第一章数学模型与数学建模

合集下载

什么是数学模型与数学建模3篇

什么是数学模型与数学建模3篇

什么是数学模型与数学建模第一篇:数学模型与其应用数学模型是通过数学方法和工具构建的一种抽象描述,用来揭示自然界和社会现象背后的规律性和定量关系。

数学模型可以帮助我们理解和预测自然界和社会现象,并在工程、生物医学、物理、化学、金融等领域中得到广泛应用。

它是数学的重要应用领域之一,也是人类认知世界的一种方式。

在数学模型的构建过程中,需要定义模型的目标和问题,并选择合适的数学工具和建模方法。

常用的建模方法包括微积分、偏微分方程、线性代数、随机过程、优化理论等。

通过分析和运用模型,可以预测系统的行为并制定相应的决策和策略。

数学模型在现实问题中的应用涉及到广泛的领域和范围。

例如,在生物医学领域中,数学模型可以用于研究人体生理过程、疾病传播以及药物研发等;在物理领域中,数学模型可以用于建立对物质运动和电磁场传播的数学描述;在工程领域中,数学模型可以用于建立强度分析、流体动力学分析以及结构优化等;在金融领域中,数学模型可以用于分析股票价格变动、交易策略制定以及资产组合管理等。

总之,数学模型是现代科学研究不可或缺的一部分,它帮助我们理解和预测自然界和社会现象,并为实际问题提供了有力的解决方法。

随着计算技术的不断发展和数学应用领域的扩大,在数学模型的研究和应用领域中,我们将会看到更多的创新和发展。

第二篇:数学建模的流程和方法数学建模是将现实世界的实际问题抽象为数学模型,然后运用各种方法进行求解的过程。

它不仅是数学研究的一种方法,也是现实问题求解的有效工具。

下面我们来了解一下数学建模的流程和方法。

第一步,确定问题和目标。

数学建模的第一步是明确问题和目标,也就是需要解决的实际问题和期望得到的解决方案或结果。

具体而言,需要了解问题的背景、范围和限制条件,明确问题所在的领域和关注的指标。

在确定问题和目标的过程中,需要与领域专家、技术人员和决策者进行合作,并积极了解实际问题的细节和特点。

第二步,建立数学模型。

在确定问题和目标之后,需要建立数学模型来描述实际问题。

什么是数学模型与数学建模

什么是数学模型与数学建模

1. 什么是数学模型与数学建模简单地说:数学模型就是对实际问题的一种数学表述。

具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。

更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

数学结构可以是数学公式,算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。

2.美国大学生数学建模竞赛的由来:1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。

这并不是偶然的。

在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。

在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。

该竞赛每年2月或3月进行。

我国自1989年首次参加这一竞赛,历届均取得优异成绩。

经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。

为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学模型竞赛与通常的数学竞赛不同,它来自实际问题或有明确的实际背景。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。

它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

一、建立数学模型的要求:1、真实完整。

1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。

2、简明实用。

在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。

3、适应变化。

随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。

根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。

数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。

在体育实践中常常提到优秀运动员的数学模型。

如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。

《数学模型电子教案》课件

《数学模型电子教案》课件

《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型是对实际问题的一种抽象表示,通过数学语言和符号来描述问题的特征、关系和规律。

数学建模是利用数学方法解决实际问题的过程,它依靠数学模型来分析和研究问题,得到问题的解决方案或优化结果。

数学模型与数学建模在各个领域都得到了广泛应用,成为解决实际问题的强有力工具。

一、数学模型的分类数学模型分为确定性模型和随机模型两大类。

确定性模型是指模型中的所有参数和变量的取值都是确定的,不存在随机性;随机模型则是指模型中的某些参数或变量的取值是随机的,存在一定的概率分布特性。

1.1 确定性模型确定性模型是最常见的模型类型,它包括数学分析模型、代数模型、几何模型等。

确定性模型主要用于描述具有确定关系的事物,其中最典型的就是几何模型。

例如,平面几何中的三角形和圆形可以用确定性模型来描述其属性、关系和性质,进一步进行几何推理和证明。

1.2 随机模型随机模型是描述随机现象的数学模型,其中包括概率模型、统计模型、随机过程模型等。

随机模型常用于处理实际问题中的不确定性和随机性因素。

例如,在金融领域,股票价格的变动通常具有一定的不确定性,可以用随机模型中的随机过程来描述和预测。

二、数学建模的步骤数学建模通常包括问题定义、建立数学模型、求解模型和验证模型这四个步骤。

2.1 问题定义在数学建模中,首先需要明确问题的定义和目标,包括问题的背景、需求和约束条件等。

问题定义阶段需要对问题进行细致的分析和抽象,确保问题的本质特征能够被准确地反映在数学模型中。

2.2 建立数学模型建立数学模型是数学建模的核心步骤,它需要将实际问题转化为数学语言和符号来描述。

建立数学模型时,需要进行参数选择、变量定义、关系建立等操作,以确保模型能够客观、准确地反映问题的特征和规律。

2.3 求解模型求解模型是通过数学方法和技术来实现对问题解决方案的确定。

根据具体问题的不同,求解模型的方法可以采用数值计算、符号计算、优化算法等不同的技术手段。

什么是数学模型与数学建模

什么是数学模型与数学建模

什么是数学模型与数学建模数学模型是对真实事物或问题的抽象描述,采用数学语言来表达,通常可以包含变量、常量、方程、不等式等数学符号和逻辑结构。

而数学建模是指利用数学模型来解决具体问题的过程,在实践中运用数学的知识和方法,将问题转化为数学形式,并通过数学模型分析和求解问题的过程。

数学模型和数学建模在实际应用中具有重要的作用,可以应用于各个领域的科学和工程实践,例如物理、生物、经济、管理、医学等领域。

数学模型和数学建模可以为实际问题提供科学、系统和高效的解决方案,可以预测事物的走向和变化趋势,提高人类社会的生产和生活效率。

数学模型的本质是对真实问题的抽象描述,就是利用数学语言或者符号把一些具体的事物和概念转化为数学的形式,用数学方法和技术解决问题。

数学模型中包含的是一个或多个变量,这些变量代表实际问题中的某些数量或状态,它们的取值是在整个模型中可变的。

同时,数学模型还包括变量之间的关系,这些关系通常以方程或不等式的形式表示,描述了变量之间的相互影响和作用。

数学建模是利用数学模型解决实际问题的过程,它是一种探索和研究未知事物的方法,具有一定的科学性、系统性和操作性。

数学建模首先需要确定问题的范围和要求,然后通过调查、统计、数据分析等方法获取相关信息,构建数学模型,进而进行数学分析和求解,最终获得问题的解答和预测。

这个过程还需要考虑模型的精度和可靠性,进一步调整和优化模型,得到更好的解答和方法。

数学模型和数学建模的应用非常广泛,可以应用于各个领域的科学和工程实践。

在物理领域,数学模型可以用于描述力学、电磁学、热力学等现象和规律,找出物质的运动和相互作用方式。

在生物领域,数学模型可以用于分析生物系统中的代谢、细胞分裂和生长等过程,以及研究遗传基因的传递和变异。

在经济管理领域,数学模型可以用于分析企业的生产和运营模式,利润和风险的管理方式,市场和消费者的需求预测等。

在医学领域,数学模型可以用于研究放射治疗和化学治疗的剂量和效果,以及预判病情的发展和治疗方案的优化。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型是运用数学方法描述现实或抽象问题的一种工具或方法。

