高中物理选修3-2复习

合集下载

高中物理选修3-2-涡流+电磁阻尼和电磁驱动

高中物理选修3-2-涡流+电磁阻尼和电磁驱动

涡流电磁阻尼和电磁驱动知识元涡流电磁阻尼和电磁驱动知识讲解1.涡流(1)定义:由于电磁感应,在大块金属中会形成感应电流,电流在金属块内组成闭合回路,很像水的旋涡,因此叫做涡电流,简称涡流.(2)决定因素:磁场变化越快,导体的横截面积S越大,导体材料的电阻率越小,形成的涡流就越大.(3)涡流产生的条件①穿过金属块的磁通量发生变化.②金属块自身构成闭合回路.③金属块的电阻较小.(4)利用.①电磁炉:金属块内产生涡流时将会产生电热,因此可以用涡流来加热物体.电磁炉就是利用了这一原理.②真空冶炼:用来冶炼合金钢的真空冶炼炉,炉外有线圈,线圈中通入周期性变化的电流,炉内的金属中产生涡流.涡流产生的热量使金属熔化并达到很高的温度,利用涡流冶炼的优点是整个过程能在真空中进行,这样就能防止空气中的杂质进入金属,可以冶炼高质量的合金.(5)防止:①增大铁芯材料的电阻率,常用的铁芯材料是硅钢,它的电阻率比较大.②用互相绝缘的薄硅钢片叠成的铁芯来代替整块硅钢铁芯,而铁芯中的涡流被限制在狭窄的薄片内,回路的电阻很大,涡流大为减弱,涡流产生的热量也减少.2.涡流现象中的能量分析伴随着涡流现象,其他形式的能转化成电能最终在金属块中转化为内能.(1)金属块放在了变化的磁场中,则磁场能转化为电能最终转化为内能.(2)如果是金属块进出磁场或在非匀强磁场中运动,则由于克服安培力做功,金属块的机械能转化为电能,最终转化为内能,就会产生电热.3.电磁阻尼(1)电磁阻尼:当导体在磁场中运动时,导体中产生的感应电流会使导体受到安培力,安培力总是阻碍导体的运动,这种现象称为电磁阻尼.(2)应用:磁电式仪表中利用电磁阻尼使指针迅速停下来,便于读数.4.电磁驱动(1)概念:磁场相对于导体转动时,导体中产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来的现象.(2)应用:交流感应电动机.例题精讲涡流电磁阻尼和电磁驱动例1.下列现象中利用涡流的是()A.金属探测器B.变压器中用互相绝缘的硅钢片叠压成铁芯C.用来冶炼合金钢的真空冶炼炉D.磁电式仪表的线圈用铝框做骨架例2.用下述方法给仪器内部的金属部分加热:把含有玻璃外壳的仪器放在通有交变电流的线圈中,仪器内部的金属部分变热了,而玻璃外壳还是冷的。

人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流

人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流

人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习互感和自感、涡流【学习目标】1、知道什么是互感现象和自感现象。

2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。

3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。

4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。

【要点梳理】要点一、互感现象两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。

要点诠释:(1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。

(2)互感现象可以把能量从一个电路传到另一个电路。

变压器就是利用互感现象制成的。

(3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。

要点二、自感现象1.实验如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。

再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。

如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。

断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。

图甲实验叫通电自感。

在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。

图乙实验叫断电自感。

断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。

虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。

高中物理选修3-2交流电

高中物理选修3-2交流电

类型四:对正弦式交变电流的产生原理的理解,以及其四 值运算、闭合电路欧姆定律的应用
• 例4.小型手摇发电机线圈共N匝,每匝可简化为矩形线圈abcd,磁极间的磁 场视为匀强磁场,方向垂直于线圈中心轴OO′,线圈绕OO′匀速转动,如图所 示。矩形线圈ab边和cd边产生的感应电动势的最大值都为e0,不计线圈电阻, 则发电机输出电压( D )
• A.峰值是e0
• B.峰值是2e0
2
• C.有效值是 2 Ne0
• D.有效值是 2Ne0
• 2.矩形线圈绕垂直于匀强磁场的对称轴做匀速转动,经过中性面时,以下说 法正确的是( ABC)
• A.线圈平面与磁感线方向垂直
• B.线圈中感应电流的方向将发生改变
• C.通过线圈平面的磁通量最大
• D.通过线圈的感应电流最大
• (4)有效值、平均值、最大值(峰值)和瞬时值 • ①使用交变电流的设备铭牌上标明的额定电压、额定电流是指有效值,交流电表测量的也是有效 • 值.提到交变电流的相关量,凡没有特别说明的,都是指有效值. • ②在研究电容器是否被击穿时,要用最大值(峰值),因电容器标明的电压是它在工作时能够承 • 受的最大值. • ③在研究交变电流的功率和产生的热量时,用有效值. • ④在求解某一时刻的受力情况时,用瞬时值. • ⑤在求交变电流流过导体的过程中通过导体截面积的电荷量时,
• 用平均值 q It
类型一:交变电流的产生及其变化规律
• 例1:一矩形线圈在匀强磁场中以角速度4πrad/s匀速转动,产生的交变电 动势的图象如图所示.则( D )
• A.交变电流的频率是4πHz • B.当t=0时,线圈平面与磁感线平行 • C.当t=0.5s时,e有最大值 • D.交变电流的周期是0.5s

高中物理选修3-2复习提纲

高中物理选修3-2复习提纲

选修3-2知识点复习提纲一、电磁感应现象利用磁场产生电流的现象叫电磁感应,是1831年______________发现的。

1、产生感应电流的条件:(1)___________________ (2)______________________ 2、感应电动势:(1)概念:在电磁感应现象里产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源。

(2)规律:在电磁感应现象中,既然闭合回路中有电流,这个电路就一定有电动势,电路断开时,虽然没有感应电流,但电动势依然存在。

(3)感应电动势E 的大小决定于穿过电路的磁通量的变化率的大小,而与线圈的大小、磁感应强度的大小没有必然联系,与电路的电阻无关;感应电流的大小与E 和回路总电阻R 有关。

(4)磁通量的变化率 ,是Φ-t 图象上某点切线的______________。

(5)磁通量发生变化的三种方式一是磁感应强度B 不变,垂直与磁场的回路面积发生变化,此时E=_____________ 二是垂直于磁场的回路面积S 不变,磁感应强度发生变化,此时E=_______________ 三是磁感应强度和线圈面积均不变,而是线圈绕平面内的某一轴转动即θ发生变化。

3、法拉第电磁感应定律(1)内容:_______________________________________________________________。

(2)公式:①______________②______________ 注意:①式普遍适用于求______感应电动势。

2)E 只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。

严格区别磁通量Φ, 磁通量的变化量ΔΦ, 磁通量的变化率 , 磁通量φ=B S ·, 表示__________________________________ 磁通量的变化量∆φφφ=-21, 表示__________________________________ 磁通量的变化率 表示__________________________________②式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。

人教版高中物理选修3-2(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

人教版高中物理选修3-2(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习电磁感应基础知识【学习目标】1.能够熟练地进行一些简单的磁通量、磁通量的变化的计算。

2.经历探究过程,理解电磁感应现象的产生条件。

3.重视了解电磁感应相关知识对社会、人类产生的巨大作用。

【要点梳理】要点一、电流的磁效应1820年,丹麦物理学家奥斯特发现载流导线能使小磁针偏转,这种作用称为电流的磁效应。

要点诠释:(1)为了避免地磁场影响实验结果,实验时通电直导线应南北放置。

(2)电流磁效应的发现证实了电和磁存在必然的联系,受其影响,法国物理学家安培提出了著名的右手螺旋定则和“分子电流”假说,英国物理学家法拉第在“磁生电”思想的指导下,经过十年坚持不懈的努力终于找到了“磁生电”的条件。

