辅导讲义函数的奇偶性

合集下载

函数的奇偶性课件PPT(共20张PPT)

函数的奇偶性课件PPT(共20张PPT)

已知f(x),g(x)是定义域为R的函数,
并且f(x)是偶函数,g(x)是奇函数,试将下
图补充完整。
y
y
o
x
f(x)
o
x
g(x)
欣赏下面的图片,你在生活中发现有什么地方用 到了今天的知识吗?
欣赏下面的图片,你在生活中发现有什么地方 用到了今天的知识吗?
欣赏下面的图片,你在生活中发现有什么地方用到 了今天的知识吗?
3、什么是轴对称图形和中心对称图形。
y
y=x
2
9 从图象上你能发 如果定义域关于原点对称,且对定义域内的任意一个x
2、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括力。
8 如果定义域关于原点对称,且对定义域内的任意一个x
从图象上你能发现什么吗?
现什么吗?
已知f(x),g(x)是定义域为R的函数,并且f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
f(-1)=1 =f(1) 已知f(x),g(x)是定义域为R的函数,并且f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
-3 -2 -1 0 1 2 3 已知f(x),g(x)是定义域为R的函数,并且f(x)是偶函数,g(x)是奇函数,试将下图补充完整。
观察图象,你能发现它们的共同特征吗?
6 4
y
y=x
2
6y 4
y=
1 x
2
42 -2 -4 -6
246 x
42 -2 -4 -6
246 x
f(-3)=3 =-f(3) f(-2)=2 =-f(2)
f(-1)=1 =-f(1)
f(-3)=- 13=-f(3) f(-2)=- 12=-f(2)

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)函数的奇偶性教案(通用8篇)作为一位兢兢业业的人民教师,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

来参考自己需要的教案吧!下面是小编收集整理的函数的奇偶性教案,欢迎阅读,希望大家能够喜欢。

函数的奇偶性教案篇1教学目标:了解奇偶性的含义,会判断函数的奇偶性。

能证明一些简单函数的奇偶性。

弄清函数图象对称性与函数奇偶性的关系。

重点:判断函数的奇偶性难点:函数图象对称性与函数奇偶性的关系。

一、复习引入1、函数的单调性、最值2、函数的奇偶性(1)奇函数(2)偶函数(3)与图象对称性的关系(4)说明(定义域的要求)二、例题分析例1、判断下列函数是否为偶函数或奇函数例2、证明函数在R上是奇函数。

例3、试判断下列函数的奇偶性三、随堂练习1、函数()是奇函数但不是偶函数是偶函数但不是奇函数既是奇函数又是偶函数既不是奇函数又不是偶函数2、下列4个判断中,正确的是_______.(1)既是奇函数又是偶函数;(2)是奇函数;(3)是偶函数;(4)是非奇非偶函数3、函数的图象是否关于某直线对称?它是否为偶函数?函数的奇偶性教案篇2一、教学目标【知识与技能】理解函数的奇偶性及其几何意义.【过程与方法】利用指数函数的图像和性质,及单调性来解决问题.【情感态度与价值观】体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣.二、教学重难点【重点】函数的奇偶性及其几何意义【难点】判断函数的奇偶性的方法与格式.三、教学过程(一)导入新课取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.(二)新课教学1.函数的奇偶性定义像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数.(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).2.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.3.典型例题(1)判断函数的奇偶性例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤) 解:(略)总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.(三)巩固提高1.教材P46习题1.3 B组每1题解:(略)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.2.利用函数的奇偶性补全函数的图象(教材P41思考题)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.(四)小结作业本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.课本P46 习题1.3(A组) 第9、10题, B组第2题.四、板书设计函数的奇偶性一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.三、规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.函数的奇偶性教案篇3学习目标 1.函数奇偶性的概念2.由函数图象研究函数的奇偶性3.函数奇偶性的判断重点:能运用函数奇偶性的定义判断函数的奇偶性难点:理解函数的奇偶性知识梳理:1.轴对称图形:2中心对称图形:【概念探究】1、画出函数,与的图像;并观察两个函数图像的对称性。

函数的奇偶性(精辟讲解)

函数的奇偶性(精辟讲解)

