七年级数学下册9.2一元一次不等式同步练习新版新人教版.doc
人教版七年级数学下册 9-2 一元一次不等式(同步练习)
第9章不等式与不等式组9.2一元一次不等式班级:姓名:知识点1一元一次不等式的概念1.下列不等式是一元一次不等式的是()A.x2+x>1B.12x+1>2x+33C.x+y>3D.x()1x+2>3x+12.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④3>2.A.1个B.2个C.3个D.4个3.若3x2a+3-9>6是关于x的一元一次不等式,则a=.4.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.知识点2解一元一次不等式5.不等式3x≤2(x-1)的解集为()A.x≤-1B.x≤-1C.x≤-2D.x≥-26.3x-7≥4(x-1)的解集为()A.x≥3B.x≤3C.x≥-3D.x≤-37.不等式3x+22<x的解集是()A.x<-2B.x<-1C.x<0D.x>28.不等式3(x-1)+4≥2x的解集在数轴上表示为()9.不等式x-5>4x-1的最大整数解是()A.-2B.-1C.0D.110.解不等式14(2-x)≥5的过程是:去分母,得;移项,得,系数化为1,得.11.不等式y-26≥y3+1的解集为.12.请你写出一个满足不等式2x-1<6的正整数x的13.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.14.解不等式:2(x-1)<x+1,并求它的非负整数解.15.解不等式x-1≤1+x3,并求其正整数解.16.解不等式2x-13≤3x-46,并把它的解集在数轴上表示出来.17.解不等式2x-13-5x+12≤1,并把它的解集在数轴上表示出来.18.x取什么值时,代数式1-5x2的值不小于代数式3-2x3+4的值.19.已知x=3是关于x的不等式3x-ax+22>2x3的解,求a的取值范围.知识点3列一元一次不等式解决实际问题20.CBA篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计2017—2018赛季全部38场比赛中最少得到57分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(38-x)≥57B.2x-(38-x)≥5721.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每本笔记本2元,她买了4本笔记本,则她最多还可以买支笔()A.1B.2C.3D.422.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折23.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.24.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.25.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,现安排10辆车,则甲种运输车至少应安排几辆?26.八年级二班的五名同学参加学校组织的数学抽查测试,其中四名同学的考试分数分别为85, 80,82,86,又知他们五人的平均成绩不低于80分,那么第五名同学至少要考多少分?27.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?综合点1一元一次不等式与一元一次方程(组)的综合28.若关于x,y的二元一次方程组{3x+y=1+a,x+3y=3的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<429.当m为何值时,关于x的方程(m+2)x-2=1-m(4-x)有:(1)负数解;(2)不大于2的解.综合点2已知一元一次不等式的解集求字母的值30.不等式mx-2<3x+4的解集为x>6m-3,求m的最大整数值.综合点3列一元一次不等式与方程(组)的综合31.为提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A,B 两种型号家用净水器共160台,A型号家用净水350元/台,购进两种型号的家用净水器共用36 000元.(1)A,B两种型号家用净水器各购进了多少台?(2)为使每台B型号的家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,则每台A型号家用净水器的售价至少是多少元?(毛利润=售价-进价)拓展点1阅读题32.阅读理解:我们把a bcd称作二阶行列式,规定它的运算法则为a bcd=ad-bc.如2345=2×5-3×4=-2.如果有23-x1x>0,求x的解集.拓展点2含字母系数的一元一次不等式33.解关于x的不等式:ax-x-2>0.拓展点3方案设计34.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A,B两种树苗刚好用去1220元,问购进A,B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.第9章不等式与不等式组9.2一元一次不等式答案与点拨1.B(点拨:A 中含未知数项的最高次数是2,C 中含有两个未知数,D 中式子不全是整式,它们都不是一元一次不等式.)2.B(点拨:①③是一元一次不等式,注意③化简后再判断.)3.-1(点拨:2a+3=1,a=-1.)4.1(点拨:|m|=1且m+1≠0,所以m=1.)5.C6.D7.A(点拨:去分母得3x+2<2x,移项得3x-2x<-2,合并同类项得x<-2.)8.A(点拨:不等式3(x-1)+4≥2x 的解集是x ≥-1,大于应向右画,包括-1时,应用实心圆点表示-1这一点,故选A.)9.A(点拨:解不等式得解集为x<-43,所以最大整数解为-2.)10.2-x ≥20-x ≥20-2x ≤-1811.y ≤-812.1,2,3中任何一个都可(点拨:不等式的解集为x<72,其正整数解为1,2,3.)13.去括号得2x-2-3<1,移项、合并同类项得2x<6,系数化为1得x<3.在数轴上把解集表示出来为:14.去括号,得2x-2<x+1,移项、合并同类项,得x<3.因此不等式的非负整数解是0,1,2.15.去分母得3(x-1)≤1+x,去括号得3x-3≤1+x,移项得3x-x ≤1+3,合并同类项得2x ≤4,系数化为1得x ≤2,符合x ≤2的正整数解有1,2.16.去分母,得2(2x-1)≤3x-4.去括号,得4x-2≤3x-4.移项,合并同类项,得x ≤-2.∴不等式的解集为x ≤-2.该解集在数轴上表示如下:17.去分母,得2(2x-1)-3(5x+1)≤6.去括号,得4x-2-15x-3≤6.移项,得4x-15x ≤6+2+3.合并同类项,得-11x ≤11.系数化为1,得x ≥-1.这个不等式的解集在数轴上表示如下:18.由题意得1-5x 2≥3-2x3+4.去分母,得3(1-5x)≥2(3-2x)+24.去括号、移项、合并同类项,-11x ≥27.系数化为1,得x ≤-2711.∴当x ≤-2711时,1-5x 2≥3-2x 3+4.19.因为x=3是关于x 的不等式3x-ax +22>2x 3的解,所以9-3a +22>2,解得a<4.故a 的取值范围是a<4.21.D(点拨:设可买x支笔,则有3x+4×2≤21,即3x+8≤21,3x≤13,x≤133,所以x可取最大的整数为4,她最多可买4支笔.故选D.)22.B(点拨:设可打x折,则有1200x·0.1≥800(1+0.05),解得x≥7.故选B.)23.14(点拨:根据本次竞赛规则可知竞赛得分=10×答对的题数+(-5)×答错(或不答)的题数,得分要超过100分,列出不等式求解即可.设要答对x道题,则10x+(-5)×(20-x)>100,解得x>1313.∵x是整数,∴x=14.)24.3(点拨:设小宏能买x瓶甲饮料,则买乙饮料(10-x)瓶.根据题意,得7x+4(10-x)≤50,解得x≤31 3 .所以小宏最多能买3瓶甲饮料.)25.设甲种运输车安排x辆,则5x+4×(10-x)≥46,解得x≥6.答:甲种运输车至少应安排6辆.26.设第五名同学要考x分,则85+80+82+86+x≥80×5,解得x≥67.答:第五名同学至少要考67分.27.设购买球拍x个,依题意得:1.5×20+22x≤200.解之得:x≤7811.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.28.D(点拨:将两个方程相加,得4x+4y=4+a,从而有x+y=4+a4,然后解不等式4+a4<2,得a<4.)29.解方程得x=3-4m2.(1)由3-4m2<0得m>34.(2)由3-4m2≤2得m≥-14.30.2(点拨:由题意得m-3<0,即m<3.)31.(1)设A种型号家用净水器购进了x台,则B种型号的净水器购进了(160-x)台.由题意,得150x+350(160-x)=36000.解得x=100.所以160-x=60.所以A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润为z元,则每台B型号家用净水器的毛利润为2z元.由题意,得100z+60×2z≥11000,解得z≥50.150+50=200(元).所以,每台A型号家用净水器的售价至少为200元.32.由题意得2x-(3-x)>0,去括号得:2x-3+x>0,移项、合并同类项得:3x>3,x的系数化为1得:x>1.33.ax-x-2>0,(a-1)x>2.当a-1=0时,ax-x-2>0无解;当a-1>0时,x>2a-1;当a-1<0时,a<2a-1.34.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得80x+60(17-x)=1220,解得x=10,∴17-x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得17-x<x,解得x>81 2 .购进A,B两种树苗所需费用为80x+60(17-x)=20x+1020.费用最省则需x取最小整数9,此时17-x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.。
9.2一元一次不等式(三) 同步练习 2020-2021学年人教版数学七年级下册
9.2一元一次不等式(三)【笔记】对于用不等式解决实际问题,主要是正确分析题意,找出满足条件的不等关系,然后根据不等关系列出不等式.解不等式的应用题,要注意题目中表示不等关系的词语,如“不大于”“不小于”“不超过”“不低于”等.解决实际问题的时候还要注意实际意义.例如材料选用一般是“进一法”.【训练】1.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买( )A. 3支笔B. 4支笔C. 5支笔D. 6支笔2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A.6折B.7折C.8折D.9折3.西宁市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )A.至少20户B.至多20户C.至少21户D.至多21户4.某商店搞促销:某种矿泉水原价每瓶5元,现有两种优惠方案:(1)买一赠一;(2)一瓶按原价,其余一律四折.小华为同学选购,则至少买瓶矿泉水时,第二种方案更便宜.( ) A.5 B.6 C.7 D.85.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过厘米.6.张老师带领学生到科技馆参观,门票每张25元,购票时发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是张老师买了50张票,结果发现所带的钱还有剩余,那么张老师和他的学生至少有人.7.有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载捆材料.8.(张家界中考)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗购买棵数比甲种树苗购买棵数的2倍还少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.9.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人,售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.10.(绍兴中考)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元.则所购商品的标价是元.11.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:A型B型价格(万元/台)1210处理污水量(吨/月)240200经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应该选哪种购买方案?请说明理由.12.某商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑进行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若购买超过5台,超过的部分每台按售价的八折销售.某公司一次性从该商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.13.甲、乙两商场以相同价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物花费少?参考答案9.2一元一次不等式(三)【训练】1.C2.B3.C4.C5.966.417.428.(1)购买甲种树苗140棵,购买乙种树苗240棵;(2)方案一:不购买甲种树苗,购买乙种树苗10棵;方案二:购买甲种树苗1棵,购买乙种树苗9棵;方案三:购买甲种树苗2棵,购买乙种树苗8棵;方案四:购买甲种树苗3棵,购买乙种树苗7棵.9.设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票时花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票时花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.10.100或8511.(1)设购买x台A型污水处理设备,则购买(10-x)台B型污水处理设备,由题意,得.故有3种购买方案:12x+10(10-x)≤105.解得x≤52方案一:购买0台A型污水处理设备,10台B型污水处理设备;方案二:购买1台A型污水处理设备,9台B型污水处理设备;方案三:购买2台A型污水处理设备,8台B型污水处理设备.(2)应选择购买1台A型污水处理设备,9台B型污水处理设备.理由:设购买a台A型污水处理设备,由题意,得240a+200(10-a)≥2040.解得a≥1.当a=1时,需资金12×1+10×9=102(万元);当a=2时,需资金12×2+10×8=104(万元).∵102<104,∴购买1台A型污水处理设备,9台B型污水处理设备.12.(1)设购买A型号笔记本电脑x台时的费用为w元.当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8-5)a×80%=7.4a,∵7.2a<7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元.(2)∵该公司采用方案二购买更合算,∴x>5.方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x-5)a×80%=5a+0.5ax-4a=a+0.8ax,令0.9ax>a+0.8ax,解得x>10.∴x的取值范围是x>10.13.(1)当累计购买不超过50元时,在甲、乙商场购物都不享受优惠,且两商场以相同价格出售同样的商品,因此到两商场购物花费一样;(2)当累计购物超过50元而不超过100元时,享受乙商场的购物优惠,不享受甲商场的购物优惠,因此到乙商场购物花费少;(3)当累计购物超过100元时,设累计购物x(x>100)元.①若到甲商场购物花费少,则50+0.95(x-50)>100+0.9(x-100),解得x>150.则累计购物超过150元时,到甲商场购物花费少;②若到乙商场购物花费少,则50+0.95(x-50)<100+0.9(x-100),解得x<150.则累计购物超过100元而不到150元时,到乙商场购物花费少;③若50+0.95(x-50)=100+0.9(x-100),解得x=150.则累计购物为150元时,到甲、乙两商场购物花费一样.。
9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)
第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
数学人教版七年级下册9.3.2一元一次不等式组第二课时同步测试题
9.3.2一元一次不等式组的运用同步测试题一、选择题1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69. 小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A. 3×4+2x<4 B.3×4+2x≤24 C.3x+2×4≤24 D.3x+2×4≥2410. 小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买几支笔()A.1 B.2 C.3 D.411. 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折12 现用甲、乙两种运输车将46吨抗震物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆二、填空题13、如果不等式组的解集是,那么的值为.14、若不等式组无解.则m的取值范围是______.15、已知关于x的不等式3x-a>x+1的解集如图所示,则 a的值为_________.16、某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对___12___道题,成绩才能在60分以上.17、若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有间。
人教版数学七年级下册:9.2 一元一次不等式 同步练习(附答案)
