,18n mile/h,∴1.92a÷20=0.096a,1.39a÷18≈0.077a.∵a>0,∴0.096a>0.077a,∴乙船先到达C处.。
北师大版数学九年级下册1.3三角函数的计算教学设计
-利用计算器辅助教学,让学生在操作中学习,提高计算速度和准确性。
2.对于难点内容的突破:
-创设真实情境,将三角函数知识与生活实际相结合,激发学生的探究欲望。
-引导学生进行小组合作,通过讨论和分享,共同解决复杂的实际问题,培养学生的团队合作能力和问题解决能力。
4.设计丰富的课堂练习,让学生在实际操作中掌握三角函数的计算方法,提高解决问题的能力。
5.鼓励学生思考三角函数与其他数学知识的联系,培养学生的综合分析能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习三角函数的热情。
2.培养学生勇于探索、善于合作的精神,提高学生的团队协作能力。
3.通过解决实际问题,让学生认识到数学知识在生活中的重要性,增强学生的社会责任感。
2.复习旧知:简要回顾九年级上册学过的三角函数的定义、性质和应用,为新课的学习做好铺垫。
3.提出问题:如何计算特殊角的三角函数值?这节课我们将学习三角函数的计算方法。
(二)讲授新知
1.讲解特殊角的三角函数值:结合教材,详细讲解30°、45°、60°等特殊角的正弦、余弦、正切值,并通过图形展示,加深学生的理解。
-三角函数在实际生活中有哪些应用?
2.各小组汇报:小组代表汇报讨论成果,分享学习心得和经验。
3.教师点评:针对各小组的讨论情况,给予及时反馈和指导,强调重点,突破难点。
(四)课堂练习
1.设计练习题:根据学生的学习情况,设计不同难度的练习题,包括基础计算题、应用题和拓展题。
2.学生独立完成:让学生独立Байду номын сангаас成练习题,巩固所学知识。
作业要求:
北师大版九年级数学下册:1.3《三角函数的计算》教学设计1
北师大版九年级数学下册:1.3《三角函数的计算》教学设计1一. 教材分析《三角函数的计算》是北师大版九年级数学下册第一章第三节的内容。
本节内容是在学生已经掌握了锐角三角函数的定义和性质的基础上进行学习的,主要内容包括正弦、余弦、正切函数的定义及其在直角三角形中的计算方法。
通过本节内容的学习,使学生掌握三角函数的计算方法,为后续学习三角函数的图像和性质打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对锐角三角函数有一定的了解。
但在计算方面,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学。
三. 教学目标1.理解三角函数的定义,掌握正弦、余弦、正切函数的计算方法。
2.能够运用三角函数计算方法解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.重点:三角函数的定义及其计算方法。
2.难点:三角函数计算方法的灵活运用。
五. 教学方法1.采用问题驱动法,引导学生主动探究三角函数的计算方法。
2.运用多媒体辅助教学,直观展示三角函数的计算过程。
3.采用合作学习法,让学生在小组讨论中互相交流,共同解决问题。
4.注重实践操作,让学生在动手实践中掌握三角函数的计算方法。
六. 教学准备1.多媒体教学设备。
2.三角函数计算相关教案和学案。
3.练习题和测试题。
4.三角板和直尺等学习工具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与三角函数相关的实际问题,如测量塔的高度、计算物体在斜面上的速度等,引发学生对三角函数计算的兴趣。
2.呈现(10分钟)教师讲解三角函数的定义和性质,引导学生掌握正弦、余弦、正切函数的计算方法。
3.操练(10分钟)学生分组进行练习,运用三角函数计算方法解决实际问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师出示一些典型例题,让学生独立解答,巩固所学知识。
5.拓展(10分钟)学生自主探究,尝试解决一些与三角函数计算相关的拓展问题。
北师大版九年级数学下册:1.3《三角函数的计算》教案1
北师大版九年级数学下册:1.3《三角函数的计算》教案1一. 教材分析《三角函数的计算》是北师大版九年级数学下册第一章第三节的内容。
本节课主要介绍了三角函数的定义、计算方法及其应用。
通过本节课的学习,使学生掌握三角函数的基本概念,了解三角函数的计算方法,培养学生运用三角函数解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了初中阶段的数学知识,对函数的概念和性质有一定的了解。
但学生对三角函数的认识较为模糊,对其计算方法和使用范围不熟悉。
因此,在教学过程中,教师需要借助生活中的实例和学生已有的知识,引导学生理解三角函数的概念,掌握计算方法,并能够运用到实际问题中。