[难点正本 疑点清源] 1.函数奇偶性的判断
判断函数的奇偶性主要根据定义:一般地,如果对于 函数 f(x)的定义域内任意一个 x,都有 f(-x)=f(x)(或 f(-x)=-f(x)),那么函数 f(x)就叫做偶函数(或奇函 数).其中包含两个必备条件: ①定义域关于原点对称,这是函数具有奇偶性的必要 不充分条件,所以首先考虑定义域有利于准确简捷地 解决问题; ②判断 f(x)与 f(-x)是否具有等量关系.在判断奇偶 性的运算中,可以转化为判断奇偶性的等价关系式 (f(x)+f(-x)=0(奇函数)或 f(x)-f(-x)=0(偶函数)) 是否成立.
2.函数奇偶性的性质 (1)奇函数在关于原点对称的区间上若有单调性,则其单 调性完全相同;偶函数在关于原点对称的区间上若有单 调性,则其单调性恰恰相反. (2)若 f(x)为偶函数,则 f(-x)=f(x)=f(|x|). (3)若奇函数 f(x)定义域中含有 0,则必有 f(0)=0. f(0)=0 是 f(x)为奇函数的既不充分也不必要条件. (4)定义在关于原点对称区间上的任意一个函数,都可表 示成“一个奇函数与一个偶函数的和(或差)”. (5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”. (6)既奇又偶的函数有无穷多个(如 f(x)=0,定义域是关 于原点对称的任意一个数集).
∴f(x)为偶函数.
题型二 函数的奇偶性与单调性
例 2 (1)已知 f(x)是 R 上的奇函数,且当 x>0 时,f(x) =x2-x-1,求 f(x)的解析式; (2)设 a>0,f(x)=eax+eax是 R 上的偶函数,求实数 a 的值;
(3)已知奇函数 f(x)的定义域为[-2,2],且在区间 [-2,0]内递减,求满足 f(1-m)+f(1-m2)<0 的实 数 m 的取值范围. 思维启迪 (1)f(x)是一个分段函数,当 x<0 时,转化为

高中数学函数的奇偶性(解析版)

高中数学函数的奇偶性(解析版)

1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。

函数的奇偶性讲义

函数的奇偶性讲义

函数的奇偶性【知识要点】1.函数奇偶性的定义:一般地,对于函数f (x)定义域内的任意一个X,都有f (-x) = f (x), 那么函数f (x)叫偶函数(even function).如果对于函数定义域内的任意一个x,都有f(-x) = -f(x),那么函数f(x)叫奇函数(odd function).2.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之亦真.由此,可由函数图象的对称性判断函数的奇偶性,也可由函数的奇偶性作函数的图象.3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别 f (-x) 与f (x)的关系;⑴奇函数o f (-x)=- f (x)o f--)+f (x)=0 o 釜=-1(fx)) 0);(2)偶函数o f (-x)= f (x)o f (- x)- f (x)= 0 o4.函数奇偶性的几个性质:(1)奇偶函数的定义域关于原点对称,在判断函数奇偶性时,应先考察函数的定义域;(2)奇偶性是函数的整体性质,对定义域内任意一个x都必须成立;(3)若奇函数f Q)在原点有意义,则f (0)= 0;(4)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数,又不是偶函数;(5)在公共的定义域内:两个奇(偶)函数的和与差仍是奇(偶)函数;两个奇(偶)函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数;(6)函数f Q)与函数有相同的奇偶性.5 .奇偶性与单调性: (1)奇函数在两个关于原点对称的区间L b ,- j a ,4上有相同的单调性;(2)偶函数在两个关于原点对称的区间L b ,- j a ,4上有相反的单调性.【典例精讲】 类型一函数奇偶性的判断 例1判断下列函数的奇偶性:x 2 + 2x + 3, x < 0,(6)f (x )= {a x = 0, -x 2 + 2x - 3, x > 0.变式 判断下列函数的奇偶性:11 ⑴f(x)=x 4; (2)f(x)=X 5;⑶ f (x)=x+x 2 ;(4) f(x)= - x 2(5) f (x )= x 3- 2x(6) f (x ) = 2 x 4 4十 一x 2,、b ,,(7) y = ax H ——(a > 0,b > 0) x(8) x (k > 0)y -例2已知/ Q)是R 上的奇函数,且当X > 0时,f Q)= x 3+ 2 x 2-1,求f Q)的表达式。