9.2 一元一次不等式 第1课时 一元一次不等式的解法1.下列不等式中,是一元一次不等式的是( ) A .2x -3y >4 B .-2<3 C .3x -1<0 D .y 2-3>22.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =1. 3.不等式1-2x ≥0的解集是( ) A .x ≥2 B .x ≥12C .x ≤2D .x ≤124.不等式2x -1≤3的解集在数轴上表示正确的是( ) A. B. C.D.5.当x 时,式子x -3的值是正数. 6.不等式x -3<6-2x 的解集是 . 7.解不等式,并把解集在数轴上表示出来: (1)5x -2≤3x ;(2)5x -5<2(2+x);(3)2-x 4≥1-x 3.8.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.9.与不等式2x -4≤0的解集相同的不等式是( ) A .-2x ≤x -1 B .-2x ≤x -10 C .-4x ≥x -10 D .-4x ≤x -10 10.不等式6-4x ≥3x -8的非负整数解为( ) A .2个 B .3个 C .4个 D .5个11.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤212.如果a<2,那么不等式ax>2x +5的解集是x<5a -2.13.在实数范围内规定新运算“△”,其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示,则k 的值是 .14.解不等式,并把解集在数轴上表示出来: (1)2(x +1)-1≥3x +2;(2)3(x -1)<4(x -12)-3;(3)x +12≥3(x -1)-4;(4)x -25-x +42>-3.15.如图,在数轴上,点A ,B 分别表示数1,-2x +3. (1)求x 的取值范围;(2)数轴上表示数-x +2的点应落在 .A .点A 的左边B .线段AB 上C .点B 的右边第2课时一元一次不等式的应用1.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x页,所列不等式为( )A.2+10x≥87 B.2+10x≤87C.10+8x≤87 D.10+8x≥872.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为( )A.5 B.4 C.3 D.23.某超市花费1 140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其他费用不考虑),售价至少定为多少?设售价为x元/千克,根据题意所列不等式正确的是( )A.100(1-5%)x≥1 140B.100(1-5%)x>1 140C.100(1-5%)x<1 140D.100(1-5%)x≤1 1404.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是( )A.11 B.8 C.7 D.55.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,那么孔明最多可以买多少副球拍?6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )A.13 B.14 C.15 D.167.九(2)班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数至少为人.8.某人要在18分钟内完成2.1千米的路程,已知他每分钟走90米,每分钟跑210米.问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为( ) A.210x+90(18-x)≥2 100B.90x+210(18-x)>2 100C.210x+90(18-x)≥2.1D.210x+90(18-x)>2.19.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件,后改进了工作方式,结果提前一天完成了加工任务,两天后马师傅每天至少加工40个零件.10.已知导火线的燃烧速度是0.7 cm/s,爆破员点燃后跑开的速度是5 m/s,为了点火后跑到130 m及以外的安全地带,则导火线至少长多少厘米?11.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( )A.8 B.6 C.7 D.912.国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为 cm.13.2020年的5月20日是第31个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息:信息若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.14.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1 140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7 000元,那么A种防疫物品最多购买多少件?15.新冠肺炎疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款560万元购进A,B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:(1)购进A种型号的口罩机台,B种型号的口罩机台;(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台进行生产.若工厂的工人每天工作10 h,则至少购进B种型号的口罩机多少台才能在5天内完成任务?16.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A,B两种款型的单车共100辆,总价值36 800元,试问本次试点投放A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A,B两种车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?第3课时利用一元一次不等式解决方案设计问题1.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?2.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9 000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.3.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.4.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知购买较为合算;(只填“方案一”或“方案二”,不要求写解题过程)(2)当x>20时,①该客户按方案一购买,需付款元;(用含x的式子表示)②该客户按方案二购买,需付款元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?5.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.6.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?请说明理由.参考答案:9.2 一元一次不等式第1课时 一元一次不等式的解法1.下列不等式中,是一元一次不等式的是(C)A .2x -3y >4B .-2<3C .3x -1<0D .y 2-3>22.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =1.3.不等式1-2x ≥0的解集是(D)A .x ≥2B .x ≥12C .x ≤2D .x ≤124.不等式2x -1≤3的解集在数轴上表示正确的是(C)A.B. C. D. 5.当x >3时,式子x -3的值是正数.6.不等式x -3<6-2x 的解集是x <3.7.解不等式,并把解集在数轴上表示出来:(1)5x -2≤3x ;解:移项,得5x -3x ≤2.合并同类项,得2x ≤2.系数化为1,得x ≤1.其解集在数轴上表示为:(2)5x -5<2(2+x);解:去括号,得5x -5<4+2x.移项,得5x -2x <4+5.合并同类项,得3x <9.系数化为1,得x <3.这个不等式的解集在数轴上表示为:(3)2-x 4≥1-x 3. 解:去分母,得3(2-x)≥4(1-x).去括号,得6-3x ≥4-4x.移项、合并同类项,得x ≥-2.其解集在数轴上表示为:8.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:错误的是①②⑤,正确的解答过程如下:去分母,得3(1+x)-2(2x +1)≤6.去括号,得3+3x -4x -2≤6.移项,得3x -4x ≤6-3+2.合并同类项,得-x ≤5. 两边都除以-1,得x ≥-5.9.与不等式2x -4≤0的解集相同的不等式是(C)A .-2x ≤x -1B .-2x ≤x -10C .-4x ≥x -10D .-4x ≤x -1010.不等式6-4x ≥3x -8的非负整数解为(B)A .2个B .3个C .4个D .5个11.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是(C)A .m ≥2B .m >2C .m <2D .m ≤212.如果a<2,那么不等式ax>2x +5的解集是x<5a -2. 13.在实数范围内规定新运算“△”,其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示,则k 的值是-3.14.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x +2;解:去括号,得2x +2-1≥3x +2.移项,得2x -3x ≥2-2+1.合并同类项,得-x ≥1.系数化为1,得x ≤-1.其解集在数轴上表示为:(2)3(x -1)<4(x -12)-3;解:去括号,得3x -3<4x -2-3.移项,得3x -4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x >2.其解集在数轴上表示为:(3)x +12≥3(x -1)-4;解:去分母,得x +1≥6(x -1)-8.去括号,得x +1≥6x -6-8.移项,得x -6x ≥-6-1-8. 合并同类项,得-5x ≥-15.系数化为1,得x ≤3.其解集在数轴上表示为:(4)x -25-x +42>-3. 解:去分母,得2(x -2)-5(x +4)>-30.去括号,得2x -4-5x -20>-30.移项,得2x -5x >-30+4+20.合并同类项,得-3x >-6.系数化为1,得x <2.其解集在数轴上表示为:15.如图,在数轴上,点A ,B 分别表示数1,-2x +3.(1)求x 的取值范围;(2)数轴上表示数-x +2的点应落在B .A .点A 的左边B .线段AB 上C .点B 的右边解:由数轴上的点表示的数右边的总比左边的大,得-2x +3>1,解得x <1.第2课时 一元一次不等式的应用1.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x 页,所列不等式为(D)A .2+10x ≥87B .2+10x ≤87C .10+8x ≤87D .10+8x ≥872.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为(B)A.5 B.4 C.3 D.23.某超市花费1 140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其他费用不考虑),售价至少定为多少?设售价为x元/千克,根据题意所列不等式正确的是(A) A.100(1-5%)x≥1 140B.100(1-5%)x>1 140C.100(1-5%)x<1 140D.100(1-5%)x≤1 1404.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11 B.8 C.7 D.55.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,那么孔明最多可以买多少副球拍?解:设孔明可以买x副球拍.根据题意,得1.5×20+22x≤200,解得x≤7811.答:孔明最多可以买7副球拍.6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为(C)A.13 B.14 C.15 D.16 7.九(2)班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数至少为6人.8.某人要在18分钟内完成2.1千米的路程,已知他每分钟走90米,每分钟跑210米.问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为(A)A.210x+90(18-x)≥2 100B.90x+210(18-x)>2 100C .210x +90(18-x)≥2.1D .210x +90(18-x)>2.19.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件,后改进了工作方式,结果提前一天完成了加工任务,两天后马师傅每天至少加工40个零件.10.已知导火线的燃烧速度是0.7 cm/s ,爆破员点燃后跑开的速度是5 m/s ,为了点火后跑到130 m 及以外的安全地带,则导火线至少长多少厘米?解:设导火线长x cm.由题意,得x 0.7≥1305, 解得x ≥18.2.答:导火线至少长18.2 cm.11.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?(B)A .8B .6C .7D .912.国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm ,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为55cm.13.2020年的5月20日是第31个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息:信息若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.解:设这份快餐含有x 克蛋白质,则这份快餐含有4x 克的碳水化合物.根据题意,得 x +4x ≤400×70%,解得x ≤56.答:这份快餐最多含有56克蛋白质.14.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A 、B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A 、B 两种防疫物品每件各多少元;(2)现要购买A 、B 两种防疫物品共600件,总费用不超过7 000元,那么A 种防疫物品最多购买多少件?解:(1)设A 种防疫物品每件x 元,B 种防疫物品每件y 元,根据题意,得⎩⎪⎨⎪⎧60x +45y =1 140,45x +30y =840,解得⎩⎪⎨⎪⎧x =16,y =4.答:A 种防疫物品每件16元,B 种防疫物品每件4元.(2)设购买A 种防疫物品m 件,则购买B 种防疫物品(600-m)件,根据题意,得16m +4(600-m)≤7 000.解得m ≤38313. 又∵m 为正整数,∴m 的最大值为383.答:A 种防疫物品最多购买383件.15.新冠肺炎疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款560万元购进A ,B 两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:(1)购进A 种型号的口罩机10台,B 种型号的口罩机20台;(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台进行生产.若工厂的工人每天工作10 h ,则至少购进B 种型号的口罩机多少台才能在5天内完成任务? 解:设购进B 型口罩机m 台,根据题意,得5×10×[2 500(15-m)+3 000m]≥2 000 000.解得m ≥5.答:至少购进B 型号口罩机5台.16.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A ,B 两种款型的单车共100辆,总价值36 800元,试问本次试点投放A 型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A ,B 两种车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?解:(1)设本次试点投放A 型车x 辆,则投放B 型车(100-x)辆.依题意,得400x +320(100-x)=36 800.解得x =60.则100-x =40.答:本次试点投放A 型车60辆,B 型车40辆.(2)由(1)可知,试点投放的A ,B 两车型数量比为3∶2,设城区10万人口平均每100人享有A 型车3y 辆,B 型车2y 辆.依题意,得100 000100×3y ×400+100 000100×2y ×320≥1 840 000 解得y ≥1.则3y ≥3,2y ≥2.答:城区10万人口平均每100人至少享有A 型车3辆,B 型车2辆.第3课时 利用一元一次不等式解决方案设计问题1.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元.由题意,得0.8x+168<0.95x,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算.2.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9 000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.解:(1)设购买甲种树苗x棵,则购买乙种树苗(2x-40)棵,由题意,得30x+20(2x-40)=9 000,解得x=140.∴2x-40=240.答:购买甲种树苗140棵,乙种树苗240棵.(2)设购买甲种树苗y棵,乙种树苗(10-y)棵,根据题意,得30y+20(10-y)≤230,解得y≤3.购买方案一:购买甲树苗3棵,乙树苗7棵;购买方案二:购买甲树苗2棵,乙树苗8棵;购买方案三:购买甲树苗1棵,乙树苗9棵;购买方案四:购买甲树苗0棵,乙树苗10棵.3.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2 400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3 000-50m)元.①若3 000-50m=2 400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3 000-50m>2 400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3 000-50m<2 400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.4.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求写解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3_200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3_600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则40x+3 200<36x+3 600.解得x<100.若按方案二购买更省钱,则40x+3 200>36x+3 600.解得x>100.若两种方案付费一样,则40x+3 200=36x+3 600,解得x=100.∴当x<100时,方案一更省钱;当x>100时,方案二更省钱;当x=100时,两种方案付费一样.5.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.解:(1)由题意得,当x=8时,选择方案一的购买费用为90%a×8=7.2a元.选择方案二的购买费用为5a+(8-5)a×80%=7.4a元.∵7.2a<7.4a,∴当x =8时,应选择方案一,该公司购买费用最少,最少费用是7.2a 元.(2)∵该公司采用方案二购买更合算,∴x >5.∴选择方案一,购买的费用为90%ax =0.9ax 元.选择方案二,购买的费用为5a +(x -5)a ×80%=5a +0.8ax -4a =a +0.8ax.根据题意,得0.9ax >a +0.8ax.解得x >10.∴x 的取值范围是x >10.6.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A ,B 两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?请说明理由.解:(1)设购买x 台A 型污水处理设备,则购买(10-x)台B 型污水处理设备,由题意,得 12x +10(10-x)≤105.解得x ≤52. 故有3种购买方案:方案一:购买0台A 型污水处理设备,10台B 型污水处理设备;方案二:购买1台A 型污水处理设备,9台B 型污水处理设备;方案三:购买2台A 型污水处理设备,8台B 型污水处理设备.(2)应选择购买1台A 型污水处理设备,9台B 型污水处理设备.理由:设购买a 台A 型污水处理设备,由题意,得240a +200(10-a)≥2 040.解得 a ≥1.当a =1时,需资金12×1+10×9=102 (万元);当a=2时,需资金12×2+10×8=104 (万元).∵102<104,∴购买1台A型污水处理设备,9台B型污水处理设备.。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (64)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某校计划购买篮球和排球两种球若干.