要点二、电磁感应现象1831年,英国物理学家法拉第发现了电磁感应现象,即“磁生电”的条件,产生的电流叫感应电流。

要点诠释:(1)法拉第将引起感应电流的原因概括为五类:①变化的电流;②变化的磁场;③运动的恒定电流;④运动的磁场;⑤在磁场中运动的导体。

(2)电流的磁效应是由电生磁,是通过电流获得磁场的现象;电磁感应现象是磁生电现象,两个过程是相反的。

要点三、产生感应电流的条件感应电流的产生条件是穿过闭合电路的磁通量发生变化。

也就是:一是电路必须闭合,二是穿过闭合电路的磁通量发生变化。

即一闭合二变磁。

要点诠释:判断有无感应电流产生,关键是抓住两个条件:(1)电路是闭合电路;(2)穿过电路本身的磁通量发生变化。

其主要内涵体现在“变化”二字上,电路中有没有磁通量不是产生感应电流的条件,如果穿过电路的磁通量很大但不变化,那么无论有多大,也不会产生感应电流。

只有“变磁”才会产生感应电动势,如果电路再闭合,就会产生感应电流。

要点四、电流的磁效应与电磁感应现象的区别与联系1.区别:“动电生磁”和“动磁生电”是两个不同的过程,要抓住过程的本质,动电生磁是指运动电荷周围产生磁场;动磁生电是指线圈内的磁通量发生变化而在闭合线圈内产生了感应电流。

(完整版)高中物理选修3-2知识点总结

(完整版)高中物理选修3-2知识点总结

高中物理选修3-2知识点总结第一章 电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源。

③电源内部的电流从负极流向正极。

3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容:b.表达式:t n E ∆∆⋅=φ (2).计算感应电动势的公式 ①求平均值:t n E ∆∆⋅=φ_②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω221BL E =④闭合电路殴姆定律:)r (R I E +=感5.感应电流的计算: 平均电流:tr R r R E I ∆+∆=+=)(_φ 瞬时电流:rR BLVr R E I +=+=6.安培力计算: (1)平均值:tBLqt r )(R BL L I B F∆=∆+∆==φ__(2). 瞬时值:rR VL B BIL F +==227.通过的电荷量:rR q tI +∆=-=∆⋅φ注意:求电荷量只能用平均值,而不能用瞬时值。

8.互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。

这种现象叫互感。

9.自感现象:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。

另外, 有铁心的线圈的自感系数比没有铁心时要大得多。

(3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微亨(μH )。

10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。

高中物理选修3-2知识点汇总

高中物理选修3-2知识点汇总

高中物理选修3-2知识点汇总高中物理选修3-2知识点汇总高中物理选修3-2主要涵盖了电磁学的内容,以电磁感应为核心,探究了电磁场的产生和作用。

本文将对选修3-2的内容进行汇总,重点介绍电磁感应、电磁波等重要知识点。

1. 电磁感应:电磁感应是指当导体中的磁通量发生变化时,导体中会产生感应电动势,导致产生感应电流。

电磁感应的重要性在于它是发电原理的基础,也是变压器和电动机等电器的工作原理。

- 导体中感应电动势的大小与导体中的磁通量变化率成正比,即U = -dΦ/dt,其中U为电动势,Φ为磁通量,t为时间。

- 感应电动势的方向由三个规律确定:法拉第电磁感应定律、楞次定律和楞次-菲阻抗定律。

2. 法拉第电磁感应定律:法拉第电磁感应定律规定了感应电动势的大小和方向。

- 当导体中的磁通量Φ发生变化时,电动势U将引起感应电流流动。

- 感应电动势的大小与磁通量的变化率成正比,方向由右手螺旋法确定。

3. 楞次定律:楞次定律是电磁感应的基本规律,主要包括两个方面的内容:- 感应电动势的方向总是使产生它的磁通量发生变化的原因趋于减弱。

- 通过改变线圈中的磁场大小或方向,可以实现电磁感应。

4. 楞次-菲阻抗定律:楞次-菲阻抗定律描述了感应电动势由于电流的存在而受到的阻碍。

- 线圈中的感应电动势会导致感应电流的产生,在电路中形成闭合回路。

- 感应电流会产生磁场,使感应电动势遭到阻碍,即电阻的作用。

5. 电感、自感和互感:电感是指通过导体形成的闭合线圈中,由于电流产生的磁场而导致的自感作用。

- 自感可以通过比例系数L来表示,L=dΦi/di,其中Φi为线圈的磁通量,i为线圈的电流。

- 互感是指两个线圈之间由于彼此磁场的相互作用而产生的感应。

6. 电磁场和电磁波:电磁场是由电荷或电流产生的磁场和电场相互作用而形成的。

- 磁场是由电流形成的,符号为B,单位为特斯拉(T);电场是由电荷形成的,符号为E,单位为牛顿/库仑(C/N)。

教科版 高中物理 选修3-2 第一章电磁感应 寒假复习题(解析版)

教科版 高中物理 选修3-2  第一章电磁感应  寒假复习题(解析版)

绝密★启用前教科版高中物理选修3-2 第一章电磁感应寒假复习题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。

