练习-实数-基础练习03
八年级数学上册实数,实数知识点总结,典型题型归纳,同步练习题
第三课时:实数1.无理数1.1.无限不循环小数叫做无理数.如:2,π,0.1225486…等.1.2.判断方法:①定义是判断一个数是不是无理数的重要依据;②有理数都可以写成分数的形式,而无理数则不能写成分数的形式(两个整数的商).1.3.常见的无理数:①含有开不尽方的数的方根的一类数,如3,35,1+2等;②含有π一类数,如5π,3+π等;③以无限不循环小数的形式出现的特定结构的数,如0.2020020002…(相邻两个2之间0的个数逐渐加1).2.实数的概念和分类2.1.概念:有理数与无理数统称为实数.2.2.实数按定义分类:2.3.按正负分类:3.实数与数轴3.1.实数与数轴上的点的对应关系:实数与数轴上的点是一一对应的.即每个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.3.2.在数轴上的两个点,右边的点表示的实数总比左边的点表示的实数大.4.相反数与绝对值4.1.相反数:数a 的相反数是-a .4.2.绝对值:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即0||=000,,,a a a a a a ⎧>⎪=⎨⎪-<⎩.5.实数的运算实数运算的顺序是先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.❖ 典型题型:无理数的判断1.判断一个数是不是无理数,必须看它是否同时满足两个条件:无限小数和不循环小数这两者缺一不可. 2.带根号的数并不都是无理数,而开方开不尽的数才是无理数. 【例1】0;3π227;1.1010010001…,无理数的个数是 A .5B .4C .3D .2【答案】C【解析】因为0;2273π;1.1010010001…是无限不循环小数,所以无理数有3个,故选C .❖ 典型题型:实数的概念和分类1.实数的分类有不同的方法,但要按同一标准,做到不重不漏.2.对实数进行分类时,应先对某些数进行计算或化简,然后根据最后结果进行分类. 【例2】在5π152123140412316,,,,,.,,,----中,其中 是整数, 是无理数, 是有理数.【答案】0,41-;π55121231404132216,,,;,,.,,----【例3】将这些数按要求填入下列集合中:0.01001001…,4,122-,3.2,0,-1,-(-5),-|-5|,π2-.负数集合{…};分数集合{…}; 非负整数集合{…};无理数集合{…}.【解析】负数集合{122-,-1,-|-5|,π2-…}; 分数集合{122-,3.2…};非负整数集合{4,0,-(-5)…}; 无理数集合{0.01001001…,π2-…}.❖ 典型题型:实数与数轴 两个实数比较大小:1.数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大;2.正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较,绝对值大的反而小. 【例4】如图,数轴上点P 表示的数可能是A 7B .7C .–3.2D .10【答案】B【解析】7 2.6510 3.16,设点P 表示的实数为x ,由数轴可知,–3<x <–2,∴符合题意的数为7B .【例5】和数轴上的点成一一对应关系的数是A.自然数B.有理数C.无理数D.实数【答案】D【解析】数轴上的点不仅表示有理数,还表示所有的无理数,即实数与数轴上得点是一一对应的,故选D.【例6】已知实数m、n在数轴上对应点的位置如图所示,则下列判断错误的是A.m<0 B.n>0 C.n>m D.n<m【答案】D【解析】由数轴上的点,得m<0<n,所以m<0,n>0,n>m都正确,即选项A,B,C判断正确,选项D 判断错误.故选D.【例7】已知数轴上A、B两点表示的数分别为–3和5,则A、B间的距离为__________.【答案】5+3【解析】A、B两点表示的数分别为–3和5,则A、B间的距离为5–(–3)=5+3,故答案为:5+3.【例8】如图,点A、B、C在数轴上,O为原点,且BO:OC:CA=2:1:5.(1)如果点C表示的数是x,请直接写出点A、B表示的数;(2)如果点A表示的数比点C表示的数两倍还大4,求线段AB的长.【解析】(1)∵BO:OC:CA=2:1:5,点C表示的数是x,∴点A、B表示的数分别为:6x,–2x;(2)设点C表示的数是y,则点A表示的数为6y,由题意得,6y=2y+4,解得:y=1,∴点C表示的数是1,点A表示的数是6,点B表示的数是–2,∴AB=8.❖ 典型题型:相反数与绝对值求一个有理数的相反数和绝对值与求一个实数的相反数和绝对值的意义是一样的,实数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.【例9】2的相反数是A .-2B .2C .D【答案】A【解析】根据相反数的定义可知:2的相反数是2-,故选A .【例10】3-π的绝对值是A .3-πB .π-3C .3D .π【答案】B【解析】∵3−π<0,∴|3−π|=π−3,故选B .【例11】A .相反数B .倒数C .绝对值D .算术平方根【答案】A【解析】A .❖ 典型题型:实数的运算1.在进行实数的运算时,有理数的运算法则、运算性质、运算顺序、运算律等同样适用.2.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例12】计算下列各式:(1)221.【解析】(1-(2)原式21+1=.基础练习1.在下列实数中,属于无理数的是A .0B C .3D .132.在13.140.231.131331333133331(3π-,,,,……每两个1之间依次多一个3)中,无理数的个数是 A .1个 B .2个C .3个D .4个3的值在 A .0和1之间B .1和2之间C .2和3之间D .3和4之间4.下列四个数中,最小的一个数是A .B 3-.C -.D π-.5 A .3B .3-1C 3. 1D 3-.6.下列说法中,正确的个数有①不带根号的数都是有理数;②无限小数都是无理数;③任何实数都可以进行开立方运算;④5不是分数. A .0个 B .1个C .2个D .3个7.下列各组数中互为相反数的一组是A.-|-2|与38-B.-4与-2(4)-C.-32与|32-| D.-2与28.如图,数轴上点P表示的数可能是A6B.7-C. 3.4-D.11 932-的相反数是__________,绝对值是__________.10.计算:325262+-=__________.115__________.12313=__________7(17=__________.13.把下列各数填入相应的集合内:15416,233270.15,-7.5,-π,0,23..①有理数集合:{…};②无理数集合:{…};③正实数集合:{…};④负实数集合:{…}.14.已知:x是|-3|的相反数,y是-2的绝对值,求2x2-y2的值.15.已知a7b7的小数部分,|c7,求a-b+c的值.能力拓展16.已知5+5与5–5的小数部分分别是a、b,则(a+b)(a–b)=__________.17.6–5的整数部分是a,小数部分是b.(1)a=__________,b=__________.(2)求3a–b的值.18.如图,点A表示的数为–2,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B所表示的数为n.(1)求n的值;(2)求|n+1|+(n+22–2)的值.真题实战19.(2018•鄂尔多斯)在227,–20184,π这四个数中,无理数是A.227B.–2018 C4D.π20.(2018•辽阳)在实数–2,3,0,–53中,最大的数是A.–2 B.3 C.0 D.–5 321.(201816A.14B.1±4C.12D.1±222.(2018•锦州)下列实数为无理数的是A.–5 B.72C.0 D.π23.(2018•南通)如图,数轴上的点A,B,O,C,D分别表示数–2,–1,0,1,2,则表示数2–5的点P应落在A.线段AB上B.线段BO上C.线段OC上D.线段CD上24.(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是A.原点在点A的左边 B.原点在线段AB的中点处C.原点在点B的右边 D.原点可以在点A或点B上25.(2018•常州)已知a为整数,且35a<<,则a等于A.1 B.2 C.3 D.426.(2018•攀枝花)如图,实数–3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是A.点M B.点N C.点P D.点Q27.(2018•贺州)在–1、122这四个数中,最小的数是A.–1 B.1 C2D.228.(2018•宁夏)计算:|–12|14A.1 B.12C.0 D.–129.(2018•攀枝花)下列实数中,无理数是A.0 B.–2 C3D.1 730.(20184–|–3|的结果是A.–1 B.–5 C.1 D.5 31.(2018•福建)已知m43m的估算正确的A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6 32.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是A.|b|<2<|a| B.1–2a>1–2bC.–a<b<2 D.a<–2<–b33.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是A.|a|>4 B.c–b>0 C.ac>0 D.a+c>0 34.(2018•南京)下列无理数中,与4最接近的是A.11B.13C.17D.19 35.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是A.|a|>|b| B.|ac|=ac C.b<d D.c+d>036.(2018•益阳)计算:|–5|327+(–2)2+4÷(–23).37.(2018•大庆)求值:(–1)2018+|12|38.38.(2018•台州)计算:|–2|4+(–1)×(–3)贾老师数学同步辅导班精讲精练教材——初二上册参考答案1.B ;2.C ;3.B ;4.D ;5.A ;6.C ;7. C ;8. B ;9.22;--10.11.1213.有理数集合:{4,23,0.15,-7.5,0,23.…};,π-…};4,230.15,23.…}; 负实数集合:{-7.5,π-…}.14.14.15.4或4-.16. 517.(1)a =3,b =32)18.(1)22+-;(2)319.D ;20.B ;21.C ;22.D ;23.B ;24.B ;25.B ;26.B ;27.A ;28.C ;29.C ;30.B ; 31.B ;32.C ;33.B ;34.C ;35.B ;36.0.372.38.3.。
幂的运算实数练习题
幂的运算实数练习题一、基础题1. 计算:\(2^3\)2. 计算:\((3)^2\)3. 计算:\(\left(\frac{1}{2}\right)^4\)4. 计算:\((2)^5\)5. 计算:\(\left(\frac{3}{4}\right)^3\)二、混合运算题6. 计算:\(2^3 \times 3^2\)7. 计算:\(\frac{4^3}{2^2}\)8. 计算:\((5^2)^3\)9. 计算:\(\left(\frac{2}{3}\right)^2 \times \left(\frac{3}{4}\right)^2\)10. 计算:\(\left(\frac{5}{6}\right)^3 \div \left(\frac{2}{3}\right)^2\)三、指数比较题11. 比较:\(3^4\) 和 \(4^3\)12. 比较:\((2)^5\) 和 \((3)^4\)13. 比较:\(\left(\frac{3}{4}\right)^2\) 和\(\left(\frac{4}{5}\right)^2\)14. 比较:\(\left(\frac{2}{3}\right)^3\) 和\(\left(\frac{3}{4}\right)^3\)15. 比较:\(2^6\) 和 \(3^4\)四、应用题16. 一个正方形的边长为2,求其面积。
17. 一个数的平方是64,求这个数。
18. 一个数的立方是216,求这个数。
19. 如果一个数的平方根是4,求这个数的平方。
20. 如果一个数的立方根是3,求这个数的立方。
五、拓展题21. 计算:\(2^3 + 3^2 4^2\)22. 计算:\(\left(\frac{1}{2}\right)^5 \times\left(\frac{2}{3}\right)^4\)23. 计算:\(\left(\frac{3}{4}\right)^2 \div\left(\frac{4}{5}\right)^2\)24. 计算:\(\left(2^3\right)^2 \times \left(3^2\right)^3\)25. 计算:\(\sqrt[3]{64} \times \sqrt[4]{81}\)六、根式运算题26. 计算:\(\sqrt{49}\)27. 计算:\(\sqrt[3]{27}\)28. 计算:\(\sqrt{64} + \sqrt{25}\)29. 计算:\(\sqrt[4]{16} \times \sqrt[3]{8}\)30. 计算:\(\sqrt{121} \sqrt{81}\)七、分数指数幂题31. 计算:\(4^{\frac{1}{2}}\)32. 计算:\(9^{\frac{3}{2}}\)33. 计算:\(\left(\frac{1}{16}\right)^{\frac{1}{4}}\)34. 计算:\(\left(\frac{1}{25}\right)^{\frac{2}{3}}\)35. 计算:\(32^{\frac{1}{5}}\)八、指数方程题36. 解方程:\(2^x = 32\)37. 解方程:\(3^{x+1} = 27\)38. 解方程:\(\left(\frac{1}{2}\right)^x = 8\)39. 解方程:\(5^{2x1} = 25\)40. 解方程:\(4^{x+2} = \frac{1}{16}\)九、指数不等式题41. 解不等式:\(2^x > 16\)42. 解不等式:\(3^{x1} < 27\)43. 解不等式:\(\left(\frac{1}{3}\right)^x \geq 9\)44. 解不等式:\(5^{2x3} \leq 125\)45. 解不等式:\(4^{x+1} > \frac{1}{64}\)十、综合题46. 已知\(a^2 = 36\),\(b^3 = 64\),计算\(a^3 + b^2\)。
八年级数学计算大练兵之实数运算(实数)基础练习(含答案)
八年级数学计算大练兵之实数运算(实数)基础练习试卷简介:全卷共8个选择题,6个填空题和7个计算题,测试时间为30分钟,共120分。
本卷试题立足基础,主要考察了学生对实数运算的掌握情况。
各个题目难度不一,学生在做题过程中可回顾本章知识点,加强对实数的认识。
学习建议:本讲主要内容是实数运算,它是中考常考的内容之一。
虽然本讲测试题均为基础题,较为简单,但中考中常把实数运算与其他数学知识联系起来形成复杂的题目,因此这一部分知识需要大家熟练掌握。