已知购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)求篮球和排球的单价;(2)该校计划购买篮球和排球共30个.某商店有两种优惠活动(两种优惠活动不能同时参加),活动一:一律打九折,活动二:购物不超过600元时不优惠,超过600元时,超过600元的部分打八折.请根据以上信息,说明选择哪一种活动购买篮球和排球更实惠.【答案】(1)篮球每个50元,排球每个30元;(2)当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠【解析】【分析】根据球的总个数,及总的价格建立二元一次方程组,求解即可.设购买篮球m个,列出两种活动的付款金额,再根据情况分类讨论,从而得到结果.【详解】(1)设篮球每个x元,排球每个y元,根据题意得:2x+3y=190且3x=5y 解得x=50,y=30.答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(30﹣x)个,价值:50m+30(30﹣m)=900+20m因为900+20m>600,所以可以参加活动二;按活动一需付款:0.9(900+20m)=810+18m;按活动二付款:600+0.8(900+20m﹣600)=840+16m;若活动一更实惠:810+18m<840+16m,m<15;若活动一和活动二一样实惠:810+18m=840+16m,m=15;若活动二更实惠:810+18m>840+16m,m>15;综上所述,当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠.【点睛】找到等量关系列出方程组和不等式是解题的关键.32.2018年4月10日0时起,全国铁路开始实施新的列车运行图.调整后,重庆与郑州之间有了始发高铁,两地出行更加便利,想要来重庆旅游的郑州游客,可以下午喝碗胡辣汤,晚上品尝正宗重庆火锅,据重庆火车站介绍,此次列车运行图优化调整新增了郑州东站至重庆西站的调整动车组.试运行首日,商务座票价是二等座票价的2倍,商务座售出10张,二等座售出100张,商务座和二等座总售出不低于6万元.(1)试运行期间,二等座票价至少多少元?(2)现正式投入运行后,铁路部门将二等座票价在试运行首日最低票价的基础上上涨了a%(a为整数),商务座票价在试运行首日最低票价基础上提高了3a%,且正式运行首日二等座售出的数量比试运行首日减少了a张,商务座售出的数量减少为试运行首日的一半,正式运行首日商务座和二等座总销售额为55000元,求a的值.【答案】(1)二等座票价至少为500元.2)a的值为30.【解析】【分析】(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意列出不等式,解不等式即可;(2)分别表示出商务座和二等座的销售额,再根据题意列方程,解方程即可.【详解】解:(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意得:10×2x+100x≥60000,解得:x≥500.答:试运行期间,二等座票价至少为500元;(2)根据题意得:500(1+a%)(100﹣a)+500×2(1+3a%)×10÷2=55000,整理,得:5a2﹣150a=0,解得:a1=0,a2=30.答:a的值为30.【点睛】本题主要考查一元二次方程的实际应用.33.解下列方程组、不等式组:(1)21 3211 x yx y+=⎧⎨-=⎩(2)3(2)4 1213x xxx--≤⎧⎪+⎨>-⎪⎩【答案】(1)31xy=⎧⎨=-⎩,(2)1≤x<4.【解析】【详解】(1)21 3211x yx y+=⎧⎨-=⎩①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=1,解得:y=﹣1,所以方程组的解为31xy=⎧⎨=-⎩;(2)解不等式x﹣3(x﹣2)≤4,得:x≥1,解不等式123x+>x﹣1,得:x<4,则不等式组的解集为1≤x<4.【点睛】考查了二元一次方程组及一元一次不等式的解法.34.为开展体育大课间活动,某学校需要购买篮球与足球若干个,已知购买3个篮球和2个足球需求共需要575元,购买4个篮球和3个足球共需要785元.()1购买一个篮球,一个足球各需多少元?()2若体育老师带了8000元去购买这种篮球与足球共80个,由于数量较多,店主给出篮球与足球一律打八折的优惠价,那么他最多能购买多少个篮球?同时买了多少个足球?【答案】()1购买一个需要篮球155元,购买一个足球需要55元;(2)这所学校最多可以购买56个篮球,同时买了24个足球.【解析】【分析】()1设购买一个篮球需要x 元,购买一个足球需要y 元,根据题意列出x ,y 的一元一次方程组,然后求解即可;(2)设购买了a 个篮球,则购买了()80a -个足球,根据题意列出关于a 的不等式,然后求解不等式即可得到答案.【详解】()1设购买一个篮球需要x 元,购买一个足球需要y 元,列方程得:3257543785x y x y +=⎧+=⎨⎩, 解得:{15555x y ==,答:购买一个需要篮球155元,购买一个足球需要55元; ()2设购买了a 个篮球,则购买了()80a -个足球,列不等式得:()1550.8550.8808000a a ⨯+⨯⨯-≤,解得56a ≤,∴最多可以购买56个篮球,∴同时购买了80﹣56=24个足球,故这所学校最多可以购买56个篮球,同时买了24个足球.35.某文具店从市场得知如下信息:该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?(3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?【答案】(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.【解析】【分析】(1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,(2)把y=1200代入y与x之间的函数关系式即可,(3)根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.【详解】解(1)设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,A品牌计算器的单个利润为90﹣70=20元,A品牌计算器销售完后利润=20x,B品牌计算器的单个利润为140﹣100=40元,B品牌计算器销售完后利润=40(50﹣x),总利润y=20x+40(50﹣x),整理后得:y=2000﹣20x,答:y与x之间的函数关系式为y=2000﹣20x;(2)把y=1200代入y=2000﹣20x得:2000﹣20x=1200,解得:x=40,则A种品牌计算器的数量为40台,B种品牌计算器的数量为50﹣40=10台,答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)根据题意得:70x+100(50﹣x)≤4100,解得:x≥30,一次函数y=2000﹣20x随x的增大而减小,x为最小值时y取到最大值,把x=30代入y=2000﹣20x得:y=2000﹣20×30=1400,答:该文具店可获得的最大利润是1400元.【点睛】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.36.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?【答案】小诚至少需要跑步5分钟.【解析】【分析】设他需要跑步x分钟,根据他要在不超过20分钟的时间内从家到达学校可以列出相应的不等式,从而可以解答本题.【详解】设他需要跑步x分钟,由题意可得()200x8020x2200+-≥,解得,x5≥.答:小诚至少需要跑步5分钟.【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解答本题的关键.37.如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.5厘米,每个铁环长4.6厘米,设铁环间处于最大限度的拉伸状态(1)填表:(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.17米长的链条,至少需要多少个铁环?【答案】(1)11.8;15.4;(2)y=3.6n+1;(3)至少需要60个铁环【解析】【分析】(1)根据铁环粗0.5厘米,每个铁环长4.6厘米,进而得出3个/4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y与n的关系式;(3)由(2)得,3.6n+1≥217,进而求出即可.【详解】(1)由题意可得:3×4.6-4×0.5=11.8(cm ),故3个铁环组成的链条长为11.8cm .4×4.6-6×0.5=15.4(cm ),故4个铁环组成的链条长为15.4cm .故答案为:11.8;15.4;(2)由题意得:y=4.6n-2(n-1)×0.5,即y=3.6n+1;(3)据题意有:3.6n+1≥217,解得:n ≥60,答:至少需要60个铁环.【点睛】此题主要考查了一元一次不等式的应用,利用链条结构得出链条长的变化规律是解题关键.38.解不等式125164y y +--≥,并把它的解集在数轴上表示出来. 【答案】y ≤54,把不等式的解集在数轴上表示见解析 【解析】【分析】不等式去分母、去括号、移项合并,把y 系数化为1,求出解集,表示在数轴上即可.【详解】两边都乘以12得,()()21325y y +--≥12去括号得,22615y y +-+≥12移项,合并同类项得,4y -≥-5系数化为1得,y ≤54把不等式的解集在数轴上表示如下:【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.39.某商场销售每个进价为150元和120元的A 、B 两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B 两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A 种型号的足球最多能采购多少个?(3)在()2的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.【答案】(1)A 型号足球单价是200元,B 型号足球单价是150元.(2)40个.(3)有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.【解析】【分析】(1)设A 、B 两种型号的足球销售单价分别是x 元和y 元,根据3个A 型号和4个B 型号的足球收入1200元,5个A 型号和5个B 型号的电扇收入1450元,列方程组求解;(2)设A 型号足球购进a 个,B 型号足球购进()60a -个,根据金额不多余8400元,列不等式求解;(3)根据A 型号足球的进价和售价,B 型号足球的进价和售价以及总利润=一个利润×总数,列出不等式,求出a 的值,再根据a 为整数,即可得出答案.【详解】()1解:设A 、B 两种型号的足球销售单价分别是x 元和y 元,列出方程组: 341200531450x y x y +=⎧⎨+=⎩解得200150x y =⎧⎨=⎩A 型号足球单价是200元,B 型号足球单价是150元.()2解:设A型号足球购进a个,B型号足球购进()60a-个,根据题意得:()+-≤150120608400a aa≤,所以A型号足球最多能采购40个.解得40()3解:若利润超过2550元,须()+->a a5030602550a>,因为a为整数,37.5a≤≤所以3840能实现利润超过2550元,有3种采购方案.方案一:A型号38个,B型号22个;方案二:A型号39个,B型号21个;方案三:A型号40个,B型号20个.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.40.某学校为加强学生的体育锻炼,曾两次在某商场购买足球和篮球.第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元.()1求足球和篮球的标价;()2如果现在商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?【答案】(1)足球的标价为50元,篮球的标价为80元;(2)最多可以买38个篮球.【解析】【分析】(1)设足球的标价为x 元,篮球的标价为y 元,根据“第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元”,列出关于x 和y 的二元一次方程组,解出即可,(2)设可买m 个篮球,根据“商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元”,列出关于m 的一元一次不等式,解出即可.【详解】(1)设足球的标价为x 元,篮球的标价为y 元,根据题意得:6570037710x y x y +=⎧⎨+=⎩, 解得:5080x y =⎧⎨=⎩, 答:足球的标价为50元,篮球的标价为80元.(2)设可买m 个篮球,根据题意得:0.6×50(60﹣m )+0.6×80m ≤2500.解得:m ≤3889, 因为m 为整数,所以m ≤3889的最大整数解是38. 答:最多可以买38个篮球.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用,根据数量关系列出方程组和不等式是解答本题的关键.。
人教版初中数学七年级下册《9.2 一元一次不等式》同步练习卷(5)
人教新版七年级下学期《9.2 一元一次不等式》同步练习卷一.选择题(共16小题)1.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元2.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1B.210x+90(18﹣x)≥2100C.210x+90(18﹣x)≤2100D.210x+90(18﹣x)≥2.13.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.4.不等式﹣2x+6>0的正整数解有()A.无数个B.0个C.1个D.2个5.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为()A.9B.8C.7D.66.不等式+1<的负整数解有()A.1个B.2个C.3个D.4个7.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>18.解不等式的过程如下:①去分母,得3x﹣2≤11x+7,②移项,得3x﹣11x≤7+2,③合并同类项,得﹣8x≤9,④系数化为1,得.其中造成错误的一步是()A.①B.②C.③D.④9.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣5(20﹣x)≥90B.10x﹣5(20﹣x)>90C.10x﹣(20﹣x)≥90D.10x﹣(20﹣x)>9010.三个连续自然数的和小于11,这样的自然数组共有()A.1组B.2组C.3组D.4组11.一元一次不等式2x+1≥3的最小整数解为()A.﹣2B.﹣1C.1D.212.某商品的进价是500元,标价为750元,商店要求以利润不低于5%的售价打折出售,此商品最低可以打()A.6折B.7折C.8折D.9折13.我们把不相等的两个实数a,b中较大的实数a记作max{a,b}=a,例如:max{2,3}=3,max{﹣1,﹣2}=﹣1,那么关于x的方程max{x,2x}=3x+1的解是()A.x=B.x=C.x=D.x=﹣14.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件15.若|4﹣2m|=2m﹣4,那么m的取值范围是()A.不小于2B.不大于2C.大于2D.等于216.x与5的和的一半是负数,用不等式表示为()A.x+>0B.(x+5)≥0C.(x+5)>0D.(x+5)<0二.填空题(共20小题)17.用不等式表示“比x的5倍大1的数不小于4”:.18.不等式>1的解集是.19.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为20.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有块.21.一元一次不等式﹣x≥2x+3的最大整数解是.22.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打折.23.已知:3(5x+2)+5<4x﹣6(x+1),化简:|3x+1|﹣|1﹣3x|=.24.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价元出售该商品.25.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在60分以上.26.现规定一种新的运算:=ad﹣bc,≤18,则x的取值范围.27.若3﹣2x<﹣6+x,化简:|x﹣2|﹣|2﹣x|=.28.不等式4x﹣6≥7x﹣1的最大整数解是.29.若不等式≥4x+6的解集为a≤﹣4,则a的值为.30.已知关于x的方程x+m=3(x﹣2)的解是正数,则m的取值范围.31.当x时,代数式的值为正数.32.如图所示的程序中,要使输出值y大于70,则输入的最小正整数x是.33.已知﹣1≥x﹣,求|x﹣1|﹣|x+3|的最小值.34.一列火车共有n节车厢,每节车厢有108个座位,在春运的某天,这列火车上有m个人,其中有一些人没有座位,上述关系可用不等式表示为.35.用不等式表示“a的3倍与16的差是一个非负数”.36.当x时,代数式2x﹣5的值为0,当x时,代数式2x﹣5的值不大于0.三.解答题(共14小题)37.“小麦绕村苗郁郁,柔桑满陌椹累累”宋朝诗人陆游在《闲咏》诗中咏诵的“小麦”是我省北方某实验区种植的重要经济作物.据相关部门公布的信息:我省2018年实验区内种植“专用品种小麦”和“一般品种小麦”共2600万亩,其中“一般品种小麦”的种植面积比“专用品种小麦”的种植面积的3倍还多200万亩.请回答下列问题(1)求我省2018年“专用品种小麦”和“一般品种小麦”的种植面积;(2)若我省“专用品种小麦”每亩产量是300千克,要保证我省小麦的总产量不低于1100万吨,则“一般品种小麦”的亩产量至少是多少千克?38.解不等式:3﹣≥,并把解集在数轴上表示出来.39.某公司为了更好治理污水质,改善环境,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少1万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过78万元,你认为该公司有哪几种购买方案;(3)在(2)间的条件下,若每月要求处理的污水量不低于1620吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.40.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.41.某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元(1)求购买1个篮球和1个足球各需多少元?(2)若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?42.合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?43.解不等式1﹣≤,并把解集在数轴上表示出来.44.若不等式3(x+1)﹣1<4(x﹣1)+3的最小整数解是方程x﹣mx=6的解,求m2﹣2m﹣11的值.45.为提高饮水质量,越来越多的居民选购家用净水器.我市腾飞商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)46.某学校为了庆祝国庆节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花共需13元;2盆A种花和1盆B种花共需11元.(1)求1盆A种花和1盆B种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B种盆花数量的2倍,请求出A种盆花的数量最多是多少?47.某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(1)求A、B两种型号的电风扇的销售价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.48.