数学模型又可分为解析模型和仿真模型两种。

解析模型是指基于已知公式和数据进行分析求解,得到数学表达式或数值解的模型。

仿真模型是指利用计算机建立的模拟系统模型,根据模型建立的规则模拟输入变量所产生的输出结果。

数学建模是指通过数学知识把实际问题抽象为数学问题,并基于其建立数学模型。

数学建模技术可应用于各个领域,如自然科学、工程技术、社会科学、医学等。

下面就对数学模型和数学建模的一些概念和应用进行详细介绍。

一、数学模型的分类数学模型主要包括解析模型和仿真模型。

下面分别介绍:1、解析模型解析模型是指通过已知数据和公式,进行分析推导求解数学表达式或数值解的模型。

它是基于数学理论和分析方法的,其主要步骤为:建立问题的数学模型、求解模型、验证模型和应用模型。

解析模型主要包括以下几种类型:(1)几何模型几何模型是指通过几何图形描述实际问题的模型。

如,根据实际问题的条件,建立几何图形,求解图形的面积、周长、体积等数学问题,就是利用几何模型进行的建模。

几何模型常用于计算机图形学、工程地质学、建筑工程学等领域。

(2)微积分模型微积分模型是指通过微积分的方法求解实际问题的模型。

微积分是数学分析的基础,微积分模型广泛应用于科学工程领域。

如在热力学、流体力学、电磁学、生物学等领域,常用微积分模型来研究问题。

(3)代数模型代数模型是指通过代数方程和不等式描述实际问题的模型。

如根据实际问题建立代数模型求解方程组、解析几何等问题。

代数模型广泛应用于物理、经济、金融等领域。

(4)概率统计模型概率统计模型是指通过概率统计理论描述实际问题的模型。

如,许多保险公司的经营决策是基于概率统计模型的建立和分析的。

又如,酒店的房价决定也取决于概率统计模型。

2、仿真模型仿真模型是指利用计算机模拟系统建立的模型。

计算机可以模拟出一些人工难以模拟或难以观测的复杂系统,并通过模拟结果对系统进行推理分析或进行决策。

数学模型与数学建模3篇

数学模型与数学建模3篇

数学模型与数学建模第一篇:数学模型的基本概念在现代科学研究中,数学模型是一种非常重要的工具,通过建立描述物理或社会现象的数学模型,我们可以更好地理解和控制这些现象。

在本文中,我们将介绍数学模型的基本概念及其在现实中的应用。

一、数学模型的定义和分类数学模型是用数学符号、方程和图表等数学表达方式来描述现实世界的一个抽象表示。

它可以用于解释和预测各种现象及其规律,从而帮助我们做出决策和解决问题。

根据研究领域和目标,数学模型可以分为物理模型、经济模型、生物模型、社会模型等。

二、数学模型的建立过程数学模型的建立通常包括以下步骤:1.问题分析:确定研究对象、研究目的和相关因素。

2.假设建立:对研究对象进行适当的简化和假设,确定研究范围和基本假设。

3.数学表示:用数学符号和方程来表示研究对象和变量之间的关系。

4.参数设定:指明各个变量的具体数值和范围,以及与现实世界的对应关系。

5.模型验证:通过模拟或实验验证模型的正确性和可行性。

三、数学模型的应用领域数学模型被广泛应用于各个领域,如天文学、物理学、化学、生物学、经济学、社会学等。

以下是一些典型的例子:1.天文学中的数学模型可以用来描述星体和行星的运动轨迹,预测彗星和陨石的轨迹和时间,以及预测备选行星的轨迹和特性。

2.经济学中的数学模型可以用来预测市场供求关系、利率、汇率等,并进行政策规划和决策。

3.生物学中的数学模型可以用来描述生物进化、种群动态、生态系统和生物物种间的关系,以及预测疾病传播和药物研发。

四、数学模型的发展趋势随着科技、数据采集和计算能力不断发展,数学模型也不断更新和进化。

未来数学模型的发展趋势主要包括:1.数据驱动模型:基于大数据的机器学习和人工智能等技术,依靠数据直接训练和生成模型。

2.多学科交叉模型:跨学科合作,利用多层次、多角度的学科与方法,进一步提升模型的准确性和实用性。

3.可解释性模型:提高模型的可解释性,利用统计学方法和可视化技术,使模型结果更易读懂和理解。

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见

数学模型与数学建模

数学模型与数学建模
下一页 返回
1. 1数学模型与数学建模
• 从而解释或描述某一系统或过程.数学模型对我们其实并不陌生.如牛 顿第二定律F=ma就是一个典型的数学模型;欧姆电路定律I=U/R也是 一个数学模型;历史上著名的七桥问题的答案更是一个巧妙的数学模 型。
• 七桥问题18世纪东普鲁士哥尼斯误被普列格尔河分为四块.它们通 过七座桥相互连接(图1. 2).当时.城里的市民热衷于这样一个游 戏:“一个散步者怎样才能从某块陆地出发.经每座桥一次且仅一次到 出发点?实时控制,其控制过程原理方框图 如图8-1所示。由A/D转换器把由传感器采集来的模拟信号转 换成为数字信号,送计算机处理,当计算机处理完数据后, 把结果或控制信号输出,由D/A转换器转换成模拟信号,送 执行元件,对控制对象进行控制。可见,ADC和DAC是数字 系统和模拟系统相互联系的桥梁,是数字系统的重要组成部 分。
科的专门知识外.还常常需要较广阔的应用数学方面的知识.以开拓思 路.
• N模型求解本环节对建立的模型可以采用解方程、问图形、证明定
理、逻辑运算、数值计算等各种传统的和近代的数学方法.特别是计
算机技术进行求解.确定模型所涉及关键参量的结果.
• V模型分析对模型结果及算法进行理论上的分析.
上一页 下一页 返回
上一页 下一页 返回
1. 1数学模型与数学建模
• 初始状态:x(0)=0,y(0)=h.x‘(0)=vcos0,y'(0)=vsin0.但如果考虑空气 阻力.问题的理解似乎并不那么简单.比如:空气阻力和什么因索有关? 关系如何?阻力对投掷距离的影响怎样?如果考虑这些附加问题会对建 立模型
• 那么.为什么还要再根据实际问题不断去修正、完善数学模型呢?实 际中.建立问题的模型不一定一次就能成功.不成功时自然需要根据实 际问题对模型加以改进、调整.最终让模型接近现实原形.否则.建立不 能反映实际状况的模型又有什么用呢?然而·模型只能近似描述实际问 题.不能苛求与真实事物完全吻合.