一、单选题(共8道,每道5分)1.下列计算或判断:①±3都是27的立方根;②;③的立方根是2;④,其中正确的个数有()A.1个B.2个C.3个D.4个答案:B解题思路:27的立方根是3,因此①不对;②是对的;是8,而8的立方根是2,因此③是对的,④中三次根号里面经过计算是64,在开三次方就是4,因此不对.所以答案为:B.易错点:实数开方后符号的确定试题难度:三颗星知识点:二次根式的应用2.下列说法错误的是()A.B.C.2的平方根是D.答案:D解题思路:在开二次根式的时候,根号下面的数必须大于等于0,因此对于D选项,等号右边的开方运算是没有意义的,所以答案选D.易错点:实数开不同次方后符号的确定试题难度:三颗星知识点:二次根式的乘除法3.-27 的立方根与的平方根之和是()A.0B.6C.0或-6D.-12或6答案:C解题思路:-27的立方根是-3,即9的平方根是±3,所以之和就是0或-6.易错点:实数平方根的运算试题难度:三颗星知识点:二次根式的化简求值4.若,,则= ()A.B.C.D.答案:A解题思路:,因为,,所以,,代入解得,,所以答案为:A.易错点:实数运算过程中的计算性错误试题难度:三颗星知识点:二次根式的混合运算5.,,的大小关系是()A.<B.<C.< <D.<答案:B解题思路:将、及同时6次方,然后进行比较.而,,,因此< ,即答案为:B.易错点:与的大小的判断试题难度:三颗星知识点:实数大小比较6.下列判断正确的是()A. 若|x|=|y|, 则x=yB.若x<y, 则<C.若|x|=, 则x=yD.若x=y, 则=答案:D解题思路:对于A,当x与y互为相反数时,结果不成立;对于B,当x与y中存在负数时,开算术平方根无意义,所以结论不成立;对于C,由二次根式的意义可知,y≥0,但当x小于0时,结果是不成立的.有开三次根号的意义知道,选项D是正确的.易错点:根式基础知识的误应用试题难度:三颗星知识点:实数的综合运算7.m是一个整数的平方数,那么和m相邻且比它大1的那个平方数是()A.m+2+1B.m+1C.D.以上都不对答案:A解题思路:首先必须明白平方数的定义:平方数或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。
实数知识点总结及典型例题练习
实数知识点总结考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现) 考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 -a (a <0) ;注意a 的双重非负性:a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.11 实数(全章复习与巩固)(基础篇)(专项练习)一、单选题1.4的算术平方根是( ) A .2±B .2C .2D 22.下列实数是无理数的是( ) A 327-B .13C .3.14159D 63.下列说法不正确的是( ) A .0的平方根是0 B .一个负数的立方根是一个负数 C .﹣8的立方根是﹣2D .8的算术平方根是24.若3m x y -和35n x y 的和是单项式,则()3m n +的平方根是( ) A .8B .8-C .4±D .8±5.估计463 ) A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .32C .23D .87.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .22-2B .2+2C .2D .28.若320a =10b =3c =,则a b c 、、的大小关系为( ) A .a c b <<B .a b c <<C .c<a<bD .c b a <<9.若a 、b 为实数,则下列说法正确的是( )A aB .有理数与无理数的积一定是无理数C .若a 、b 均为无理数,则a b +一定为无理数D .若a 为无理数,且()()220a b ++=,则2b =-10.下面是李华同学做的练习题,他最后的得分是( )姓名 李华 得分______填空题(评分标准,每道题5分) (1)16的平方根是4±(2)立方根等于它本身的数有0和1(3)38-的相反数是2(4)3=3--ππA .5分B .10分C .15分D .20分二、填空题11.16的平方根是___________. 12.计算327________.1321的相反数是__________,3.14π-=____________ 14.若实数a 、b 满足:2a b +,32a b.则()()a b a b +-的值是_____________.15.四个实数2-,023中,最小的实数是______. 16.实数a 在数轴上的位置如图,则|3a =_________.171032(填“>”,“<”或“=”)18.找规律填空:02,262103…,______(第n 个数).三、解答题19.求下列各式中的x : (1) 2481x =(2) ()3227x +=-20.计算(1) 20223113274-+-(2) 223(3)(3)1664---21.已知:9的平方根是3和5x +,y 13 (1) 求x y +的值;(2) 求22x y +的算术平方根.22.如图,长方形ABCD 的长为2cm ,宽为1cm .(1)将长方形ABCD 进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.23.【观察】请你观察下列式子. 第111.第2132+=. 第31353++. 第413574+++=. 第5135795++++. 【发现】根据你的阅读回答下列问题: (1) 写出第7个等式 .(2) 135(21)n +++++= .(3) 利用(241220284452++++++24.阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π2等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料一:479<273<<, ∵1712<. 71的整数部分为1. 7172.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2221>21x =+,可画出如图示意图.由图中面积计算,2211S x x =+⨯⋅+正方形,另一方面由题意知2S =正方形,所以22112x x +⨯⋅+=.略去2x ,得方程212x +=,解得0.5x =2 1.5. 解决问题:(1) 85(2) 5(画出示意图,标明数据,并写出求解过程)参考答案1.C【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根. 解:∵22=4, ∵4的算术平方根是2;故选:C .【点拨】本题考查了求一个数的算术平方根,平方与开平方互为逆运算是求一个正数的算术平方根的关键.2.D【分析】无理数即为无限不循环小数,初中阶段接触的无理数的表现形式主要有:∵开方开不尽的数;∵含有π的数;∵0.010010001...(每两个1之间依次多个0)这样的数;据此解答即可.解:A 3273--,属于整数,不是无理数,不符合题意; B 、13为分数,不是无理数,不符合题意;C 、3.14159为有限小数,不是无理数,不符合题意;D 6 故选:D .【点拨】本题考查了无理数的定义以及求一个数的立方根,熟练掌握初中阶段无理数的主要表现形式是解本题的关键.3.D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案. 解:A 、0的平方根是0,原说法正确,故此选项不符合题意;B 、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C 、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D 、8的算术平方根是2 故选:D .【点拨】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4.D【分析】根据题意可得3m x y -和35n x y 是同类项,从而得到3,1m n ==,再代入,即可求解.解:∵3m x y -和35n x y 的和是单项式, ∵3m x y -和35n x y 是同类项,∵3,1m n ==,∵()()333164m n +=+=, ∵()3m n +的平方根是8±. 故选:D .【点拨】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到3m x y -和35n x y 是同类项是解题的关键.5.C【分析】先把46332“夹逼法”即可求解. 解:463232== ∵253236<<, ∵5326<<, 故选:C【点拨】本题考查了无理数的估值问题,“夹逼法”的应用是解题的关键. 6.A解:由题中所给的程序可知:把64取算术平方根,结果为8, ∵8是有理数, ∵8 ∵y 82 故选A . 7.A2,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.解:∵矩形内有两个相邻的正方形面积分别为 4 和 2, ∵2,2,∵阴影部分的面积(22224222=⨯--=. 故选A .【点拨】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.8.C10320的值的范围,再进行比较即可得出答案. 解:82027<<, 32203∴<<,3104<<,320310<故选:A .【点拨】本题考查了实数大小比较,估算无理数的大小,熟练掌握估算无理数的大小是解题的关键.9.D【分析】A a B 、有理数与无理数的积不一定是无理数,举例说明; C 、a 、b 均为无理数,a b +不一定还是无理数,举例说明;D 、利用两数相乘积为0,两因式中至少有一个为0求出b 的值,即可做出判断. 解:A a 42=,错误;B 、有理数与无理数的积不一定是无理数,例如:020,错误;C 、a 、b 均为无理数,a b +不一定还是无理数,,例如:220-=,错误;D 、若a 为无理数,且()()220a b ++=,得到20a +≠,20b +=,解得:2b =-,正确,故选:D .【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 10.B【分析】直接利用平方根、立方根、绝对值、相反数的性质分别判断得出答案. 解:(1164=的平方根是2±,故此选项错误;(2)立方根等于它本身的数有0和1、 1-,故此选项错误;(3382--的相反数是2,故此选项正确;(4)()3=3=3----πππ,故此选项正确. 李华最后得分为10分, 故选:B .【点拨】此题主要考查了实数的性质,绝对值的性质,平方根和立方根概念,正确化简各数是解题关键.11.4±【分析】根据平方根的定义即可求解. 解:即:16的平方根是16=4± 故填:4±【点拨】此题主要考查平方根,解题的关键是熟知平方根的定义. 12.-3【分析】根据立方根的性质计算即可. 解:327--3, 故答案为:-3.【点拨】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.13. 12- 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.14.32【分析】根据算术平方根和立方根的性质得到a +b =4,a -b =8,进而直接代入求解即可.解:∵实数a 、b 2a b +=32a b ,∵a +b =4,a -b =8, ∵()()a b a b +-=4×8=32, 故答案为:32.【点拨】本题考查了算式平方根、立方根、代数式求值,理解算式平方根和立方根的性质是解答的关键.15.-2【分析】根据实数大小比较的方法解答即可. 解:∵2-2<3, ∵最小的实数是-2 故答案为:-2.【点拨】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.163a【分析】根据数轴上点的位置判断出3a 利用绝对值的代数意义化简即可得到结果.解:∵a <0,∵30a <,则原式3a , 3a 17.>103>,进而即可求解. 解:∵109>, 103>, 1032>, 故答案为:>.10 18()21n -【分析】除第一个数外,其他数变成二次根式后,根号下面的数都是2的倍数,第二个数为2的1倍,第三个数为2的2倍,依此类推,第n 个数为2的()1n -倍,从而得出答案.解:由题意得:由题意得: 第一项:00200==⨯=; 2212⨯ 第三项:24224=⨯= 6236=⨯……第n ()()2121n n ⨯-=-()21n -【点拨】本题考查了算术平方根,解题的关键是发现题目中数据的变化规律,要熟练掌握.19.(1)92x =± (2)5x =-【分析】(1)利用平方根解方程即可;(2)利用立方根解方程.(1)解:2481x =,∵2814x =, ∵81942x =±=±; (2)解:()3227x +=-,∵3227x +=-23x,解得:5x =-.【点拨】本题考查开方法解方程.熟练掌握平方根和立方根的定义,是解题的关键. 20.33 (2)8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+++33;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.21.(1)5- 73【分析】(1)先根据平方根的意义可得350x ++=,从而求出x 的值,13值的范围,从而求出y 的值,然后代入式子中进行计算即可解答;(2)把x ,y 的值代入式子中求出22xy +的值,然后再利用算术平方根的意义,进行计算即可解答.(1)解:9的平方根是3和5x +, 350x ∴++=,解得:8x =-,91316<<,3134∴<<,y 133y ∴=,835x y ∴+=-+=-,x y ∴+的值为5-;(2)当8x =-,3y =时,2222(8)364973x y +=-+=+=,22x y ∴+73【点拨】本题考查了估算无理数的大小,平方根,熟练掌握估算无理数的大小是解题的关键.22.(1)分割方法不唯一,如图,见分析;(22cm .【分析】(1)根据AB=2AD ,可找到CD 的中点,即可分成两个正方形,再沿对角线分割一次,即可补全成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据面积相等得到方程,即可求解.解:(1)如图,∵AB=2AD ,找到CD,AB 的中点,如图所示,可把矩形分割成4个等腰直角三角形,再拼成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,∵2x2cm .【点拨】此题主要考查实数性质的应用,解题的关键是根据图形的特点进行分割. 23.135791113++++++7 (2)n +1(3)14 【分析】(1)根据规律直接写出式子即可;(2135(21)n +++++n +1个式子,根据规律即可得; (3)41220283644524(1357891113)+++++++++++++利用规律即可得.(1)解:根据材料可知,第七个式子的被开方数为1+3+5+7+9+11+13, ∵第7135711137+++++,135711137+++++=; (2(21)1135(21)12n n n +++++++=+,故答案为:1n +;(3)解:根据(2)中的规律知, 11341220283644524(1357891113)4142++++++++++++++=. 【点拨】本题考查了数字变化规律类,解题的关键是掌握是式子的规律.24.859 (2)2.25【分析】(1)根据材料一中的方法求解即可;(2)利用材料二中的方法画出图形,写出过程即可.(1)解:8185100<98510<<,859. 85859.(2)解:我们知道面积是5552>,52x =+,可画出如图示意图.由图中面积计算,2224S x x =+⨯+正方形,另一方面由题意知5S =正方形,所以2445x x ++=.略去2x ,得方程410x -=,解得0.25x =5 2.25.【点拨】本题考查了无理数的估算,解题关键是准确理解题目给出的方法,熟练进行计算.。