为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.49.为了提倡低碳经济,某公司为了更好得节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你设计一种最省钱的购买方案.50.x取哪些非负整数时,的值大于与1的差.人教新版七年级下学期《9.2 一元一次不等式》2019年同步练习卷参考答案与试题解析一.选择题(共16小题)1.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元【分析】设可降价x元,根据利润率=×100%结合售后利润率不低于20%,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:设可降价x元,根据题意得:×100%≥20%,解得:x≤120.故选:D.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1B.210x+90(18﹣x)≥2100C.210x+90(18﹣x)≤2100D.210x+90(18﹣x)≥2.1【分析】设骑车x分钟,根据题意列出不等式解答即可.【解答】解;设骑车x分钟,可得:210x+90(18﹣x)≥2100,故选:B.【点评】此题考查一元一次不等式的应用,关键是根据题意找出不等关系列出不等式.3.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.【分析】首先移项,再合并同类项,把x的系数化为1可得到不等式的解集,再根据解集画出数轴即可.【解答】解:3x≥x+2,移项得:3x﹣x≥2,合并同类项得:2x≥2,把x的系数化为1得:x≥1,在数轴上表示为:,故选:A.【点评】此题主要考查了解一元一次不等式,以及用数轴表示不等式的解集,关键是掌握:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4.不等式﹣2x+6>0的正整数解有()A.无数个B.0个C.1个D.2个【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣6,系数化为1,得:x<3,则不等式的正整数解为2,1,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为()A.9B.8C.7D.6【分析】设共有x人,分别计算选择包场和选择人数的费用,然后根据选择包场计费方案会比人数计费方案便宜,列不等式求解.【解答】解:设共有x人,若选择包场计费方案需付:50×4+5x=5x+200(元),若选择人数计费方案需付:20×x+(4﹣2)×6×x=32x(元),∴5x+200<32x,解得:x>=7.∴至少有8人.故选:B.【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.6.不等式+1<的负整数解有()A.1个B.2个C.3个D.4个【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:x﹣9+2<3x﹣2,移项、合并,得:﹣2x<5,系数化为1,得:x>﹣,∴不等式的负整数解为﹣2、﹣1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>1【分析】根据不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变,可知a+1<0,由此得到a满足的条件.【解答】解:由原不等式可得(1+a)x>1+a,两边都除以1+a,得:x<1,∴1+a<0,解得:a<﹣1,故选:A.【点评】本题考查了不等式的解集及不等式的性质,根据解集中不等式的方向改变,得出a+1<0是解题的关键.8.解不等式的过程如下:①去分母,得3x﹣2≤11x+7,②移项,得3x﹣11x≤7+2,③合并同类项,得﹣8x≤9,④系数化为1,得.其中造成错误的一步是()A.①B.②C.③D.④【分析】根据等式的基本性质即可作出判断.【解答】解:去分母,得3x﹣2≤11x+7,移项,得3x﹣11x≤7+2,合并同类项,得﹣8x≤9,系数化为1,得x≥﹣.故选:D.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.9.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣5(20﹣x)≥90B.10x﹣5(20﹣x)>90C.10x﹣(20﹣x)≥90D.10x﹣(20﹣x)>90【分析】小英答对题的得分:10x;小英答错或不答题的得分:﹣5(20﹣x).不等关系:小英得分不低于90分.【解答】解:设她答对了x道题,根据题意,得10x﹣5(20﹣x)≥90.故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.10.三个连续自然数的和小于11,这样的自然数组共有()A.1组B.2组C.3组D.4组【分析】设最小的自然数是x,根据三个连续自然数的和小于11,可列出不等式.【解答】解:设最小的自然数是x,x+x+1+x+2<11x<2.x可以为0或1或2.所以有三组.故选:C.【点评】本题考查理解题意的能力,关键是设出最小的自然数,根据和小于11,列出不等式求出可能情况.11.一元一次不等式2x+1≥3的最小整数解为()A.﹣2B.﹣1C.1D.2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:∵2x≥2,∴x≥1,则不等式的最小整数解为x=1,故选:C.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.某商品的进价是500元,标价为750元,商店要求以利润不低于5%的售价打折出售,此商品最低可以打()A.6折B.7折C.8折D.9折【分析】设可以打x折出售,根据题意可得:折后价﹣进价≥5%的利润,据此列不等式求解.【解答】解:设可以打x折出售,由题意得,750×0.1x﹣500≥500×0.05,解得:x≥7.即:最低可以打7折出售.故选:B.【点评】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.13.我们把不相等的两个实数a,b中较大的实数a记作max{a,b}=a,例如:max{2,3}=3,max{﹣1,﹣2}=﹣1,那么关于x的方程max{x,2x}=3x+1的解是()A.x=B.x=C.x=D.x=﹣【分析】根据新定义分x>2x、2x>x两种情况,分别列出方程求解即可.【解答】解:①当x>2x,即x<0时,有:x=3x+1,解得:x=﹣;②当2x>x,即x>0时,有2x=3x+1,解得:x=﹣1(不合题意);综上,关于x的方程max{x,2x}=3x+1的解是﹣,故选:B.【点评】本题主要考查对新定义的理解及解分式方程的能力,由新定义会分类讨论是前提,准确解分式方程及方程的解的取舍是关键.14.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件【分析】购买5件需要15元,27元超过15元,则购买件数超过5件,设可以购买x件这样的商品,根据:5件按原价付款数+超过5件的总钱数≤30,列出不等式求解即可得.【解答】解:设可以购买x(x为整数)件这样的商品.3×5+(x﹣5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选:C.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.15.若|4﹣2m|=2m﹣4,那么m的取值范围是()A.不小于2B.不大于2C.大于2D.等于2【分析】由于4﹣2m与2m﹣4互为相反数,那么已知条件|4﹣2m|=2m﹣4即为一个数的绝对值等于它的相反数,根据绝对值的定义可知4﹣2m≤0,解此不等式即可求出m的取值范围.【解答】解:∵|4﹣2m|=2m﹣4,∴4﹣2m≤0,解得m≥2.故选:A.【点评】本题考查了绝对值的定义及一元一次不等式的解法,根据绝对值的定义得到4﹣2m≤0是解题的关键.16.x与5的和的一半是负数,用不等式表示为()A.x+>0B.(x+5)≥0C.(x+5)>0D.(x+5)<0【分析】理解:负数值小于0.【解答】解:由题意知.故选D.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.二.填空题(共20小题)17.用不等式表示“比x的5倍大1的数不小于4”:5x+1≥4.【分析】理解:不小于4就是大于等于4.【解答】解:由题意可知5x+1≥4.故答案是:5x+1≥4.【点评】考查了由实际问题抽象出一元一次不等式.要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.18.不等式>1的解集是x>10.【分析】根据解一元一次不等式得基本步骤依次计算可得.【解答】解:去分母,得:x﹣8>2,移项,得:x>2+8,合并同类项,得:x>10,故答案为:x>10.【点评】本题考查了解一元一次不等式:有分母先去分母,再去括号,然后进行移项,把含未知数的项移到不等式的左边,再进行合并同类项,最后把未知数的系数化为1可得到不等式的解集.19.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为x>﹣1【分析】根据题意判断出6﹣m的正负,求出不等式的解集即可.【解答】解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣1【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.20.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有105块.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+500(x﹣60)>55000,解得x>104.故这批电话手表至少有105块,故答案为:105.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.21.一元一次不等式﹣x≥2x+3的最大整数解是﹣1.【分析】首先移项,然后合并同类项,系数化为1,即可求得不等式的解.【解答】解:移项得:﹣x﹣2x≥3即﹣3x≥3,解得x≤﹣1,∴不等式﹣x≥2x+3的最大整数解是﹣1,故答案为:﹣1【点评】本题考查了解一元一次不等式,一元一次不等式的整数解的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键.22.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打8.8折.【分析】设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【解答】解:要保持利润率不低于10%,设可打x折.则500×﹣400≥400×10%,解得x≥8.8.故答案是:8.8.【点评】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.23.已知:3(5x+2)+5<4x﹣6(x+1),化简:|3x+1|﹣|1﹣3x|=﹣2.【分析】去括号出15x+6+5<4x﹣6x﹣6,移项、合并同类项得到17x<﹣17,求出x<﹣1,去绝对值符号得出﹣(3x+1)﹣(1﹣3x),求出即可.【解答】解:3(5x+2)+5<4x﹣6(x+1),∵去括号得:15x+6+5<4x﹣6x﹣6,移项得:15x﹣4x+6x<﹣6﹣6﹣5,合并同类项得:17x<﹣17,∴x<﹣1,∴|3x+1|﹣|1﹣3x|,=﹣(3x+1)﹣(1﹣3x),=﹣3x﹣1﹣1+3x,=﹣2,故答案为:﹣2.【点评】本题考查了绝对值和解一元一次不等式的应用,关键是根据x的范围去掉绝对值符号,当x<﹣1时,|3x+1|﹣|1﹣3x|,=﹣(3x+1)﹣(1﹣3x),注意:负数的绝对值等于它的相反数,正数的绝对值等于它本身,0的绝对值是0,24.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价6元出售该商品.【分析】先设最多降价x元出售该商品,则降价出售获得的利润是22.5﹣x﹣15元,再根据利润率不低于10%,列出不等式即可.【解答】解:设降价x元出售该商品,则22.5﹣x﹣15≥15×10%,解得x≤6.故该店最多降价6元出售该商品.故答案为:6.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.25.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对12道题,成绩才能在60分以上.【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x﹣2(15﹣x)>60,求解即可.【解答】解:设答对x道.故6x﹣2(15﹣x)>60解得:x>所以至少要答对12道题,成绩才能在60分以上.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.26.现规定一种新的运算:=ad﹣bc,≤18,则x的取值范围x≤8.【分析】根据新定义规定的运算规则列出不等式,解不等式即可得.【解答】解:根据题意知﹣10﹣4(1﹣x)≤18,﹣10﹣4+4x≤18,4x≤18+10+4,4x≤32,x≤8,故答案为:x≤8.【点评】本题主要考查解一元一次不等式,解题的关键是根据新定义列出关于x的不等式及解不等式的步骤.27.若3﹣2x<﹣6+x,化简:|x﹣2|﹣|2﹣x|=0.【分析】先求出不等式的解集,再去掉绝对值符号,即可求出答案.【解答】解:解3﹣2x<﹣6+x得x>3,∴|x﹣2|﹣|2﹣x|=x﹣2﹣(x﹣2)=0,故答案为:0.【点评】本题考查了解一元一次不等式和绝对值,能正确去掉绝对值符号是解此题的关键.28.不等式4x﹣6≥7x﹣1的最大整数解是﹣2.【分析】先求出不等式的解集,然后求其最大整数解.【解答】解:∵不等式4x﹣6≥7x﹣1的解集是x≤﹣,∴不等式的最大整数解是﹣2.故答案为﹣2.【点评】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.29.若不等式≥4x+6的解集为a≤﹣4,则a的值为22.【分析】先求出不等式的解集,根据已知得出关于a的方程,求出即可.【解答】解:≥4x+6,2x﹣a≥12x+18,﹣10x≥18+a,x≤,∵不等式的解集为a≤﹣4,∴=﹣4,解得:a=22,故答案为:22.【点评】本题考查了解一元一次不等式和解一元一次方程,能得出关于a的方程是解此题的关键.30.已知关于x的方程x+m=3(x﹣2)的解是正数,则m的取值范围m>﹣6.【分析】求出方程的解,根据方程的解是正数得出3+m>0,求出即可.【解答】解:x+m=3(x﹣2),∴x+m=3x﹣6,∴﹣2x=﹣6﹣m,∴x=3+m,∵方程的解是正数,∴3+m>0,∴m>﹣6.即m的取值范围是m>﹣6,故答案为m>﹣6.【点评】本题考查了解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.31.当x>时,代数式的值为正数.【分析】根据题意列出不等式,求出不等式的解集即可.【解答】解:根据题意得:>0,解得:x>,故答案为:>.【点评】本题考查了解一元一次不等式,能根据题意列出不等式是解此题的关键.32.如图所示的程序中,要使输出值y大于70,则输入的最小正整数x是21.【分析】根据题意列出不等式,求出不等式的最小整数解即可.【解答】解:根据题意得:4x﹣11>70,x>20.25,∴x的最小整数为21,故答案为:21.【点评】本题考查了一元一次不等式的整数解的应用,能根据题意列出不等式是解此题的关键.33.已知﹣1≥x﹣,求|x﹣1|﹣|x+3|的最小值﹣3.【分析】解不等式得出x的范围,由绝对值的性质分类讨论,根据一次函数的性质得出其最小值.【解答】解:解不等式得x≤,令y=|x﹣1|﹣|x+3|,当x<﹣3时,y=1﹣x+x+3=4,当﹣3<x≤时,y=1﹣x﹣x﹣3=﹣2x﹣2,∵y随x的增大而减小,∴当x=时,y取得最小值,最小值为﹣3,故答案为:﹣3.【点评】本题主要考查解一元一次不等式、绝对值的性质及一次函数的性质,根据绝对值性质分类讨论并熟练掌握一次函数的性质是解题的关键.34.一列火车共有n节车厢,每节车厢有108个座位,在春运的某天,这列火车上有m个人,其中有一些人没有座位,上述关系可用不等式表示为108n<m.【分析】直接利用一列火车共有n节车厢,每节车厢有108个座位,得出总的座位数为:108n,进而利用这列火车上有m个人,其中有一些人没有座位,得出不等关系.【解答】解:由题意可得:108n<m.故答案为:108n<m.【点评】此题主要考查了由实际问题抽象出一元一不等式,正确表示出座位数是解题关键.35.用不等式表示“a的3倍与16的差是一个非负数”3a﹣16≥0.【分析】理解:差是一个非负数,即差应大于或等于0.【解答】解:根据题意,得3a﹣16≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序,不等关系,才能把文字语言。
人教版七年级数学下册第九章第二节一元一次不等式考试习题(含答案) (25)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)(阅读理解)1989年5月20日全国启动了“中国学生营养日”活动,并确定每年5月20日为中国学生营养日,至今已29个春秋.某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息.根据信息,解答下列问题.信息:①.快餐的成分:蛋白质、脂肪、矿物质、碳水化合物;②.快餐总质量为400克;③.脂肪所占的百分比为5%;④.所含蛋白质质量是矿物质质量的4倍.(问题解决)(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.【答案】(1)20(2)176(3)180【解析】分析:(1)利用质量分数求脂肪质量.(2) 设所含矿物质的质量为x克,列方程解应用题.(3) 设所含矿物质的质量,所含蛋白质的质量,根据题意列不等式,求最大值.详解:(1)400×5℅=20(克),即这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x 克,由题意得x +4x +20+400×40℅=400,解得x =44.所以4x =176,即这份快餐所含蛋白质的质量176克.(3)解法一:设所含矿物质的质量为y 克,则所含蛋白质的质量为4y 克,碳水化合物的质量为(400-20-5y )克.由题意得,4y +(380-5y )≤400×85℅.解得y ≥40,所以380-5y ≤180,故所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为y 克,则由题意得y ≥(1-5℅-85℅) ×400.解得y ≥40.所以4y ≥160,故400×85℅-4y ≤180,即所含碳水化合物质量的最大值为180克.点睛:应用题中,这几个式子变形一定要非常熟练(1)100%%a ⨯=部分总体, (2)%a 部分=总体, (3)部分=总体%a ⨯. 一般计算同理:a abc c b ÷=⇔=,a b c ⇒=,a b c=,(b 0,c 0,,,a b c ≠≠可以是数也可以是式子).需熟练掌握.42.按要求解下列不等式(组)(1)x 32x -< (2)()1x 6x 323+-≥ (3)解不等式组:3150728x x x -≥⎧⎨-<⎩并在数轴上表示不等式的解集. (4)解不等式组: 21218x x +>⎧⎨-≤⎩并求其最大整数解. 【答案】(1)x>-3 (2) 1x 3≥(3) -3<x ≤1(4)1 【解析】分析:(1)(2)直接解不等式.(3)(4)分别解不等式,再取公共部分,就是不等式的解集.(1)x>-3 (2) 1x 3≥ ((1)、(2)过程略) (3)解不等式①得x ≤1解不等式②得,所以,原不等式组的解集为在同一条数轴上表示出①②得解集为:(4)解:解不等式3x ﹣1<x+3,得:x <2,解不等式2(2x ﹣5)≤5x-6,得:x ≥﹣4 ,则不等式组的解集为:﹣4≤x <2,所以不等式组的最大整数解为1.点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b.此乃“相交取中”,如图所示:④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空”如图所示:43.平房区政府为了“安全,清激、美丽”河道,计划对何家沟平房区河段进行改造,现有甲乙两个工程队参加改造施工,受条件阻制,每天只能由一个工程队。