2.2.2函数的奇偶性(老师版)

2.2.2函数的奇偶性(老师版)

创一教育学科教师辅导讲义知识梳理一、函数奇偶性的概念【问题导思】1.对于函数f(x)=x2,f(x)=|x|,以-x代替x.函数值发生变化吗?其图象有何特征?【提示】以-x代x各自的函数值不变,即f(-x)=f(x);图象关于y轴对称.2.对于函数f(x)=x3,f(x)=1x,以-x代替x,函数值发生变化吗?其图象有何特征?【提示】以-x代替x各自的函数值互为相反数,即f(-x)=-f(x);图象关于原点对称.1.偶函数一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.2.奇函数一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.3.奇偶性如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性.4.奇、偶函数的图象性质偶函数的图象关于y轴对称,奇函数的图象关于原点对称.例题精讲例1:函数奇偶性的判定判断下列函数的奇偶性.(1)f (x )=x 2-1+1-x 2;(2)f (x )=4-x 2|x +3|-3; (3)f (x )=x 2+1x2. 【思路探究】 首先判断函数的定义域是否关于原点对称,在定义域关于原点对称的情况下,判断f (x )与f (-x )之间的关系.【自主解答】 (1)由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x 2=1,∴x =±1, 即函数的定义域为{-1,1},关于原点对称.∵f (-1)=0=f (1),且f (-1)=-f (1)=0,∴f (x )既是奇函数又是偶函数.(2)由⎩⎪⎨⎪⎧ 4-x 2≥0,|x +3|-3≠0,得⎩⎪⎨⎪⎧x 2≤4,x ≠0,且x ≠-6, ∴-2≤x ≤2且x ≠0,关于原点对称,∴f (x )=4-x 2|x +3|-3=4-x 2x +3-3=4-x 2x , ∵f (-x )=4-x 2-x=-f (x ),∴f (x )是奇函数. (3)函数的定义域为(-∞,0)∪(0,+∞)关于原点对称.∵f (-x )=(-x )2+1(-x )2=x 2+1x 2=f (x ), ∴f (x )是偶函数.【规律方法】1.判断函数的奇偶性要遵循定义域优先的原则,如果定义域不关于原点对称,则该函数必为非奇非偶函数.2.用定义判断函数奇偶性的步骤:【变式训练】判断下列函数的奇偶性:(1)f (x )=x -1x;(2)f (x )=|x +2|+|x -2|; (3)f (x )=⎩⎪⎨⎪⎧x 2+x (x <0),-x 2+x (x >0). 【解】 (1)f (x )的定义域(-∞,0)∪(0,+∞),关于原点对称.∵f (-x )=(-x )-1-x=-(x -1x )=-f (x ), ∴f (x )是奇函数.(2)f (x )的定义域为R .f (-x )=|-x +2|+|-x -2|=|x +2|+|x -2|=f (x ),∴f (x )是偶函数.(3)当x <0时,-x >0,则f (-x )=-(-x )2-x=-(x 2+x )=-f (x ),当x >0时,-x <0,则f (-x )=(-x )2-x=-(-x 2+x )=-f (x ),综上所述,对任意x ∈(-∞,0)∪(0,+∞).都有f (-x )=-f (x ),∴f (x )为奇函数.例2:奇偶函数的图象及应用已知函数f (x )=1x 2+1在区间[0,+∞)上的图象如图2-2-4所示,请据此在该坐标系中补全函数f (x )在定义域内的图象,请说明你的作图依据.【思路探究】 先证明f (x )是偶函数,依据其图象关于y 轴对称作图.【自主解答】 ∵f (x )=1x 2+1,∴f (x )的定义域为R .又对任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ), ∴f (x )为偶函数.则f (x )的图象关于y 轴对称,其图象如图所示:【规律方法】1.利用函数的奇偶性作用,其依据是奇函数图象关于原点对称,偶函数图象关于y 轴对称,画图象时,一般先找出一些关键点的对称点,然后连点成线.2.由于奇函数、偶函数图象的对称性,我们可以由此得到作函数图象的简便方法,如作出函数y =|x |的图象.因为该函数为偶函数,故只需作出x ≥0时的图象,对x ≤0时的图象,关于y 轴对称即可.【变式训练】设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图2-2-5所示,则不等式f (x )<0的解集是________.图2-2-5【解析】 注意到奇函数的图象关于原点成中心对称,用对称的思想方法画全函数f (x )在[-5,5]上的图象(如图),数形结合,得f (x )<0的解集为{x |-2<x <0或2<x ≤5}.【答案】 (-2,0)∪(2,5]课堂小测1.函数y =f (x )在区间[2a -3,a ]上具有奇偶性,则a =________.