完整版)实数练习题基础篇附答案
完整版)实数练习题基础篇附答案实数练题一、判断题(1分×8=8分)1.3不是9的算术平方根。
(×)2.2的平方根是根号2,它的算术平方根也是根号2.(√)3.-2没有实数平方根。
(×)4.-0.5不是0.25的一个平方根。
(×)5.2的平方根是a。
(×)6.6根是4.(√)7.-10不是1000的一个立方根。
(×)8.-7是-343的立方根。
(√)9.无理数可以用数轴上的点表示出来。
(√)10.有理数和无理数统称实数。
(√)二、选择题(3分×5=15分)11.列说法正确的是(B)A、1是0.5的一个平方根B、正数有两个平方根,且这两个平方根之和等于它们的和C、7的平方根是7D、负数有一个平方根12.如果y=0.25,那么y的值是(C)A、0.0625B、-0.5C、0.5D、±0.513.如果x是a的立方根,则下列说法正确的是(A)A、-x也是a的立方根B、-x是-a的立方根C、x是-a的立方根D、x等于a14.√3、22/7、-3、3343、3.1416都是无理数,它们的个数是(C)A、1个B、2个C、3个D、4个15.与数轴上的点建立一一对应的是(C)A、全体有理数B、全体无理数C、全体实数D、全体整数16.如果一个实数的平方根与它的立方根相等,则这个数是(A)A、0B、正实数且等于1C、负实数且等于-1D、1三、填空题(1分×30=30分)2.100的平方根是10,10的算术平方根是3.3.±3是√9的平方根,-3是√9的平方根;(-2)^2的算术平方根是2.4.正数有两个平方根,它们分别是正数和负数;负数没有实数平方根。
5.-125的立方根是-5,±8的立方根是2,27的立方根是3.6.正数的立方根是正数;负数的立方根是负数;0的立方根是0.7.2的相反数是-2,-π≈-3.14.8.比较下列各组数大小:⑴ <⑵ 3-64=2.5>1.5⑶ π≈3.14<3.5⑷ 2322>2000四、解下列各题。
初二上册数学实数的练习题
初二上册数学实数的练习题题目:初二上册数学实数的练习题实数是数学中最基本、最广泛应用的数系之一。
在初二上册数学学习中,实数的概念和性质是重要的学习内容之一。
为了巩固对实数的理解和运用,本文将提供一些初二上册数学实数的练习题,帮助同学们加深对实数的认识和运算能力。
【练习题一】计算下列各题中实数的和、差、积及商,并化简结果:1. $3\sqrt{2} + 5\sqrt{2}$2. $2\sqrt{3} - 4\sqrt{3}$3. $4\sqrt{5} \cdot 2\sqrt{5}$4. $\frac{2\sqrt{6}}{\sqrt{2}}$5. $\frac{5\sqrt{3}}{2\sqrt{6}}$【解答】1. $3\sqrt{2} + 5\sqrt{2}$结果:$8\sqrt{2}$2. $2\sqrt{3} - 4\sqrt{3}$结果:$-2\sqrt{3}$3. $4\sqrt{5} \cdot 2\sqrt{5}$结果:$8\cdot 5 = 40$4. $\frac{2\sqrt{6}}{\sqrt{2}}$结果:$\sqrt{2}$5. $\frac{5\sqrt{3}}{2\sqrt{6}}$结果:$\frac{5\sqrt{3}}{2\sqrt{6}}$(无法化简)【练习题二】根据实数的性质,判断下列等式是否成立,如果成立请说明理由,如果不成立请给出反例:1. $\sqrt{3} + \sqrt{5} = \sqrt{8}$2. $2\sqrt{7} - \sqrt{5} = \sqrt{14}$3. $\sqrt{6} + \sqrt{2} = \sqrt{8}$4. $\sqrt{13} \cdot \sqrt{7} = \sqrt{20}$5. $\sqrt{10} \div \sqrt{5} = \sqrt{2}$【解答】1. $\sqrt{3} + \sqrt{5} = \sqrt{8}$不成立。
八年级数学上册, 实数基础练习及答案
实数 基础练习题1.在下列实数中,属于无理数的是A .0BC .3D .132.在13.140.231.131331333133331(3π-,,,……每两个1之间依次多一个3)中,无理数的个数是 A .1个 B .2个C .3个D .4个3的值在 A .0和1之间B .1和2之间C .2和3之间D .3和4之间4.下列四个数中,最小的一个数是A .B 3-.C -.D π-.5 A .3B .3-1C 3. 1D 3-.6.下列说法中,正确的个数有 ①不带根号的数都是有理数; ②无限小数都是无理数;③任何实数都可以进行开立方运算;④5不是分数. A .0个B .1个C .2个D .3个7.下列各组数中互为相反数的一组是A .-|-2|B .-4与C .D .8.如图,数轴上点P表示的数可能是A6B.7C. 3.4-D.11 932-的相反数是__________,绝对值是__________.10.计算:325262+-=__________.115的点表示的数是__________.12313)=__________7(17)=__________.13.把下列各数填入相应的集合内:15416,233270.15,-7.5,-π,0,23..①有理数集合:{…};②无理数集合:{…};③正实数集合:{…};④负实数集合:{…}.14.已知:x是|-3|的相反数,y是-2的绝对值,求2x2-y2的值.15.已知a7的整数部分,b7的小数部分,|c7,求a-b+c的值.16.已知5+5与5–5的小数部分分别是a、b,则(a+b)(a–b)=__________.17.6–5的整数部分是a,小数部分是b.(1)a=__________,b=__________.(2)求3a–b的值.18.如图,点A表示的数为–2,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B所表示的数为n.(1)求n的值;(2)求|n+1|+(n+22–2)的值.19.(2018•鄂尔多斯)在227,–20184π这四个数中,无理数是A.227B.–2018 C4D.π20.(2018•辽阳)在实数–2,3,0,–53中,最大的数是A.–2 B.3 C.0 D.–5 321.(201816A.14B.1±4C.12D.1±222.(2018•锦州)下列实数为无理数的是A.–5 B.72C.0 D.π23.(2018•南通)如图,数轴上的点A,B,O,C,D分别表示数–2,–1,0,1,2,则表示数2–5的点P应落在A.线段AB上B.线段BO上C.线段OC上D.线段CD上24.(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是A.原点在点A的左边 B.原点在线段AB的中点处C.原点在点B的右边 D.原点可以在点A或点B上25.(2018•常州)已知a为整数,且35a<<,则a等于A.1 B.2 C.3 D.426.(2018•攀枝花)如图,实数–3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是A.点M B.点N C.点P D.点Q27.(2018•贺州)在–1、12、2这四个数中,最小的数是A.–1 B.1 C2D.228.(2018•宁夏)计算:|–12|14A.1 B.12C.0 D.–129.(2018•攀枝花)下列实数中,无理数是A.0 B.–2 C3D.1 730.(20184–|–3|的结果是A.–1 B.–5 C.1 D.5 31.(2018•福建)已知m43m的估算正确的A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6 32.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是A.|b|<2<|a| B.1–2a>1–2bC.–a<b<2 D.a<–2<–b33.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是A.|a|>4 B.c–b>0 C.ac>0 D.a+c>0 34.(2018•南京)下列无理数中,与4最接近的是A.11B.13C.17D.19 35.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是A.|a|>|b| B.|ac|=ac C.b<d D.c+d>036.(2018•益阳)计算:|–5|327+(–2)2+4÷(–23).37.(2018•大庆)求值:(–1)2018+|12|–38.38.(2018•台州)计算:|–2|4+(–1)×(–3)参考答案1. B2. C3. B4. D5. A6. C7. C8. B9.22;--10.11.12.13.有理数集合:{4,230.15,-7.5,0,23.…};,π-…};4230.15,23.…};负实数集合:{-7.5,π-…}.14.1415.当c时,a-b+c=4;当c=时,a-b+c=4-.16.517.(1)a=3,b=3(2)3a–b=3×3–(3=9–18.(1)22+-(2)319.D20.B21.C22.D23.B24.B25.B26.B27.A28.C29.C30.B31.B32.C33.B34.C35.B36.037.–2.38.3.。
实数(挑战综合(压轴)题分类专题)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)
专题6.15实数(挑战综合(压轴)题分类专题)(专项练习)【类型一】实数✭✭平方根✭✭立方根【类型①】实数➼➻平方根✭✭立方根➼➻解方程(两个题)1.求下列x 的值(1) ()2251360x +-=(2) ()3218x -=-2.求下列各式中x 的值:(1) 225640x -=;(2) ()33433270x ++=;(3) 2(21)16x +=【类型②】实数➼➻平方根✭✭立方根➼➻运算求值(两个题)3.计算: (1) 33(1)128-+ (2) 3223(5)(3)2532(3)--+.4.计算 (1)310.0184- (2) 332【类型③】实数➼➻平方根✭✭立方根➼➻综合化简与运算(四个题) 5.如图,有一只蚂蚁从点B 沿数轴向左爬了2个单位长度到达点A ,若点B 3设点A 所表示的数为m .(1) 实数m 的值是_________;(2) 求()221m m +++的值.(3) 在数轴上还有C 、D 两点分别表示实数c 和d ,且有24c +4d -求238c d ++的平方根.6.已知:x 的平方根是3a +与215a -213b -.(1) 求a ,b 的值;(2) 求x 的值;(3) 求1a b +-的立方根.7.已知235,4,8a b c ===-.(1) 若,a b <求a b +的值;(2) 若0abc >,求32a b c --的值.8.计算: (1) 239(6)27--(2) 51的整数部分为a 51的小数部分为b ,求23a b +的值.【类型二】实数✭✭平方根✭✭立方根【类型①】实数➼➻混合运算(四个题)9.计算(1) ()29234--; (2) 223184(3)2⎛⎫- ⎪⎝⎭.10.计算: (1)23327(3)1--- (2) 23164(2)9--11.(1)用“<”“>”或“=”填空: 1 22 3 (2)由以上可知:①|12= ,②23= .(3)计算:12233420212022++.(结果保留根号)12.知识链接:①对于任意两个实数a ,b ,如果0a b ->,那么a b >;如果0a b -=,那么a b =;如果0a b -<,那么a b <;②任意实数a 的平方都是非负数,即20a ≥. 知识运用:(1) 7______53; (2) 已知a 为实数,2(32)A a =-,()()21432B a a a =---,请你比较A 、B 的大小;(3) 已知x 、y 均为正数,比较2x y +与82xy x y+的大小.【类型②】实数➼➻大小比较✭✭估算✭✭整数部分与小数部分(两个题) 13.已知21a -的平方根是3±,9b -的立方根是2,c 12(1) 求a 、b 、c 的值;(2) 若x 121212x 的值.14.阅读材料,解答下面的问题: 479273<<, 7的整数部分为272.(1) 6(2) 已知56a ,56的小数部分是b ,求2021()a b +的值.【类型③】实数➼➻运算✭✭化简✭✭规律(三个题)15.观察下列等式,并回答问题: ①1221=; 2332= 3443= 4554……(1) 请写出第⑤个等式:______356=______;(2) 写出你猜想的第n 个等式:______;(用含n 的式子表示)(3) 241-1的大小.16.观察下列各等式及验证过程:11122323-=211121223232323-=⨯⨯ 11113()23438-=21111313()23423423843-===⨯⨯⨯⨯ 11114()345415-=21111414()345345534541-==⨯⨯⨯⨯针对上述各式反映的规律,写出用n(n为正整数)表示的等式_____.17.观察表格,回答问题:a …0.0001 0.01 1 100 10000 …a…0.01 x 1 y 100 …x=y=(2)从表格中探究a a①10 3.161000≈________;②8.973b,用含m的代数式表示b,则b=________;m=897.3(3)a a的大小.当________a a>;当________a a;当________a a.【类型四】实数✭✭平方根(算术平方根)✭✭立方根➽拓展与应用【类型①】实数➼➻应用➼➻化简✭✭求值(四个题)18.如图,纸上有五个边长为1的小正方形组成的图形纸(图1),我们可以把它剪开拼成一个正方形(图2).(1)图中拼成的正方形的面积是___________;边长是___________;(2)你能把十个小正方形组成的图形纸(图3),剪开并拼成正方形吗?若能,请仿照图的形式把它重新拼成一个正方形.并求出这个正方形的边长是___________.19.如图,长方形内有两个相邻的正方形,面积分别为9和6,(1)小正方形边长的值在哪两个连续的整数之间?与哪个整数较接近?(直接写结果)(2)求图中阴影部分的面积.(3)若小正方形边长的值的整数部分为x,小数部分为y,求(y6)x的值.20.综合与实践如图是一张面积为2400cm的正方形纸片.(1)正方形纸片的边长为______;(直接写出答案)(2)若用此正方形纸片制作一个体积为3216cm的无盖正方体,请在这张正方形纸片上画出无盖正方体的平面展开图的示意图,并求出该正方体所用纸片的面积.21.“2探究活动,根据各探究小组的汇报,完成下列问题.。
实数练习题及答案
实数练习题及答案实数是数学中非常重要的概念,它们包括有理数和无理数。
掌握实数的概念和运算是解决许多数学问题的基础。
下面是一些实数的练习题,以及相应的答案,供学习者练习和参考。
练习题1:判断下列数中哪些是有理数,哪些是无理数。