人教版七年级下册9.2一元一次不等式实际问题(利润、和差倍分)练习
9.2 一元一次不等式实际问题(利润、和差倍分)班级:__________ 姓名:__________ 分数:__________一、选择题1. 某种商品的进价为元,标价为元,后由于该商品积压,商店准备打折销售,要保证利润率不低于,该种商品最多可打( )A.九折B.八折C.七折D.六折2. 某种商品的进价为元,出售时标价为元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于,则最低可打()A.折B.折C.折D.折3. 某品牌电脑的成本为元,售价为元,该商店准备举行打折促销活动,要求利润率不低于,如果将这种品牌的电脑打折销售,则下列不等式中能正确表示该商店的促销方式的是()A. B.C. D.4. 某商店将定价为元的商品,按下列方式优惠销售:若购买不超过件,按原价付款;若一次性购买件以上,超过部分打八折.小聪有元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品件,则根据题意,可列不等式为A. B.C. D.5. 的倍与的差不大于,用不等式表示为()A. B.C. D.6. 关于下列问题的解答,错误的是()A.的倍不小于的,可表示为B.的与的和是非负数,可表示为C.是非负数,可表示为D.是负数,可表示为7. 若的倍与的和比的倍小,则下列式子中表达正确的是()A. B.C. D.8. 若式子的值大于式子的值,则的值()A.大于B.小于C.等于D.无法确定9. “的倍与的和不大于与的差”用不等式表示为________.10. 用不等式表示,比的倍大的数不小于的与的差________.二、填空题11. 的倍与的差不小于,用不等式表示为________.12. 商家以元每千克的价格购进千克苹果,销售中有的苹果正常损耗,为不亏本商家售价为元每千克,可列不等式________.13. 若一件商品的进价为元,标价为元,商店要求以利润率不低于的售价打折出售,设打折,那么列出的不等式为________.三、解答题14. 用适当的不等式表示下列数量关系:(1)减去大于;(2)的倍与的差是负数;(3)的倍与的和是非负数;(4)的倍与的差不大于.15. 一种电子琴每台进价为元,如果商店按标价的八折销售,所得利润仍不低于实际售价的,那么每台电子琴的标价不得低于多少元?16. 某服装店准备购进甲乙两种服装,甲种每件进价元,售价元;乙种每件进价元,售价元,计划购进两种服装共件,其中甲种服装不少于件.若购进这件服装的费用不得超过元,则甲种服装最多购进多少件?在的条件下,该服装店在国庆节当天对甲种服装以每件优惠元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?17. 某商场经营某种新型电子产品,购进时的价格为元/件,根据市场预测,在一段时间内,销售价格为元/件时,销售量为件,销售单价每降低元,就可多售出件.写出销售量(件)与销售单价(元/件)之间的函数关系式;写出销售该产品所获利润(元)与销售单价(元/件)之间的函数关系式,并求出商场获得的最大利润;若商场想获得不低于元的利润,同时要完成不少于件的该产品销售任务,该商场应该如何确定销售单价?参考答案9.2 一元一次不等式实际问题(利润、和差倍分)一、选择题1.【答案】A2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】A7.【答案】C8.【答案】B二、填空题9.【答案】10.【答案】11.【答案】12.【答案】13.【答案】三、解答题(本题共计 4 小题,每题 10 分,共计40分)14.【答案】解:(1)由题意可得:;(2)由题意可得:;(3)由题意可得:;(4)由题意可得:.15.【答案】解:设电子琴每台标价为元,那么售出一台电子琴所得的利润不低于元,根据题意,得,解这个不等式,得.经检验,不等式的解符合题意,所以,每台电子琴的标价不低于元.16.【答案】解:设购进甲种服装件,由题意可知:解得:,又∵甲种服装不少于件,即,∴,答:甲种服装最多购进件.设总利润为元,∵甲种服装不少于件,∴,,方案:当时,,随的增大而增大,所以当时,有最大值,则购进甲种服装件,乙种服装件;方案:当时,所有方案获利相同,所以按哪种方案进货都可以;方案时,,随的增大而减小,所以当时,有最大值,则购进甲种服装件,乙种服装件.17.【答案】解:由题意得:故销售量(件)与销售单价(元)之间的函数关系式为;,因为,所以当时,.故商场获得的最大利润为元当时,解得由二次函数的性质可知,当时,商场销售利润不低于元,又同时要完成不少于件的产品销售任务,则,解得,.答:销售价格应该在到元之间.。
人教版七年级数学下册第九章第二节一元一次不等式考试习题(含答案) (53)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某个不等式的解集在数轴上如图所示,这个不等式可以是()A.2x-1≤3 B.2x-1<3 C.2x-1≥3 D.2x-1>3【答案】A【解析】分析:先根据数轴上不等式解集的表示方法得出该不等式组的解集,再对四个选项进行逐一分析即可.x ,故本选项正确;详解:A、此不等式组的解集为:2B、此不等式组的解集为x<2,故本选项错误;C、此不等式组的解集为:x≥2,故本选项错误;D、此不等式组的解集为x>2,故本选项错误.故选A.点睛:用数轴表示不等式的解集时,当不等号是“≥”时,分界点用实心圆点,方向向右,当不等号是“≤”时,分界点用实心圆点,方向向左,当不等号是“>”时,分界点用空心圆圈,方向向右,当不等号是“<”时,分界点用空心圆圈,方向向左.22.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5000 B.10000 C.15000 D.20000【答案】B【解析】分析:设预计平均每年行驶x公里,根据已知条件分别列出两种汽车10年的用车成本,再根据“选择油电混动汽车的成本不高于选择普通汽车的成本”列出不等式进行解答即可.详解:设平均每年行驶的公里数至少为x公里,根据题意得:174800+31100x×10≤159800+46100x×10,解得:x≥10000,即预计平均每年行驶的公里数至少为10000公里.故选B.点睛:本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语句,弄清各数量间的关系,列出不等式;同时注意每百公里燃油成本是31元,不是一公里是31元.23.某单位为一中学捐赠了一批新桌椅,学校组织七年级300名学生搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A .80B .100C .120D .200【答案】C【解析】分析:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据总人数列不等式求解可得. 详解:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据题意,得:2x +2x ⩽300, 解得:x ⩽120,∴最多可搬桌椅120套,故选:C.点睛:本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.24.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20-x. 根据题意得:( )A .10x-5(20-x)≥120B .10x-5(20-x)≤120C .10x-5(20-x)> 120D .10x-5(20-x)<120【解析】分析:小明答对题的得分:10x;小明答错题的得分:-5(20-x).不等关系:小明得分要超过120分.详解:根据题意,得10x-5(20-x)>120.故选C.点睛:此题要特别注意:答错或不答都扣5分.至少即大于或等于.25.把不等式2x﹣3≤﹣5 的解集在数轴上表示,正确的是()A.B.C.D.【答案】C【解析】分析:根据解一元一次不等式基本步骤:移项、合并同类项化简可得.详解:移项,得:2x≤-5+3,合并同类项,得:2x≤-2,∴x≤-1故选:C.点睛:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.26.不等式1-2x<5-1x的负整数解有()2A.1个B.2个C.3个D.4个【解析】【分析】按去分母、去括号、移项、合并同类项、系数化为1的步骤求出不等式的解集后按要求求出整数解即可.【详解】2(1-2x)<10-x,2-4x<10-x,-4x+x<10-2,-3x<8,x>-22,3所以不等式的负整数解有-1、-2,共2个,故选B.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤及注意事项是关键.27.海安市核心价值观知识竞赛中共20道选择题,答对一题得10分,满分200分,答错或不答扣5分,总得分不少于80分者就通过预赛而进入决赛,若想通过预赛,那么至少答对()A.10道题B.12道题C.14道题D.16道题【答案】B【解析】【分析】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80,解不等式可得.【详解】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80去括号:10x-100+5x≥80∴15x≥180解得:x≥12因此选手至少要答对12道故选:B【点睛】本题考核知识点:列不等式解应用题.解题关键点:根据不等关系列出不等式.28.不等式组221xx-≤⎧⎨-<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】分析:先解不等式①,再解不等式②,然后按照含等号的取实心,不含等号的取空心,大于向右,小于向左,在数轴上标出.详解:解不等式①可得:2x≥-,解不等式②可得:3x<,在数轴上表示为:故选D.点睛:本题主要考查解不等式组,并在数轴上正确表示不等式组的解集,解决本题的关键是要熟练掌握解不等式的方法和在数轴上表示不等式解集.29.下列不等式中,解集不同的是().A.5x>10与3x>6 B.6x-9<3x+6 与x<5C.x<-2与-14x>28 D.x-7<2x+8与x>15【答案】D【解析】【分析】分别求出每个选项中每一个不等式的解集,比较即可得.【详解】A.不等式5x>10的解集是x>2,3x>6的解集是x>2,相同,故不符合题意;B. 6x-9<3x+6 的解集是x<5,与x<5相同,故不符合题意;C. x<-2,-14x>28的解集是x<-2,相同,故不符合题意;D. x-7<2x+8的解集是x>-15,与x>15不相同,故符合题意,故选D.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的一般步骤是解题的关键.30.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.【答案】A【解析】分析:首先移项,再合并同类项,把x的系数化为1可得到不等式的解集,再把解集在数轴上表示出来即可.详解:移项得:3x﹣x≥2,合并同类项得:2x≥2,把x的系数化为1得:x≥1,在数轴上表示为:.故选A.点睛:本题主要考查了解一元一次不等式,以及用数轴表示不等式的解集,关键是掌握:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.。
人教版数学七年级下9.2一元一次不等式含参数练习题习题(无答案)
1.某出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米后,每增加1千米加收1.4元(不足1千米按1千米计算),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x 千米,则x 的最大值是( )A.13B. 11C.9D.72.已知:a 、b 为常数,若ax+b >0的解集为31<x ,则bx -a <0的解集是( ) A.3->x B.3-<x C.3>x D.3<x3.已知不等式组⎩⎨⎧<>a x x 1无解,则a 的取值范围是( ) A.1≥a B.1≤a C.1>a D.1<a4.若关于x 的一元一次不等式组⎩⎨⎧>-->-0221a x x x 无解,则a 的取值范围是( )A.1≥aB.1>aC.1-≤aD.1-<a5.关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 235352只有5个整数解,则a 的取值范围是( ) A.2116-<<-a B.2116-<≤-a C.2116-≤<-a D.2116-<≤-a 6.如果关于x 的不等式组⎩⎨⎧<-≥-0607n x m x 的整数解仅为1,2,3,那么适合这个不等式组的整数对(m ,n )共有( ) A. 49对 B. 42对 C. 36对 D. 13对7.若干名学生住宿舍,每间住4人,2人无处住;每间住6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式(组)为__________.8.不等式组⎪⎩⎪⎨⎧-+<---≥12323243)(23x x x m x 有5个整数解,则m 的取值范围是________. 9.已知a 、b 为常数,解关于x 的不等式b x ax +>-22.10.已知32≠a ,解关于x 的不等式1)23(4)1(--<++a x a . 11.试确定实数a 的取值范围,使不等式组⎪⎪⎩⎪⎪⎨⎧>++++>++0312)4(34345x x a x a x 恰有两个整数解.12.解下列关于x 的不等式组:⎪⎩⎪⎨⎧->++>-xx x a x 11)1(26223;13.解关于x 的不等式22421a a x a x +≥-.14.若关于x 的不等式组⎩⎨⎧≥-≥-0250x m x 有解,则m 的取值范围是? 15.某班级学生去露营,如果每顶帐篷住4名学生,那么还有19名学生需要露宿田野,如果大家挤一挤,每6名学生住一顶帐篷,那么有一顶帐篷里不空也不满,请问一共带了多少顶帐篷?一共多少名学生?16.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A ,B 两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元.(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.。
七年级数学下册9.2一元一次不等式同步练习新版新人教版
2019-2020 年七年级数学下册 9.2 一元一次不等式同步练习(新版)新人教版一、填空题。
1、含有个未知数,未知数的次数是的不等式叫做一元一次不等式;2、不等式 - 6x - 2 ≤3x+1建立的最小整数是。
3 2 23、武汉市某一天的最低气温为-6 ℃,最高气温是5℃,假如设这日气温为t ℃,那么 t 应知足条件4、一次普法知识比赛共有30 道题,规定答对一题得 4 分,答错或许不答倒扣一份,在此次比赛中。
小明获取优异( 90 分或 90 分以上),则小明起码答对了道题。
5、一组学生在校门口拍一张合影,已知冲一张底片需要0.6 元,洗一张照片需要元,每人都获取一张照片,每人均匀分摊的钱不超出0.5 元,那么参加合影的同学起码有人。
6、小王家鱼塘有可销售的大鱼和小鱼共800kg ,大鱼每千克售价10 元,小鱼每千克售价 6 元,若将这 800kg 鱼所有销售,收入能够超出6800 元,则此中售出的大鱼起码有多少kg ?若设售出的大鱼为 x kg ,则可列式为二、选择题:1. 不等式 2x﹣ 6> 0 的解集在数轴上表示正确的选项是()A、B、C、D、2. 假如不等式(a+1) x>a+1 的解集为 x<1, 则 a 一定知足的条件是()A.a<0 ≤ -1 C.a>-1 D.a<-13. 不等式 -3 ≤ x < 4 的所有整数解的和是()A. 0 B .64. 三个连续正整数的和不大于15,则切合条件的正整数有()A. 2 组 B 4 组组组5. 假如x - 9+1 的值不小于x 1 - 1 的值,那么 x 应为()2 3A、 x > 176. 已知对于≥ 17 C.x < 17x 的不等式2x-a>- 3的解集以下图,则≤ 17a 的值是()A. 07. 某种商品的进价为800 元,销售时标价为1200 元,后出处于该商品积压,商铺准备打折销售,但要保证收益率不低于 5 %,则至多可打()折折折折8. 某旅行社某天有空屋10 间,当日招待了一个旅行团,当每个房间只住房间住宿状况是不满也不空,若旅行团的人数为偶数,求旅行团共有多少人3 人时,有一个()A. 27B. 28三、解答题。
人教版初中数学七年级下册《9.2 一元一次不等式》同步练习卷(4)
人教新版七年级下学期《9.2 一元一次不等式》同步练习卷一.解答题(共17小题)1.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.2.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?3.在关于x,y的方程组中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.4.某商店购进甲、乙两种商品,购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元.(1)求甲、乙两种商品每件进价分别是多少元?(2)若该商店购进甲、乙两种商品共140件,都标价10元出售,售出一部分降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进甲种商品件数少20件,该商店此次购进甲、乙两种商品降价前后共获利不少于420元,求至少购进甲种商品多少件?5.已知关于x、y的二元一次方程组的解满足x+y>2.求k的取值范围.6.学校准备购买A、B两种奖品,奖励成绩优异的同学.已知购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元.(1)A、B两种奖品的单价分别是多少元?(2)如果学校购买两种奖品共100件,总费用不超过850元,那么最多可以购买A奖品多少件.7.若不等式3(x+1)﹣1<4(x﹣1)+3的最小整数解是方程x﹣mx=6的解,求m2﹣2m﹣11的值.8.若不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解是方程2x﹣ax=3的解,求4a ﹣的值.9.列式计算:求使的值不小于的值的非负整数x.10.在等式y=kx+b(k,b为常数)中,当x=2时,y=﹣5;当x=﹣1时,y=4.(1)求k、b的值;(2)若不等式5﹣2x>m+4x的最大整数解是k,求m的取值范围.11.已知不等式7﹣2x>3的正整数解是方程3x﹣a=2ax﹣6的解,求(3﹣4a)(3+4a)+(3+4a)2的值.12.若关于x,y 的二元一次方程组的解满足x+y<2,求整数a的最大值.13.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:(1)现配制这种饮料9千克,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求甲、乙两种原料的费用不超过70元,试写出x(kg)应满足的另一个不等式.14.(1)列式:x与20的差不小于0;(2)若(1)中的x(单位:cm)是一个正方形的边长,现将正方形的边长增加2cm,则正方形的面积至少增加多少?15.在某次数学测试中,共有20道选择题,答对一题得5分,不答或答错一题扣2分,要想得60分以上,至少要答对多少道题?(只列式子)16.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.17.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.人教新版七年级下学期《9.2 一元一次不等式》2019年同步练习卷参考答案与试题解析一.解答题(共17小题)1.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.【分析】(1)根据新定义列出关于x的不等式,解之可得;(2)先解关于x的方程得出x=1,再将x=1代入x@a<5列出关于a的不等式,解之可得.【解答】解:(1)∵x@3<5,∴2x﹣3<5,解得:x<4;(2)解方程2(2x﹣1)=x+1,得:x=1,∴x@a=1@a=2﹣a<5,解得:a>﹣3.【点评】本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x的不等式及解一元一次不等式、一元一次方程的能力.2.