三. 教学目标1.知识与技能:使学生了解三角函数的定义,掌握三角函数的计算方法,能够运用三角函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,引导学生自主探索三角函数的计算规律,培养学生的动手操作能力和抽象思维能力。
3.情感态度与价值观:激发学生学习三角函数的兴趣,培养学生积极思考、合作交流的良好学习习惯,提高学生解决问题的能力。
四. 教学重难点1.重点:三角函数的定义、计算方法及应用。
2.难点:三角函数计算规律的探索和运用。
五. 教学方法1.情境教学法:通过生活实例引入三角函数的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、分析、归纳三角函数的计算规律,培养学生的抽象思维能力。
3.合作学习法:学生进行小组讨论,促进学生之间的交流与合作,提高学生解决问题的能力。
六. 教学准备1.教学课件:制作三角函数计算的相关课件,便于引导学生直观地观察和理解。
2.实例材料:收集与三角函数相关的实际问题,用于引入和巩固知识点。
3.练习题:准备一定数量的练习题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)利用生活中的实例,如测量高度、角度等,引导学生思考如何利用数学知识解决实际问题。
进而引入三角函数的概念,激发学生的学习兴趣。
九年级数学下册 1.3 三角函数的计算教案 (新版)北师大版
课题:1.3三角函数的计算教学目标:1.借助计算器解决含三角函数计算的实际问题,进一步体会三角函数的意义,提高用现代工具解决实际问题的能力.2.发现实际问题中的边角关系,并运用三角函数定义解决有关计算问题,感受三角函数值随角度变化的过程. 教学重点与难点:重点:借助计算器解决含三角函数计算的实际问题,进一步体会三角函数的意义,提高用现代工具解决实际问题的能力.难点:发现实际问题中的边角关系,并运用三角函数定义解决有关计算问题,感受三角函数值随角度变化的过程.课前准备: 教师准备:多媒体课件、计算器学生准备:计算器、预习新课教学过程:一、创设情境 导入新课 活动内容:(多媒体展示问题)如图,当登山缆车的吊箱经过点A 到达点B 时,它经过了200m .已知缆车行驶的路线与水平面的夹角为∠a =16°,那么缆车垂直上升的距离是多少?(结果精确到0.01m )处理方式:引导学生结合图形分析问题,然后板书求解过程. 解:在Rt △ABC 中,∵sin a =ABBC∠a =16°, ∴BC =AB sin16°. 设问:你知道sin16°是多少吗?我们可以借助科学计算器求锐角的三角函数值,怎样用科学计算器求三角函数值呢?板书:1.3 三角函数的计算一、自主学习 合作探究 活动内容一:1.用科学计算器求三角函数值处理方式:自学求sin16°,cos72°38′25″和tan85°的按键顺序.BC =AB sin16°≈15.12(m ). 2.议一议(多媒体展示)当缆车继续由点B 到达点D 时,他又走过了200m ,缆车由点B 到点D 的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?处理方式:引导学生自主学习后讨论交流,(1)缆车从A 到D 通过的路程是多少?(2)缆车从A 到D 水平通过的路程是多少?(3)缆车从A 到D 垂直高度上升了多少?活动内容二:(多媒体展示)为了方便某行人推自行车过某天桥,市政府在10m 高的天桥两端修建了40m 长的斜道,这条斜道的倾斜角是多少?处理方式:学生在自主学习的基础上积极发表自己的看法. 引导学生板书:∵sin A =AC BC 即sin A =4010=41,∴∠A =? 活动内容二:利用计算器求角处理方式:自学,交流,展示借助科学计算器:已知三角函数值求角度,要用 键的第二功能“sin -1,cos -1,tan -1和 键.三、 引导反思 总结归纳 活动内容:(多媒体展示)通过本节课学习你有哪些收获?还存在哪些疑惑? 处理方式:学生畅所欲言,重点强调. 归纳解直角三角形的基本理论依据 边的关系:222a b c +=(勾股定理); 角的关系:90A B ∠+∠=︒; 边角关系:sin A =c a ,cos A=c b ,tan A =b a ,sin B =c b ,cos B =c a ,tan B =ab. 四、 练习巩固,交流提高 活动内容:(多媒体展示)处理方式:给学生短暂的思考时间,然后对存在的问题逐一排查,当堂解决. 五、检测反馈 查缺补漏 活动内容:(多媒体展示) 1.根据下列条件求锐角θ的大小:(1)sin 0.8290θ=;(2)cos 0.8780θ=;(3)tan 2.8266θ=. 【考查知识点】利用计算器由三角函数值求锐角 2.在ABC ∆中,A ∠,B ∠均为锐角,且有2|tan (2sin 0B A +=,试判断ABC ∆的形状.【考查知识点】非负数的性质、特殊角的三角函数值3.一辆汽车沿着一山坡行驶了1000米,其铅直高度上升了50米.求山坡与水平面所成锐角的大小.【考查知识点】由正弦值求角度4..一梯子斜靠在一面墙上.已知梯长4m ,梯子位于地面上的一端离墙壁2.5 m ,求梯子与地面所成的锐角?【考查知识点】构造直角三角形、由余弦值求角度处理方式:学生独立完成,然后交流展示,掌握学生对知识把握程度. 六、布置作业 成果展示 必做题:课本习题第5、6、7题选做题:。