- √2- π- 1/3- 0.5- √3- √8答案1:- √2(无理数)- π(无理数)- 1/3(有理数)- 0.5(有理数,即1/2)- √3(无理数)- √8(无理数,因为8可以分解为2^3,而√8 = 2√2)练习题2:计算下列表达式的值。
- √4 + √9- √16 - √25- (√2)^2- √(1/4)答案2:- √4 + √9 = 2 + 3 = 5- √16 - √25 = 4 - 5 = -1- (√2)^2 = 2- √(1/4) = 1/2练习题3:解下列方程。
- √x = 4- x^2 = 16- √(x - 3) = 2答案3:- √x = 4,两边平方得 x = 16- x^2 = 16,解得x = ±4- √(x - 3) = 2,两边平方得 x - 3 = 4,解得 x = 7练习题4:将下列无理数化为最简二次根式。
- √48- √75答案4:- √48 = √(16 * 3) = 4√3- √75 = √(25 * 3) = 5√3练习题5:求下列表达式的值。
- √(√3 + 1)^2- √(√2 - 1)^2答案5:- √(√3 + 1)^2 = √3 + 1- √(√2 - 1)^2 = √2 - 1练习题6:判断下列表达式是否正确。
- √(-4) 是否有实数解?- √(-9) 是否有实数解?答案6:- √(-4) 没有实数解,因为负数没有实数平方根。
- √(-9) 同样没有实数解。
通过这些练习,可以帮助学习者更好地理解实数的概念和运算规则。
希望这些练习题和答案对学习者有所帮助。
在数学学习中,不断的练习和思考是提高解题能力的关键。
实数基础练习题目
实数基础练习题目11.(3分)下列说法正确的是()A.两个无理数之和一定还是无理数B.两个无理数之间没有有理数C.无理数分为正无理数、负无理数和零D.无理数可以用数轴上的点表示2.(3分)实数中分数的个数是()A.0B.1C.2D.33.(3分)如果a是2008的算术平方根,则的平方根是()A.B.C.D.4.(3分)一个自然数的算术平方根是a,则与这个自然数相邻的后续自然数的平方根是()A.B.C.D.5.(3分)(2013•昆都仑区一模)的平方根是()A.4B.±4 C.2D.±26.(3分)(1998•山西)对于实数a、b,若=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b7.(3分)在﹣,﹣,﹣,﹣四个数中,最小的数是()A.﹣B.﹣C.﹣D.﹣8.(3分)a、b是实数,下列命题是真命题的是()A.a≠b,则a2≠b2B.若a2>b2,则a>b C.若|a|>|b|,则a>b D.若|a|>|b|,则a2>b29.(3分)估算:的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间10.(3分)的算术平方根是()A.(x2+4)4B.(x2+4)2C.x2+4 D.1.(3分)(2007•广安)25的平方根是()A.5B.﹣5 C.±5 D.6252.(3分)下列说法错误的是()A.无理数的相反数还是无理数B.无限小数都是无理数C.整数、分数统称有理数D.实数与数轴上的点一一对应3.(3分)(2002•杭州)下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D. |﹣2|与24.(3分)数8.032032032…是()A.有限小数B.有理数C.无理数D.不能确定5.(3分)在0.51525354…、、0.2、、、、中,无理数的个数是()A.2B.3C.4D.56.(3分)一个长方形的长与宽分别是6、3,它的对角线的长可能是()A.整数B.分数C.有理数D.无理数7.(3分)满足的整数x是()A.﹣2,﹣1,0,1,2,3 B.﹣1,0,1,2,3 C.﹣2,﹣1,0,1,2,3 D.﹣1,0,1,28.(3分)当的值为最小值时,a的取值为()A.﹣1 B.0C.D.19.(3分)如图,线段AB=、CD=,那么,线段EF的长度为()A.B.C.D.10.(3分)x是的平方根,y是64的立方根,则x+y=()A.3B.7C.3,7 D.1,71.(3分)(2004•天津)若a、b都是无理数,且a+b=2,则a,b的值可以是_________(填上一组满足条件的值即可).2.(3分)当x=_________时,16﹣(x+4)2有最大值,最大值是_________.3.(3分)若一个正数的平方根是2a﹣1和﹣a+2,则a=_________,这个正数是_________.4.(3分)绝对值小于的整数有_________.5.(3分)若a是b的平方根,且a与b的差等于0,则a=_________.6.(3分)平方后等于本身的数是_________.7.(3分)化简:=_________.8.(3分)的平方根是_________;125的立方根是_________.9.(3分)一个正方形的面积变为原来的m倍,则边长变为原来的_________倍;一个立方体的体积变为原来的n倍,则棱长变为原来的_________倍.10.(3分)估计的大小约等于_________(误差小于1).11.(3分)若|x﹣1|+(y﹣2)2+=0,则x+y+z=_________.12.(3分)如图,每个小正方形的边长为1,则△ABC的面积等于_________.13.(3分)如图,图中的线段AE的长度为_________.1.(3分)下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4 C.是6的平方根D.﹣a没有平方根2.(3分)下列各式中错误的是()A.B.C.D.3.(3分)若x2=(﹣0.7)2,则x=()A.﹣0.7 B.±0.7 C.0.7 D.0.494.(3分)的立方根是()A.﹣4 B.±4 C.±2 D.﹣2 5.(3分)若﹣=,则a的值是()A.B.﹣C.±D.﹣6.(3分)下列四种说法中,共有()个是错误的.(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).A.1B.2C.3D.47.(3分)x是的平方根,y是64的立方根,则x+y=()A.3B.7C.3,7 D.1,78.(3分)(2012•潘集区模拟)等式成立的条件是()A.x≥1B.x≥﹣1 C.1≤x≤1D.x≥1或x≤﹣19.(3分)计算的结果是()A.0B.﹣C.D.10.(3分)(x≤2)的最大值是()A.6B.5C.4D.31.(3分)已知实数a满足,则a的取值范围是_________.2.(3分)若5x+19的立方根是4,则2x+7的平方根是_________.3.(3分)若|x﹣1|=2,则x=_________.4.已知a是的整数部分,b是小数部分,试求a和b.5.已知的小数部分为b,求的值.6.已知a,b,c实数在数轴上的对应点如图所示,化简.7.已知a,b为有理数,且,求的值.8.如图所示,要在离地面5米处的电线杆处向两侧引拉线AB和AC,固定电线杆,生活经验表明,当拉线的固定点B(或C)与电线杆底端点D的距离为其一侧AB的长度时,电线杆比较稳定,问一条拉线至少需要多长才能符合要求?试用你学过的知识进行解答.(精确到0.1米)1.(3分)我们知道黄老师又用计算器求得:=_________,=_________,=_________…,则计算等于_________.2.(3分)比较下列实数的大小(在空格填上>、<或=)①_________;②_________.3.(3分)如图,以数轴的单位长线段为边作一个矩形,以数轴的原点为旋转中心,将过原点的对角线逆时针旋转,使对角线的另一端点落在数轴负半轴的点A处,则点A表示的数是_________.4.(10分)自由下落的物体的高度h(m)与下落时间t(s)的关系为h=4.9t2.有一学生不慎让一个玻璃杯从19.6m高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340m/s)?5.(10分)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得()2=m,×=,那么便有:==±(a>b),由上述例题的方法化简:.。
人教版七年级数学下册第六章《实数》同步练习(含答案)
)
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 18.(2017·广州四校联考期中)已知 a,b 为两个连续整数,且 a< 15<b,则 a+b 的值为 7. 19.(教材 P41 探究变式)如图,将两个边长为 3的正方形分别沿对角线剪开,将所得的 4 个三角形拼成一个大的 正方形,则这个大正方形的边长是 6.
20.(教材 P43 探究变式)观察:已知 5.217≈2.284, 521.7≈22.84,填空: (1) 0.052 17≈0.228__4, 52 170≈228.4; (2)若 x≈0.022 84,则 x≈0.000__521__7. 21.比较下列各组数的大小: (1) 12与 14; (2)- 5与- 7;
3 C.±2
81 D.16 D.0
A.0.7 B.-0.7 C.±0.7 4.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对 5.求下列各数的算术平方根: 9 64 (1)121; (2)1; (3) ; (4)0.01.
Байду номын сангаас
a=.小明按键输入
C.-6 ) C.±2
D. 6 D.2
中档题 14.下列各数,没有算术平方根的是( B ) A.2 B.-4 C.(-1)2 D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D ) A.1 B.-1 C.0 D.0 或 1 16.(2017·广州期中)已知一个自然数的算术平方根是 a,则该自然数的下一个自然数的算术平方根是( D A.a+1 B. a+1 C.a2+1 D. a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )
实数(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.8 实数(基础篇)(专项练习)一、单选题1.下列实数中,无理数是( ) A 3B .3.14C .0D .2272.下列说法:①负数和0没有平方根;①所有的实数都存在立方根;①正数的绝对值等于它本身;①相反数等于本身的数有无数个.正确的个数是( )A .0B .1C .2D .33.在2,0,2- ) A .2B .0C .3-D 242对应的点在( )A .点B 与点C 之间 B .点C 与点D 之间 C .点D 与点E 之间D .点E 与点F 之间5515a < ) A .12a <<B .23a <<C .34a <<D .24a <<6.已知2341156=,2351225=,2361296=,2371369=.若n 为整数且11334n n -,则n 的值为( )A .34B .35C .36D .3775a ,小数部分为b ,则2a b -=( ) A .25B .25C .65D .658.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40 B .45 C .51 D .569.已知 432=1849,442=1936,452=2025,462=2116…,若n 为整数,且n 2048<n +1,则n 的值为( )A .43B .44C .45D .4610.勾股定理在《九章算术》中的表述是:“勾股术曰:勾股各自乘,并而开方除之,即弦”.即22c a b +(a 为勾,b 为股,c 为弦),若“勾”为2,“股”为3,则“弦”最接近的整数是( )A .1B .2C .3D .4二、填空题1121的相反数是__________,3.14π-=____________ 1251___________1(填“>”、“<”或“=”) 1351小的数中,最大的整数是___________.14.如图所示,在数轴上点A 所表示的数为a ,则a 的值为 _______.15.已知实数a 在数轴上的位置如图所示,计算3||1|a a --=_____.16.若22a a -=-,则=a ________(请写出一个符合条件的无理数).17.按如图所示的程序计算,若开始输入的值为9,则最后输出的y 值是___________.18.观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++=+⨯; 3221113111341234x =++=+⨯; …根据以上规律,计算123420222022x x x x x +++++-=_______.三、解答题19.将下列各数填入相应的大括号里.22 7,3.1415926578-39320.6,0363π正分数:{…};整数:{…};无理数:{…}.20.计算:(1) 233336481125(3)4(2)--(2) 223153|168))(5(2-+----21.a,b均为正整数,且a7b32a+b的最小值.22.(1)如果x是313y是31313x y-根.(2)当m 为何值时,关于x 的方程547m x x +=+的解与方程341125x x -+-=的解互为相反数.23.探究题:(1) 计算下列各式,完成填空: 49649⨯= ,12549= ,12549⨯= (2) 通过上面的计算,比较左右两边的等式,你发现了什么?请用字母表示你发现的规律是 ;请用这一规律计算:227132024.阅读下列过程,回答问题(1)通过计算下列各式的值探究问题:22______20=______215⎛⎫=⎪⎝⎭______()23-______.探究:当0a≥2a______;当a<02a______.(2)应用(1)中所得结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,()222a b a b+.参考答案1.A【分析】根据无理数的定义,“无限不循环的小数是无理数”逐个分析判断即可.3 3.14,0,227中,3.14,0,2273故选:A.【点拨】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,①无限不循环小数,①含有π的数.2.C【分析】直接利用平方根、立方根、绝对值、相反数的性质分别分析得出答案.解:①0有平方根,故错误;①所有的实数都存在立方根,故正确;①正数的绝对值等于它本身,故正确;①相反数等于本身的数有1个,故错误;故选:C.【点拨】此题主要考查了平方根、立方根、绝对值、相反数等定义,正确掌握相关定义是解题关键.3.C【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数即可求解.解:由题可知,3022-<<<①最小的数是3-故选:C.【点拨】本题主要考查了实数比较大小,熟练掌握正实数都大于0,负实数都小于0是解题的关键.4.C2解:①122<21与2之间,即点D与点E之间,故选:C.25.D【分析】对不等式进行适当的放缩,即可得到答案.解:25154a <<<,24a ∴<<,故选:D .【点拨】本题考查了无理数的估算,对不等式进行适当放缩是解题的关键. 6.D1334 解:①2361296=,2371369=,且129613341369<<, ①36133437<,①n 为整数且11334n n -<, ①37n =,故D 正确. 故选:D .【点拨】本题主要考查估算无理数的大小,理解算术平方根的定义是正确解答的前提. 7.C5a 、b 的值,最后代入求出即可. 解:253<<,2a ∴=,52b =,222(52)65a b ∴-=⨯-=故选:C .5 8.C解:根据定义,得45<5110x +≤+ ①504<60x ≤+ 解得:46<56x ≤. 