数学建模和模型

数学建模和模型

常用的计算公式 k年后人口
今年人口 x0, 年增长率 r
xk x0 (1 r )
k
指数增长模型——马尔萨斯提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数 x(t) ~时刻t的人口
dx rx, x(0) x0 dt
x(t t ) x(t ) rt
x(t ) x0 (e ) x0 (1 r )
r t
t
随着时间增加,人口按指数规律无限增长
如何预报人口的增长
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代
• 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程
18:31
数学建模实例二

假设 汽车在两个相邻减速带之间一直做等加速运动和 等减速运动 需要得到汽车的加速度和减速度 方法一 查阅资料
速度(km/h) 时间(s) 0 0

方法二:进行测试 加速行驶的测试数
10 1.6 20 3.2 30 4.0 40 5.0
减速行驶的测试数
速度(km/h) 40 时间(s) 0 30 2.2 20 4.0 10 5.5 0 6.8
18:31
数学建模实例一
18:31
数学建模实例一


通常,1kg面,1kg馅,包100个饺子(汤圆)
现在1kg面不变,馅比1kg多了,问应多包几个 (每个小一点),还是少包几个(每个大一点)? … S ( 共 n个 ) S S S S

V

v
v
v
v
定性分析

数学建模教案(章节版)

数学建模教案(章节版)
重点
难点
重点:用微分方程知识建立数学模型的原理、方法,对微分方程进行精确求解或近似求解。
难点:掌握常见的微分方程模型的求解方法
教学进程
(含课堂
教学内容、
教学方法、辅助手段、
师生互动、
时间分配、
板书设计)
课堂教学内容:
1.建立微分方程模型
2.微分方程模型解法
3.微分ห้องสมุดไป่ตู้程建模案例
教学方法:
理论讲解法:通过讲授微分方程的基本概念、分类和性质,以及常见的求解方法,帮助学生建立起对微分方程模型的整体认识和理解。
重点
难点
重点:掌握非线性规划模型的基本特点
难点:非线性规划问题的求解、使用Python语言实现非线性规划模型
教学进程
(含课堂
教学内容、
教学方法、辅助手段、
师生互动、
时间分配、
板书设计)
课堂教学内容:
1.非线性规划模型
2.用Python求解非线性规划模型
3.非线性规划案例
教学方法:
理论讲解法:通过讲授和演示的方式,向学生介绍线性规划的基本概念、理论和方法。可以使用幻灯片、示意图、实例等形式,将抽象的概念转化为具体的案例,帮助学生理解和记忆。
辅助手段:
雨课堂手机学生对不同论文的看法
时间分配:
2学时讲授
课堂思政:
中国参加美国大学生数学建模比赛的人数和获奖的人数逐年递增
作 业
根据以往的论文的比对总结优秀论文的特点
主要
参考资料
《数学模型》(第五版),主编:姜启源谢金星叶俊,出版社:高等教育出版社,立项规格:“十二五”普通高等教育本科国家级规划教材
重点
难点
重点:统计量的计算及含义、统计描述的应用

第一讲 数学模型与数学建模 简介

第一讲 数学模型与数学建模 简介

国31个省和特区的 个省和特区的19000名大中学学生中,只有4.7% 名大中学学生中,只有 个省和特区的 名大中学学生中
数学建模是培养学生的观察能力,抽象能力 创造 数学建模是培养学生的观察能力 抽象能力,创造 、对 抽象能力 像力;只有14.9%的学生认为培养自己的探索能力 的学生认为培养自己的探索能力、 像力;只有 的学生认为培养自己的探索能力 思维能力,逻辑推理能力 动手能力,数学语言表达 逻辑推理能力,动手能力 思维能力 逻辑推理能力 动手能力 数学语言表达 新事物的想像力和收集信息的能力;只有33%的学生参 新事物的想像力和收集信息的能力;只有 的学生参 能力,计算机使用 数学软件使以及科学计算能力. 计算机使用,数学软件使以及科学计算能力 能力 计算机使用 数学软件使以及科学计算能力
黔南民族师范学院数学系2010数学建模素质培训 黔南民族师范学院数学系2010数学建模素质培训 2010
严忠权
数学建模与能力的培养 最近几年里, 最近几年里,我校学
生都在只参加了半年 左右的学习和实践后, 左右的学习和实践后, 锻炼, ①数学建模实践的 每一步中都 蕴含着能力上的 锻炼,在 在全国大学生数学建 调查研究阶段,需 要用到观察能力、分析能力和数据处理 调查研究阶段, 要用到观察能力、分析能力和 观察能力 模竞赛取得了优异成 能力等 能力等。在提出假设 时,又需要用到 想象力和归纳 简化 开设数学建模课的主要目的为了提高学 2002年开始获 绩,从2002年开始获 能力。 能力。 综合素质, 生的综合素质 生的综合素质,增强 应用数学知识 解决实际问 得国家一等奖1 得国家一等奖1项国家 题的本领。 题的本领。 在真正开始自己的研究之前, . ②在真正开始自己的研究之前,还应当尽可能先了解一下 二等奖十三奖. 二等奖十三奖 前人或别人的工作, 前人或别人的工作,使自己的工 作成为别人研究工作 的 继续而不是别人工作的重复, 继续而不是别人工作的重复,你可以把某些已知的研究结 果用作你的假设,去探索新的奥秘。 果用作你的假设,去探索新的奥秘。因此我们还应当学会 在尽可能短的时间 内查到并学会我想应用的知识的本领。 查到并学会我想应用的知识的本领。 我想应用的知识的本领 创新的能力。 ③还需要你多少要有点 创新的能力。这种能力不是生来就 有的,建模实践就为你提供了一个培养创新能力的机会。 有的,建模实践就为你提供了一个培养创新能力的机会。