分卷I一、单选题(共10小题,每小题4.0分,共40分)1.如图所示,一沿水平方向的匀强磁场分布在宽度为2L的某矩形区域内(长度足够大),该区域的上、下边界MN、PS是水平的.有一边长为L的正方形导线框abcd从距离磁场上边界MN的某高处由静止释放下落并穿过该磁场区域,已知当线框的ab边到达MN时线框刚好做匀速直线运动(以此时开始计时),以MN处为坐标原点,取如图坐标轴x,并规定逆时针方向为感应电流的正方向,则关于线框中的感应电流与ab边的位置坐标x间的以下图线中,可能正确的是()A.B.C.D.【答案】D【解析】在第一个L内,线框匀速运动,电动势恒定,电流恒定;在第二个L内,线框只在重力作用下加速,速度增大;在第三个L内,安培力大于重力,线框减速运动,电动势减小,电流减小.这个过程加速度逐渐减小,速度是非线性变化的,电动势和电流都是非线性减小的,选项A、B均错误.安培力再减小,也不至于减小到小于第一段时的值,因为当安培力等于重力时,线框做匀速运动,选项C错误,D正确.2.如图所示,一个金属圆环水平放置在竖直向上的匀强磁场中,能使圆环中产生感应电流的做法是()A.使匀强磁场均匀减弱B.保持圆环水平并在磁场中上下移动C.保持圆环水平并在磁场中左右移动D.保持圆环水平并使圆环绕过圆心的竖直轴转动【答案】A【解析】使匀强磁场均匀减弱,穿过圆环的磁通量减小,产生感应电流,A正确;保持圆环水平并在磁场中上下移动时,穿过圆环的磁通量不变,不产生感应电流,B错误;保持圆环水平并在磁场中左右移动,穿过圆环的磁通量不变,不产生感应电流,C错误;保持圆环水平并使圆环绕过圆心的竖直轴转动,穿过圆环的磁通量不变,不产生感应电流,D错误.3.如图所示,两块水平放置的金属板间距离为d,用导线与一个n匝线圈连接,线圈置于方向竖直向上的磁场B中.两板间有一个质量为m、电荷量为+q的油滴恰好处于平衡状态,则线圈中的磁场B的变化情况和磁通量变化率分别是()A.正在增强;=B.正在减弱;=C.正在减弱;=D.正在增强;=【答案】B【解析】油滴平衡有mg=q,U=,电容器上极板必带负电,那么螺线管下端相当于电源正极,由楞次定律知,磁场B正在减弱,又E=n,U=E,可得=.故选B.4.如图所示,有一个等腰直角三角形的匀强磁场区域,其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B.边长为L、总电阻为R的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿a→b→c→d→a的感应电流为正,则表示线框中电流i随bc边的位置坐标x变化的图象正确的是()A.B.C.D.【答案】C【解析】据题意,由楞次定律得:正方形线框进入三角形磁场时,穿过线框的磁通量逐渐增加,线框中产生顺时针方向电流,为正方向,D选项可以排除;正方形线框离开三角形磁场时,穿过线框的磁通量减少,线框中的电流方向逆时针,为负方向,A选项可以排除;由于线框切割磁感线的有效长度为l=vt·tan 45°=vt,则线框产生的感应电动势为E=B·vt·v=Bv2t,而感应电流为I=,所以感应电流大小随着时间的增加而增加,只有C选项正确.5.两根相互平行的金属导轨水平放置于如图所示的匀强磁场中,在导轨上与导轨接触良好的导体棒AB和CD可以自由滑动.当AB在外力F作用下向右运动时,下列说法中正确的是()A.导体棒CD内有电流通过,方向是D→CB.导体棒CD内有电流通过,方向是C→DC.磁场对导体棒CD的作用力向左D.磁场对导体棒AB的作用力向右【答案】B【解析】两个导体棒与两根金属导轨构成闭合回路,AB向右运动,闭合回路磁通量增加,由安培定则判断回路中感应电流的方向是B→A→C→D→B.再根据左手定则,判定导体棒CD受到的磁场力向右;AB受到的磁场力向左.6.下列对物理学家的主要贡献的说法中正确的有()A.奥斯特发现了电磁感应现象,打开了研究电磁学的大门B.法拉第发现了磁生电的现象,从而为电气化的发展奠定了基础C.安培发现了电流的磁效应,并总结了电流方向与磁场方向关系的右手螺旋定则D.牛顿提出了分子电流假说,总结了一切磁场都是由运动电荷产生的【答案】B【解析】奥斯特发现了电流的磁效应,打开了研究电磁学的大门,选项A错误;法拉第发现了磁生电的现象,从而为电气化的发展奠定了基础,选项B正确;奥斯特发现了电流的磁效应,安培总结了电流方向与磁场方向关系的右手螺旋定则,选项C错误;安培提出了分子电流假说,总结了一切磁场都是由运动电荷产生的,选项D错误;故选B.7.如图所示,闭合线圈abcd从高处自由下落一段时间后垂直于磁场方向进入一有界磁场,从ab边刚进入磁场到cd边刚进入磁场的这段时间内,下列说法正确的是()A.a端的电势高于b端B.ab边所受安培力方向为水平向左C.线圈可能一直做匀速运动D.线圈可能一直做匀加速直线运动【答案】C【解析】此过程中ab边始终切割磁感线,ab边为电源,由右手定则可知电流为逆时针方向,由a 流向b,电源内部电流从低电势流向高电势,故a端的电势低于b端,选项A错误;由左手定则可知ab边所受安培力方向竖直向上,选项B错误;如果刚进入磁场时安培力等于重力,则一直匀速进入,如果安培力不等于重力,则mg-=ma,做变加速运动,选项C正确,D错误.8.图中L是绕在铁芯上的线圈,它与电阻R、R0及开关和电池E构成闭合回路.开关S1和S2开始都处在断开状态.设在t=0时刻,接通开关S1,经过一段时间,在t=t1时刻,再接通开关S2,则能较准确表示电阻R两端的电势差Uab随时间t变化的图线是()A.B.C.D.【答案】A【解析】闭合S1,由于线圈会阻碍电流的突然变大,Uab不会突然变大,D错误;达到稳定后,再闭合S2,由于线圈的作用,原有电流慢慢变小,Uab也从原来的数值慢慢减小,故选A.9.如图所示,一个闭合的矩形金属框abcd与一根绝缘轻杆B相连,轻杆上端O点是一个固定转轴,转轴与线框平面垂直,线框静止时恰位于蹄形磁铁的正中央,线框平面与磁感线垂直.现将线框从静止释放,在左右摆动过程中,线框受到磁场力的方向是()A.向左摆动的过程中,受力方向向左;向右摆动的过程中,受力方向向右B.向左摆动的过程中,受力方向向右;向右摆动的过程中,受力方向向左C.向左摆动的过程中,受力方向先向左后向右;向右摆动的过程中,受力方向先向右后向左D.摆动过程中始终不受力【答案】B【解析】从阻碍相对运动的角度来看,由于磁通量的变化是由线框和磁场做相对运动引起的,因此感应电流的磁场总是阻碍线框相对磁场的运动.要阻碍相对运动,磁场对线框因产生感应电流而产生的作用力——安培力,一定和相对运动的方向相反,即线框向左摆动时受力方向向右,线框向右摆动时受力方向向左.B正确.10.如图所示,为两个同心圆环,当一有界匀强磁场恰好完全垂直穿过A环面时,A环面磁通量为Φ1,此时B环磁通量为Φ2,有关磁通量的大小说法正确是()A.Φ1<Φ2B.Φ1=Φ2C.Φ1>Φ2D.不确定【答案】B【解析】磁通量Φ=BS,S为通过环的有效面积,因A、B环面所包含的有效面积相等,所以Φ1=Φ2故选B.二、多选题(共4小题,每小题5.0分,共20分)11.(多选)如图所示是用涡流金属探测器探测地下金属物的示意图,下列说法中正确的是()A.探测器内的探测线圈会产生交变磁场B.只有有磁性的金属物才会被探测器探测到C.探测到地下的金属是因为探头中产生了涡流D.探测到地下的金属物是因为金属物中产生了涡流【答案】AD【解析】金属探测器利用电磁感应的原理,利用有交流电通过的线圈,产生迅速变化的磁场.这个磁场能在金属物体内部产生涡电流.涡电流又会产生磁场,倒过来影响原来的磁场,引发探测器发出鸣声.故选AD.12.如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化,下列说法正确的是()A.当磁感应强度增加时,线框中的感应电流可能减小B.当磁感应强度增加时,线框中的感应电流一定增大C.当磁感应强度减小时,线框中的感应电流一定增大D.当磁感应强度减小时,线框中的感应电流可能不变【答案】AD【解析】由法拉第电磁感应定律可知,感应电流的大小取决于磁通量的变化率,与磁感应强度的增与减无关,选项A、D正确.13.(多选)如下图所示是等腰直角三棱柱,其中abcd面为正方形,边长为L,它们按图示方式放置于竖直向下的匀强磁场中,磁感应强度为B,下面说法中正确的是()A.通过abcd面的磁通量大小为L2·BB.通过dcfe面的磁通量大小为L2·BC.通过abfe面的磁通量大小为零D.通过bcf面的磁通量为零【答案】BCD【解析】通过abcd面的磁通量大小为L2B,A错误;dcfe面是abcd面在垂直磁场方向上的投影,所以磁通量大小为L2B,B正确;abfe面与bcf面和磁场平行,所以磁通量为零,C、D正确.故选B、C、D.14.(多选)高频焊接原理示意图如图所示,线圈通以高频交流电,金属工件的焊缝中就产生大量焦耳热,将焊缝融化焊接,要使焊接处产生的热量较大可采用()A.增大交变电流的电压B.增大交变电流的频率C.增大焊接缝的接触电阻D.减小焊接缝的接触电阻【答案】ABC【解析】当增大交变电流的电压,则线圈中交变电流增大,那么磁通量变化率增大,因此产生感应电动势增大,感应电流也增大,那么焊接时产生的热量也增大,故A正确;高频焊接利用高频交变电流产生高频交变磁场,在焊接的金属工件中就产生感应电流,根据法拉第电磁感应定律分析可知,电流变化的频率越高,磁通量变化频率越高,产生的感应电动势越大,感应电流越大,焊缝处的温度升高的越快,故B正确;增大电阻,在相同电流下,焊缝处热功率大,温度升的更高,故C正确,D错误.分卷II三、实验题(共1小题,每小题10.0分,共10分)15.在研究电磁感应现象的实验中所用的器材如图所示:①电流表,②直流电源,③带铁芯的线圈A,④线圈B,⑤电键,⑥滑动变阻器(用来控制电流以改变磁场强弱).试按实验的要求在实物图上连线(图中已连接好一根导线).若连接滑动变阻器的两根导线接在接线柱C和D上,而在电键刚闭合时电流表指针右偏,则电键闭合后滑动变阻器的滑动触头向接线柱C移动时,电流表指针将________.(填“左偏”“右偏”或“不偏”)【答案】实物图连线如图所示左偏【解析】电键闭合瞬间,电路中电流变大,穿过B中的磁通量增大,由题干可知指针向右偏转,因此可以得出电流增大,指针向右偏,电流变小,指针向左偏的结论.电键向C移动时,电路中电流变小,穿过B的磁通量减小,所以指针向左偏转.三、计算题(共3小题,每小题10.0分,共30分)16.磁悬浮列车是一种高速低耗的新型交通工具.它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l平行于y轴,宽为d的NP边平行于x轴,如图甲所示.列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁感应强度B沿Oz方向按正弦规律分布,其空间波长为λ,最大值为B0,如图乙所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v0沿Ox方向匀速平移.设在短暂时间内,MN、PQ边所在位置的磁感应强度随时间的变化可以忽略,并忽略一切阻力.列车在驱动系统作用下沿Ox方向加速行驶,某时刻速度为v(v<v0).(1)简要叙述列车运行中获得驱动力的原理;(2)为使列车获得最大驱动力,写出MN、PQ边应处于磁场中的什么位置及λ与d之间应满足的关系式;(3)计算在满足第(2)问的条件下列车速度为v时驱动力的大小.【答案】(1)见解析(2)位置见解析d=(2k+1)或λ=(k∈N)(3)【解析】(1)由于列车速度与磁场平移速度不同,导致穿过金属框的磁通量发生变化,由于电磁感应,金属框中会产生感应电流,该电流受到的安培力即为驱动力.(2)为使列车获得最大驱动力,MN、PQ应位于磁场中磁感应强度同为最大值且反向的地方,这会使得金属框所围面积的磁通量变化率最大,使金属框中电流最强,从而使得金属框长边中电流受到的安培力最大.因此,d应为的奇数倍,即d=(2k+1)或λ=(k∈N)①(3)由于满足第(2)问条件,则MN、PQ边所在处的磁感应强度大小均为B0且方向总相反,经短暂的时间Δt,磁场沿Ox方向平移的距离为v0Δt,同时,金属框沿Ox方向移动的距离为vΔt.因为v0>v,所以在Δt时间内MN边扫过磁场的面积S=(v0-v)lΔt,在此Δt时间内,MN边左侧的磁感线移进金属框而引起框内磁通量变化ΔΦMN=B0l(v0-v)Δt②同理,该Δt时间内,PQ边右侧的磁感线移出金属框引起框内磁通量变化ΔΦPQ=B0l(v0-v)Δt③故在Δt内金属框所围面积的磁通量变化ΔΦ=ΔΦMN+ΔΦPQ④根据法拉第电磁感应定律,金属框中的感应电动势大小E=⑤根据闭合电路欧姆定律有I=⑥根据安培力公式,MN边所受的安培力FMN=B0IlPQ边所受的安培力FPQ=B0Il,根据左手定则,MN、PQ边所受的安培力方向相同,此时列车驱动力的大小F=FMN+FPQ=2B0Il⑦联立解得F=17.如图所示,光滑导轨立在竖直平面内,匀强磁场的方向垂直于导轨平面,磁感应强度B=0.5 T.电源的电动势为1.5 V,内阻不计.当电键K拨向a时,导体棒(电阻为R)PQ恰能静止.当K 拨向b后,导体棒PQ在1 s内扫过的最大面积为多少?(导轨电阻不计)【答案】3 m2【解析】设导体棒PQ长为L,电阻为R,电键接a时,电路中电流I=,导体棒PQ静止时mg=B()L电键K接b,导体棒PQ从静止下落,切割磁感线产生感应电流,同时PQ受安培力作用,导体棒向下做加速运动,速度增大,而加速度减小,最后以v m做匀速运动.此时mg=F安=,有:=,v m=.PQ达到最大速度后,单位时间内扫过的面积最大,故PQ在1 s内扫过的最大面积:S m=v m·L·t==m2=3 m2.18.如图甲所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路.线圈的半径为r1.在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示.图线与横、纵轴的截距分别为t0和B0.导线的电阻不计.求0至t1时间内:(1)通过电阻R1的电流大小和方向;(2)通过电阻R1的电荷量q及电阻R1产生的热量.【答案】(1)方向从b到a(2).【解析】(1)由图象分析可知,0至t1时间内=由法拉第电磁感应定律有E=n=n S,而S=πr 由闭合回路欧姆定律有I1=联立以上各式解得通过电阻R1的电流大小为I1=由楞次定律可判断通过电阻R1的电流方向为从b到a.(2)通过电阻R1的电荷量q=I1t1=通过电阻R1产生的热量Q=I R1t1=.。