故选C . 9.C2048解:①452=2025,462=2116, ①2025<2048<2116, ①45204846,①n 为整数,且n 2048<n +1, ①n =45; 故选:C .【点拨】本题考查了无理数的估算,熟练掌握平方数是解题的关键. 10.D【分析】首先利用勾股定理求出“弦”,然后利用算术平方根的性质估计其最接近的整数. 解:依题意“弦”222313+ 而3.512.2513164=, ∴“弦”最接近的整数是4.故选:D .【点拨】本题主要考查了利用勾股定理进行计算,同时也利用了算术平方根的性质估计无理数的大小.11. 12 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.12.>【分析】先求出25<解:①222455=<=,①25<-=>,511520>,511故答案为:>.【点拨】本题主要考查了实数比较大小,熟知作差法比较大小的方法是解题的关键.13.151的范围即可解答.>,解:①54>,542=>,511①51小的数中,最大的整数是:1,故答案为:1.【点拨】本题考查了估算无理数的大小,熟练掌握平方数是解题的关键.142【分析】先根据勾股定理求出直角三角形的斜边,即可求解.解:如图:由图可知:22OA=+=112①数轴上点A所表示的数为a,①2a=2【点拨】本题考查了数轴和实数,勾股定理的应用,能读懂图是解此题的关键.1531##3-a-的符号,再化简绝对值即可求解.3a与1解:由数轴可得:0,3a a <>30a >,10a -<, ()31a a -- 31=,31.【点拨】本题考查了实数与数轴,根据数轴进行绝对值化简,解题关键是能利用数轴判断出式子的正负.162(答案不唯一)【分析】根据绝对值的性质可得a -2≤0,据此可得a 的取值范围,再根据无理数的定义求解即可.解:①22a a -=-, ①a -2≤0,2a ≤,①2a =2【点拨】本题考查了无理数以及估算无理数的大小,解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17.3【分析】根据已知判断每一步输出结果即可得到答案.解:由所示的程序可得:9的算术平方根是3,3是有理数,取3的平方根3理数,输出为y ,①开始输入的x 值为9,则最后输出的y 值是3± 故答案为:3【点拨】本题考查实数的分类及运算,判断每步计算结果是否为无理数是解题的关键. 18.20222023【分析】根据已知等式,归纳总结得到拆项规律,根据规律展开,最后合并,即可求出答案. 解:①12211311112212x =++==+⨯ 2211711123623x =++==+⨯ 3221113111341234x =++=+⨯ ① ①12320222022x x x x +++⋯+-11111111202212233420222023=++++++⋯++-⨯⨯⨯⨯ 11111112022120222233420222023=+-+-+-+⋯+-- 112023 20222023. 故答案为:20222023. 【点拨】本题考查了数字的规律,解此题的关键是能根据已知条件得出规律. 19.22,3.14159265,0.67;36-337,9,23π,. 【分析】由正分数,整数,无理数的含义逐一判断各数,再填入各自的集合中即可得到答案.解:正分数:{ 22,3.14159265,0.67…}; 整数:{ 36-…};无理数:{ 337,9,23π,…}. 【点拨】本题考查的是实数的分类,掌握实数中的正分数,整数与无理数的含义是解题的关键.20.(1)3 (2)4【分析】(1)根据二次根式,三次根式的性质化简,再根据实数的混合运算即可求解;(2)根据乘方运算,绝对值性质,二次根式的性质,三次根式的性质化简,再根据实数的运算即可求解.(1233336481125(3)4(2)--495322=-++-+3=,故答案为:3.(2)解:223153|168))(5(2-+---1354245=-+++4=,故答案为:4.【点拨】本题主要考查二次根式,三次根式的性质,绝对值的性质,幂的运算,实数的混合运算,掌握二次根式,三次根式的性质,实数的混合运算是解题的关键.21.4 732a 、b 的值,最后求得a+b 的最小值即可.解:①4<7<9,①27<3.①1<2<8,①1322.①a 、b 均为正整数,①a 的最小值为3,b 只能是1,所以当a=3,b=1时,a+b 有最小值,最小值=3+1=4.【点拨】本题主要考查的是估算无理数的大小,732题的关键.22.(1)±3;(2)m=-4 【分析】(113313x 、y 的值,再代入计算即可.(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m 的值即可.解:(1)91316①3134<,①63137<+,①x=6,y=3136133=,①13x y -,①13x y -±3;(2)341125x x -+-=, 解得:x=-9,①547m x x +=+的解为x=9,代入,得54979m +⨯=+,解得:m=-4.【点拨】本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程547m x x +=+的解. 23.(1)6,57,57 a b a b ⋅a ≥0,b ≥022*******【分析】(1)根据算术平方根的定义进行计算;(2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方2275271320320⨯ 解:(149366⨯==11525=5=4977⨯125525=49497⨯; 故答案为:6,57,57; (2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方根.a b a b =⋅a ≥0,b ≥0).22752793132032042=⨯= a b a b •(a ≥0,b ≥0),32【点拨】本题考查了实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.24.(1)2;0;15;3:a;a-;(2)应用:2a-.【分析】(1)分别计算各式的值,并归纳出探究结果;(2)先利用(1)式的探究结果化简二次根式,再根据字母a、b在数轴上的位置及绝对值的意义进行化简,合并后即可得出结果.解:(1222200215⎛⎫=⎪⎝⎭15()23-=3.探究:当0a≥2a a;当a<02a=-a故答案为:2;0;15;3:a;a-;(2)观察数轴可知:−2<a<−1,0<b<1,a+b<0.()222a b a b+=|a|+|b|+|a+b|=−a+b-a−b=−2a.【点拨】此题主要考查了算术平方根的计算以及二次根式的化简,根据已知能准确归纳探究结果并能运用其正确化简是解题的关键,此题重点培养学生的归纳应用能力.。
北师大版八年级数学上册第二章实数知识点和习题
“ 64; ; 0.0004; (-25)2;11.北师大版八年级数学上册第二章实数知识点和习题北师大版八年级数学上册第二章实数知识点及习题实数知识点知识点一、【平方根】如果一个数 x 的平方等于 a ,那么,这个数 x 就叫做 a 的平方根;也即,当 x 2 = a(a ≥ 0) 时,我们称 x 是 a 的平方根,记做: x = ± a (a ≥ 0) 。
因此:1、当 a=0 时,它的平方根只有一个,也就是 0 本身;2、当 a >0 时,也就是 a 为正数时,它有两个平方根,且它们是互为相反数,通常记做: x = ± a 。
3、当 a <0 时,也即 a 为负数时,它不存在平方根。
例 1.(1)的平方是 64,所以 64 的平方根是 ;(2)的平方根是它本身。
(3)若 x 的平方根是±2,则 x= ; 16 的平方根是(4)当 x时, 3-2 x 有意义。
(5)一个正数的平方根分别是 m 和 m-4,则 m 的值是多少?这个正数是多少?知识点二、【算术平方根】:1、如果一个正数 x 的平方等于 a ,即 x 2 = a ,那么,这个正数x 就叫做 a 的算术平方根,记为:“ a ”,读作, 根号 a”,其中,a 称为被开方数。
特别规定:0 的算术平方根仍然为 0。
2、算术平方根的性质:具有双重非负性,即: a ≥ 0(a ≥ 0) 。
3、算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为: a ;而平方根具有两个互为相反数的值,表示为:±a 。
例 2.(1)下列说法正确的是( )A .1 的立方根是 ± 1 ;B . 4 = ±2 ; (C )、 81 的平方根是 ± 3 ;( D )、0 没有平方根;(2)下列各式正确的是()A 、 81 = ±9B 、 3.14 - π = π - 3.14C 、 - 27 = -9 3D 、 5 - 3 =(3) (-3) 2 的算术平方根是。
实数(常考考点分类专题)(巩固篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.14 实数(常考考点分类专题)(巩固篇)(专项练习)【考点一】平方根与立方根➽➼➵概念的理解➻➼平方根✮✮立方根1.一个正数的两个平方根分别是25a -和1a -+,则a 的值为( )A .2B .3C .4D .92.下列说法正确的是( )A .1的平方根是1B .3次方根是本身的数有0和1C .m -的3次方根是3m -D .a<0时,a -的平方根为a 【考点二】实数➽➼➵概念的理解✮✮分类3.下列命题:①无理数都是实数;①实数都是无理数;①无限小数都是无理数:①带根号的数都是无理数;①不带根号的数都是有理数,其中错误的命题的个数是( )A .1B .2C .3D .4 4.实数227,2-21,2π,(333,3-中,无理数的个数是( )个. A .2 B .3 C .4 D .5【考点一】平方根✮✮算术平方根✮✮立方根➽➼➵求一个数的平方根与算术平方根和立方根515n -n 不可能是( )A .6B .9C .11D .146.下列说法中,正确的是 ( )A .64的平方根是8B .4的平方根是2或-2C .(-3)2没有平方根D 164和-4 7.若()235270a b -+-=,则a b -的值为( )A.2B.-2C.5D.8【考点二】平方根与立方根➽➼➵已知平(立)方根,求原数8.如果一个正数的平方根是a+3及2a﹣15,那么这个正数是()A.441B.49C.7或21D.49或4419.若a的算术平方根为17.25,b的立方根为8.69-;x的平方根为 1.725±,y的立方根为86.9,则()A.1,1000100x a y b==-B.1,100100x a y b==C.1100,100x a y a==D.1,1001000x a y b==-【考点三】算术平方根➽➼➵非负性✮✮估算✮✮取值范围10.已知x为实数,且2120y x++-=(),则x y的值为()A.-1B.1C.2D.12 11224)A.7到8之间B.6到7之间C.5到6之间D.4到5之间【考点四】平方根✮✮立方根➽➼➵解方程12.已知:有理数满足22404nm n⎛⎫++-=⎪⎝⎭,则33m n的值为()A.1B.1-C.1±D.2±13.如果一个比m小2的数的平方等于2(4)-,那么m等于()A.4-B.4±C.2-D.2-或6【考点五】平方根✮✮算术平方根✮✮立方根➽➼➵实际应用14.23.6 4.858 2.36 1.536236000)A.﹣485.8B.﹣48.58C.﹣153.6D.﹣1536 15.体积为5的正方体棱长为()A5B35C.5D.5 2【考点六】平方根✮✮算术平方根✮✮立方根➽➼➵综合应用16.下列说法正确的是()A .4的算术平方根是2B .0.16的平方根是0.4C .0没有立方根D .1的立方根是±1 17.若a 16b 64a+b 的值是( )A .4B .4或0C .6或2D .6【考点一】实数性质✮✮数轴➽➼➵运算✮✮化简18.下列各组数中,互为相反数的是( )A .-33B .3-和13-C .3-与3-D .3()23-19.如图,若2a =-,则32810a a --的值所对应的点可能落在( )A .点A 处B .点B 处C .点C 处D .点D 处【考点二】实数大小比较➽➼➵运算✮✮化简20.下列实数中,最小的数是( )A .0B .1-C .3-D 521.下列实数中最大的数是( )A 327B .πC 15D .4【考点三】实数➽➼➵无理数➽➼➵估算✮✮整数部分和小数部分22.已知m 与n 为两个连续的自然数,且满足377m n <<,则m n +的值为( ). A .1 B .3 C .5 D .723.若202013a,202113b,则a +b 的值为( )A .2021B .2020C .4041D .1【考点四】实数➽➼➵混合运算 24.计算2535 )A .-1B .1C .525-D .255253331632700.1251464--( ) A .114- B .114± C .154 D .134【考点五】实数➽➼➵混合运算➼➵程序设计✮✮新定义 26.按如图所示的程序计算,若开始输入的x 5 )A .55B .55C .24D .35115+27.规定不超过实数x 的最大整数称为x 的整数部分,记作[]x ,例如[]9.859=,[]33=,103⎡=⎣.下列说法:①422⎡⎤=⎣⎦;①123192054⎡⎤⎡⎤⎡⎡⎡⎤+++⋅⋅⋅++=⎣⎦⎣⎦⎣⎣⎣⎦;①11a a ⎡⎡+=+⎣⎣(a 为正整数);①若n 为正整数,且4545n n ⎡⎤=⎣⎦则n 的最小值为6,其中正确说法的个数是( )A .1B .2C .3D .4【考点六】实数➽➼➵混合运算➼➵实际运用✮✮规律问题28.把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地21,宽为4)的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示,则图①中两块阴影部分的周长和是( )A .21B .16C .)2214D .)4214 29.有一列数按如下规律排列:2,314-,56,7则第10个数是( ) A .10 B 10 C .1011 D 11【考点一】平方根与立方根➽➼➵概念的理解➻➼平方根✮✮立方根30.已知两个不相等的实数,x y 满足:2x a =,2y a =x y +__________. 31.一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______.【考点二】实数➽➼➵概念的理解✮✮分类32.下列说法:①无理数就是开方开不尽的数;①2x 5x 的整数有4个;①﹣381①不带根号的数都是有理数;①不是有限小数的不是有理数;①对于任意实数a 2a a .其中正确的序号是_____.33.在22311121,(1),3.14,|82|,,3,(),0,743π----------中,有理数有m 个,自然数有n 个,整数有p 个,分数有k 个,负数有t 个,则m -n -k +t +p =________.【考点一】平方根✮✮算术平方根✮✮立方根➽➼➵求一个数的平方根与算术平方根和立方根34.0.16的算术平方根是______25______.35()2460x y -+=,那么2x y -的平方根为_______.36.如果一个正数的两个平方根是24m -与31m -,那么这个正数的立方根是____________. 【考点二】平方根与立方根➽➼➵已知平(立)方根,求原数37.