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?【分析】(1)根据题意可以列出相应的方程组,从而可以求得需购买甲、乙两种树苗各多少棵;(2)根据题意可以列出相应的不等式,从而可以求得至少应购买甲种树苗多少棵.【解答】解:(1)设购买甲种树苗x棵,乙种树苗y棵,,解得,,即购买甲种树苗300棵,乙种树苗100棵;(2)设购买甲种树苗a棵,200a≥300(400﹣a)解得,a≥240,即至少应购买甲种树苗240棵.【点评】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组与不等式.3.在关于x,y的方程组中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.【分析】由①+②求出x+y=1﹣,得出不等式,求出不等式的解集即可.【解答】解:∵由①+②,得3x+3y=3﹣m,∴x+y=1﹣,∵x+y>0,∴1﹣>0,∴m<3,在数轴上表示如下:.【点评】本题考查了解二元一次方程组、二元一次方程组的解、解一元一次不等式和在数轴上表示不等式的解集,能得出关于m的不等式是解此题的关键.4.某商店购进甲、乙两种商品,购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元.(1)求甲、乙两种商品每件进价分别是多少元?(2)若该商店购进甲、乙两种商品共140件,都标价10元出售,售出一部分降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进甲种商品件数少20件,该商店此次购进甲、乙两种商品降价前后共获利不少于420元,求至少购进甲种商品多少件?【分析】(1)设甲种商品每件进价是x元,乙种商品每件进价是y元,根据“购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元”列出方程组解答即可;(2)设购进甲种商品a件,则乙种商品(140﹣a)件,利润不少于420元”列出不等式解答即可.【解答】解:(1)设甲种商品每件进价x元,乙种商品每件进价y元,根据题意,得,解得,答:甲种商品每件进价5元,乙种商品每件进价6元.(2)设甲种商品购进a件,根据题意,得10(a﹣20)+0.8×10[140﹣(a﹣20)]﹣5a﹣6(140﹣a)≥420解得a≥60答:甲种商品至少购进25件.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式.5.已知关于x、y的二元一次方程组的解满足x+y>2.求k的取值范围.【分析】①+②求出3x+3y=3k﹣3,根据已知得出不等式k﹣1>2,求出即可.【解答】解:,∵①+②得:3x+3y=3k﹣3,∴x+y=k﹣1,∵关于x、y的二元一次方程组的解满足x+y>2,∴k﹣1>2,∴k的取值范围是k>3.【点评】本题考查了二元一次方程组的解和解一元一次不等式的应用,关键是能得出关于k的不等式.6.学校准备购买A、B两种奖品,奖励成绩优异的同学.已知购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元.(1)A、B两种奖品的单价分别是多少元?(2)如果学校购买两种奖品共100件,总费用不超过850元,那么最多可以购买A奖品多少件.【分析】(1)直接利用购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元,进而得出方程组进而得出答案;(2)利用总费用不超过850元,得出不等关系进而得出答案.【解答】解(1)设A奖品的单价为x元,B奖品的单价为y元,由题意得:,解得:,答:A奖品的单价为12 元,B奖品的单价为6元.(2)设购买A奖品m件,则购买B奖品(100﹣m)件,由题意得:12m+6(100﹣m)≤850,解得:m≤,∵m为最大正整数,∴m得取值为41,答:至少购买A奖品41件.【点评】此题主要考查了一元一次不等式的应用,正确表示出两种奖品的总价是解题关键.7.若不等式3(x+1)﹣1<4(x﹣1)+3的最小整数解是方程x﹣mx=6的解,求m2﹣2m ﹣11的值.【分析】先求出不等式的解集,再求出最小整数解,代入求出m,最后求出答案即可.【解答】解:解不等式3(x+1)﹣1<4(x﹣1)+3得:x>3,所以不等式的最小整数解是x=4,把x=4代入x﹣mx=6得:2﹣4m=6,解得:m=﹣1,所以m2﹣2m﹣11=1+2﹣11=﹣8.【点评】本题考查了一元一次不等式的整数解和一元一次方程的解,能求出m的值是解此题的关键.8.若不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解是方程2x﹣ax=3的解,求4a﹣的值.【分析】先求出不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解,代入方程2x﹣ax=3,求出a的值,然后代入4a﹣,计算即可.【解答】解:∵5(x﹣2)+8<6(x﹣1)﹣7,∴x>11,∴不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解是12,把x=12代入方程2x﹣ax=3,得24﹣12a=3,解得a=.∴4a﹣=4×﹣=7﹣8=﹣1.【点评】本题考查的是一元一次不等式的整数解,一元一次方程的解以及代数式求值.解决此类问题的关键在于正确求得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,从而根据得到的条件进而求得不等式组的整数解.9.列式计算:求使的值不小于的值的非负整数x.【分析】根据题意列出不等式后,依据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1求得其解集,继而可得答案.【解答】解:≥,3(x+1)+4≥2(3x﹣1),3x+3+4≥6x﹣2,3x﹣6x≥﹣2﹣3﹣4,﹣3x≥﹣9,x≤3,则符合条件的非负整数有0、1、2、3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变10.在等式y=kx+b(k,b为常数)中,当x=2时,y=﹣5;当x=﹣1时,y=4.(1)求k、b的值;(2)若不等式5﹣2x>m+4x的最大整数解是k,求m的取值范围.【分析】(1)根据二元一次方程组的求解方法,求出k、b的值各是多少即可.(2)首先根据一元一次不等式的解法,可得x<,然后根据不等5﹣2x>m+4x的最大整数解是k,可得关于m的不等式组,据此求出m的取值范围即可.【解答】解:(1)根据题意可得:,解得:;(2)解不等式5﹣2x>m+4x,得:x<,因为该不等式的最大整数解是k,即﹣3,所以﹣3<≤﹣2,解得:7≤m<13.【点评】本题主要考查解二元一次方程组和一元一次不等式组,解题的关键是掌握解二元一次方程组的能力,并根据不等式组的整数解情况列出关于m的不等式组.11.已知不等式7﹣2x>3的正整数解是方程3x﹣a=2ax﹣6的解,求(3﹣4a)(3+4a)+(3+4a)2的值.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,然后根据不等式正整数解是方程的解,进而求得a.【解答】解:∵7﹣2x>3,∴x<2,∴不等式7﹣2x>3的正整数解为x=1,∵x=1是方程3x﹣a=2ax﹣6的解,∴3﹣a=2a﹣6,解得a=3,∴(3﹣4a)(3+4a)+(3+4a)2=(3﹣12)×(3+12)+(3+12)2=﹣9×15+152=﹣135+225=90.【点评】考查了一元一次不等式的整数解,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.若关于x,y 的二元一次方程组的解满足x+y<2,求整数a的最大值.【分析】先把两式相加求出x+y的值,再代入x+y<2中得到关于a的不等式,求出a的取值范围,进而求解即可.【解答】解:,①+②得,x+y=1+,∵x+y<2,∴1+<2,解得a<4.故整数a的最大值为3.【点评】本题考查的是解二元一次方程组及解一元一次不等式,解答此题的关键是把a 当作已知条件表示出x+y的值,再得到关于a的不等式.13.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:(1)现配制这种饮料9千克,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求甲、乙两种原料的费用不超过70元,试写出x(kg)应满足的另一个不等式.【分析】(1)所需甲种原料的质量xkg,则所需乙种原料的质量(9﹣x)kg,根据“至少含有4000单位的维生素C”可得不等式;(2)所需甲种原料的质量xkg,则所需乙种原料的质量(9﹣x)kg,根据“甲、乙两种原料的费用不超过70元”列出不等式.【解答】解:(1)设所需甲种原料的质量xkg,由题意得:500x+80(9﹣x)≥4000;(2)由题意得:16x+4(9﹣x)≤70.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的等量关系,列出不等式.14.(1)列式:x与20的差不小于0;(2)若(1)中的x(单位:cm)是一个正方形的边长,现将正方形的边长增加2cm,则正方形的面积至少增加多少?【分析】(1)不小于意思为“≥”;(2)正方形增加的面积=新正方形的面积﹣原正方形的面积.能够结合(1)中x的取值范围,求得正方形的面积增加的范围,从而得到正方形的面积至少增加多少.【解答】解:根据题意,得(1)x﹣20≥0;(2)由(1),得x≥20.则正方形的面积增加(x+2)2﹣x2=4x+4≥4×20+4=84.即正方形的面积至少增加84cm2.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.15.在某次数学测试中,共有20道选择题,答对一题得5分,不答或答错一题扣2分,要想得60分以上,至少要答对多少道题?(只列式子)【分析】首先设出未知数,找到关键描述语,进而找到所求的量的关系:得分﹣扣分>60,从而可得不等式.【解答】解:设这个学生至少要答对x道题,则答错的题目为(20﹣x)道题.依题意得:5x﹣2(20﹣x)>60.【点评】此题主要考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式,难度一般.16.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.【分析】理解:80分以上,意思是大于80分.本题的不等关系为:4×答对的题数﹣1×答错或不答的题数>80.【解答】解:设小明答对x道题,根据题意,得4x﹣(30﹣x)>80.【点评】读懂题意,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.17.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.【分析】利润率不低于5%,即是利润应大于或等于利润率的5%.利润有两种表示方法:利润=售价﹣成本=成本×利润率.本题满足的关系为:售价﹣进价≥500×5%.【解答】解:设应打x折,根据题意,得750×﹣500≥500×5%.【点评】应抓住关键词语不低于,得到不等式.本题还需注意:(1)利润的两种表示方法;(2)打几折,即原价的十分之几.。
人教版数学七年级下册第九章9.2 实际问题与一元一次不等式课时同步训练
第九章 不等式与不等式组9.2 实际问题与一元一次不等式第1课时(共2课时)课前预习篇1.列不等式解应用题与列方程解应用题的步骤相同,所不同的是前者是不等关系,列出的是不等式,后者相等关系,列出的是方程.2.列不等式解应用题的关键是找出不等关系.找不等关系要抓住像“大于”、“不小于”、“超过”、“不足”、“至少”等表示不等关系的词语.典例剖析篇【例1】(2009威海)响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【解析】 本题考查列一元一次方程和不等式的应用.(1)本题的不等关系是购买三种电冰箱的总金额不超过132 000元,根据这一关系列出不等式可求解.(2)根据购买甲种电冰箱的台数不超过丙种电冰箱的台数可列出不等式,再结合(1)中结果即可得出购买方案. 解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式:120021600(803)2000132000x x x ⨯++-⨯≤.解这个不等式,得14x ≥.所以至少购进乙种电冰箱14台.(2)根据题意,得2803x x -≤.解这个不等式,得16x ≤.由(1)知14x ≥.所以1416x ≤≤.又因为x 为正整数,所以141516x =,,.所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台;方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台;方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.基础夯实篇1.从甲地到乙地有30千米,某人以10千米/时~15千米/时的速度由甲到乙,则他用的时间大约为( B )A .1小时~2小时B .2小时~3小时C .3小时~4小时D .2小时~4小时2.重庆市区出租车的收费标准:起步价是5元(即行使距离不超过3千米都须付5元车费),超过3千米以后,每增加1千米,加收1.8元(不足1千米按1千米计),另外,每次乘车要加收3元的燃油附加费.王老师乘出租车从家到学校刚好付车费17元,那么他家到学校的路程的最大值是( C )A .5千米B .7千米C .8千米D .15千米3.(2009 佛山)据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( D )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤4.(2009乌鲁木齐)某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 500.31200x +≤ .5.有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?解:设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5 解得29.5<x<32因为x 为整数,所以x=30或x=31当x=30时,(3x+59)=149当x=31时,(3x+59)=152答:有30只猴子,149只桃子或有31只猴子,152只桃子.决胜中考篇6.(2010牡丹江)在“老年前”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加.旅行前,旅 行社承诺每车保证有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,甲种客车载客量为40人/辆,乙种客车载客量为30人/辆.(1)请帮助旅行社设计租车方案;(2)若甲种客车租金350元/辆,乙种客车租金为280元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行社在充分考虑团内老人的年龄结构特点后,为更好的照顾游客,决定同时租45座和30座的大小两种客车.大客车上至少配两名随团医生,小客车上至少配一名随团医生,为此旅行社又请了4名医生.出发时,旅行社先安排游客坐满大客车,再依次坐满小客车,最后一辆小客车即使坐不满也至少要有20座上座率,请直接写出旅行社的租车方案.(1)解:设租甲种客车x 辆,设租乙种客车(7-x )辆有40x+30×(7-x)≥253+7且x≤7得5≤x≤7因为x为整数,所以x可取5、6或7故有如下三种租车方案:方案(一)甲种客车7辆;方案(二)甲种客车6辆,乙种客车1辆;方案(三)甲种客车5辆,乙种客车2辆(2)设租金为y元,则y=350x+280×(7-x)=70x+1960因为70>0,所以y随x的增大而增大故最省钱方案是方案(三),此时最少租金2310元(3)方案(一)租大客车4辆,小客车3辆;方案(二)租大客车2辆,小客车6辆;7.(2010济南)某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.解:(1)设商品进了x件,则乙种商品进了(80-x)件,依题意得10x+(80-x)×30=1600 解得:x=40即甲种商品进了40件,乙种商品进了80-40=40件.(2)设购买甲种商品为x件,则购买乙种商品为(80-x)件,依题意可得:600≤(15-10)x+(40-30)(80-x)≤610解得:38≤x≤40∵x为整数,∴x取38,39,40,∴80- x为42,41,40即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件.8.(2009凉山州)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)解:设至少涨到每股x元时才能卖出.根据题意得1000(50001000)0.5%50001000x x-+⨯+≥,解这个不等式得1205199x≥,即 6.06x≥答:至少涨到每股6.06元时才能卖出.9.(2010南宁)2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A、B两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A 地,某余货车前往B 地,且运往A 地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.解(1)设大车用x 辆,小车用y 辆.依据题意,得20x y x y +=⎧⎨⎩,15+10=240. 解得812x y =⎧⎨=⎩,.所以大车用8辆,小车用12辆.(2)设总运费为W 元,调往A 地的大车a 辆,小车)10(a -辆;调往B 地的大车)8(a -辆,小车)2(+a 辆.则()()()4201075085502a a a -+-++即:1130010+=a W (80≤≤a ,a 为整数),因为115)10(1015≥-+a a所以3≥a又因为W 随a 的增大而增大,∴当3=a 时,W 最小.当3=a 时,1133011300310=+⨯=W因此,应安排3辆大车和7辆小车前往A 地;安排5辆大车和5辆小车前往B 地.最少运费为11 330元.第2课时(共2课时)课前预习篇进一步熟悉用一元一次不等式解决实际问题.典例剖析篇【例1】 君实机械厂为青扬公司生产A 、B 两种产品,该机械厂由甲车间生产A 种产品,乙车间生产B 种产品,两车间同时生产.甲车间每天生产的A 种产品比乙车间每天生产的B 种产品多2件,甲车间3天生产的A 种产品与乙车间4天生产的B 种产品数量相同.(1)求甲车间每天生产多少件A 种产品?乙车间每天生产多少件B 种产品?(2)君实机械厂生产的A 种产品的出厂价为每件200元,B 种产品的出厂价为每件180元.现青扬公司需一次性购买A 、B 两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A 、B 两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案.【解析】 本题考查列一元一次方程和不等式的应用.(1)此题是求每天生产A 种和B 种产品各多少件,设出未知数,列出方程,就可求解.(2)只要能把购买产品的费用表示出来,然后把费用超过15000元而不超过15080元用不等式表示,求出解,再根据公司8天的生产能力,确定购买方案.解:(1)设乙车间每天生产x 件B 种产品,则甲车间每天生产(x+2)件A 种产品,根据题意得:3(x+2)=4x 解得:x=6. 所以x+2=8答:甲车间每天生产8件A 种产品,乙车间每天生产6件B 种产品.(2)设青扬公司购买B 种产品m 件,则购买A 种产品(80-m)件,则根据题意得: 15000<200(80-m)+180m ≤15080 解得: 46≤x <50因为m 为整数,所以m=46或47或48或49,又因为乙车间8天最多生产48件,所以m=46或47或48.所以有三种购买方案:购买A 种产品32件,B 种产品48件;购买A 种产品33件,B 种产品47件;购买A 种产品34件,B 种产品46件.【点评】本题综合了一元一次方程和一元一次不等式,解题时要弄清题目中的已知条件,本题第二小题具有一定的区分度.基础夯实篇1.3个连续正整数的和不大于15,则符合条件的自然数有( C )A .2组B .3组C .4组D .5组2.