数学建模讲义

数学建模讲义
π π
π
3.模型建立 3.模型建立
已知 f (θ), g(θ)为连续函数, f (0) = 0, g(0) = 0,且对任意 θ , 有
f (θ)g(θ) = 0,证明存在 θ0 ∈(0, ) ,使 f (θ0) = g(θ0) = 0 2
π
4.求解
证明:令 F (θ ) = f (θ ) − g (θ ) 。则 F (θ ) 连续。 且 F (0) = f (0) − g (0) > 0 , F ( ) = f ( ) − g ( ) < 0 , 据介值定理,必定存在 θ 0 ∈ (0, 即 f (θ 0) = g (θ 0 ) = 0 。
三、问题假设 1、人口虽然是离散量,可以看作某个连续量的特 例,不妨假设人口是连续量。 2、设N(t),r(t,N(t))表示t时刻的人口总数和增长 、设N(t),r(t,N(t))表示t 率,其它因素暂不考虑,则在t t+△ 率,其它因素暂不考虑,则在t到t+△t时间内人 口总数的增长为 N(t+△t)-N(t)=r(t,N(t))N(t)△ N(t+△t)-N(t)=r(t,N(t))N(t)△t 连续化即为: dN/dt=r(t,N(t))N(t) 3、由于r(t,N(t))的不确定性,该方程求解十分困 、由于r(t,N(t))的不确定性,该方程求解十分困 难。
π
π
π
π
2
2
2
2
) ,使 F (θ 0 ) = 0 ,
货物交换模型 1.问题描述 1.问题描述
在一个部落内根据分工, 人们从事三种劳动: 农田耕作 (F) 、 农具制作(M)及纺织(C) 。交易系统为实物交易如下:
F F M C 1/2 1/4 1/4

数学模型-第01章(第五版)

数学模型-第01章(第五版)

R ~大皮半径 r ~小皮半径
Sk1R2 V k2R3 VkS3/2 (2)
sk1r2, vk2r3 vks3/2 (3)
(1),(2),(3)
Vn3/2v
消去S, s, k
解释
定性分析 V 比 nv 大 (n>1)——大饺子包得馅多. 定量结果
应用 若100个饺子包1kg馅, 50个饺子能包多少馅?
分析
建立馅、皮与数学概念的联系 :馅——体积,皮——表面积
体积V、面积S 一个大饺子
体积v、面积s
n个小饺子
S
s s…s
V
vv
v
V和 nv 哪个大? 定性分析 V比 nv大多少? 定量结果
假设 1.皮的厚度一样 2.饺子的形状一样
建模
Sns(1)
两个 k1 (及k2) 一样
体积与面积的联系——半径(特征半径 )
一 1.2 数学建模的重要意义
章 1.3 建模示例之一 包饺子中的数学
1.4 建模示例之二 路障间距的设计

立 数 学

1.5 建模示例之三 椅子能在不平的 地面上放稳吗
1.6 数学建模的基本方法和步骤 1.7 数学模型的特点和分类
型 1.8 怎样学习数学建模——学习课程
和参加竞赛
1.1 从现实对象到数学模型
数学建模
计算机技术
知识经济
为教育改革注入强大活力
• 数学教育本质上是一种素质教育. • 数学教育应培养两种能力:算数学(计算、推导、
证明…)和用数学(分析、解决实际问题). 传统的数学教学体系和内容偏重前者,忽略后者. • 让学生参加将数学应用于实际的尝试, 参与发现 和创造的过程.
数学建模引入教学符合教育改革的需要

数学模型与数学建模(Mathematical model and mathematical modeling)

数学模型与数学建模(Mathematical model and mathematical modeling)