一个数的平方等于81,这个数是___________.38.已知x 没有平方根,且||27x =,则x 的立方根为________.【考点三】算术平方根➽➼➵非负性✮✮估算✮✮取值范围3910x x y --=,则20222022x y +的值为____________.40.已知221m <2m +m =_____.【考点四】平方根✮✮立方根➽➼➵解方程411y -0,则(y ﹣2)2021=________.42.已知3163x +=-,则x =_______【考点五】平方根✮✮算术平方根✮✮立方根➽➼➵实际应用43.已知3270x -=.(1)x 的值为_____;(2)x 的算术平方根为_____.44.已知21a -的平方根是3±,31a b --的算术平方根是4,那么2a b -的平方根是__________.【考点六】平方根✮✮算术平方根✮✮立方根➽➼➵综合应用45.已知271x y ++的算术平方根是6,83x y +的立方根是5,则+x y 的平方根为___________.46.已知4m +15的算术平方根是3,2﹣6n 的立方根是﹣264n m -___.【考点一】实数性质✮✮数轴➽➼➵运算✮✮化简472(81)-_____,127的立方根是_____2_____. 48.实数a ,b 在数轴上的对应点如图所示,化简:2233()()a a b b a --=____________.【考点二】实数大小比较➽➼➵运算✮✮化简49.比较大小:1232-“>”“<”“=”)50101-89.(填“>”或“<”) 【考点三】实数➽➼➵无理数➽➼➵估算✮✮整数部分和小数部分51.已知:23m ,小数部分为n ,则2m n -=_____.52.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44=,21⎡=⎣,则191⎡⎤=⎣⎦______.【考点四】实数➽➼➵混合运算53.已知x 、y 是有理数,且x 、y 满足22321462x y +=-x y +=______.543162527________.【考点五】实数➽➼➵混合运算➼➵程序设计✮✮新定义55.如图,程序运算器中,当输入-1时,则输出的数是______.56.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44,31⎡==⎣,现对72进行如下操作: 727288221⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦第一次第二次第三次,这样对72只需进行3次操作后变为1,类似地:(1)对64只需进行________次操作后变为1.(2)只需进行3次操作后变为1的所有正整数中,最大的是________.【考点六】实数➽➼➵混合运算➼➵实际运用✮✮规律问题57.如图,四边形ABCD CEFG 、均为正方形,其中正方形ABCD 面积为28cm .图中阴影部分面积为25cm ,正方形CEFG 面积为_________.58.a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差的倒数,…,依此类推,2010a 的差倒数2011a =_____.参考答案1.C【分析】根据一个正数的两个平方根互为相反数得2a−5+(−a+1)=0,求解即可.解:①一个正数的两个平方根分别是2a−5、−a+1,①2a−5+(−a+1)=0,解得a=4.故选:C.【点拨】本题考查的是平方根,掌握“一个正数的平方根有两个,它们互为相反数”,是解题的关键.2.C【分析】根据平方根,立方根的概念理解分析选项即可.解:A. 1的平方根是1,①1的平方根是1±,故选项说法错误,不符合题意;B. 3次方根是本身的数有0和1,①3次方根是本身的数有0和1和1-,故选项说法错误,不符合题意;C. m -的3次方根是3m -D. a<0时,a -的平方根为a ①a<0时,a -的平方根为a -合题意;故选:C【点拨】本题考查平方根,立方根的相关概念,解题的关键是要熟练掌握相关概念.3.D【分析】根据无理数的定义,即无理数是无限不循环小数,结合各选项说法进行判断即可. 解:①无理数都是实数,正确;①错误,实数包括无理数和有理数;①错误,无限循环小数是有理数;①9①错误,不带根号的数不一定是有理数,如π等无限不循环小数,错误;故选:D .【点拨】本题主要考查实数,熟练掌握无理数的定义是解题的关键.4.B【分析】根据实数分类、无理数的性质,对各个实数逐个分析,即可得到答案. 解:实数227,2-21,2π,333,3-中,无理数为:2-21、2π,共3个;故答案为:B .【点拨】本题考查了实数分类的知识;解题的关键是熟练掌握实数分类、无理数的性质,从而完成求解.5.B 【分析】先确定n 15n -是整数,n 为正整数,确定n 的值即可. 15n -n 为正整数,∴15﹣n >0,解得:n <15,15n -∴n 的值为:6,11,14,故选:B .【点拨】本题考查了算术平方根,确定n 的取值范围是解题的关键.6.B【分析】根据平方根的相关定义对每个选项做出判断即可得到答案;解:A :64的平方根是8或-8,故该选项错误;B :4的平方根是2或-2,故该选项正确;C :2(3)=9,9的平方根是3或-3,故该选项错误;D 164,4的平方根是2或-2,故该选项错误;故选B ;【点拨】本题考查了平方根,掌握相关知识并熟练使用,同时注意解题中需注意的事项是本题的解题关键.7.A【分析】根据非负数性质求出a 、b 值,再代入a b -计算即可.解:①()235270a b -+-=, ①50a -=,3270b -=,5a ∴=,3b =,532a b -=-=∴.故选:A .【点拨】本题考查非负数性质,立方根,代数式求值,熟练掌握绝对值的非负性,偶次方的非负性,求立方根是解题的关键.8.B【分析】根据正数的平方根有两个,且互为相反数,由此可得a 的方程,解方程即可得到a 的值;进而可得这个正数的平方根,最后可得这个正数的值.解:①一个正数的平方根是a +3和2a ﹣15,①a +3和2a ﹣15互为相反数,即(a +3)+(2a ﹣15)=0;解得a =4,则a +3=﹣(2a ﹣15)=7;则这个数为27=49;故选:B .【点拨】本题考查了平方根的概念、解一元一次方程,注意一个正数有两个平方根,它们互为相反数.9.A【分析】根据平方根、算术平方根和立方根的定义求出a 、b 、x 、y 的值,再找出关系即可. 解:①a 的算术平方根为17.25,b 的立方根为-8.69,①a =297.5625,b =-656.234909.①x 的平方根为±1.725,y 的立方根为86.9,①x =2.975625,y =656234.909,①1,1000100x a y b ==-. 故选:A .【点拨】本题考查了对平方根、算术平方根和立方根的运用.解题的关键是掌握平方根、算术平方根和立方根的定义.10.B【分析】根据非负数的性质, 求出1y =-,2x =,即可计算x y 的值.解:()2120y x +-, 10y ∴+=,20x -=,1y ,2x =,()211x y ∴=-=,故选B .【点拨】本题考查了平方数的非负性,算术平方根的非负性,解题关键是掌握几个非负数的和等于0,则每一个算式都等于0.11.B4822448=364849<<648<<7, 2246和7之间,故选:B .【点拨】本题考查估算无理数的大小,二次根式的乘除法,掌握算术平方根的定义,二次根式乘除法的计算方法是正确解答的前提.12.B【分析】根据平方和绝对值的非负性可求出m 和n 的值,再代入33m n 中,求值即可.解:①22404n m n ⎛⎫++-= ⎪⎝⎭, ①20440n m n ⎧+=⎪⎨⎪-=⎩,解得:122m n ⎧=-⎪⎨⎪=⎩或122m n ⎧=⎪⎨⎪=-⎩. 当122m n =-=,时,33331212m n ⎛⎫=-⨯=- ⎪⎝⎭; 当122m n ==-,时,33331(2)12m n ⎛⎫=⨯-=- ⎪⎝⎭. 综上可知33m n 的值为1-.故选B .【点拨】本题考查非负数的性质,利用平方根解方程,代数式求值.掌握平方和绝对值的非负性是解题关键.13.D【分析】根据题意得出22(2)(4)m -=-,解方程即可.解:根据题意得:22(2)(4)m -=-,即2(2)16m -=,①24m -=±,①2m =-或6,故选:D .【点拨】本题考查了平方根,根据题意列出方程结合平方根的意义求解是关键.14.A【分析】根据平方根小数点的移动规律解答.解:236000是由23.6小数点向右移动4236000485.8;故选:A.【点拨】此题考查了平方根小数点的移动规律:当被开方数的小数点向右每移动两位,则平方根的小数点向右移动一位;当被开方数的小数点向左每移动两位,则平方根的小数点向左移动一位.15.B【分析】根据正方体体积公式进行计算即可.解:设正方体的棱长为a,则有:35a=解得,35a=35故选:B【点拨】本题主要考查了立方根的应用,正确掌握立方体的体积公式是解答本题的关键.16.A【分析】根据平方根和立方根的定义判断即可.解:①4的算术平方根是2,①A正确,符合题意;①0.16的平方根是±0.4,①B错误,不符合题意;①0的立方根是0,①C错误,不符合题意;①1的立方根是1,①D错误,不符合题意;故选A.【点拨】本题考查了平方根即如果一个数的平方等于a,称这个数为a的平方根,立方根如果一个数的立方等于a,称这个数为a的立方根,熟练掌握定义是解题的关键.17.C【分析】由a 16a=±2,由b 64b=4,由此即可求得a+b 的值.解:①a 16①a=±2,①b 64①b=4,①a+b=2+4=6或a+b=-2+4=2.故选C .【点拨】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.18.C【分析】先依据相反数和绝对值的定义化简各数,然后再依据相反数的定义进行判断即可. 解:A 、-3的相反数是3,故A 不符合题意B 、|-3|=3,3的相反数是-3,故B 不符合题意;C 、3-333-C 符合题意;D ()23=|3|--=3,3的相反数是-3,故D 不符合题意.故选:C .【点拨】本题考查相反数定义,即相加为0的两个数互为相反数,要注意细心运算每个选项.19.C【分析】先将a 的值代入代数式计算出得数,然后再在数轴上找到对应的点即可.解:将2a =-代入32810a a --得:()()3228122183210⨯---==--- , ①12123<<,且接近1. 故选:C .【点拨】本题主要考查求代数式的值、数轴上的点与实数的对应等知识点,熟练掌握数轴与实数一一对应的关系是关键.20.C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:①315-0,①最小的是3故选:C .【点拨】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.21.D3273=,1543<<,后比较即可.解:① 3273=,1543<<,10154π<<<,①3154π<<<,故选D .【点拨】本题考查了无理数的估算,求立方根,实数大小的比较,正确进行无理数的估算,实数大小比较是解题的关键.22.A【分析】根据无理数的估算可得:6377<<,03771<,据此即可解答. 解:6377<,13770∴-<<, 03771∴<,0m ∴=,1n =,011m n ∴+=+=,故选:A .【点拨】本题考查了无理数的估算,绝对值,代数式求值问题,求得03771<<是解决本题的关键.23.D【分析】13再求出202013与202113的取值范围,从而求出a ,b 的值,即可求解.解:①91316<<,①3134<,①20201320242023<<,20201320172016<,①133a =,413b =①1334131a b +=+=.故选:D .【点拨】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分和小数部分.24.B【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 解:2535+(253525351-+-=,故选B .【点拨】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.25.A【分析】根据算术平方根和立方根的意义分别进行计算,然后根据有实数的运算法则求解即可.解:原式311300.5264=---+ 11300.524=---++ 324=-; 故答案为:A.【点拨】本题考查了实数的混合运算,解题的关键是熟练掌握据算术平方根和立方根的意义.26.B【分析】把x 5x (x +1)得到结果,若大于7则输出,若结果不大于7再次代入,循环后满足条件即为所求结果.解:当x 5x (x +1))55155=,①4<5<9①253,①557①最后输出的结果为55故选:B .【点拨】此题考查了代数式求值,弄清题中的程序框图的意义是解本题的关键.27.B 【分析】根据取整函数的定义即可求解.解:①422⎡=⎣,故①正确; ①1231920⎡⎡⎡⎡⎡+++⋅⋅⋅++⎣⎣⎣⎣⎣31527354=⨯+⨯+⨯+⨯54=,故①正确;①若5a =时,12a ⎡⎤+=⎣⎦,13a ⎡+=⎣, 故11a a ⎡⎡+=+⎣⎣(a 为正整数)不一定成立,故①错误; ①若n 为正整数,且4545n n ⎡=⎣45n 是哪个开得尽方的正整数, 4535=,①n 的最小整数为5,故①错误;综上分析可知,正确的个数为2,故B 正确.故选:B .【点拨】本题主要考查了取整函数的定义,能够正确估算无理数的大小是解题的关键,难度不大.28.B【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案. 解:较大阴影的周长为:(42)22b a -⨯+⨯,较小阴影的周长为:(4)222a b -⨯+⨯,两块阴影部分的周长和为:[][](42)22(4)222b a a b -⨯+⨯+-⨯+⨯= 16,故两块阴影部分的周长和为16.故选B .【点拨】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键.29.D【分析】将这列数据改写成:234567…,按照三步确定结果:一确定符号,二确定分子,三确定分母即可.解:2314-567可写出: 22-34567, ①第1011, 故选:D . 【点拨】本题考查数字类变化规律,解题的关键是把已知的一列数变形,找到变化规律. 30.0【分析】由题意可得x 、y 是a 的两个不相等的平方根,根据平方根的性质可得x +y =0即可解答解:①两个不相等的实数,x y 满足:2x a =,2y a =①x 、y 是a 的两个不相等的平方根①x +y =0x y +.故答案为0.【点拨】本题主要考查了平方根的性质,掌握一个数的两个不相等的平方根的和为0成为解答本题的关键.31.2【分析】根据一个正数的平方根互为相反数,将21b -和4b +相加等于0,列出方程,解出b ,再将b 代入任意一个平方根中,进行平方运算求出这个正数a ,将a b +算出后,求立方根即可.解:①21b -和4b +是正数a 的平方根,①2140b b -++=,解得1b ,将b 代入212(1)13b ,①正数2(3)9a , ①198a b +=-+=,①a b +3382ab , 故填:2.【点拨】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数.32.①①【分析】根据有理数、无理数、实数的意义逐项进行判断即可.