最新北师大版九年级数学下册教案1.3 三角函数的计算1
1.3 三角函数的计算1.熟练掌握用科学计算器求三角函数值;(重点)2.初步理解仰角和俯角的概念及应用.(难点)一、情境导入如图①和图②,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩底下,可以使木桩向上运动.如果楔子斜面的倾斜角为10°,楔子沿水平方向前进5cm(如箭头所示).那么木桩上升多少厘米?观察图②易知,当楔子沿水平方向前进5cm ,即BN =5 cm 时,木桩上升的距离为PN .在Rt △ PBN 中,∵tan10°=PNBN,∴PN =BN tan10°=5tan10°(cm).那么,tan10°等于多少呢? 对于不是30°,45°,60°这些特殊角的三角函数值,可以利用科学计算器来求.二、合作探究探究点一:利用科学计算器解决含三角函数的计算问题【类型一】 已知角度,用计算器求三角函数值用计算器求下列各式的值(精确到0.0001):(1)sin47°; (2)sin12°30′; (3)cos25°18′; (4)sin18°+cos55°-tan59°.解析:熟练使用计算器,对计算器给出的结果,根据题目要求用四舍五入法取近似值.解:根据题意用计算器求出: (1)sin47°≈0.7314; (2)sin12°30′≈0.2164; (3)cos25°18′≈0.9041;(4)sin18°+cos55°-tan59°≈-0.7817.方法总结:解决此类问题关键是熟练使用计算器,使用计算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课后巩固提升”第3题 【类型二】 已知三角函数值,用计算器求锐角的度数已知下列锐角三角函数值,用计算器求锐角∠A ,∠B 的度数(结果精确到0.1°):(1)sin A =0.7,sin B =0.01; (2)cos A =0.15,cos B =0.8; (3)tan A =2.4,tan B =0.5.解析:熟练应用计算器,对计算器给出的结果,根据题目要求用四舍五入取近似值.解:(1)由sin A=0.7,得∠A≈44.4°;由sin B=0.01,得∠B≈0.6°;(2)由cos A=0.15,得∠A≈81.4°;由cos B=0.8,得∠B≈36.9°;(3)由tan A=2.4,得∠A≈67.4°;由tan B=0.5,得∠B≈26.6°.方法总结:解决此类问题关键是熟练使用计算器,在使用计算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】利用计算器比较三角函数值的大小(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°________2sin15°cos15°;②sin36°________2sin18°cos18°;③sin45°________2sin22.5°cos22.5°;④sin60°________2sin30°cos30°;⑤sin80°________2sin40°cos40°.猜想:已知0°<α<45°,则sin2α________2sinαcosα;(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请根据提示,利用面积方法验证(1)中提出的猜想.解析:(1)利用计算器分别计算①至⑤各式中左边与右边的值,比较大小;(2)通过计算△ABC的面积来验证.解:(1)①=②=③=④=⑤=猜想:=(2)已知0°<α<45°,则sin2α=2sinαcosα.证明:S△ABC=12AB·sin2α·AC,S△ABC =12×2AB sinα·AC cosα,∴sin2α=2sin αcosα.方法总结:本题主要运用了面积法,通过用不同的方法表示同一个三角形的面积,来得到三角函数的关系,此种方法在后面的学习中会经常用到.探究点二:利用三角函数解决实际问题【类型一】非特殊角三角函数的实际应用如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=45°.因城市规划的需要,将在A、B 两地之间修建一条笔直的公路.(1)求改直后的公路AB的长;(2)问公路改直后该段路程比原来缩短了多少千米(精确到0.1)?解析:(1)过点C作CD⊥AB于D,根据AC=10千米,∠CAB=25°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可;(2)根据(1)可知AC、BC的长度,即可得出公路改直后该段路程比原来缩短的路程.解:(1)过点C作CD⊥AB于点D,∵AC =10千米,∠CAB=25°,∴CD=sin∠CAB·AC=sin25°×10≈0.42×10=4.2(千米),AD=cos∠CAB·AC=cos25°×10≈0.91×10=9.1(千米).