(2010齐齐哈尔)现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性到达赛场的租车方案有( B )A .3种B .4种C .5种D .6种3.(2009莆田)一罐饮料净重500 g ,罐上注有“蛋白质含量≥0.4%,则这罐饮料中蛋白质的含量至少为___2__g .4.某商贩去菜市场买西红柿.他上午买了30 kg ,价格为x 元/kg ,下午他又买了20kg ,价格为y 元/kg .后来他以2y x +元/kg 的价格卖完后,结果发现自己赔了钱.其原因是( B ) A .y x B .y x C .y x ≤ D .y x ≥ 5.小明一家三口准备参加旅行团外出旅行,甲旅行社告知:“父母买全票,小孩半价优惠”.乙旅行社告知:“家庭旅游可按团体票价,即每人均按全价的54收费”.若这两家旅行社每人的原票价相同,那么( B )A .甲比乙优惠B .乙比甲优惠C .甲与乙相同D .与票价相同6.李刚家距学校1600 m ,一天早晨由于有事耽误,结果吃完饭只差15 min 就上课了.忙中出错,出门时又忘了带书包,结果回到家取书包又耽误了3 min ,只好打车去上学.已各出租车的速度是36 km/h ,而当出租车行驶1 min 30 s 时,又遇上堵车,他等了半分钟后,路还没有畅通,于是下车又开始步行,问李刚步行速度至少是( B )时,才不至于迟到.A .60 m/minB .70 m/minC .80 m/minD .90 m/min决胜中考篇7. 某商场用2500元购进A 、B 两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.类型 价格A 型B 型 进价(元/盏) 40 65标价(元/盏) 60 100(1)这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润不少于1400元,问至少需购进B 种台灯多少盏 ?解:(1)设A 型台灯购进x 盏,B 型台灯购进y 盏.根据题意,得5040652500x y x y +=⎧⎨+=⎩ 解得:3020x y =⎧⎨=⎩ (2)设购进B 种台灯m 盏. 根据题意,得1400)50(2035≥-+m m ,解得, 380≥m 答:A 型台灯购进30盏,B 型台灯购进20盏;要使销售这批台灯的总利润不少于 1400元,至少需购进B 种台灯27盏8.(2010菏泽)我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗?(3)要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?解:(1)设购买甲种树苗x 棵,则购买乙种树苗为(500-x )棵,由题意得:50x +80(500-x )=28000. 解得x =400.所以500-x =100.答:购买甲种树苗400棵,购买乙种树苗100棵.(2)由题意得: 34000)500(8050≤-+x x 解得200≥x ,(注意500≤x )答:购买甲种树苗不少于200棵,其余购买乙种树苗(购买乙种树苗不多于300棵,其余购买甲种树苗也正确)(3)由题意得%92500)500%(95%90⨯≥-+x x ,解得:300≤x设购买两种树苗的费用之和为y ,则x x x y 3040000)500(8050-=-+=在此函数中,y 随x 的增大而减小,所以当300=x 时,y 取得最小值,其最小值为310003003040000=⨯-答:购买甲种树苗300棵,购买乙种树苗200棵,即可满足这批树苗的成活率不低于92%,又使购买树苗的费用最低,其最低费用为31000元.9.(2010遵义)某酒厂每天生产A 、B 两种品牌的白酒共600瓶,A 、B 两种品牌的白酒每A B 成本(元/瓶) 50 35利润(元/瓶) 2015 设每天生产A x y (1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?解:(1))y =20x +15(600-x ), 即y =5x +9000(2)根据题意得:50x +35(600-x )≥26400所以x ≥360当x =360时, y 有最小值,代入y =5x +9000得y =5×360+9000=10800所以每天至少获利10800元.10.(2010眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗? 解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000-x )尾,由题意得:3600)6000(8.05.0=-+x x解这个方程,得:4000=x所以20006000=-x答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.(2)由题意得:4200)6000(8.05.0≤-+x x解这个不等式,得:2000≥x即购买甲种鱼苗应不少于2000尾.(3)设购买鱼苗的总费用为y ,则48003.0)6000(8.05.0+-=-+=x x x y由题意,有 600010093)6000(1009510090⨯≥-+x x 解得: 2400≤x在48003.0+-=x y 中因为03.0 -,所以y 随x 的增大而减少所以当2400=x 时,4080=最小y .即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (57)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)k 取什么值时,代数式212523k k -+-的值不小于代数式674k --1的值? 【答案】k ≤12【解析】【分析】根据题意列出不等式,然后通过去分母、去括号、移项、合并、系数化为1,解不等式得到k 的取值范围.【详解】解:由题意k 应满足不等式2125671234k k k -+--≥-, 即6(2k -1)-4(2k +5)≥3(6k -7)-12,12k -6-8k -20≥18k -21-12,-14k ≥-7,k ≤12.因此,当k ≤12时,代数式212523k k -+-的值不小于代数式674k --1的值. 【点睛】考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.62.解不等式,并在数轴上表示出不等式的解集.(1)3(1-2x )>2(x -2)-1; (2)13x -≤5-x .【答案】(1) x<1;(2)x≤4.【解析】【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)3(1-2x)>2(x-2)-1,3-6x>2x-4-1,-6x-2x>-4-1-3,-8x>-8,x<1.解集在数轴上表示如下.x ≤5-x,(2)13x-1≤3(5-x),x-1≤15-3x,x+3x≤15+1,4x≤16,x≤4.解集在数轴上表示如下.【点睛】本题考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.63.若关于x 的方程()332523x x m +-+=的解是正数,求m 的取值范围. 【答案】m<-509. 【解析】【分析】由题可知关于x 的方程解为正数,进而可以列出一元一次不等式进行求解.【详解】()332523x x m +-+=,解得95015m x --=, 由关于x 的方程()332523x x m +-+=的解是正数,95015m x --=>0 m<-509. 【点睛】本题考查了解一元一次方程和解一元一次不等式,熟练掌握这两个知识点是本题解题的关键.64.解不等式组3122324x x x⎧-≥⎪⎨⎪+<⎩ 请结合题意填空,完成本题的解答:(I )解不等式(1),得 ;(II )解不等式(2),得 ;(III )把不等式(1)和(2)的解集在数轴上表示出来:(IV )原不等式组的解集为 .【答案】(I )x ≥5;(Ⅱ)x >2;(III )见解析;(Ⅳ)x ≥5.【解析】【分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【详解】(I )解不等式(1),得x ≥5;(Ⅱ)解不等式(2),得x >2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为x ≥5.【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.65.(1)因式分解:m 3n ―9mn.(2)求不等式2723x x --≤的正整数解 【答案】(1)(3)(3)mn m m +-(2)1、2、3、4【解析】【分析】(1)直接提取公因式mn ,进而利用平方差公式分解因式得出答案;(3)首先去分母,进而解不等式求出答案.【详解】(1) m 3n -9mn .=()29mn m -=()223mn m - =()()33mn m m +-(2)解:3(x -2)≤2(7-x),3x -6≤14-2x ,5x ≤20,x ≤4.∴这个不等式的正整数解为1、2、3、4.【点睛】本题考查公式法以及提取公因式法分解因式和不等式的解法,解题关键是正确应用公式.66.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n >10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)【答案】(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.67.解不等式:4(23)(6)(3)(2)(5)->-----.x x x x x【答案】x>2【解析】【分析】根据多项式的四则运算,然后左右移项后合并同类项进行解不等式.【详解】8x-12>x2-9x+18-(x2-7x+10)8x-12>x2-9x+18-x2+7x-108x-12>8-2x10x>20x>2.【点睛】考查了学生对多项式运算和解不等式能力.熟练掌握不等式的解题步骤是本题的解题关键.68.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【答案】解:(1)实际应支付114元;(2)所购买商品的价格在1120元以上时,采用方案一更合算.【解析】【分析】(1)根据所购买商品的价格和折扣直接计算出实际应付的钱;(2)根据两种不同方案分别求出商品的原价与实际所付价钱的关系式,比较实际价钱,看哪一个合算再确定一个不等式,解此不等式可得所购买商品的价格范围.【详解】(1)120×0.95=114(元),所以实际应支付114元.(2)设购买商品的价格为x元,由题意,得0.8x+168<0.95x,解得x>1120,所以当购买商品的价格超过1120元时,采用方案一更合算.【点睛】本题考查一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系,列出不等式,再求解.69.为培养学生的特长爱好,提髙学生的综合素质,某校音乐特色学习班准备从京东商城里一次性购买若干个尤克里里和竖笛(每个尤克里里的价格相同,每个竖笛的价格相同),购买2个竖笛和1个尤克里里共需290元;竖笛单价比尤克里里单价的一半少25元.(1)求竖笛和尤克里里的单价各是多少元?(2)根据学校实际情况,需一次性购买竖笛和尤克里里共20个,但要求购买竖笛和尤克里里的总费用不超过3450元,则该校最多可以购买多少个尤克里里?【答案】(1)竖笛的单价是60元,尤克里里的单价是170元;(2)该校最多可以购买20个尤克里里.【解析】【分析】(1)设竖笛的单价是x 元、尤克里里的单价是y 元,根据购买2个竖笛和1个尤克里里共需290元,竖笛单价比尤克里里单价的一半少25元,列出方程组,再进行求解即可得出答案;(2)设该校购买a 个尤克里里,则购买竖笛(20-a )个,根据购买竖笛和尤克里里的总费用不超过3450元建立不等式求出其解即可.【详解】(1)设竖笛的单价是x 元、尤克里里的单价是y 元,依题意有22901252x y x y +=⎧⎪⎨=-⎪⎩,解得{x60y170==.故竖笛的单价是60元,尤克里里的单价是170元.(2)设该校购买a个尤克里里,则购买竖笛(20-a)个,依题意有170a+60(20-a)≤3450,,解得a≤20511∵a为正整数,∴a最大为20.∴该校最多可以购买20个尤克里里.【点睛】本题考查了二元一次方程组和一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.70.今年“五一节”期间,甲、乙两家超市以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲超市累计购物超过150元后,超出150元的部分按90%收费;在乙超市累计购物超过100元后,超出100元的部分按95%收费,顾客到哪家超市购物花费少?【答案】当累计消费大于100元少于200元时,在乙超市花费少;当累计消费大于200元时,在甲超市花费少;当累计消费等于200元或不超过100元时,在甲乙超市花费一样.【解析】【分析】设累计购物x元,分x≤100、100<x≤150和x>150三种情况分别求解可得.【详解】解:(1)当x≤100时,在甲、乙两个超市购物都不享受优惠,因此到两个商场购物花费一样;(2)当100<x≤150时,在乙超市购物享受优惠,在甲超市购物不享受优惠,因此在乙超市购物花费少;(3)当累计购物超过150元时,即x>150元,甲超市消费为:150+(x﹣150)×0.9元,在乙超市消费为:100+(x﹣100)×0.95元.当150+(x﹣150)×0.9>100+(x﹣100)×0.95,解得:x<200,当150+(x﹣150)×0.9<100+(x﹣100)×0.95,解得:x>200,当150+(x﹣150)×0.9=100+(x﹣100)×0.95,解得:x=200.综上所述,当累计消费大于100元少于200元时,在乙超市花费少;当累计消费大于200元时,在甲超市花费少;当累计消费等于200元或不超过100元时,在甲乙超市花费一样.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,列出不等式,再根据实际情况分段进行讨论.。
人教版七年级数学下册第九章第二节一元一次不等式复习试题(含答案) (65)
人教版七年级数学下册第九章第二节一元一次不等式习题(含答案)学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过400元,则最多可以购买菊花多少盆?【答案】最多可以购买菊花20盆.【解析】【分析】设需要购买绿萝x 盆,则需要购买菊花(30-x )盆,根据“购买菊花和绿萝的总费用不超过400元”列出不等式并解答.【详解】解:设需要购买菊花x 盆,则需要购买绿萝()30x -盆,则()16830400x x +-≤,解之得:20x ≤.答:最多可以购买菊花20盆 .【点睛】考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.42.重百超市对出售A 、B 两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a 的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.【答案】(1)a=10;(2)当0<x≤33时,选择方案一得最大优惠;当x >33时,采用方案二更加优惠,理由见解析【解析】【分析】(1)根据题意列出50×120×0.7+40×150×(1-a%)=9600方程解答即可;(2)根据题意列出两种方案的需付款,进而比较即可.【详解】解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即只能即0<x≤33时,选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当0<x≤33时,选择方案一得最大优惠;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)【点睛】本题考查一元一次方程和一元一次不等式的应用,解题的关键是明确题意,列出正确的方程或不等式,找出所求问题需要的条件.43.(1)计算:22(9)3---÷+(2)解不等式:2(5)4x->x>.【答案】(1)4;(2)7【解析】【分析】(1)先计算乘方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【详解】(1)原式13344=++=4; (2)2(5)4x ->,2104x -> ,214x >,7x >.【点睛】此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.44.m 是什么自然数时,关于x 的方程()18-82m x x m +=+的解不小于零【答案】m 的值为0,1,2.【解析】【分析】先将m 看成已知,然后解关于x的一元一次方程,然后根据解不小于零,x 的值,列出不等式并求解,最后结合m为自然数的条件即可解答.【详解】解:188()2m x x m -+=+188820m x x m ----=10188x m m -=-++10189x m =-18910m x -= 由题意得x 0≥即189010m -≥1890m -≥2m ≤∵m 为自然数∴m 的值为0,1,2【点睛】本题考查了解一元一次不等式和一元一次方程,弄清题意、列出关于m 的不等式是解答本题的关键.45.解不等式21232x x +--<,并求出非正整数解. 【答案】5x >-,非正整数解为-4,-3,-2,-1,0.【解析】【分析】先求出不等式的解集,然后确定不等式的非正整数解即可.【详解】解:2(2)3(1)12x x +--<243312x x +-+<5x >-非正整数解为-4,-3,-2,-1,0.【点睛】本题考查了解一元一次不等式和不等式的整数解,根据不等式的解集确定非正整数解是解本题的关键.46.某书店最近有,A B 两本散文集比较畅销,近两周的销售情况是:第一周A 销售数量是15 本,B 销售数量是10本,销售总价是230元;第二周A 销售数量是20本,B销售数量是10本,销售总价是280元.()1求,A B散文集的销售单价,()2若某班准备用不超过407元钱购买,A B散文集共45本,求最多能买多少本A散文集?【答案】(1)A散文集的销售单价为每本10元,B散文集的销售单价为每本8元;(2)最多能够买23本A散文集.【解析】【分析】(1)根据题意,列出二元一次方程组求解即可;(2)根据题意,列出不等式,求解即可.【详解】()1设A散文集的销售单价为每本x元,B散文集的销售单价为每本y元根据题意,得1510230 2010280x yx y+=⎧⎨+=⎩解得108 xy=⎧⎨=⎩答:A散文集的销售单价为每本10元,B散文集的销售单价为每本8元()2设能够买a本A散文集,得:()10845407a a+-≤,解得:23.5a≤,则最多能够买23本A散文集【点睛】此题主要考查二元一次方程组以及不等式的实际应用,解题关键是理解题意,列出关系式.47.某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?【答案】(1)A种款式的服装采购了65件,B种款式的服装采购了35件;(2)A种款式的服装最多能采购22件.【解析】【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,根据总价=单价×数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,根据总价=单价×数量结合总费用不超过3300元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【详解】解:(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,依题意,得:80x+40(100﹣x)=6600,解得:x=65,∴100﹣x=35.答:A种款式的服装采购了65件,B种款式的服装采购了35件.(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,依题意,得:80m+40(60﹣m)≤3300,解得:m≤221.2∵m为正整数,∴m的最大值为22.答:A种款式的服装最多能采购22件.【点睛】本题考查的是一元一次方程以及不等式在实际生活中的应用,难度不高,认真审题,列出方程是解决本题的关键.48.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示设安排x件产品运往A地,(1)当n=200时,①根据信息填表:②若运往B地的件数不多于运往C地的件数,求该企业最少需要多少运费?(2)若总运费为5800元,求n的最小值.