解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;①2x 5x 的整数有﹣1,0,1,2共4个,因此①正确,符合题意; ①﹣3是9819,因此①正确,符合题意;①π就是无理数,不带根号的数也不一定是有理数,因此①不正确,不符合题意; ①无限循环小数,是有理数,因此①不正确,不符合题意;①若a <02a |a|=﹣a ,因此①不正确,不符合题意;因此正确的结论只有①①,故答案为:①①.【点拨】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提. 33.12【分析】根据实数分类,分别求出m 、n 、k 、t 的值是多少,再应用代入法求值即可. 解:由题意可得 有理数8个,即m 8=,自然数2个,即2n =,分数3个,即3k =,整数5个,即5p =,负数有4个,即4t =故12m n k t p --++=.【点拨】本题主要考查有理数的分类,以及有理数的乘方,有理数的减法的运算方法,熟练掌握实数的定义和分类是解答此题的关键.34. 0.4 5±【分析】根据求一个数的算术平方根与平方根进行计算即可求解.解:0.16的算术平方根是0.4255=255故答案为:0.4,5±【点拨】本题考查了求一个数的算术平方根与平方根,理解平方根与算术平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.35.141414-14-14【分析】根据算术平方根和平方的非负性,求出x y 、的值,然后进行计算即可. 解:()2460x y -+=,又()24060x y -+≥,,()24060x y -=+=,,①40x -=,60y +=,①4x =,y =-6,①()2246=86=14x y -=⨯--+,①2x y -的平方根为:14故答案为:14±【点拨】本题考查了算术平方根和平方式的非负性、代数式求值,解题的关键是利用非负性求出x y 、的值.3634【分析】根据一个正数的两个平方根互为相反数,列出方程,即可求得这个数,再求它的立方根即可.解:一个正数的两个平方根是24m -与31m -,24310m m -+-=∴, 解得1m =,24242m ∴-=-=-,故这个正数为4,3434【点拨】本题考查了一个正数的两个平方根之间的关系,求一个数的立方根,熟练掌握和运用一个正数的两个平方根之间的关系是解决本题的关键.37.9或-9【分析】根据平方根的定义即可解答.解:①()2981±=,①这个数是9或-9.故答案为:9或-9. 【点拨】本题主要考查了平方根的定义,一个正数的平方根有两个且这两个数互为相反数. 38.3-【分析】根据题意,27去掉绝对值的值为±27,在根据题意x 没有平方根直接算出立方根即可.解:①27去掉绝对值的值为±27,①x =±27,又①x 没有平方根①x =27,①x 的立方根为-3.故答案为:-3.【点拨】本题考查了绝对值的性质、平方根的性质和立方根的计算,解决此题的关键是不漏题目条件,掌握基本的计算即可.39.2【分析】根据非负数的性质列式求出x 、y 的值,然后相乘即可得解.解:根据题意得:10x -=,0x y -=,解得:1x =,1y =,①20222022112x y +=+=.故答案为:2.【点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.40.-1,2,-2.【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 的具体数值,然后根据2m +解:2m + ①m 是整数,①221m <①m 2≤4,①-2≤m≤2,①m=-2,-1,0,1,2当m=±2或-12m +故答案为:-1,2,-2【点拨】本题考查算术平方根,解题的关键是根据条件求出m 的范围,本题属于中等题型. 41.1-【分析】根据算术平方根的定义得到1y =,代入代数式根据()111n n n ⎧-=⎨-⎩为偶数为奇数求解即可得到结论.解:1y -0,∴10y -=,得1y =,()()()20212021202121211y ∴-=-=-=-,故答案为:1-.【点拨】本题考查代数式求值,涉及到算术平方根的定义和()111n n n ⎧-=⎨-⎩为偶数为奇数,熟练掌握相关定义是解决问题的关键.42.4-【分析】移项后直接开立方即可得到答案.解:3163x +=-,3163x =--364x =-①4x=--故答案为:4【点拨】本题主要考查了开立方解方程,正确理解一个数的立方根只有一个是解答本题的关键.43.33【分析】(1)利用立方根的定义求得x的值;(2)利用算术平方根的定义解答即可.解:(1)①3270x-=,①33x==,273①x=3,故答案为:3;(2)由(1)知x=3,∴333【点拨】本题考查立方根和算术平方根的定义及计算,正确利用上述定义与性质解答是解题的关键.44.±3【分析】首先根据2a-1的平方根是±3,可得:2a-1=9,据此求出a的值是多少;然后根据3a+b-1的算术平方根是4,可得:3a+b-1=16,据此求出b的值是多少,进而求出a-2b的平方根是多少即可.解:①2a-1的平方根是±3,①2a-1=9,解得a=5;①3a+b-1的算术平方根是4,①3a-b-1=16,①3×5-b-1=16,解得b=-2,①a-2b=5+2×2=9,①a-2b的平方根是:93±=±.故答案为:±3.【点拨】此题主要考查了平方根、算术平方根的性质和应用.要熟练掌握,解答此题的关键是要明确:①被开方数a 是非负数;①算术平方根a 本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.45.4±【分析】根据271x y ++的算术平方根是6,83x y +的立方根是5,可得方程组2713683125x y x y ++=⎧⎨+=⎩①②,①+①再化简得到+x y 的值,然后求平方根即可得到答案. 解:①271x y ++的算术平方根是6,83x y +的立方根是5①2713683125x y x y ++=⎧⎨+=⎩①② ①①+①:1010160x y +=①+x y =16①+x y 的平方根为4±故答案为:4±.【点拨】本题考查了平方根和立方根的定义,平方根和立方根是解题关键.易错点:正数有两个平方根,不能只写一个平方根.46.4【分析】利用算术平方根,立方根定义求出m 与n 的值,代入原式计算即可求出值. 解:由题意可得:4159m +=,268n -=-, 解得:32m =-,53n =, 5364=6416432n m ⎛⎫-⨯-⨯- ⎪⎝⎭. 故答案为:4.【点拨】本题考查了平方根、算术平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根,其中的正数叫做a 的算术平方根,.如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根.47. 9 13 2122【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可. 2(81)-的算术平方根是9,127=31()3的立方根是13222故答案为:-9,13,22. 【点拨】本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.48.a - 【分析】根据数轴可得:0a b << ,从而得到a b b a -=-,再根据算术平方根和立方根的性质求解即可.解:根据题意得:0a b << ,①0a b -< ,①a b b a -=-, 2233()()a a b b a --()a a b b a =--+-a b a b a =--++-a =-.故答案为:a -.【点拨】本题主要考查了实数与数轴、算术平方根、立方根的性质等知识点,掌握根据数轴判定代数式的正负是解题的关键.49.>【分析】利用两个负数比较大小,绝对值大的反而小即可求解. 解:①1212=321818-==1218< ①1218> 即1232-->故答案为:>【点拨】本题考查了实数的大小比较,熟记两个负实数比较大小的方法是解题的关键.50.>解:首先估算得出3104<1012>1011->,819<,由此比较得出答案即可. 【解答】解:3104<<, ∴1012>,1011->, 819<, ∴10189->. 故答案为:>.【点拨】本题考查实数的大小比较和无理数的估算,10的关键.51.73-37-+【分析】3进而估算出23确定m n 、的值,再代入计算即可.解:①134<<,①132<,①3234<<,①23+3m =,小数部分(23331n =-, ①()263173m n --==故答案为:73-【点拨】本题考查无理数的估算,根据接近的数求出整数部分是解题关键.52.3【分析】估计出31914<<,再结合题意,[]a 表示不超过a 的最大整数,因此即可得出191⎡⎤⎣⎦的答案. 解:①161925<<,①4195<,①31914<<,①1913⎡⎤=⎣⎦,故答案为:3.【点拨】本题考查了实数的估算,以及新定义运算,熟练找准无理数的整数部分是本题的关键.53.2-或10 【分析】把22321462x y ++=-(2231462x y y +-=-+,根据x 、y 是有理数,得到22314x y +-的值为有理数,即(62y -+故60y +=,求出y ,再求得x 即可求解. 解:2232142x y y +=-2231422x y y ∴+-=-,(2231462x y y ∴+-=-+x 、y 是有理数,22314x y ∴+-的值为有理数,(62y ∴-+60y ∴+=,解得y =-6,223140x y ∴+-=()2236140x ∴+⨯--=,解得4x =±,2x y ∴+=-或10x y +=-,故答案为:2-或10.【点拨】本题主要考查了代数式求值,利用有理数的定义进行求解,解题的关键在于能够熟练掌握相关知识进行求解.54.9559-【分析】先根据绝对值的性质、算术平方根和立方根的定义进行化简,然后再进行计算即可.3162527=+4253=95故答案为:95【点拨】本题考查了实数的混合运算,解本题的关键在熟练掌握绝对值的性质、算术平方根和立方根的定义.算术平方根:一般地,如果一个正数的平方等于a,即2x a=,那么这个正数就叫做a的算术平方根;立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根.55.7【分析】根据图表列出算式,然后把x=-1代入算式进行计算,注意分两种情况,且只有运算的数值大于3时才能输出结果.即可得解.解:根据题意可得,(-1+4)×(-2)+(-3)=3×(-2)+(-3)=-6-3=-9<3(-9+4)×(-2)+(-3)=(-5)×(-2)+(-3)=10-3=7>3.故答案为7.【点拨】此题的关键是知道计算顺序,明白当运算的结果小于3时要再重新计算,直到结果大于3,输出结果为止.56.3255【分析】(1)根据题意对64进行计算即可得出答案.(2)根据题意对256进行计算即可得出答案.解:(1)依题可得,646488221⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦第一次第二次第三次,①对64只需进行3次操作后变为1.故答案为:3.(2)只需进行3次操作后变为1的所有正整数中,最大的是255,①25616⎡=⎣,164⎡=⎣,42⎡⎤=⎣⎦,21⎡=⎣,①对256只需进行4次操作后变为1,①只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为:255.【点拨】本题考查新定义,算术平方根,理解新定义是解题的关键.57.18【分析】先设出正方形边长,再分别求出它们的边长,即可求解.解:设正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,①28a =,①0a >, ①22a =①阴影面积为()()11222222522S b b b =-⨯=, ①0b >①32b =①218b =,故答案为:18. 【点拨】本题考查了实数运算的实际应用,解题关键是正确求出正方形的边长并且表示出阴影面积. 58.13- 【分析】根据题目中的数据,可以写出这列数的前几项,从而可以发现数字的变化特点,然后即可得到a 2011的值.解:由题意可得,113a =-,。
西安博迪学校七年级数学下册第六单元《实数》基础练习(含解析)
一、选择题1.,则x+y的值为()A.-3 B.3 C.-1 D.1D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D.【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x、y的值是解答本题的关键.2.下列各数中,无理数有()3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A.0个B.1个C.2个D.3个D解析:D【分析】直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D.【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.3.在0、0.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是()A.3 B.4 C.5 D.6B 解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B.【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.4.下列各数中比()A.2-B.1-C.12-D.0A解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A.|2|2-=,|=∴2>2∴-<B.|1|1-=,|=∴1<,1∴->C.1122-=,|=,1∴->2D.0>故选:A.【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.5.0215中,是无理数的是()A B.0 C D.215A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】在实数﹣34,0,9,215中,是无理数的是﹣34, 故选:A .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B 解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,故选:B .【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A 点沿数轴向右滚动,A 点表示的数加两个圆周.7. 5.713457.134,则571.34的平方根约为( )A .239.03B .±75.587C .23.903D .±23.903D 解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵ 5.7134,∴571.34,故选:D .【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.8.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与6B解析:B【分析】,可得答案.【详解】,得34,所以,50的立方根在3与4之间故选:B .【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.9.