【解析】 由题意知,区间[2a -3,a ]关于原点对称,∴2a -3=-a ,∴a =1.【答案】 12.函数f (x )=x 4+1x 2+1的奇偶性为________. 【解析】 ∵x ∈R ,又f (-x )=(-x )4+1(-x )2+1=x 4+1x 2+1=f (x ), ∴f (x )是偶函数.【答案】 偶函数3.(2013·抚顺高一检测)已知函数y =f (x )是R 上的奇函数,且当x >0时,f (x )=1,则f (-2)的值为________.【解析】 ∵当x >0时,f (x )=1,∴f (2)=1,又f (x )是奇函数,∴f (-2)=-f (2)=-1.【答案】 -14.(2013·常州高一检测)已知函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式;(2)画出函数f (x )的图象.【解】 (1)①由于函数f (x )是定义域为R 的奇函数,则f (0)=0;②当x <0时,-x >0,∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x ,综上:f (x )=⎩⎪⎨⎪⎧ x 2-2x x >0,0 x =0,-x 2-2x x <0.(2)图象如图:师生小结课后作业一、填空题1.函数f (x )=-x +1x的奇偶性是________. 【解析】 ∵f (x )的定义域为{x |x ≠0},关于原点对称.又f (-x )=x -1x=-f (x ).故f (x )为奇函数. 【答案】 奇函数2.(2013·黄山高一检测)已知函数f (x )=a -2x为奇函数,则a =________. 【解析】 ∵函数f (x )为奇函数,∴f (-x )+f (x )=0,即a +2x +a -2x=0, ∴2a =0,即a =0.【答案】 03.若函数f (x )=x 3-bx +a +2是定义在[a ,b ]上的奇函数,则b -a =________.【解析】 f (x )=x 3-bx +a +2是定义在[a ,b ]上的奇函数,有f (-x )=-f (x ),即-x 3+bx +a +2=-x 3+bx -a亲爱的同学们,这节课我们学了哪些内容? 1.利用奇偶函数图象的对称性,我们可以作出函数的大致图象,然后观察图象得出结论. 2.已知奇偶函数在某个区间上的解析式,我们利用对称性可求出这个区间的对称区间上的解析式.要注意“求谁设谁”. 3.解含“f ”的不等式,应具备两个方面:一是能转化为f (x 1)<f (x 2)或f (x 1)>f (x 2)的形式,二是f (x )的单调性已知.特别是f (x )为偶函数时,应把不等式f (x 1)<f (x 2)转化为f (|x 1|)<f (|x 2|)的形式,利用x ∈[0,+∞)的单调性求解.-2可得⎩⎪⎨⎪⎧ a +2=0,a =-b ,解得⎩⎪⎨⎪⎧a =-2,b =2, 所以b -a =4.【答案】 44.下列说法中正确的是________.①函数y =3x 2,x ∈(-2,2]是偶函数;②函数f (x )=⎩⎪⎨⎪⎧x 2,x <0,x 3,x ≥0,是奇函数; ③函数f (x )=x +1既不是奇函数也不是偶函数;④f (x )=x 2+1是偶函数.【解析】 ①不正确,因为定义域不关于原点对称,故①不正确;②不正确,当x >0时,-x <0,∴f (-x )=(-x )2=x 2≠x 3且x 2≠-x 3,故②不正确;③正确,∵f (-x )=-x +1≠x +1,f (-x )=-x +1≠-x -1,故f (x )=x +1是非奇非偶函数,故③正确. ④正确,∵f (-x )=(-x )2+1=x 2+1=f (x ),故④正确.【答案】 ③④5.图2-2-6已知f (x )是定义在[-2,0)∪(0,2]上的奇函数,当x >0时,f (x )的图象如图2-2-6所示,那么f (x )的值域是________.【解析】 ∵x ∈(0,2]时,f (x )的值域为(2,3],由于奇函数的图象关于原点对称,故当x ∈[-2,0)时,f (x )∈[-3,-2),∴f (x )的值域为[-3,-2)∪(2,3].【答案】 [-3,-2)∪(2,3]6.设函数f (x )=ax 3+cx +5,已知f (-3)=3,则f (3)=________.【解析】 设g (x )=ax 3+cx ,则g (x )为奇函数,∴g (-3)=-g (3).∵f (-3)=g (-3)+5=3,∴g (-3)=-2,∴g (3)=2,∴f (3)=g (3)+5=7.【答案】 77.(2013·青岛高一检测)定义在R 上的奇函数f (x ),若当x >0时,f (x )=x 2-2x ,则x <0时f (x )=________.【解析】 设x <0,则-x >0,又f (x )是奇函数,∴f (x )=-f (-x )=-[(-x )2-2·(-x )]=-x 2-2x .【答案】 -x 2-2x创一教育11 / 11创造奇迹,只做第一!。