高中物理选修3-2公式总结

高中物理选修3-2公式总结

高中物理选修3-2公式总结高中物理选修3-2公式总结十一、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ωm),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I =U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3I并=I1+I2+I3+电压关系U总=U1+U2+U3+U总=U1=U2=U3功率分配P总=P1+P2+P3+P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。

产生的电流叫做感应电流.2.产生感应电流的条件:闭合回路中磁通量发生变化3. 磁通量变化的常见情况 (Φ改变的方式):①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S增大或减小②线圈在磁场中转动导致Φ变化。

线圈面积与磁感应强度二者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:成闭合回路,四指指向高电势.⑤“因电而动”用左手定则.“因动而电”用右手定则.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。

导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便.2.楞次定律(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.(感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。

(定语) 主语 (状语) 谓语 (补语) 宾语(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。

阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.(3)楞次定律另一种表达:感应电流的效果总是要阻碍..(.或反抗...).产生感应电流的原因. (F安方向就起到阻碍的效果作用)即由电磁感应现象而引起的一些受力、相对运动、磁场变化等都有阻碍原磁通量变化的趋势。

高中物理必修一、必修二、选修3-1与选修3-2知识点汇总

高中物理必修一、必修二、选修3-1与选修3-2知识点汇总

F = ma 。牛顿第二定律揭示了力的瞬时效应,定量描述了力与运动
(加速度 )
的关系。由定律可知,力与加速度是瞬时对应关系,即加速度与力是同时产生、同时变化、同时消失;力与加速
度具有因果关系。力是产生加速度的原因,加速度是力产生的结果。
(3) 牛顿第三定律:作用力与反作用力总是大小相等,方向相反,作用在一条直线上。牛顿第三定律揭示了 物体与物体间的相互作用规律。两个物体之间的作用力与反作用力总是同时产生、同时变化、同时消失,一定是
高中物理必修一、必修二、选修 3-1 及选修 3-2 知识点汇总
1. 弹力
(1) 大小:只有弹簧中的弹力我们可以应用胡克定律
F = kx 计算,而支持力、压力、轻绳中的拉力、轻杆中
的弹力等必须根据题中的物理情境应用牛顿运动定律或平衡条件得出。
(2) 方向:压力和支持力的方向垂直于接触面指向被压或被支持的物体,若接触面是曲面,则弹力的作用线 一定垂直于曲面上过接触点的切线;轻绳中的弹力方向一定沿绳,指向轻绳收缩的方向;对轻杆,若一端由铰链
15. 牛顿三大定律
(1) 牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第一定律揭示了运动和力的关系:力不是维持物体速度
(运动状态 )的原因,而是改变物体速度的原因。
(2) 牛顿第二定律:物体的加速度 与合外力的方向相同。数学表达式:
a 与物体所受的合外力 F 成正比,与物体的质量 m 成反比,加速度的方向
Fx= 0,∑ F y
(1) 合成法:对物体进行受力分析,并画出受力分析图。将所受的其中两个力应用平行四边形定则合成为一 个等效力,由平衡条件可知该等效力一定与第三个力大小相等方向相反。