数学模型与数学建模(Mathematical model and mathematicalmodeling)Edit reference materials for this competitionCompetition reference bookL, Chinese Undergraduate Mathematical Contest in modeling, edited by Li Daqian, higher education press (1998).2, mathematical modeling contest tutorials, (a) (two) (three), edited by Ye Qixiao, Hunan Education Publishing House (199319971998).3, mathematical modeling education and international mathematics modeling contest "Engineering Mathematics" album, leaves its filial., "Engineering Mathematics" magazine, 1994).Two, domestic teaching materials, books1, mathematical model, Jiang Qiyuan, higher education press (1987 edition, 1993 second edition; the first edition heldin 1992 by the National Education Committee, the second national outstanding teaching award won the "national outstanding teaching award"), mathematical model and computer simulation of.2, Jiang Yuzhao and Xin Pei love series, electronic science and Technology University Press, (1989).3, a mathematical model about selection (to mathematics from the book), Hua Luogeng, Wang Yuan, Wang Ke, Hunan education press; (1991) with the example of.4, mathematical modeling method, Shou Jilin et al, Xi'an Jiao Tong University press (1993),.5 model, Dongpu set country, edited by Tian Yuwen, Southeast University press (1994) the mathematical model of.6.., Zhu Siming, Li Shanglian, Zhongshan University press, 7 (1995), mathematical model,edited by Chen Yihua, Chongqing University press, (1995) 8, mathematical modeling analysis, edited by Cai Changfeng, Science Press,.9 (1995), mathematical modeling contest tutorials, edited by Li Shangzhi, Jiangsu Education Press, (1996).10, mathematical modeling entry, Xu Quanzhi, Yang Jinhao, Chengdu Electronic Science and Technology Press, 11. (1996), mathematical modeling, Shen Jihong, Shi Jiuyu, Gao Zhenbin Zhang Xiaowei, ed., Harbin Engineering University press, 12. (1996), mathematical models, edited by Wang Shuhe, University of Science & Technology China press, 13. (1996), mathematical model method, Jihuan edited, China University of science and Technology Press, (1996).14, mathematical modeling and experiment, Nanjing Engineering College Mathematical Modeling and Industrial Mathematics discussion class, Hohai University press, (1996).15, mathematical model and mathematical modeling, Liu Laifu and Zeng literary series, Beijing Division Fan Du University Press (1997).16. mathematical modeling, Yuan Zhendong, Hong Yuan, Lin Wuzhong, Jiang Lumin, East China NormalUniversity press, 17. Mathematical model, Tan Yongji, Yu Wenpi, Fudan University press, (1997).18, the mathematical model of practical course, Fei Peizhi, Yuan layer process editor, Sichuan University press, (1998).19, mathematical modeling the outstanding cases (Base Construction Engineering Mathematics Series), edited by Wang Guoqiang, South China University of Technology press, (1998).20, economic mathematical model (Second Edition) (construction engineering mathematics base, Hong Yi, He Dehua, Cong Books), edited by Chang Zhihua, South China University of Technology press, (1999).21, the mathematical model of lectures, Gongyan Lei, (Peking University press 1999).22,mathematical modeling cases, edited by Zhu Daoyuan, Southeast University press, (1999), 23, solve the problemof the mathematical model, Liu Laifu, once wrote, theBeijing Normal University press, (1999).24, mathematical modeling theory and practice, Wu Xiang, Ng Man Tat, Cheng Ortega ed., National University of Defense Technology press, (1999).25 analysis, mathematical modeling case, Bai Qi Ling, editor, Ocean Press,.26 (2000, Beijing) (College of mathematics experiment, the selection of teaching materials, Xie Yunsun Zhang Zhirang Series), ed., Science Press,.27 (2000), Fu Peng, Gong Lei, mathematical experiment, Liu Qiongsun, He Zhong, ed., Science Press, (2000).Three. Foreign reference books (Chinese version)1. Introduction to mathematical model, E.A. Bender, Zhu Yaochen, Xu Weixuan, Popular Science Press (1982). 2, the mathematical model, [door] Kondo Jiro, Guan Rong Zhang: Mechanical Industry Press, (1985).3, the differential equation model (model series volume first), beauty editor of]W.F.Lucas, Zhu Yumin et al., National University of Defense Technology press, (1988),.4 (political and related models, the application of mathematical model series Vol. second) [W.F.Lucas, beauty editor, Wang Guoqiu et al., National University of Defense Technology press, (1996).5, and the discrete system model (model series volume third), beauty editor of w.F.Lucas, a Ortega et al., National University of Defense Technology press, (1996) model,.6 (Life Sciences, applied mathematics model in fourth volumes), beauty editor of 1W.F.Lucas, ZhaiXiaoyan et al., National University of Defense Technology press, (1996).7, the mathematical model of continuous dynamical system, and discrete dynamical systems,1H.B.Grif6ths and A.01dknow [English, Xiao Li, Zhijun (compiler, Science Press, 1 996).8, mathematical modeling -- case study from four industries in the United Kingdom, (Applied Mathematics Series No. fourth), theBritish]D.Burglles, Ye Qixiao, Wu Qingbao, World Book Inc, (1997)Four, professional reference books1, the water environment mathematical model,de]W.KinZE1bach, Yang Rujun, Liu Zhaochang, editor, China Architecture Industry Press, (1987) the mathematical model of.2 science and technology engineering, Humphreys Anqi ed., Railway Press (1988), 3 biomedical model, Qingyi science edited by Hunan science and Technology Press (1990) model and application of.4, crop pest management mathematics, Pu Zhelong ed., Guangdong science and Technology Press (1990),.5 in system science and mathematics model, editedby Ouyang Liang E, Shandong University press, (1995) the mathematical modeling and research of.6, population ecology, Ma Temple, Anhui Education Press, 7, (1996), modeling new progress in the transformation, optimization, comprehensive method, structure of Sui Yunkang, Dalian University of Technology press, 8, (1986) the genetic model analysis method, Zhu Jun, agriculture press China (1 997). (editedby Wang Shousong, Department of mathematics, Zhongshan University, April 2001)Editing the format requirements of this paragraphA team from A,B in the optional one, group B teams from C, D choose a topic. The white A4 paper printed on one side;on each side set aside at least 2.5 cm from the left margin; binding. The first page of the paper is a commitment, and the specific content and format are shown in the secondpage of this specification. The second page number for the special page, front and back for the regional and national review of the paper number, specific content and format see page third of this specification. The title and abstract of the paper are written on the third page of the paper, starting from the fourth page, and the main body of the paper. The paper starts with third pages, the page number must be located in the middle of each page footer, with Arabia number from "1" start serial number. There is no header in the paper, and there is no sign in the paper that can show the identity of the person who answers the question. The title of this paper is "three" boldface, and the first title is in boldface No. four, and centered. This paper adopts four other Chinese characters Song typeface, with single spaced pages, print should be avoided in color printing. Abstract: draw attention should be a detailed summary of the concise and to the point (including keywords), occupies an important weight in the whole paper review, please carefully write (note the length of no