奇偶性的概念课件

奇偶性的概念课件

B.偶函数 D.非奇非偶函数
B [∵f(-x)=|-x|+1=|x|+1=f(x), ∴f(x)为偶函数.]
3.已知函数f(x)=ax2+2x是奇函数,则实数a=______.
0 [∵f(x)为奇函数, ∴f(-x)+f(x)=0, ∴2ax2=0对任意x∈R恒成立, 所以a=0.]
4.下列函数中,是偶函数的有________.(填序号) ①f(x)=x3;②f(x)=x12;③f(x)=x+1x;④f(x)=x2,x∈[-1,2].
4.函数 y=f(x),x∈[-1,a](a>-1)是奇函数,则 a 等于( )
A.-1
B.0
C.1
D.无法确定
C [∵奇函数的定义域关于原点对称,∴a-1=0,即 a=1.]
合作 探究 释疑 难
函数奇偶性的判断
【例 1】 判断下列函数的奇偶性: (1)f(x)=x4;(2)f(x)=x5; (3)f(x)=x+1x;(4)f(x)=x12.
又函数f(x)=
1 3
x2+bx+b+1为二次函数,结合偶函数图象的特
点,易得b=0.
(2)令g(x)=x7-ax5+bx3+cx,则g(x)是奇函数,
∴f(-3)=g(-3)+2=-g(3)+2,又f(-3)=-3,
∴g(3)=5.又f(3)=g(3)+2,所以f(3)=5+2=7.]
利用奇偶性求参数的常见类型及策略 1定义域含参数:奇、偶函数fx的定义域为[a,b],根据定义 域关于原点对称,利用a+b=0求参数. 2解析式含参数:根据f-x=-fx或f-x=fx列式,比较 系数即可求解.
则为非奇非偶函数.]
5.已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)= x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示.

函数的奇偶性(数学教学课件)课件

函数的奇偶性(数学教学课件)课件

附录
奇函数举例
偶函数举例
数学符号标记
一些常见的奇函数示例及其图像。 一些常见的偶函数示例及其图像。 一些相关的数学符号和标记。
函数的奇偶性(数学教学 课件)ppt课件
本次课程将深入讲解函数的奇偶性概念及其应用。通过丰富的实例和图像, 我们将带您领略数学中的奥秘。
奇偶函数的定义
定义式
奇函数的定义和性质以及其与偶函数的关系。
函数图像
奇函数和偶函数的图像有什么特点,如何自行对称。
奇偶函数的性质
1
合成
如何通过奇函数和偶函数的合成得到一个新的函数。
奇阳偶阴
如何快速判断一个函数在正数和负数轴上的取值。
经典例题
1
解析式判断
看到一个函数的解析式,如何快速判断其是奇函数还是偶函数。
2
化简函数
如何通过奇偶性来化简给定函数。
总结
定义和性质
奇偶函数的基本概念和数学 性质。
判断方法
如何快速、有效地判断一个 函数的奇偶性。
应用场景
奇偶函数在数学和工数,偶数次幂的函数是偶函数。
3
积分
在奇函数或偶函数的范围内进行积分,得到什么样的结果。
如何判断函数的奇偶性
函数公式
如何看出一个函数的公式是奇函数还是偶函数。
图像判断
如何通过图像的对称性判断一个函数的奇偶性。
奇偶函数的应用
加减乘
如何通过奇函数和偶函数的性质来化简函数的加减 和乘积。