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理必修3-2知识点清单(非常详细)第一章 电磁感应第二章 楞次定律和自感现象一、磁通量1.定义:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 和B 的乘积. 2.公式:Φ=B ·S .3.单位:1 Wb =1_T ·m 2.4.标矢性:磁通量是标量,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象. 2.产生感应电流的条件(1)电路闭合;(2)磁通量变化. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断 1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化. (2)适用情况:所有的电磁感应现象. 2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.3.楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”四、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 五、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.考点一 公式E =n ΔΦ/Δt 的应用 1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.六、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =ER +r·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤 (1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.第三章 交变电流 传感器一、交变电流的产生和变化规律 1.交变电流大小和方向随时间做周期性变化的电流. 2.正弦交流电(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动. (2)中性面①定义:与磁场方向垂直的平面.②特点:线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.线圈每经过中性面一次,电流的方向就改变一次.(3)图象:用以描述交变电流随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.二、描述交变电流的物理量1.交变电流的周期和频率的关系:T =1f.2.峰值和有效值(1)峰值:交变电流的峰值是它能达到的最大值.(2)有效值:让交流与恒定电流分别通过大小相同的电阻,如果在交流的一个周期内它们产生的热量相等,则这个恒定电流I 、恒定电压U 就是这个交变电流的有效值.(3)正弦式交变电流的有效值与峰值之间的关系IU E 3.平均值:E =n ΔΦΔt=BL v .考点一 交变电流的变化规律1.正弦式交变电流的变化规律(线圈在中性面位置开始计时)图象2.(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt=0,e =0,i =0,电流方向将发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt最大,e 最大,i 最大,电流方向不改变.3.解决交变电流图象问题的三点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦形式,其变化规律与线圈的形状及转动轴处于线圈平面内的位置无关.(2)注意峰值公式E m =nBS ω中的S 为有效面积. (3)在解决有关交变电流的图象问题时,应先把交变电流的图象与线圈的转动位置对应起来,再根据特殊位置求特征解.考点二 交流电有效值的求解 1.正弦式交流电有效值的求解 利用I =I m2,U =U m 2,E =E m2计算.2.非正弦式交流电有效值的求解交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期.考点三 交变电流的“四值”的比较1.书写交变电流瞬时值表达式的基本思路(1)求出角速度ω,ω=2πT=2πf .(2)确定正弦交变电流的峰值,根据已知图象读出或由公式E m =nBS ω求出相应峰值. (3)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面位置开始转动,则i -t 图象为正弦函数图象,函数式为i =I m sin ωt . ②线圈从垂直中性面位置开始转动,则i -t 图象为余弦函数图象,函数式为i =I m cos ωt三、变压器原理1.工作原理:电磁感应的互感现象. 2.理想变压器的基本关系式 (1)功率关系:P 入=P 出.(2)电压关系:U 1U 2=n 1n 2,若n 1>n 2,为降压变压器;若n 1<n 2,为升压变压器.(3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1; 有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n .四、远距离输电1.输电线路(如图所示)2.输送电流(1)I =P U. (2)I =U -U ′R.3.电压损失 (1)ΔU =U -U ′. (2)ΔU =IR . 4.功率损失 (1)ΔP =P -P ′.(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R =ΔU 2R .考点一 理想变压器原、副线圈关系的应用 1.基本关系(1)P 入=P 出,(有多个副线圈时,P 1=P 2+P 3+……)(2)U 1U 2=n 1n 2,有多个副线圈时,仍然成立.(3)I 1I 2=n 2n 1,电流与匝数成反比(只适合一个副线圈) n 1I 1=n 2I 2+n 3I 3+……(多个副线圈)(4)原、副线圈的每一匝的磁通量都相同,磁通量变化率也相同,频率也就相同. 2.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定. 3.关于理想变压器的四点说明: (1)变压器不能改变直流电压.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的频率. (3)理想变压器本身不消耗能量.(4)理想变压器基本关系中的U 1、U 2、I 1、I 2均为有效值. 考点二 理想变压器的动态分析 1.匝数比不变的情况(如图所示)(1)U 1不变,根据U 1U 2=n 1n 2可以得出不论负载电阻R 如何变化,U 2不变.(2)当负载电阻发生变化时,I 2变化,根据I 1I 2=n 2n 1可以判断I 1的变化情况.(3)I 2变化引起P 2变化,根据P 1=P 2,可以判断P 1的变化. 2.负载电阻不变的情况(如图所示)(1)U 1不变,n 1n 2发生变化,U 2变化. (2)R 不变,U 2变化,I 2发生变化.(3)根据P 2=U 22R和P 1=P 2,可以判断P 2变化时,P 1发生变化,U 1不变时,I 1发生变化.3.变压器动态分析的思路流程考点三 关于远距离输电问题的分析 1.远距离输电的处理思路对高压输电问题,应按“发电机→升压变压器→远距离输电线→降压变压器→用电器”这样的顺序,或从“用电器”倒推到“发电机”一步一步进行分析.2.远距离高压输电的几个基本关系(以下图为例):(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3U 2=ΔU +U 3,I 2=I 3=I 线.(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线.(4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=⎝ ⎛⎭⎪⎫P 2U 22R 线.3.解决远距离输电问题应注意下列几点(1)画出输电电路图.(2)注意升压变压器副线圈中的电流与降压变压器原线圈中的电流相等. (3)输电线长度等于距离的2倍.(4)计算线路功率损失一般用P 损=I 2R 线.。

高中物理选修3-2:9-3

高中物理选修3-2:9-3
B2L2v D.为保持 匀速运动, .为保持MN匀速运动,需对其施加的拉力大小为 匀速运动 R
)
答案: 答案: C
工具
必考部分 选修3-2 第九章 电磁感应
栏目导引
3.如右图所示,一导体圆环位于纸面内,O为圆心.环内两个圆心 如右图所示,一导体圆环位于纸面内, 为圆心 为圆心. 如右图所示 角为90°的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等, 角为 °的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等, 方向相反且均与纸面垂直.导体杆OM可绕 转动,M端通过滑动触点与 方向相反且均与纸面垂直.导体杆 可绕O转动, 端通过滑动触点与 可绕 转动 圆环良好接触.在圆心和圆环间连有电阻R.杆 以匀角速度ω逆时针转 圆环良好接触.在圆心和圆环间连有电阻 杆OM以匀角速度 逆时针转 以匀角速度 时恰好在图示位置. 流经电阻R的电流方向为正 动 , t=0时恰好在图示位置. 规定从 到 b流经电阻 的电流方向为正 , = 时恰好在图示位置 规定从a到 流经电阻 的电流方向为正, 圆环和导体杆的电阻忽略不计,则杆从t= 开始转动一周的过程中 开始转动一周的过程中, 圆环和导体杆的电阻忽略不计,则杆从 =0开始转动一周的过程中,电 流随ωt变化的图象是 流随 变化的图象是( 变化的图象是 )
工具
必考部分 选修3-2 第九章 电磁感应
栏目导引
4.安培力在两种不同情况下的作用 . 情况 类型
具体描述
安培力做功 对导体做负功, 对导体做负功, 即导体克服安培 力做功, 力做功,是导体 运动的阻力
能量转化
电磁 阻尼
当磁场不动, 当磁场不动,导体做切割磁感线 的运动时, 的运动时,导体所受的安培力与 导体运动方向相反 当导体开始时静止,磁场 磁体 磁体) 当导体开始时静止,磁场(磁体