more than one page, and there is no need to be translated into English). The review will first according to the quality of the paper and the overall structure of the thesis and overview of the preliminary screening. The quotation ofother's achievements or other public information (includingthe data found on the Internet) must be clearly listed in the references and references in accordance with the provisions of the reference. The reference in the text uses square brackets to mark the reference number, such as[1][3], etc., and the book must also point out the page number. The references are listed in the quotation order of the text, in which the book is expressed as: author, title, publication place, publishing house, publishing year. The methods of expression of journal articles in reference books are: author, paper name, Journal name,Volume number, page number, year of publication. The reference resources in the literature are: author, resource title, URL, access time (month, date). In the premise of not breaking the regulations, each division can increase the other requirements (such as adding other pages and other information on the first page of this specification before or at the end of this paper add blank page etc.); from the beginning to the end of the undertaking, the division shall not have any other requirements of this specification the (or null). The right of interpretation belongs to the Organizing Committee of the National Mathematical Contest for modeling students. [note] division marking the papers before the first page take preservation, and to establish "division marking numbers in the first and second pages" (by the way, "the provisions of division number) division table can be used for marking the record review (division each division to decide whether to use the form in review). After review, the division sent to the national review papers to establish a national unified numbering in the second page "(numbering by the organizingcommittee, and last year the same format), and then sent to the national review. The second page (page number) preserved by the National Organizing Committee review before take off, and the establishment of the national review number on page second". The National College Mathematical Contest in modeling was revised in September 12, 2008Edit the competition GuideWhat is mathematical model and mathematical modeling?Simply put: mathematical models are a mathematical expression of practical problems. Specifically, the mathematical model is an abstract, simplified mathematical structure of some real world for some purpose. Rather, the mathematical model is for a specific object to a specific target, according to the unique inherent laws, make some simplifying assumptions necessary, using appropriate mathematical tools, a mathematical structure is obtained. Mathematical structures can be mathematical formulas, algorithms, tables, diagrams, etc.. Mathematical modeling is the establishment of mathematical models, the process of establishing mathematical models is the process of mathematical modeling (see mathematical modeling process flow chart). Mathematical modeling is a mathematical thinking method, is the use of mathematical language and methods, through the abstract and simplify the establishment of an approximate description and "solve" practical problems of a powerful mathematical means.First, the mechanism analysis method: the model is deduced from the basic physical law and the structural data of the system. 1. scale analysis -- the most basic and most commonly used method to establish the functional relationship among variables. 2. algebraic method -- the main method for solving discrete problems (discrete data, symbols and graphs). 3. logic method is an important method of mathematical theory research. It is widely used in the fields of sociology and economics, in decision-making, countermeasures and other disciplines. 4. ordinary differential equation - to solve the law of variation between two variables, the key is to establish the expression of "instantaneous rate of change". 5. partial differential equation -- solving the law of variation between dependent variable and more than two independent variables. Two. Data analysis method establishes mathematical model by using statistical method from a large number of observation data. 1. regression analysis - a set of observations (Xi, FI) i=1,2 for function f (x)... N, which determines the expression of a function, is called a mathematical statistical method because it is a static independent data. 2. time series analysis deals with dynamic related data, also known as process statistics. 3. regression analysis - a set of observations (Xi, FI) i=1,2 for function f (x)... N, which determines the expression of a function, is called a mathematical statistical method because it is a static independent data. 4. time series analysis deals with dynamic related data, also known as process statistics. Three, simulation and other methods 1. computer simulation (simulation) - essentially statistical estimation method, equivalent to the sampling test.Discrete system simulation - there is a set of state variables. Continuous system simulation with analytic expression or system structure diagram. 2. factor test method -- local test on the system, then according to the test results for continuous analysis and modification,The required model structure is obtained. 3. artificial reality method, based on the understanding of the past behavior of the system and the desired future goals, and taking into account the possible changes in the relevant factors of the system, artificially forming a system. (see: Qi Huan, mathematical modeling method, Huazhong University of science and Technology Press, 1996)IV. types of questionsMatch questions structure has the following parts: background, problems involving wide 1. - social, economic, management, life, environment, natural phenomena, engineering technology, modern science in the new issue. 2. generally, there is a definite practical problem. Two, some assumptions are as follows: 1. only the process and rules of qualitative assumptions, no specific quantitative data;2. are some survey or statistics;3. gives a number of parameters or graphics;4. contains some assumptions of mobility, can play, or players can according to their own collection or simulated data. Three, asked to answer the question often have several problems (generally not only answer: 1.) more definitive answers (basic answers); 2. more detailed or high-level discussion results (often is the optimal scheme formulation and results).Competition answer paperTo submit a paper, the basic content and format is roughly divided into three parts: first, the title, abstract part:1. topics - write a more precise topic (not only write A,B). 2. Abstract --200-300 words, including the main features of the model, modeling methods and main results.3., when there is more content, it is better to have a directory. Two, the central part: 1. problem raised, problem analysis. 2. models: the complementary hypothesis, clear concept, the introduction of the model parameters; form (with multiple models); for the model; the model of nature; the realization of computer design and calculation method of the 3.4. result analysis and test.5. discuss the advantages and disadvantages of the model, improve the direction, and promote new ideas.6. references -- attention format. Three. Appendix: 1. calculation program, block diagram. 2. solving the calculus and calculating the intermediate result. 