在223.14,, 5.12112111227π+--……中,无理数的个数为 ( ) A .5B .2C .3D .4D 解析:D【分析】根据无理数的概念逐一判断即可,其中无限不循环小数是无理数.【详解】3.14是有理数,2π是无理数,5===是无理数,0.1=-是有理数,2+227-是有理数, 5.121121112-……是无理数;故选D .【点睛】本题考查了无理数的概念,熟记无限不循环小数为无理数是本题的关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B.【点睛】二、填空题11)1152-⎛⎫-+︒⎪⎝⎭【分析】根据平方根定义负指数幂零指数幂特殊角的三角函数值计算即可;【详解】解:原式【点睛】本题主要考查了实数的运算结合负整数指数幂零指数幂特殊角的三角函数值计算是解题的关键解析:3 2【分析】根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式33421421222=-+-=-+-=.【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键.12.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯【分析】利用裂项法计算即可【详解】原式【点睛】本题考查了利用裂项法进行分数的加法计算熟练掌握裂项法是解题的关键解析:10102021【分析】利用裂项法计算即可.【详解】原式1111111233520192021⎛⎫=⨯-+-+⋯+-⎪⎝⎭11122021⎛⎫=⨯-⎪⎝⎭1202022021=⨯10102021=.【点睛】本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键.13.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.(1);(2)或5【分析】(1)根据立方根即可解答;(2)根据平方根即可解答【详解】解:(1);(2)∴或5【点睛】本题考查了平方根立方根解决本题的关键是熟记平方根立方根的定义解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.14.比较大小:12π-________1【分析】利用估值比较法再利用不等式的性质3不等式两边都乘以-1不等式方向改变最后利用不等式性质1不等式两边都加1不等号方向不变即可确定大小【详解】∵∴∴∴故答案为:【点睛】本题考查无理数的比较大小问解析:<【分析】利用估值比较法322π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变2π-<,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小. 【详解】∵322π>32<,∴2π>,∴2π-<, ∴12π-<1. 故答案为:<.【点睛】本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.15.计算:2(3)2--1【分析】先计算乘方算术平方根然后计算乘法和减法即可得到答案【详解】解:【点睛】本题考查了算术平方根乘方有理数的加减乘除混合运算解题的关键是掌握运算法则进行计算解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.16.计算:(1()23-.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦.(1)11;(2)-10【分析】(1)首先计算乘方开方然后从左向右依次计算求出算式的值是多少即可(2)首先计算乘方开方和括号里面的运算然后计算括号外面的乘法求出算式的值是多少即可【详解】解:(1)(解析:(1)11;(2)-10【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方、开方和括号里面的运算,然后计算括号外面的乘法,求出算式的值是多少即可.【详解】解:(1()23-539=-+11=.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦ ()211839⎛⎫=-⨯- ⎪⎝⎭ ()5189=⨯- 10=﹣.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.在下列各数中,无理数有_______个.13,62π--(相邻两个5之间的7的个数逐次加1).7【分析】先计算立方根算术平方根再根据无理数的定义即可得【详解】则这些数中无理数为共有7个故答案为:7【点睛】本题考查了立方根算术平方根无理数熟练掌握无理数的概念是解题关键解析:7【分析】先计算立方根、算术平方根,再根据无理数的定义即可得.【详解】2=,53=,π-,共有7个, 故答案为:7.【点睛】本题考查了立方根、算术平方根、无理数,熟练掌握无理数的概念是解题关键.18_____,1-12π的绝对值是 __.【分析】(1)的平方根首先计算的是=5然后计算5的平方根需要注意平方根有两个;(2)判断相反数需要先判断原数的正负然后求出相反数;(3)求绝对值需要先判断原数的正负然后求出绝对值正数的绝对值是它本身解析:212π- 【分析】两个;(2)判断相反数需要先判断原数的正负,然后求出相反数;(3)求绝对值需要先判断原数的正负,然后求出绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是零.【详解】解:(1,5的平方根为:(2)∵, ∴, ∴-=-2)=2.(3)∵1-12π<0, ∴112π-=112π⎛⎫-- ⎪⎝⎭=12π-. 【点睛】本题考查实数的基础运算,重要的是先判断出原数的正负,然后再求出相反数、绝对值,求平方根需要注意原数,有可能需要先进行一步计算.19.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<5,a 为整数, ∴∴整数a 有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.20.正方形面积为21.2cm ,则边长为_______cm .【分析】根据算术平方根的定义得到结果再进行化简【详解】解:∵正方形的面积=边长2∴边长2=12∴边长=∴边长=∴边长=∴边长=故答案为:【点睛】本题考查算术平方根及其化简理解算数平方根的定义是解题的【分析】根据算术平方根的定义得到结果,再进行化简.【详解】解:∵正方形的面积=边长2,∴边长2=1.2,∴边长,∴边长∴边长∴边长故答案为:5. 【点睛】本题考查算术平方根及其化简,理解算数平方根的定义是解题的关键.三、解答题21.求下列各式中的x :(1)2940x -=;(2)3(1)8x -=解析:1)23x =±;(2)3 【分析】 (1)先将原方程移项、系数化为1后,再利用平方根的定义求解即可;(2)先利用立方根的定义求得12x -=,解此方程即可.【详解】解:(1)2940x -=294x =249x = 23x =±; (2)3(1)8x -=12x -=3x =.【点睛】此题考查了利用平方根、立方根解方程,解答此题的关键是掌握平方根与立方根的定义并能准确理解题意.22.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.解析:(1)a=2,b=3;(2)±4.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a 的值是多少;然后根据3a +b ﹣1的立方根为2,可得:3a +b ﹣1=8,据此求出b 的值是多少即可.(2)把(1)中求出的a 与b 的值代入2a +4b ,求出它的值,然后根据平方根的定义即可得出答案.【详解】解:(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2,∵3a +b ﹣1的立方根为2,∴3a +b ﹣1=8,解得:b=3;(2)由(1)得a=2,b=3,∴24224316a b +=⨯+⨯=.它的平方根为:±4.【点睛】本题考查了平方根,立方根,列式求出a 、b 的值是解题的关键.23.计算:(1.(2)()23540.255(4)8⨯--⨯⨯-.解析:(1)6;(2)70.【分析】(1)首先计算算术平方根、立方根,然后进行加减计算即可;(2)首先计算乘方、乘法,最后进行加减计算即可.【详解】解:(1=4-(-2)=6.(2)()23540.255(4)8⨯--⨯⨯-=()()5160.255648⨯--⨯⨯-=1080-+=70.【点睛】 本题考查了实数的混合运算,正确理解算术平方根、立方根性质及乘方法则,确定运算顺序是关键.24.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.解析:(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】解:(1)依题意得:1622⨯=18(cm ),答:正方形纸板的边长为18厘米;(2)依题意得:3343=7(cm ),则剪切纸板的面积=7×7×6=294(cm 2),剩余纸板的面积=324﹣294=30(cm 2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.25.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0,∴|-|a c =-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 26.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;解析:(1)-11;(2)x=1.【分析】(1)根据新运算的规则,把新运算转化成普通有理数的计算,再按有理数相关计算法则计算即可;(2)根据新运算的规则,把等式左边的新运算转化成普通有理数运算,从而把等式转化成一元一次方程,再解一元一次方程即可.【详解】(1)∵ a ∗b= 23a b -,∴ 2∗5=223541511-⨯=-=- ;(2)∵ a ∗b=23a b -,∴ (−3)∗x=()23393x x --=- 即936x -=解此方程得:1x =.【点睛】本题考察有关新运算的问题,首先要弄清把新运算转化为普通运算的规则,然后根据规则把新运算部分转化为普通运算,再按普通运算的相关计算法则计算即可.27.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】 (1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭ =33231(8)()()()44343-⨯-+-⨯+-⨯- =11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(3163⎫-⎪⎪⎭=115+()633-+-=5+0-6=-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯-=9. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数
一、精心选一选(每小题2分,共20分) 1.下列说法正确的是( ).
A.有理数都是有限小数
B.无理数都是无限小数
C.无限小数都是无理数
D.带根号的数一定是无理数
2.下列各数中没有平方根的是 ( ). A.0 B. (-5)2 C. -︱-16︱ D.π
( ).
A.2
B.2-
C.
D.- 4.一个数的平方根是±8,则这个数的立方根是( ). A.2 B.±2 C.4 D.±4 5.下列说法正确的是( ). A.实数a
的平方根为
B
.
3
-
C.5420.6235
-
,,,都是分数
D.平方根和其立方根相等的数有01,
6.
若3x -=,则x 的值为( )
A.3
B.3+
C.3
D.7.小华买了一罐圆柱形的饮料,已知饮料的容积是800 mL (1mL=1cm 3),圆柱的高是15cm ,则底面半径约为( )
A. 5cm
B.4cm
C. 3cm
D.2cm
8.实数a 在数轴上对应的点如图1所示,则a ,-a ,1的大小关系正确的是( ). A .-a <a <1
B .a <-a <1
C .1<-a <a
D .a <1<-a 9.下列计算:
①6)3()2()9()4(=-⨯-=-⨯-;②a a a 33=⋅;③a
a a a 1
1⋅
=⋅
(a<0); ④2
2224y x x y x x +=+(x >0),其中正确的有( ).
A.1个
B.2个
C.3个
D.4个
★10.已知5=a ,72=b ,且0>+b a ,那么b a -的值为( ).
A .2或12
B .2或-12
C .- 2或12
D .- 2或-12
0 1
图1
二、细心填一填(每小题3分,共24分)
11.写出一个有理数和一个无理数,使它们都是小于-1的数: . 12.若36的平方根为 .
13
,则它的周长为 cm (化简到最简结果).
14.某居民生活小区需要建一个能储水15 m 3的大型球形储水罐,那么这个球罐的半径r 约为 ________m(球的体积V=ππ,3
43
r 取3.14, 结果精确到0.1m).
15.145的整数部分为_______________,小数部分为_______________.
16.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距2个单位,则A ,B 两点间的距离为 . 17.若322+-+-=
x x y ,则=x ,=-x y .
18.观察下列各式:312
311=+
,413412=+,5
1
4513=+,…请你将猜想到的规律用含自然数n (n≥1)的代数式表示出来是____________. 三、耐心解一解(共46分) 19.(10分)计算: (1
(2
)1
01(3)52-⎛⎫
π-+-+- ⎪⎝⎭
20.(6
分)若x =
y =2
2
x y xy ++的值.
21.(8
分)在数轴上作出.
22.(10分)2008年10月28日傍晚,神舟7号返回舱安全降落在内蒙古草原.神舟七号既是中国载人航天二期工程的第一步,也是奠定中国登月技术基础的重要一步.已知在地球上物体自由下落的高度(h )和下落的时间(t )之间的关系是:2
4.9h t =,而在月球上的关系是20.8,h t =则当h=20 m 时:
(1)物体在地球和月球上自由下落的时间各是多少(精确到1s ) (2)物体在哪里下落的快?
23.(10分)小明的叔叔从国外给小明捎来一个新奇的三角板.如图2所示,在ΔABC 中,∠B=90︒
,按动点B 处的开关,便有两小球从点B 开始运动,设两小球分别为点P 、点Q ,其中点P 从点B 开始沿BA 边向点A 以1cm/s 的速度移动. 同时,点Q 也从点B 开始沿BC 边向点C 以2 cm/s 的速度移动,问几秒后,ΔPBQ 的面积为36cm 2
?
★24.(12分)如图3,点C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,ED ⊥BD ,连接AC ,EC . 已知AB =5,DE =1,BD =8,设CD =x . (1)用含x 的代数式表示AC +CE 的长;
图3
A P Q
(2)请问点C 满足什么条件时,AC +CE 的值最小? (3)根据(2)中的规律和结论,请构图求出代数式: 9)12(422+-++x x 的
最小值.
(参考答案见下期)。