高中物理选修3-2第一章知识点详解版

高中物理选修3-2第一章知识点详解版

第一章电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。

(2)由电磁感应现象产生的电流,叫做感应电流。

二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。

....中磁通量发生变化2、产生感应电流的方法.(1)磁铁运动。

(2)闭合电路一部分运动。

(3)磁场强度B变化或有效面积S变化。

注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。

不管是动生电流还是感生电流,我们都统称为“感应电流”。

3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。

(2)“运动不一定切割,切割不一定生电”。

导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。

4、分析是否产生感应电流的思路方法.(1)判断是否产生感应电流,关键是抓住两个条件:①回路是闭合导体回路。

②穿过闭合回路的磁通量发生变化。

注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。

(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况:①穿过闭合回路的磁场的磁感应强度B发生变化。

②闭合回路的面积S发生变化。

③磁感应强度B和面积S的夹角发生变化。

三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。

②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。

(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。

高中物理基础精编系列04:选修3-2(人教版)

高中物理基础精编系列04:选修3-2(人教版)

备战“2014高考”物理复习资料系列之四高中物理基础精编著作权:李向军 说 明:⑴超纲:*号; ⑵重点:粗体、着重号.四、《选修3-2》知识与方法精编(四)电磁感应1.感应电流产生条件:穿过闭合电路的磁通量发生变化.注意:有感应电流一定有感应电动势,有感应电动势不一定有感应电流(如电路断路、或电动势抵消).2.磁通量的理解和计算 ⑴定义:磁感应强度B 与垂直于磁场方向面积S 的乘积叫做穿过这个面的磁通量.......,BS =Φ.某截面磁通量可以理解为垂直穿过该截面的磁感线条数的多少.单位:韦伯(Wb ),211m T Wb ⋅=.⑵磁通量的计算方法1:找有效S方法2:分解Bαcos BS BS ==Φ有效αsin 1BS S B ==Φ⑶磁通改变量的计算:12Φ-Φ=∆Φ.)sin (cos αα+=∆ΦBS 012=Φ-Φ=∆Φ⑷注意事项 ①据αcos S B Φ=知,磁感应强度B 也称磁通密度. ②磁通量是对针对某一特定“面”的特征量,使用中应声明是哪个面的磁通量.③磁通量是有正负之分的标量.④注意:某截面的合磁通是指“正负抵消”后剩余的磁通量.⑤磁通变化率:ωαφφ∆=∆∆t. 3.电磁学的三种手型⑴安培定则(右手螺旋定则):电流产生磁场时,确定B 与I 的方向关系;两种用法:手握直导线和手握电流环.⑵左手定则:确定载流导体所受安F 、带电粒子所受洛f 的方向.⑶右手定则:确定导体切割磁感线产生电动势(动生电动势)的方向.4.感应电动势 ⑴两种电动势、三个公式感生电动势动生电动势产生 磁场变化产生 导体切割磁感线产生 计算tnE ∆∆=φ tnE ∆∆=φ 平动:BLv E = 转动:ω221BL E =例子 电磁炉 交流发电机⑵两个易错:辨别内、外电路,区分电动势、外压.[巧记]两种电动势,三个公式,两个易错.5.电磁感应现象的推理图此图理解要点——⑴研究对象:产生感应电流的回路,而不是原电流所在回路.⑵i '方向的决定:磁感应强度变化率tB∆∆的正负决定'i 方向;在t B -图象中,t B ∆∆就是图线斜率.⑶i '大小的决定:据R S t B n R E i 1'⋅⋅∆∆⋅==(R 为回路总电阻)可知,tB∆∆大小决定感应电流'i 大小. ⑷注意:各个物理定律的“管辖边界”,切不可“张冠李戴”.6.电磁感应回路(以导体杆切割磁感线为例) ⑴电源、负载:产生电动势的导体杆(导体框)为电源,安F 做负功把机械能转化为电能;负载(用电器)把电能转化为其他能量,如电阻把电能转化为光和热,或另一导体杆的安F 做正功把电能转化为机械能;对全电路而言,遵循能量守恒定律.⑵求电热Q 的三种方法①Rt I Q 2=,I 为恒定电流或交流电的电流有效值;②s F Q 安=(电热等于安培力负功大小);③用动能定理求解电热Q .⑶求电量q 的三种方法①Rn t R E t i q φ∆=∆⋅=∆=;②对导体杆运用动量定理可求电量q (0mv mv BqL t BIL I t -==∆⋅=安);③在t i -图象中,图线与横轴所围面积就是电量,可借鉴“油膜法测分子直径”实验中的“数格子”方法求解.[二级结论]求证:BLv E =简证:据t v L B S B ∆⋅⋅=∆⋅=∆Φ和tE ∆∆Φ=可得.[二级结论]求证:ω221BL E =简证:t ∆时间内扫过扇形面积L t L S ⋅∆⋅=∆ω21,故 221L B t S B t E ω=∆∆⋅=∆∆Φ=. 7. 正方形金属线框匀速穿越有界匀强磁场设线框边长L 、总电阻4/R ,磁场宽度d ,B v ⊥0.以L d =为例进行分析⑴i '、ac U 、安F 与0v 的关系 物理量穿越左边界穿越右边界感应电流i ' R BLv i 0=',逆时针 RBLv i 0=',顺时针ac U 041BLv U ac =,c a ϕϕ> 043BLv U ac =,c a ϕϕ>ac 边受安F 0Rv L B F 022=安,向左线框受安F R v L B F 022=安,向左 Rv L B F 022=安,向左⑵电P 、电W 、q 与0v 的关系①热功率:R v L B v F P 20220==安电,即20v P ∝电.②热量:R v L B W Q 032==电热,即0v W ∝电. ③电量:RBL v L R BLv It q 200=⋅==,q 与0v 无关. ⑶画电磁感应图象的错因分析 ①注意分段研究· 对匀强磁场而言,闭合金属线框只有在穿越其边界时才会产生感应电流、电热.· 对任何磁场而言,闭合金属线框完全处于磁场中时会产生电动势“抵消”,需注意合电动势表达.②要特别关注线框形状、线框位置变化、磁场边界形状对“有效切割长度”的影响.③求ac U 的注意事项 · 单边产生电动势E 时,E RR U ac ac ⋅=,R 为线框总电阻,要看清ac R 是ac 间电阻还是“abdc ”间的电阻;无论怎样,ac U 常是电路中的外电压.· 双边分别产生电动势E 和E '时,ac U 可据“电路中电势升降规律”求出,此法很少考查.· 注意ac U 正负的判断:若c a ϕϕ>则0>ac U ;若c a ϕϕ<,则0<ac U .⑷再次强调,要特别关注“过程分段、有效长度变化、电动势‘抵消’情况、ac U 正负”. ⑸思考:若L d 2=或2/L d =,则以上各物理量又该如何表达?它们的图象又该怎样画?若改为三角形线框、梯形线框、圆形线框则又当如何?*[二级结论]双杆问题在导轨双杆形成的电磁感应问题中,作为“电源”的导体杆所受安培力做负功,把机械能转化为电能;作为“负载”的导体杆所受安培力做正功,把电能转化为机械能.双杆在“力、能量、动量”三方面常有确定的关系:⑴若为水平光滑等宽导轨,则双杆所受安F 等大反向,二者遵循系统水平动量守恒;若为水平光滑不等宽导轨,则双杆所受安F 与轨宽成比例,遵循系统动量定理. ⑵系统遵循能量守恒定律.⑶无论是等宽轨道还是不等宽轨道,当双杆产生的电动势“抵消”时,系统就达到了稳定状态.⑷若为竖直导轨上的双杆,或导轨不光滑,或两杆所处的匀强磁场不同,则也可借鉴上面的分析方法.8.