函数讲函数的奇偶性与周期性课件

函数讲函数的奇偶性与周期性课件

函数讲函数的奇偶性与周期性课件pptxxx年xx月xx日CATALOGUE目录•函数奇偶性及周期性概述•奇函数与偶函数•周期函数的定义和性质•奇函数与偶函数举例•周期函数的举例及变式•奇偶性与周期性的扩展知识01函数奇偶性及周期性概述函数奇偶性的定义与性质奇函数对于函数f(x),如果对于任意的x属于D,都有f(-x)=-f(x),那么f(x)是奇函数。

要点一要点二偶函数对于函数f(x),如果对于任意的x属于D,都有f(-x)=f(x),那么f(x)是偶函数。

恒等于0的函数对于函数f(x),如果对于任意的x属于D,都有f(x)=0,那么f(x)是恒等于0的函数。

要点三对于函数f(x),如果存在一个非零常数T,使得对于任意的x属于D,都有f(x+T)=f(x),那么f(x)是周期函数。

周期函数对于周期函数f(x),如果存在一个非零常数T,使得对于任意的x属于D,都有f(x+T)=f(x),那么T是f(x)的最小正周期。

最小正周期函数周期性的定义与性质奇偶性与周期性的应用用奇偶性和周期性判断函数的图像对于一个函数f(x),如果知道它的奇偶性和周期性,就可以根据这些性质大致判断出它的图像。