∵∠CBA=45°,∴BD=CD=4.2(千米),BC =CD sin∠CBA=4.2sin45°≈5.9(千米),∴AB=AD+BD=9.1+4.2=13.3(千米).所以,改直后的公路AB的长约为13.3千米;(2)∵AC=10千米,BC=5.9千米,∴AC+BC-AB=10+5.9-13.3=2.6(千米).所以,公路改直后该段路程比原来缩短了约2.6千米.方法总结:解决问题的关键是作出辅助线,构造直角三角形,利用三角函数关系求出有关线段的长.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型二】仰角、俯角问题如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计三角函数的计算1.已知角度,用计算器求三角函数值2.已知三角函数值,用计算器求锐角的度数3.仰角、俯角的意义本节课尽可能站在学生的角度上思考问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步.只有这样,才能真正提高课堂教学效率,提高成绩.。
九年级下册数学(北师大)教案:1.3三角函数的有关计算
§1-3 三角函数的有关计算学习目标1.经历用由三角函数值求相应锐角的过程,进一步体会三角函数的意义.2.能够利用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题.学习重点1.用计算器由已知三角函数值求锐角.2.能够用计算器辅助解决含三角函数值计算的实际问题.学习难点用计算器辅助解决含三角函数值计算的实际问题.学习过程一、引入新课已知tanA=56.78,求锐角A.(上表的显示结果是以“度”为单位的.再按键即可显示以“度、分、秒”为单位的结果.)二、习题训练1.根据下列条件求锐角θ的大小:(1)tanθ=2.9888; (2)sinθ=0.3957; (3)cosθ=0.7850;(4)tanθ=0.8972; (5) tanθ=22.3 (6) sinθ=0.6;(7)cosθ=0.2 (8)tanθ=; (9) sinθ=2.某段公路每前进100米,路面就升高4米,求这段公路的坡角.解:sinα==0.04,α=2°17′33″.3.运用计算器辅助解决含三角函数值计算的实际问题.[例1]如图,工件上有-V形槽.测得它的上口宽加20 mm深19.2mm。
求V形角(∠ACB)的大小.(结果精确到1°)分析:根据题意,可知AB=20 mm,CD⊥AB,AC=BC,CD=19.2 mm,要求∠ACB,只需求出∠ACD(或∠DCB)即可.解:tanACD=≈0.5208∴∠ACD=27.5°∠ACB=2∠ACD≈2×27.5°=55°.[例2]如图,一名患者体内某重要器官后面有一肿瘤.在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官,射线必须从侧面照射肿瘤.已知肿瘤在皮下6.3 cm的A处,射线从肿瘤右侧9.8cm 的B处进入身体,求射线的入射角度。
解:如图,在Rt△ABC中, AC=6.3 cm,BC=9.8 cm,∴tanB=≈0.6429. ∴∠B≈32°44′13″.因此,射线的入射角度约为32°44′13″.小结:这两例都是实际应用问题,确实需要知道角度,而且角度又不易测量,这时我们根据直角三角形边的关系.即可用计算器计算出角度,用以解决实际问题.三、解直角三角形在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.(1)边的关系:a2+b2=c2(勾股定理);(2)角的关系:∠A+∠B=90°;(3)边角关系:sinA=,cosA=,tanA= ;sinB=,cosB=,tanB= .由前面的两个例题以及上节的内容我们町以发现,很多实际问题中的数量关系都可归结为直角三角形中元素之间的关系,使实际问题都得到解决.四、随堂练习1.已知sinθ=0.82904.∠θ=(∠θ≈56°1″)2.一梯子斜靠在一面墙上.已知梯长 4 m,梯子位于地面上的一端离墙壁 2.5 m,求梯子与地面所成的锐角.解:如图.cosα==0.625,α≈51°19′4″.所以梯子.与地面所成的锐角约51°19′4″.五、课时小结本节课我们学习了用计算器由三角函数值求相应的锐角的过程,进一步体会三角函数的意义.并且用计算器辅助解决含有三角函数值计算的实际问题.六、课后作业如图,美国侦察机B飞抵我国近海搞侦察活动,我战斗机A奋起拦截,地面雷达C测得:当两机都处在雷达的正东方向,且在同一高度时,它们的仰角分别为∠DCA=16°,∠DCB=15°,它们与雷达的距离分别为AC=80千米,BC=81千米时,求此时两机的距离是多少千米?(精确到0.01千米)[过程]当从低处观测高处的目标时.视线与水平线所成的锐角称为仰角.两机的距离即AB的长度.根据题意,过A、B分别作AE⊥CD,BF⊥CD.E、F为垂足,所以AB=EF,而求EF需分别在Rt△AEC和Rt△BFC中求了CE、CF,则EF=CF-CE.