3. various graphics and forms.Edit this paragraph competition questions collection1992 (A) fertilizer effect analysis problem (Ye Qixiao: Beijing Institute of Technology) (B) experimental data decomposition (East China University of Science and Technology: Yu Wen; Fudan University: Tan Yongji) 1993 (A) frequency design problem of nonlinear intermodulation (Peking University: Xie Zhongjie) (B) football ranking problem (Tsinghua University: Cai Dayong) 1994 (A) of cut paths through mountains (He Dake: Xi'an Electronic andScience University) (B) the problem of packing locks (Fudan University: Tan Yongji, East China University of Scienceand Technology: Yu Wenci) 1995 (A) flight management problems (Fudan University: Tan Yongji, East ChinaUniversity of Science and Technology: Yu Wenci) (B) scheduling problem of crane and smelting furnace (Zhejiang University: Liu Xiangguan, Li Ji Luan) 1996 (A) the problem of optimal fishing strategy (Beijing Normal University: Liu Laifu) (B) of water-saving washing machine ask Question (Chongqing University: Fu Li) in 1997 (A) design parameters of parts (Tsinghua University: Jiang Qiyuan) (B) cutoff problem (Fudan University: Tan Yongji,East China University of Science and Technology: Yu Wenci) 1998 (A) risk and return of investment (Chen Shuping: Zhejiang University) (B) routing problem (disaster tour of Shanghai Maritime University: Ding Songkang) 1999 (A) automatic lathe management problems (Peking University: Sun Shanze) (B) drilling layout problem (Zhengzhou University: Lin Yixun) (C) of coal accumulation gangue (Taiyuan University of Technology: Jia Xiaofeng) (D) drilling layout (Zhengzhou University: Lin Yixun) 2000 (A) DNA sequence classification (Meng Dazhi: Beijing University of Technology) (B) order and transportation of steel tubes (Wuhan University: Fei Fusheng) (C) over the Arctic problem (Fudan University: Tan Yongji) (D) (Northeast Dianli University: the problem of detecting cavity the letter of 2001) (A) 3D reconstruction of vessels (Zhejiang University, Wang Guozhao) (B) bus scheduling problem (Tsinghua University: Tan Zeguang) (C) the problem of using funds (Southeast University: Chen Enshui) (D) bus schedulingproblem (Tsinghua University: Tan Zeguang) 2002 (A) the optimization problem of the headlight design (Tan Yongji: Fudan University, East China University of Science and Technology: Yu Wenci) (B) (mathematical problems in lottery The PLA Information Engineering University: Han g) (C) the optimization problem of the headlight design (Tan Yongji: Fudan University, East China University of Science and Technology: Yu Wen) (D) schedule problem (Tsinghua University: Jiang Qiyuan) 2003 (A) spread SARS (LOC) (B) vehicle scheduling problems in open-pit mine production (the Jilin University: Peichen (party) the problem of SARS (C) communication committee) (D) crossing Yangtze River (Huazhong Agricultural University: Yin Jiansu) 2004 (A) Temporary Supermarket Design Problems (Beijing University of Technology: Meng Dazhi) (B) power transmission congestion management (Zhejiang University: Liu Kangsheng) (C) drunk driving problem (Tsinghua University: Jiang Qiyuan) (D) recruitment problem (The PLA Information Engineering University: Han Zhonggeng) 2005 (A) evaluation of water quality of Yangtze River and prediction problem (Han Zhonggeng: The PLA Information Engineering University) (B) DVD online leasing problem (Tsinghua University: Xie Venus) (C) evaluation of rainfall forecast methods (Tan Yongji: Fudan University) (D) DVD online leasing problem (Tsinghua University: Xie Venus, 2006) (A) (Beijing University of Technology press the issue of resource allocation: Meng Dazhi) (B) the prediction problem of AIDS therapy evaluation and the effect of (Tianjin University: Fu Ping) (C) to optimize the cans The problem of designing (Beijing Institute of Technology: Ye Qixiao) (D) monitoring and control of coal mine gas and coal dust (The PLAInformation Engineering University: Han Zhonggeng) 2007 (A) China population growth forecast (B) bus, look at the Olympic Games (C) mobile phone packages preferential geometric (D) body test schedule in 2008 (A) digital camera positioning (B), the standard of higher education tuition, ground search (C), (D) analysis and evaluation of the NBA Calendar 2009 (A) control method of the brake test rig (B) reasonable arrangement for ophthalmic beds (C) satellites and spacecraft tracking control (D) Conference 2010 (A) storage tank the identification and calibration of tank capacity table (B) quantitative assessment of World Expo's influence in Shanghai in 2010 (C) pipeline layout (D) for students The evaluation of dormitory design: C, D is the junior college group competitionEdit this paragraph competition significance1, cultivate innovative consciousness and creative ability of rapid access to information and data of 2, 3, exercise training to quickly understand and master new knowledge and skills training 4, teamwork and team spirit 5, enhance writing skills and typesetting technology of 6, won the National Award for Paul sent 7 graduate students, won the international level the reward is beneficial to apply for studying abroad 8, more important is the training oflogical thinking and open way of thinkingThe social application of editing the mathematical modeling contestThe application of mathematical modeling is a great impetusand impetus for the contest of mathematical modeling. At present, the first domestic mathematical modeling company - Beijing Noah Mathematical Modeling Technology Co., Ltd. was established in Beijing. Wei Yongsheng, a doctoral student, worked with two other like-minded students in the field of entrepreneurial modeling, from the domain of mathematical modeling that they were familiar with. Wei Yongsheng three people set up a mathematical modeling contest team in April 2003, then won the two prize of state, in 2005 won thefirst prize in the international contest of mathematical modeling, the same year in October registered the mathematical modeling in mathematical modeling enthusiasts website, to society, to the direction of the application, they formally established in June last year to the application mathematical modeling for entrepreneurial direction, the formation of entrepreneurial team, opened the road of entrepreneurship. Earlier this month, Beijing's mathematical modeling technology limited company officially registered, Wei Yongsheng entrepreneurial team officially on track. At present, Noah mathematical modeling is its specialization from the perspective of business to expand its strength, mathematical modeling and mathematical model and actively involved in the railway transportation, highway transportation, logistics management and other related solutions and consulting services. Wei Yongsheng explained to reporters, maybe a lot of people do not understand what is the use of mathematical modeling, he cited an example of a train station, to calculate how long a car can not only ensure the passengers were taken away, and to the greatest degree of cost savings, the mathematical model can be calculated by the optimal scheme.Wei Yongsheng said that their mathematical modeling team has been 6 years of history, with each other, very tacit understanding, but also made dozens of large and small projects. Their business philosophy is to provide a hitherto unknown mathematical modeling and mathematical model of optimal solutions for the direct and potential customers, minimize production cost, realize investment income for the customers. More Atlas。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模一、引言在科学的广阔天地中,数学无疑是一座高耸入云的山峰,它的高峰俯瞰着整个科学领域。