【答案】(1)①见解析;②企业运费最少需要3840元;(2)n有最小值为221【解析】【分析】(1)①根据题意,直接把产品数量和运费填入表格,即可;②由“运往B 地的件数不多于运往C地的件数”,列出关于x的不等式,求出x的范围,再根据总运费的表达式,求出答案即可;(2)根据题意,列出关于n和x的等式,得到n与x关系式,结合n﹣3x ≥0,求出x的范围,进而即可求解.【详解】(1)①根据信息填表,如下:②由题意,得:200﹣3x≤2x,解得:x≥40,总运费=56x+1600,∵56>0,∴总运费随x增大而增大,∴x=40,该企业运费最少,最少总运费=56×40+1600=3840(元),答:企业运费最少需要3840元;(2)由题意,得:30x+8(n﹣3x)+50x=5800,整理,得n=725﹣7x,∵n﹣3x≥0,∴725﹣7x﹣3x≥0,∴﹣10x≥﹣725,∴x≤72.5,又∵x≥0,∴0≤x≤72.5且x为正整数,∵n随x的增大而减少,∴当x=72时,n有最小值为221.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.49.某水果生产基地销售苹果,提供两种购买方式供客户选择方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克.方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元).(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式;(备注:按方式购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱;(3)若客户甲采用方式1购买,客户乙采用方式2购买,甲、乙共购买苹果5000千克,总费用共计18000元,则客户甲购买了多少千克苹果?【答案】(1)31200y x =+;(2)当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)客户甲购买了1400千克苹果.【解析】【分析】(1)根据按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价,即可得到答案;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y 元,分别求出12y y <,12y y =,12y y >的解,即可得到答案;(3)设客户甲购买了x 千克苹果,则乙客户购买了(5000-x)千克苹果,分两种情况,分别列出方程,即可求解.【详解】(1)由题意得:31200y x =+;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y元,当1500x >时,2 3.5y x =,若12y y <,则31200 3.5x x +<,解得2400x >,若12y y =,则31200 3.5x x +=,解得2400x =,若12y y >,则31200 3.5x x +>,解得2400x <.答:当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)设客户甲购买了x 千克苹果,①若50001500x -<,即3500x >,由题意得:(31200)4(5000)18000x x ++-=,解得:3200x =,经检验,不合题意,舍去;②若50001500x -≥,即3500x ≤,由题意得:(31200) 3.5(5000)18000x x ++-=,解得:1400x =,经检验,符合题意.答:客户甲购买了1400千克苹果.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,根据数量关系,列出一次函数解析式和一元一次不等式,是解题的关键.50.今年受猪瘟影响,从年初开始,猪肉价格不断走高.消费者王阿姨发现,9月20日当天猪肉的价格是年初的1.5倍;9月20日当天,王阿姨购买4千克猪肉比年初多花了48元.(1)那么9月20日当天猪肉的价格为每千克多少元?(2)9月20日,按照(1)中的猪肉价格,某售卖点共卖出1000千克猪肉.9月21日,政府决定投入储备猪肉并规定其销售价在9月20日的基础上下调0.7%a 出售.该焦卖点按规定价出售一批储备猪肉和非储备猪肉,该售卖点的非储备猪肉仍按9月20日的价格出售,9月21日当天的两种猪肉总销量比9月20日增加了20%,且储备猪肉的销量占总销量的56,两种猪肉销售的总金额比9月20日至少提高了1%10a ,求a 的最大值. 【答案】(1)9月20日当天猪肉的价格为每千克36元;(2)a 的最大值为25.【解析】【分析】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意列出方程,求解即可;(2)根据题意,分别得出9月20日销售金额、储备猪肉每千克的销售价、9月21日当天的两种猪肉总销量、储备猪肉的销量和销售金额、非储备猪肉的销量和销售金额,列出总金额的不等式,解得即可.【详解】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意,得1.54448x x ⨯-=解得24x =经检验24x =是方程的解,∴1.5241.536x =⨯=答:9月20日当天猪肉的价格为每千克36元;(2)由题意,得9月20日销售金额为:36×1000=36000元 储备猪肉每千克的销售价:36(1-0.7%a )9月21日当天的两种猪肉总销量为:1000(1+20%)储备猪肉的销量为:1000(1+20%)×56储备猪肉销售金额为:36(1-0.7%a )×1000(1+20%)×56非储备猪肉的销量为:1000(1+20%)×16非储备猪肉销售金额为:36×1000(1+20%)×169月21日两种猪肉销售的总金额为:36(1-0.7%a )×1000(1+20%)×56+36×1000(1+20%)×16≥36000(1+1%10a ) 解得%25%a ≤故a 的最大值为25.【点睛】此题主要考查一元一次方程和不等式的实际应用,解题关键是理解题意,列出关系式.。
人教版七年级下册数学同步练习9.2《一元一次不等式》(word版有答案)
人教版七年级下册数学同步练习9.2《一元一次不等式》一、选择题(每道题目只有一个正确选项,请把正确答案填到括号内)1. 下列不等式中,是一元一次不等式的是()A.2x−1>0B.−1<2C.3x−2y≤−1D.y2+3>52. “a与3的和不大于6”用不等式表示为()A.a+3<6B.a+3≤6C.a+3>6D.a+3≥63. 三个连续正整数的和小于14,这样的正整数有()A.2组B.3组C.4组D.5组4. 不等式−3x>6的解集是()A.x>−2B.x<−2C.x>2D.x<25. 不等式x−2≤3+x3的非负整数解有()A.3个B.4个C.5个D.无数个6. 在数轴上与原点的距离小于8的点对应的x满足()A.x<8B.x>8C.x<−8或x>8D.−8<x<8二、填空题7. 已知(m+4)x|m|−3+6>0是关于x的一元一次不等式,则m的值为________.8. 已知不等式3x−a2−1≤x−23恰好只有3个正整数解,则a的取值范围为________.9. 小明准备用15元钱买笔和笔记本,已知每枝笔2元,每本笔记本2.2元,他买了3本笔记本后,最多还能购买枝笔.10. 某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x分,可列不等式为________.三、解答题11. 已知不等式:1−x3≥4−3x7.(1)解此不等式并把解集在数轴上表示出来;(2)试判断x=√2是否为此不等式的解.12. 求不等式7−12(2x−1)≥34x的正整数解.13. 用不等式表示下列关系:a是正数;_________________________a是负数;_________________________a与5的和是正数;_________________________b减5的差是负数;_________________________x的3倍大于或等于9;_________________________y的一半小于3._________________________14. 甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物花费少?15. 苹果的进价是每千克1.5元,销售中估计有5%的苹果正常损耗.商家把售价至少定为多少才能避免亏本?16. 某校七年级进行知识竞赛,共有30道题,答对一道题得4分,不答或答错一道题扣2分.(1)小红参加了竞赛,成绩是90分,请问小红在竞赛中答对了多少道题?(2)小明也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分.”请问小明有没有可能拿到100分?试用方程的知识来说明理由.17.某加工厂购进甲、乙两种原料,若甲原料的单价为1000元/千克,乙原料的单价为800元/千克.现该工厂预计用不多于1.8万元且不少于1.74万元的资金购进这两种原料共20千克.(1)若需购进甲原料x千克,请求出x的取值范围;(2)经加工后:甲原料加工的产品,利润率为40%;每一千克乙原料加工的产品售价为1280元,则应该怎样安排进货,才能使销售的利润最大?(3)在(2)的条件下,为了促销,公司决定每售出1千克乙原料加工的产品,返还顾客现金m(m>0)元,而甲原料加工的产品售价不变,要使所有进货方案获利相同,求m的值.参考答案1.A 2.B 3.B 4.B 5.C 6.D7. 48. 193≤a<2639. 410. 40%×85+60%≥9011.解:(1)1−x3≥4−3x7,去分母得:7−7x≥12−9x,移项整理得:2x≥5,系数化为1得:x≥2.5,解集在数轴上表示,如图所示.(2)由于√2<2<2.5,故√2不是这个不等式的解.12.解:去分母,得28−2(2x−1)≥3x.去括号,得28−4x+2≥3x.移项,得−4x−3x≥−28−2.合并同类项,得−7x≥−30.系数化为1,得x≤307.将不等式的解集在数轴上表示如图所示.所以这个不等式的正整数解为x=1,2,3,4.13.解:a>0解:a<0解:a+5>0解:b−5<0解:3x≥9<3解:y214.解:(1)当累计购物不超过50元时,在甲、乙两商场购物都不享受优惠且两商场以同样价格出售同样的商品,因此到两商场购物花费一样.(2)当累计购物超过50元而不超过100元时,乙商场的购物享受优惠,甲商场的购物不享受优惠,因此到乙商场购物花费少.(3)当累计购物超过100元时,设累计购物x(x>100)元.①若到甲商场购物花费少,则50+0.95(x−50)>100+0.9(x−100).解得x>150.这就是说,累计购物超过150元时,到甲商场购物花费少.②若到乙商场购物花费少,则50+0.95(x−50)<100+0.9(x−100).解得100<x<150.这就是说,累计购物超过100元而不到150元时,到乙商场购物花费少.③若50+0.95(x−50)=100+0.9(x−100).解得x=150.这就是说,累计购物为150元时,到甲、乙两商场购物花费一样.15.解:设商家把售价应该定为每千克x元,根据题意得:x(1−5%)≥1.5,解得,x≥30,19元.则为避免亏本,商家把售价应该至少定为每千克301916.解:(1)设小红在竞赛中答对了x道题,根据题意得4x−2(30−x)=90,解得x=25.答:小红在竞赛中答对了25道题;(2)如果小明的得分是100分,设他答对了y道题,根据题意得4y−2(30−y)=100,解得y=80.3因为y不能是分数,所以小明没有可能拿到100分.17.解:由题意,得17400≤1000x+800(20−x)≤18000.解得,7≤x≤10.每千克甲种原料加工后的利润:1000×40%=400(元),每千克乙种原料加工后的利润:1280−800=480(元).设总利润为ω元,则ω=400x+480(20−x)=−80x+9600.∵ −80<0,∵ ω随x的增大而减小,∵ 当x=7时,ω最大,∵ 加工甲种原料7千克,加工乙种原料13千克,才能使销售的利润最大.w=400x+(480−m)(20−x)=(m−80)x+9600−20m.∵ 所有进货方案获利一样,∵ 与x无关∵ m−80=0,∵ m=80.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020 年七年级数学下册 9.2 一元一次不等式同步练习(新版)新人教版一、填空题。
1、含有个未知数,未知数的次数是的不等式叫做一元一次不等式;2、不等式 - 6x - 2 ≤3x+1成立的最小整数是。
3 2 23、武汉市某一天的最低气温为-6 ℃,最高气温是5℃,如果设这天气温为t ℃,那么 t 应满足条件4、一次普法知识竞赛共有30 道题,规定答对一题得 4 分,答错或者不答倒扣一份,在这次竞赛中。
小明获得优秀( 90 分或 90 分以上),则小明至少答对了道题。
5、一组学生在校门口拍一张合影,已知冲一张底片需要0.6 元,洗一张照片需要 0.4 元,每人都得到一张照片,每人平均分摊的钱不超过0.5 元,那么参加合影的同学至少有人。
6、小王家鱼塘有可出售的大鱼和小鱼共800kg ,大鱼每千克售价10 元,小鱼每千克售价 6 元,若将这 800kg 鱼全部出售,收入可以超过6800 元,则其中售出的大鱼至少有多少kg ?若设售出的大鱼为 x kg ,则可列式为二、选择题:1. 不等式 2x﹣ 6> 0 的解集在数轴上表示正确的是()A、B、C、D、2. 如果不等式(a+1) x>a+1 的解集为 x<1, 则 a 必须满足的条件是()A.a<0B.a ≤ -1C.a>-1D.a<-13. 不等式 -3 ≤ x < 4 的所有整数解的和是()A. 0 B .6 C.-6 D.-34. 三个连续正整数的和不大于15,则符合条件的正整数有()A. 2 组 B 4 组 C.8 组 D.12 组5. 如果x - 9+1 的值不小于x 1 - 1 的值,那么 x 应为()2 3A、 x > 176. 已知关于B.x≥ 17 C.x < 17 D.xx 的不等式2x-a>- 3的解集如图所示,则≤ 17a 的值是()A. 0B.1C.-1D.27. 某种商品的进价为800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于 5 %,则至多可打()A.6 折 B.7 折 C.8 折 D.9 折8. 某旅行社某天有空房10 间,当天接待了一个旅游团,当每个房间只住房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人3 人时,有一个()A. 27B. 28C.29D.30三、解答题。
1.解下列不等式,并把它们的解集在数轴上表示出来:(1)10 -4(x-4)≤ 2(x-1) (2) 2x - 1 ≤ 3x - 43 6(3)5x 1- 2 > x - 5 (4) y 1 - 2y - 5 ≥1 6 4 6 42、某射击运动爱好者在一次比赛中共射击10 次,前 6 次共中 53 环(环数均为整数),如果他想取得不低于 89 环的成绩,那么他第 7 次射击不能少于多少环。
3、已知某种彩电的出厂价为每台 1800 元,各种管理费约为出厂价的价为每台多少元,才能保证毛利润不低于 15% ?12%,则商家的零售4、某商店以每辆250 元的进价购入200 辆自行车,并以每辆275 元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已经售出多少辆自行车?3、长跑比赛中,张跑在前面,在离终点100 m时他以 4 m/s 的速度向终点冲刺,在他身后10 m 的李明需以多快的速度同时开始冲刺,才能够在张华之前到达终点?4、某工厂前年有员工280 人,去年经过结构改革减员40 人,全厂年利润增加100 万元,人均创利至少增加6000 元,前年全厂年利润至少是多少?7、电脑公司销售一批计算机,第一个月以5500 元 / 台的价格售出60 台,第二个月起降价,以 5000 元 / 台的价格将这批计算机全部售出,销售款总额超过 55 万元,这批计算机最少有多少台?8、某人要到相距 3.3km 的 A 地去办事,他行走的速度是每分钟90 m,跑步速度是每分钟210m,若他必须在30分钟内到达 A 地,则他跑步的时间不能少于多少分钟?9、小明家平均每月付电费28 元以上,其中月租费18 元,已知市内通话不超过 3 分钟时,每次话费为0.2 元,如果小明家的通话时间都不超过 3 分钟,问小明家平均每月通话至少多少次?(设小明家每月只打市内电话)9.2 一元一次不等式第二课时一、填空题。
1. 已知不等式7x+ 3 <11的解是关于x 的不等式4x-1<x+a的解,则 a 应满26323 2足2. 有 10 名菜农, 每人可种甲种蔬菜 3 亩乙种蔬菜 2 亩,已知甲种蔬菜每亩可收入 0.5 万元,乙种蔬菜每亩可收入 0.8 万元,若要使收入不低于15.6 万元,则最多只能安排人种甲种蔬菜。
3. 当 m时,方程组2x + 3y = 2m +3 的解 x 、 y 适合不4x + 3y =4m - 5等式 x - y < 0 .2、 在一次“人与自然”知识竞赛中,竞赛试题共有 25 道,每道题给出 4 个答案,其中只有一个答案正确, 要求学生把正确答案写出来, 每道题选对得 4 分,不选或错选扣 2 分,如果一个学生在本次竞赛中的得分不低于 60 分,那么他至少应选对道题。
二、选择题。
1. 不等式 14x-7(3x-8)<4(25+x) 的负整数解是 ( )A.-3 , -2 , -1B.-1 , -2C.-4,-3 , -2 ,-1 D. -3, -2 , -1 , 0 2. 与不等式x3 < 2x 1- 1有相同解集的不 等式是()2 3A.3x-3< (4x+1)-1B.3(x-3)<2(2x+1)-1C.2(x-3)<3(2x+1)-6D.3x-9<4x-43. 小明去超市买某种衬衣,该种衬衣单价为每件100 元,小明想买衬衣不少于5 件,路上交通费为 10 元,则小明准备钱时有 ( ) 种选择准备 400 元 准备 500 元准备 510 元 ④准备 610 元A. 1B. 2C. 3D.44. 甲、乙两人从 A 地出发同向而行, 乙以每小时 5 千米的速度步行,比甲先出发 2 小时,如果甲骑车在半小时内赶上乙,那么甲的速度应该是()A.20 km / hB.22 km / hC.24 km / hD.26 km / h5. 班级组织有奖知识竞赛,小明用 100 元班费去购买笔记本和钢笔共30 件,已知笔记本每本 2 元,钢笔每支 5 元,那么小明最多能买钢笔 ( )A. 50 支B.20 支C.14支D.13支三、解答题。
1、 根据下列条件求正整数 x(1) x - 3 ≥ 2x - 5(2)2 x ≥ 2x -1 - 22 3232、 小莉和同学在早上 6 点 20 分从家出发步行去郊区旅行,8 点 20 分小莉的哥哥从家出发沿原路骑车追小莉,通知她立即回家看 望远方来客,要求哥哥骑车9 点前追上小莉,已知同学们步行的速度为4 千米 / 时,问哥哥的速度至少应是多少?3、某种商品的进价为800 元,出售时标价为1200 元,后来该商品积压,商品准备打折出售,但要保持利润不低于 5 %,你认为该商品可以打几折?4、燃放某种礼花时,为了确保安全,人在点燃导火线后要在发射前转移到10 m 以外的安全区域,已知导火线的燃烧速度为0.02 m /s ,人离开的速度为 4 m/s,导火线的长x ( m)应满足怎样的条件?5、为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10 台污水处理设备,现有A、 B 两种型号的设备,其中每台的价格。
月处理污水量如下表:A 型B 型价格(万元 / 台) A b处理污水量(吨 / 月)240 200 经调查,购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元。
(1)求 a 、 b 的值(2)经预算,市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案?(3)在( 2)问的条件下,若每月要求处理洋澜湖污水的量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案。
6. 某商场用36 万元购进A、 B 两种商品,销售完后获利 6 万元,其进价和售价如下表:商品 A B进价(元/ 件)1200 1000售价(元/ 件)1380 1200(注:获利=售价-进价)(1)该商场购进A、 B 两种商品各多少件?(2)商场第二次以原进价购机A、B 两种商品,购进 B 种商品的件数不变,而购进 A 中商品的件数是第一次的 2 倍, A 中商品按原售价出售,而 B 种商品打折销售,若两种商品销售完毕,要使第二次经营活动获利不少于81600 元, B 种商品最低售价为每件多少元?。