自感现象⑴自感:由于导体本身电流发生变化而产生的电磁感应现象.自感电动势只阻碍原电流的变化;自感电动势大小取决于原电流变化快慢(变化率)和线圈自感系数,而自感系数由线圈“长、粗、密、芯”决定.理想线圈只对变化电流产生自感阻碍作用;实际线圈对恒定电流只产生电阻阻碍作用,对变化电流则同时存在电阻、自感两种阻碍作用.矩形线框abcd ,平行转轴边长1L ,垂直转轴边长,匝数n ,转轴o o ',角速度ω,匀强磁场从中性面开始计时,经时间t 转过角度t ω,则△如图可知,U m =Hz 5.2;s rad /5πω=;表达式它加到Ω=2R 上,则特点:磁通量为最大;磁通变化率、感应电动势、感应电流、安培力矩均为零.⑵与中性面垂直的位置(B S //):线圈平面与磁感线平行的位置.线圈经过此位置时电流达到最特点:磁通量为零;磁通变化率、感应电流、安培力矩均为最大.3.交流电有效值的计算⑵有效值不同于平均值,它是2I 的平均值;有效值用于求电热,而平均值用于求电量.千万不能用有效值去求电量.即Rt I Q 2=热和Rn t I q φ∆=∆=电. ⑶有效值的两种求法①对于正(余)弦交流电,2最大值有效值=.②在一个周期内,据直流交流Q Q =求解(相同电阻、相同时间、相等热量).⑷特别提醒,除了电容器上标的耐压值以外,交流电表读数、保险丝熔断电流、机器铭牌上所标的值、求热功率所用的值,一般均是指交流电有效值.[物理常识]我国照明用电最大值为V 311,有效值为V 220(产热效果与V 220恒定直流相同);我国动力用电最大值V 537,有效值为V 380(产热效果与V 380恒定直流相同).△求该交流电的有效值(V U 253=).4.电感和电容对交变电流的阻碍作用 ⑴理解:在电路中,恒定电流只受到电阻阻碍;交变电流受到三种阻碍:电阻、感抗、容抗.⑵决定因素电阻:SLR ρ=;感抗:线圈自感系数越大、交流电频率越高,产生的感抗就越大;容抗:电容越大、交流电频率越低,产生的容抗就越大.⑶作用电感线圈:阻交流通直流;电容器:阻交流隔直流. ⑷电流信号筛选的两种类型 筛选直流和交流 筛选低频和高频 所用器件 低频扼流圈、隔直电容 高频扼流圈、高频旁路电容示例电路5.变压器⑴变压器是用来改变交变电压的装置. · 构造:原线圈(初级线圈)、副线圈(次级线圈)、铁芯.. · 原理:原线圈加交变电压,交变电流在铁芯中产生交变磁通,副线圈产生交变电动势.可见,电磁感应是变压器工作的基础.· 理想变压器:没有能量损失的变压器(理想模型). ⑵理想变压器的基本关系①电压关系:tn U n U ∆∆==φ2211;t∆∆φ为磁通变化率,也是单匝线圈产生的感应电动势.注意:原线圈输入电压决定副线圈输出电压. △原、副线圈的磁通变化率必然相等(√). ②功率关系: ++=332211I U I U I U . 注意:副线圈的输出功率决定原线圈的输入功率;副线圈输出电流决定原线圈输入电流大小.③电流关系:1221n n I I =(仅适用于一组副线圈).△变压器中,电流与线圈匝数成反比(×). ④频率关系:副原f f =(变压器“变压不变频”). ⑶注意①原线圈相当于“用电器”,把电能转化为磁场能;副线圈相当于“电源”,把磁场能转化为电能.②若原线圈与某灯泡串联后接电源,则1U U U +=灯电源.③负载是指用电器;空载指副线圈不接用电器的状态;负载增加会导致变压器输出功率增大;负载电阻增大会导致变压器输出功率减少.④在有关变压器的计算中,电动势、电压及电流都要使用有效值.6.常见变压器⑴升压变压器和降压变压器:高压线圈匝数多、电流小、导线细;低压线圈匝数少、电流大、导线粗.⑵自耦变压器:铁芯上只有一组线圈,线圈一部分为原、副线圈共用,例如,调压变压器.⑶互感器电压互感器 电流互感器 调压变压器⒋ 远距离送电⑴减小输电损失方法:据S LU P r I P ρ⨯⎪⎪⎭⎫⎝⎛==22输送输送线线损可知,高压输电方式可以有效减小输电损失.⑵远距离输电电路图(注意变压器匝数比的画法).⑶基本关系①电压关系(设线路损失电压为U ∆) 2211n U n U =,4433n U n U =,U U U ∆+=32,线线r I U =∆. ②功率关系(设线路损失电功率为P ∆)21P P =,43P P =,P P P ∆+=32,线线r I P 2=∆. ③电流关系121n n I I =线,344n n I I =线,线线r U U P U P I ∆===3322. ④输电效率:%100%1003214⨯=⨯=P PP P η.⑤注意:若单趟线路电阻为r ',则线路电阻为r r '=2线;在远距离输电回路中,电流大小线线r U I 2≠.(六)传感器1.传感器:把非电学量按照一定规律转化为电学量或电路通断的元件.3.传感器应用的一般模式⎪⎩⎪⎨⎧→⎩⎨⎧→计算机系统显示器执行机构执行机构电路转换放大传感器 注:显示器包括指针式电表、数字屏. 4.传感器应用的实例⑴电子秤:力传感器的应用. ⑵话筒:声传感器的应用.⑶电熨斗:温度传感器的应用. ⑷电饭煲:温度传感器的应用. ⑸测温仪:温度传感器的应用. ⑹鼠标器:光传感器的应用. ⑺火灾报警器:光传感器的应用. 5.传感器的应用实验 ⑴光控开关. ⑵温度报警器.⑶另:电磁继电器也要掌握其使用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应现象 产生电磁感应现象的条件
自感现象
感应电动势的大小 E=nΔΦ/Δt E=BLv
感应电流的方向 楞次定律
右手定则
应用牛顿第二定律,解决导体切割磁感应线运动问题 应用闭合电路欧姆定律解决电磁感应中的电流和功率问题 应用能的转化和守恒定律解决电磁感应问题
一. 产生电磁感应的条件
对整个回路来说,产生感应电动势,必须有回路 磁通量的变化;可以通过以下三种方法 (1)磁感强度的变化 (2)线圈有效面积的变化 (3)线圈平面的法线方向与磁场方向夹角的变化
M
a
R
c O b d c
a d
b
N
粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁 场方向垂直于线框平面,其边界与正方形线框的边平行。现使 线框以同样大小的速度沿四个不同方向平移出磁场,如图所示 ,则在移出过程中线框一边a、b两点间的电势差绝对值最大的 是( B )
v
a
b
a a b
v C. v D.
b
a
b
v
A.
B.
水平放置于匀强磁场B中的光滑导轨上,有一根长为L的导体棒 ab,用恒力F作用在ab上,由静止开始运动,回路总电阻为R ,分析ab 的运动情况,并求ab的最大速度。
a
R
f1 f2 b
F f
F
F
B
如图,正方形线圈边长为a,总电阻为R,以速度v 从左向右匀速穿过两个宽为L(L> a),磁感应强度 为B,但方向相反的两个匀强磁场区域,运动方向与 线圈一边、磁场边界及磁场方向均垂直,则这一过 程中线圈中感应电流的最大值为 2Bav/R ,全过 6B2a3v/R 程中产生的内能为 。
(2)由于线圈平面通过中性面开始计时, 所以交流电瞬时 值表达式 e=Emsinωt=314sin100πt V. ΔΦ T (3) E =N 计算 t=0 至 t= 过程中的平均电动势. Δt 4 |Φπ/2-Φ0| |0-BS| 4NBS E =N T =N T = . 2π -0 4 4 ω 2 即 E = NBSω. π 代入数值得 E =200 V.


【案例3】 如图所示,匀强磁场B=0.1 T,所用矩形线圈的匝数N =100,边长ab=0.2 m,bc=0.5 m,以角速度ω=100π rad/s绕OO′ 轴匀速转动.当线圈平面通过中性面时开始计时,试求: (1)线圈产生的感应电动势的峰值; (2)线圈中感应电动势的瞬时值表达式;
T (3)由 t=0 至 t= 过程中的平均电动势值. 4


考点二 理想变压器的动态分析 如果理想变压器的原、副线圈的匝数不变时,当变压 器的负载发生变化,如图所示,各量相互关系如下:
(1)输入电压 U1 决定输出电压 U2.这是因为输出电压 U2 n2 = U1,当 U1 不变时,不论负载电阻 R 变化与否,U2 都不 n1 会改变.