数学模型和数学建模,则是攀登这座高峰的重要工具。

数学模型是对现实世界中的现象、问题或过程进行抽象、简化、假设和形式化的一种数学结构。

而数学建模,则是通过数学模型来模拟、预测、优化或控制现实世界中的现象、问题或过程的过程。

二、数学模型:理论的基础数学模型是一种理论工具,它能够将现实世界中的问题转化为数学问题,从而使得我们可以利用数学工具进行分析和解决。

例如,在物理学中,我们可以通过建立微分方程或积分方程来描述物体的运动规律;在生物学中,我们可以通过建立种群增长模型来预测生物种群的未来发展趋势。

三、数学建模:实践的桥梁数学建模是将数学模型应用到实际问题中的过程。

它是一种桥梁,连接了理论和实践。

数学建模的过程通常包括问题的定义、模型的建立、模型的求解和结果的解释等步骤。

在这个过程中,我们需要对问题进行深入的理解和分析,然后选择合适的数学工具来建立模型,最后通过计算机软件或者其他工具进行求解。

四、数学模型与数学建模的应用数学模型和数学建模的应用广泛存在于各个领域。

例如,在经济学中,我们可以通过建立计量经济学模型来预测经济走势;在医学中,我们可以通过建立生物统计学模型来分析疾病的数据。

数学模型和数学建模还在计算机科学、工程学、社会学等许多领域中发挥着重要的作用。

五、理论和实践的融合数学模型和数学建模是理论和实践的融合。

它们不仅是解决实际问题的重要工具,也是推动科学发展的重要动力。

通过建立和应用数学模型,我们可以更好地理解和解决现实世界中的问题,推动科学的进步和发展。

通过实践中的应用和反馈,我们也可以不断改进和完善我们的数学模型和理论。

这种理论和实践的相互促进,正是科学进步的重要动力。

数学模型数学建模模型思想数学模型与数学建模:理论与应用数学模型和数学建模是现代数学应用中的重要概念。

数学模型是对现实世界中的某个特定对象、现象或过程的抽象描述,而数学建模则是建立这种模型的过程。

数学建模第五版教学设计

数学建模第五版教学设计

数学建模第五版教学设计一、课程简介本课程是针对大学本科生开设的数学建模课程,旨在培养学生的数学思维、计算机编程能力和实际问题解决能力。

学习本课程需要具备一定的高等数学和计算机基础。

二、教学目标1.培养学生的数学建模思维,包括问题建模、模型构建、模型分析和模型验证等方面。

2.提高学生的计算机编程能力,熟悉常用的数学建模工具和软件。

3.培养学生的实际问题解决能力,掌握解决实际问题的方法和技巧。

三、教学内容第一章数学模型与建模方法1.数学模型的定义及其应用背景。

2.数学建模的基本流程,包括问题建模、模型构建、模型分析和模型验证等环节。

3.建模方法的分类和基本特征,包括解析建模、仿真建模、图像建模等。

4.建模误差和误差控制方法。

第二章最优化模型1.最优化模型的定义及其应用背景。

2.最优化问题的描述和求解方法,包括数学规划、线性规划、非线性规划等。

3.最优化模型的实际应用,包括供应链管理、工程优化、金融投资等。

第三章统计模型1.统计模型的定义及其应用背景。

2.基本统计学方法和统计推断。

3.建立统计模型,包括回归分析、时间序列分析等。

4.统计模型在实际问题中的应用,包括市场调研、财务分析、医学研究等。

第四章蒙特卡罗方法1.蒙特卡罗方法的定义及其应用背景。

2.随机模拟和蒙特卡罗模拟方法。

3.蒙特卡罗模拟在最优化、统计学等领域中的应用。

第五章数学软件及其应用1.常用的数学软件,包括Matlab、Mathematica、Maple、Python等。

2.数学软件的基本功能和应用场景。

3.数学软件在数学建模中的应用。

四、教学方法本课程采用理论知识和实践操作相结合的教学方法。

课程中将通过讲授基础理论知识、案例分析、模拟操作等方式,引导学生深入理解数学模型和建模方法,并掌握数学软件和编程语言的操作技能。

五、教学评估1.课堂问答:掌握课程知识点,理解学习内容。

2.课后作业:巩固课程学习,检查学生的理解能力和解题能力。

3.课程项目:引导学生应用所学知识,独立完成一项小型建模项目。

01数学建模引言

01数学建模引言

x
评注和思考 建模的关键 ~ 和 f(), g()的确定
1.3.2 商人们怎样安全过河
问题(智力游戏)
随从们密约, 在河的任一 岸, 一旦随从的人数比商 人多, 就杀人越货.

小船(至多2人) 3名商人
3名随从
但是乘船渡河的方案由商人决定. 商人们怎样才能安全过河?
问题分析
问如何安排他们尽快安全过河?
下面给出了该问题的动态规划模型及解法, 并对不同的s, t进行了讨论, 该模型具有较好 的解析表示,且便于计算.
将每次渡河的确定看作为一个阶段的决策.
(1) 记第k次渡河前此岸的男人数为xk,女人数为yk,k=1,2,…s;
xk,yk=0,1,…s.将二维向量sk=(xk,yk)看作第k阶段的状态,s1=(s,s); (2) 记第k次渡河船上的男人数为uk,女人数为vk, 将二维向量 dk=(uk,vk)看作第k阶段的决策; (3) 因为k为奇数时船从此岸驶向彼岸, k为偶数时船从彼岸驶回此岸,
一般来说,从现实的对象到假定的对象,再从假定的对 象抽象出模型并没有固定的规则可以引用。把控制现实对 象的因素减少到相当少的支配因素以及从假定的对象中抽
象出一个模型,与其说是一门技术,不如说是一种技巧,
一种艺术。因为模型在表述现实对象的有效性方面主要取 决于建模者的创造性、远见和想象力。这种个人的特性不 可能用建立模型的固定规则来统一。所以数学建模过程是 一种灵活性很强的创造性过程,很难用一种统一的模式和
第三是人才培养、能力培养的需要。(学习的目的)。它通过向
学生展示了各种不同实际领域中的数学建模,通过对一系列来自不
同领域的实际问题的提出、分析、建模和求解的学习与实践,培养 了学生们“用数学”的意识,培养了学生们应用数学知识分析和解 决实际问题的能力,使他们认识到了数学建模是人类观察与认识世 界的一种独特而有效的方法,它为创造性地研究自然和社会的各种 问题提供了有力的理论基础和方法论指导。从而大大提高学生学习 数学的积极性,培养了他们的创新意识和创新能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 数学模型与数学建模
数学模型(Mathematical Model):对于一个特定的
对象,为了一个特定的目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构。

数学建模(Mathematical Modeling):建立数学模型
的全过程,通常包括问题分析、模型建立、模型求解、结果检验和应用。

下面就是一个数学建模的例子。

例1:新产品的销售量的变化规律
考虑某一种新产品,投入市场后,其销售量通常会经过“先增后逐渐平稳略有下降”这样的过程,这个过程称为产
品的生命周期。

请建立数学模型来描述这个过程。

1.问题分析与合理假设
传播新产品信息有两个途径:(1)广告宣传;(2)已经购买了该产品的消费者,使用后有了体会,向周围人宣传。

潜在的消费者人数(即:有可能购买该产品的总人数)记为N ,以时间t 为自变量,从0到t 时间段内已经购买了该产品的人
数记为x(t),从t 到t t ∆+时间段内购买人数记为x ∆,则,
x ∆由两部分人组成,第一部分是受广告宣传影响,记为1x ∆,第二部分是受消费者宣传影响,记为2x ∆,即21x x x ∆+∆=∆.
为了能解决本问题,必须做下面一些合理的假设: 假设1:产品销售量大,可以认为x(t)是连续可微函数;
假设2:任何一个还没有购买该产品的潜在的消费者:他(她)受到广告宣传而购买的概率是常数,记为1k ;他(她)受到某一个消费者宣传而购买的概率也是常数,记为.2k
2.模型建立
根据假设2,得
))((11t x N k t x -⋅∆=∆,)())((22t x t x N k t x ⋅-⋅∆=∆,
))())(((21t x k k t x N t
x +-=∆∆,
令0→∆t 得下面数学模型(这是一个微分方程模型) ))())((()(21t x k k t x N t x +-=',且 0)0(=x , (1)式 其中,21,,k k N 为待定常数,且满足.1,0,2121<+>k k k k 3.模型求解 对微分方程(1)式求解得
t N k k t
N k k e
k N k e N t x )(1
2)(212
111)(+-+-+-=,
可变形为 bt
bt ce
e
a
t x --+-=11)(,其中c b a ,,为待定参数。

(2)式
(下面的求解过程不完整)
根据实际的统计数据⎩⎨
⎧n
n x x x t x t t t t ...
)( (2)
1
21
::,用最小二
乘法(非线性最小二乘法)计算得350,10000==b a ,
.17500
1110000)(,17500350
350
t t e e
t x c --+-== (看书:P3 图)
4.模型检验
建立的模型(1)式、得到函数(2)式能否应用于实际?能否预测今后的销售情况? 需要做模型检验。

再从实际中,提取一些新的数据⎩⎨
⎧m
m s s s t x u u u t ...
)( (2)
1
21
::,用(2)式计算)(i u x ,
这是理论数据,与实际数据i s 比较误差,计算
∑=-m
i i
i
s u x 1
2
)
)((
该数值与原始数据i s 比较,若比较小,则该模型通过了检验,可以它进行预测了。

例1完毕。

数学模型的分类:
按应用领域划分:人口模型、交通模型、经济类模型、企业
规划模型、生态环境模型等。

按数学方法划分:方程模型、优化模型、概率模型、网络模
型、统计模型等。

按所建立的模型结构划分:离散系统模型、连续系统模型。

数学建模方法分两类:机理分析法、测试分析法。

(具体做建模时,常常是两个方法结合使用,如上例。


数学建模的基本步骤:
实际问题 → 分析 假设 建立 → 数学模型 ↑验证 ↓分析求解
实际结论/预测 ← 检验 解释 ← 数学结论
最后,再看一个建模例子:计数器的读数。

相关文档
最新文档