[结果]作AE⊥CD,BF⊥CD,E、F为垂足,∴cos16°=,∴CE=80×cos16°≈80×0.96=76.80(千米).∴cos15°= ,∴CF=81×cos15°≈81×0.97=78.57(千米).依题意AB=EF=CF-CE=79.57-76.80=1.77(千米).所以此时两机的距离为1.77千米.§1-4 船有触礁的危险吗学习目标1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.学习重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.学习难点根据题意,了解有关术语,准确地画出示意图.学习过程一、引入新课直角三角形就像一个万花筒,为我们展现出了一个色彩斑澜的世界.我们在欣赏了它神秘的“勾股”、知道了它的边的关系后,接着又为我们展现了在它的世界中的边角关系,它使我们现实生活中不可能实现的问题,都可迎刃而解.它在航海、工程等测量问题中有着广泛应用,例如测旗杆的高度、树的高度、塔高等.海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继二、探索新知(一)根据题意,画出图形(二)小组交流,分析题意1、货轮要向正东方向继续行驶,有没有触礁的危险,由来决定。
北师大九年级数学下 1.3 三角函数的计算 精选教案1
1.3 三角函数的计算教学目标学会计算器求任意角的三角函数值。
教学重难点重点:用计算器求任意角的三角函数值。
难点:实际运用。
教学过程拿出计算器,熟悉计算器的用法。
下面我们介绍如何利用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角.(1)求已知锐角的三角函数值.1、求sin63゜52′41″的值.(精确到0.0001)解先用如下方法将角度单位状态设定为“度”:显示再按下列顺序依次按键:显示结果为0.897 859 012.所以sin63゜52′41″≈0.8979例3求cot70゜45′的值.(精确到0.0001)解在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.349 215 633.所以cot70゜45′≈0.3492.(2)由锐角三角函数值求锐角例4已知tan x=0.7410,求锐角x.(精确到1′)解在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x =0.1950,求锐角x .(精确到1′)分析 根据tan x =xcot 1,可以求出tan x 的值,然后根据例4的方法就可以求出锐角x 的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a 的三角函数值,使用计算器求锐角a .(精确到1′)(1)sin a =0.2476; (2)cos a =0.4174;(3)tan a =0.1890; (4)cot a =1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。
同一锐角的正切值与余切值互为倒数。
在生活中运用计算器一定要注意计算器说明书的保管与使用。
方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全新修订版教学设计
(教案)
九年级数学下册
老师的必备资料
家长的帮教助手
学生的课堂再现
北师大版
1.3 三角函数的计算
1.熟练掌握用科学计算器求三角函数值;(重点)
2.初步理解仰角和俯角的概念及应用.(难点)
一、情境导入
如图①和图②,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩底下,可以使木桩向上运动.如果楔子斜面的倾斜角为10°,楔子沿水平方向前进5cm(如箭头所示).那么木桩上升多少厘米?
观察图②易知,当楔子沿水平方向前进
5cm ,即BN =5 cm 时,木桩上升的距离为PN .
在Rt △PBN 中,∵tan10°=PN
BN
,∴PN =
BN tan10°=5tan10°(cm).
那么,tan10°等于多少呢?
对于不是30°,45°,60°这些特殊角的三角函数值,可以利用科学计算器来求.
二、合作探究
探究点一:利用科学计算器解决含三角
函数的计算问题
【类型一】 已知角度,用计算器求三角函数值
用计算器求下列各式的值(精确到
0.0001):
(1)sin47°; (2)sin12°30′; (3)cos25°18′; (4)sin18°+cos55°-tan59°.
解析:熟练使用计算器,对计算器给出的结果,根据题目要求用四舍五入法取近似值.
解:根据题意用计算器求出: (1)sin47°≈0.7314; (2)sin12°30′≈0.2164; (3)cos25°18′≈0.9041; (4)sin18°+cos55°-tan59°≈-0.7817.
方法总结:解决此类问题关键是熟练使用计算器,使用计算器时要注意按键顺序.
变式训练:见《学练优》本课时练习“
课。