(2)输出电流I2决定输入电流I1.在输入电压U1一定的情 况下,输出电压U2也被完全确定.当负载电阻R增大 时,I2减小,则I1相应减小;当负载电阻 R减小时,I2 增大,则I1相应增大.在使用变压器时,不能使变压 器次级短路. (3) 输出功率 P2 决定输入功率 P1. 理想变压器的输入功 率与输出功率相等,即P1=P2,在输入电压U1一定的 情况下,当负载电阻 R 增大时, I2 减小,则变压器的 输出功率P2= I2U2减小,输入功率 P1也将相应减小; 当负载电阻R减小时, I2增大,变压器的输出功率P2 =I2U2增大,则输入功率P1也将增大.
E I= R+r

【案例2】 (2009·福建理综)一台小型发电机产生的 电动势随时间变化的正弦规律图象如图甲所示.已知 发电机线圈内阻为5.0 Ω,现外接一只电阻为95.0 Ω的 灯泡,如图乙所示,则( )
A.电压表的示数为220 V B.电路中的电流方向每秒钟改变50次 C.灯泡实际消耗的功率为484 W D.发电机线圈内阻每秒钟产生的焦耳热为24.2 J




2.对中性面的理解 (1)中性面是与磁场方向垂直的平面,是假想的一个参 考面. (2)线圈平面位于中性面时,穿过线圈的磁通量最大, 但其变化率为零,感应电动势为零. (3)线圈平面与中性面垂直时,穿过线圈的磁通量为零, 但磁通量的变化率最大,感应电动势最大. (4)线圈转动一周,两次经过中性面,内部电流的方向 改变两次.
【答案】
(1)314 V
(2)314sin100πt V
(3)200 V

理想变压器原、副线圈基本量的关系 理想变压器原、副线圈基本量的关系如下表:
理想变 压器 功率 关系 ①没有能量损失(铜损、铁损) ②没有磁通量损失(磁通量全部集中在铁芯中) 原线圈的输入功率等于副线圈的输出功率:P入=P出 原副线圈的电压比等于匝数比,公式:U1/U2=n1/n2, 与负载、副线圈的多少无关 ①只有一个副线圈时:I1/I2=n2/n1 ②有多个副线圈时:由P入=P出得I1U1=I2U2+I3U3+ „+InUn或I1n1=I2n2+I3n3+„+Innn f1=f2(变压器不改变交流电的频率)
3.导体切割磁感线时产生感应电动势大小的计算: 1. 公式:
E Blv
条件:B、L、v三个量两两垂直
2. 若导体在磁场中绕着导体上的某一点转动时,
1 2 E Bl 2
3. 矩形线圈在匀强磁场中绕轴匀速转动时产生交流电
从中性面计时 最大值 e = Em sin ωt Em =nBωS
4. 楞次定律
4
下图a中A、B为两个相同的环形线圈,共轴并靠近放置,A 线圈中通有如图(b)所示的交流电i ,则( A B C ) A. 在t1到t2时间内A、B两线圈相吸
B. 在t2到t3时间内A、B两线圈相斥
C. t1时刻两线圈间作用力为零 D. t2时刻两线圈间吸力最大
A B
i
0
i
t1 t2
t3 t4
t
a


【案例1】 (2008·宁夏理综)如图甲所示,一矩形线圈abcd放置 在匀强磁场中,并绕过ab、cd中点的轴OO′以角速度ω逆时针匀 速转动.若以线圈平面与磁场夹角θ=45°时(如图乙)为计时起点, 并规定当电流自a流向b时电流方向为正.则丙图中正确的是 ( ) 甲 乙

【即时巩固 1】 有一个小型发电机,机内的矩形线 圈匝数为100匝,电阻为0.5 Ω.线圈在匀强磁场中,以 恒定的角速度绕垂直于磁场方向的固定轴转动.穿过 每匝线圈的磁通量 Φ随时间的变化规律如图所示.由 此可知发电机电动势瞬时值表达式为( )
【即时巩固1】 (2009·江苏高考)如图所示,理想变压器的 原、副线圈匝数比为 1∶5,原线圈两端的交变电压为 u= 20 sin100πt V,氖泡在两端电压达到100 V时开始发光, 下列说法中正确的有( ) A.开关接通后,氖泡的发 光频率为100 Hz B.开关接通后,电压表的 示数为100 V C.开关断开后,电压表的示数变大 D.开关断开后,变压器的输出功率不变
L
L
电磁感应现象 正弦式交变电流的产生 电感电容对交 变电流的影响 现象 变压器的结构与工作原理
瞬时电动势的大小
e=nBSωsin(ωt+θ0)
最大电动势Em=nBSω 有效值—利用热效应定义 正弦式:有效值=最大值/
2
变压比
一原一副线圈的变流比 功率关系
远距离输电,升压可降低输电线上的电流,从而减小线路损耗
【解析】 线圈绕一垂直于磁场方向的轴匀速转动产生 交流电, 产生的感应电动势的峰值为 Em=NBSω, 若从中性 面开始计时, 瞬时值的表达式为 e=Emsinωt, 平均感应电动 ΔΦ 势可由 E=N 求得. Δt
(1)因线圈在匀强磁场中绕OO′轴匀速转动, 所以Em=NBSω. 又S=ab·bc. 所以Em=NB·ab·bc·ω =100×0.1×0.2×0.5×100π V=314 V.
2009山东理综卷
如图所示,一导线弯成半径为a的半圆形闭合回路。 虚线MN右侧有磁感应强度为B的匀强磁场。方向 垂直于回路所在的平面。回路以速度v向右匀速进 入磁场,直径CD始络与MN垂直。从D点到达边界 开始到C点进入磁场为止,下列结论正确的是 CD A.感应电流方向为顺时针 B.CD段直线始终不受安培力 C.感应电动势最大值E=Bav D.感应电动势平均值 E 1 Bav

正弦式电流的变化规律及对中性面的理解
1.正弦式电流的变化规律(线圈在中性面位置 时开始计时)

规律物理量 磁通量
函数 Φ=Φmcosωt = BScosωt e=Emsinωt= nBSωsinωt REm u=Umsinωt= R+r sinωt
图象
电动势
电压
电流
Em i=Imsinωt= sinωt R+r
1. 阻碍原磁通的变化, 即“增反减同” 2. 阻碍(导体间的)相对运动, 即“来时拒,去时留” 3. 阻碍原电流的变化,(线圈中的电流不能突变)
应用在解释自感现象的有关问题。
5. 综合应用题型 1. 电磁感应现象中电路问题 2. 电磁感应现象中的动态过程分析 3. 用功能观点分析电磁感应现象中的有关问题 ——导体棒克服安培力做多少功,就有多少其他 能转化成电路中的电能
重要关系 e=Emsinωt i=Imsinωt Em=nBSω
适用情况及说明 计算线圈某时刻的受力情 况(或力矩的瞬时值)
最大值
最大的瞬时值
Em=nΦmω Im= Em R+ r
讨论电容器的击穿电压
物理量
物理含义
重要关系
适用情况及说明 (1)计算与电流的热效

对正(余)弦交流 应有关的量(如功、功率、 跟交变电流的热 有效值 效应等效的恒定电 流值 电: Em= 2E Um= 2U Im= 2I 热量等) (2)电器设备“铭牌” 上所标的一般是有效值 (3)保险丝的熔断电流 为有效值 交变电流图象中 平均值 图线与时间轴所夹 的面积与时间的比 值 E =BL v E= nΔΦ Δt 计算通过电路截面的 电荷量
相关文档
最新文档