用奇偶性和周期性简化计算对于具有特定奇偶性和周期性的函数,我们可以利用这些性质来简化计算。

用奇偶性和周期性解决实际问题有时在解决实际问题时,需要用到函数的奇偶性和周期性。

02奇函数与偶函数奇函数定义与性质奇函数定义:对于函数f(x),如果对于任意的x∈D,都奇函数性质有f(-x)=-f(x),那么称f(x)为奇函数。

奇函数的图象关于原点对称;奇函数的定义域一定关于原点对称;奇函数的相反数函数是自身;如果奇函数f(x)在x=0有定义,那么f(0)=0。

偶函数定义:对于函数f(x),如果对于任意的x∈D,都有f(-x)=f(x),那么称f(x)为偶函数。

偶函数性质偶函数的图象关于y轴对称;偶函数的定义域一定关于原点对称;偶函数的相反数函数是自身;如果偶函数f(x)在x=0有定义,那么f(0)=0。

《奇偶性》 讲义

《奇偶性》 讲义

《奇偶性》讲义在数学的广阔天地中,奇偶性是一个既基础又重要的概念。

它看似简单,却蕴含着丰富的规律和应用,就像一把神奇的钥匙,能为我们打开许多数学问题的大门。

让我们先来明确一下什么是奇数和偶数。

能被 2 整除的整数称为偶数,比如 0、2、4、6 等等;不能被 2 整除的整数则称为奇数,像是 1、3、5、7 这样。

奇偶性有一些非常基本的性质。

首先,偶数+偶数=偶数,比如2 + 4 = 6;奇数+奇数=偶数,比如3 + 5 = 8;而偶数+奇数=奇数,例如 2 + 3 = 5。

这几条性质在计算和判断结果的奇偶性时非常有用。

我们再来看乘法的情况。

偶数×偶数=偶数,例如 2×4 = 8;奇数×奇数=奇数,比如 3×5 = 15;偶数×奇数=偶数,像 2×3 = 6。

这些基本性质有什么用呢?其实在解决很多数学问题时,它们能帮我们快速判断结果的大致情况,或者简化计算过程。

比如说,在数列中,如果一个数列的通项公式是关于 n 的一次式,且 n 为自然数,那么通过判断 n 的奇偶性,我们就能知道这个数列中奇数项和偶数项的一些规律。

再看代数运算中的应用。

如果我们要化简一个含有未知数的式子,判断其奇偶性可以帮助我们简化计算。

比如,有一个函数 f(x) = x^3 3x,我们想判断它的奇偶性。

先来看f(x) =(x)^3 3(x) = x^3 + 3x =(x^3 3x) = f(x),所以这个函数是奇函数。

在实际生活中,奇偶性也有不少应用。

比如说,安排座位的时候,如果座位总数是奇数,那么必然会有一排的座位数和其他排不一样;在电路设计中,利用奇偶性可以优化电路布局,提高效率和稳定性。

接下来,我们深入探讨一下奇偶性在方程中的应用。

考虑一个方程 x^2 5x + 6 = 0 ,我们可以通过因式分解得到(x 2)(x 3) = 0 ,从而解得 x = 2 或 x = 3 。

函数的奇偶性说课稿ppt

函数的奇偶性说课稿ppt

偶函数的定义与性质
偶函数的定义:如果对于函数$f(x)$的定 义域内任意$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
3. 若偶函数在$x=0$处有定义,则一定 有$f(0)=0$。
2. 偶函数在y轴两侧是对称的。
偶函数的性质 1. 偶函数的图像关于y轴对称。
奇偶性的判断方法
在数学分析中,奇函数和偶函数具有不同的性质。奇函数 图像关于原点对称,而偶函数图像关于y轴对称。这些性 质在解决一些数学问题时非常有用,例如求函数的积分、 求解微分方程等。
在微积分中的应用
在微积分中,奇偶性也是研究函数的重要工具之一。奇偶性可以帮助我们简化函 数的积分和微分计算。例如,对于一些具有对称性的函数,我们可以通过奇偶性 来简化计算过程,提高计算效率。
奇函数的定义与性质
95% 85% 75% 50% 45%
0 10 20 30 40 5
奇函数的定义:如果对于函数$f(x)$的定义域内任意$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。 奇函数的性质
1. 奇函数的图像关于原点对称。
2. 奇函数在原点有定义则一定过原点。
3. 若奇函数在$x=0$处有定义,则$f(0)=0$。
在微积分中,奇偶性还与一些重要的数学概念相关联,例如周期性和傅里叶分析 。奇偶性可以帮助我们更好地理解这些概念,并进一步研究函数的性质和行为。
在实际生活中的应用
奇偶性在实际生活中也有广泛的应用。例如,在物理学中,一些物理量(如质量、电荷等)是具有奇 偶性的,它们的性质和行为可以用奇偶性来描述和预测。
05
总结与展望
总结
回顾函数的奇偶性的定义和性质,包括奇函数、偶 函数、既奇又偶函数和非奇非偶函数。

函数的奇偶性说课稿-(精选五篇)

函数的奇偶性说课稿-(精选五篇)

函数的奇偶性说课稿-(精选五篇)第一篇:函数的奇偶性说课稿 -函数的奇偶性说课稿各位评委老师好:我今天说课的题目是《函数的奇偶性》接下来我从以下几个环节进行说课。

教材分析、学情分析、目标分析、教学目标、教学方法、教学设计、板书设计。

一.教材分析《函数奇偶性》是选自人教版中等职业教育课程改革国家规划新教材,数学基础模块上册第三章第四节的内容。

它的主要内容是函数奇偶性的概念,判断函数奇偶性的方法与步骤。

在此之前,学生已经学习了函数的概念、函数的表示方法、函数的单调性,为这一节的学习起到了铺垫作用,同时又是后面学习具体函数的基础。

《函数的奇偶性》是高中数学的一个重要内容,它不仅与现实生活中对称性密切相关联,而且是历年高考的热点,重点和必考点,它是函数概念的深化,学习函数奇偶性,能使学生再次体会数型结合思想,初步学会用数学的眼光去看待事物,感受数学的对称美。

二.学情分析认知水平与能力:高一学生具备了一定的观察、类比、分析、归纳能力,已初步具有数形结合思维能力,能在教师的引导下解决问题。

任教班级特点:这个班是医护班,学生数学基础较薄弱,上课注意力不够集中,理解能力不够强,可利用数形结合解决简单问题,但归纳转化的能力与观察讨论能力有待加强。

改进与提高:让学生利用图形直观感受;让学生“归纳、总结、运用”,重视学生的主动参与,注重信息反馈,通过引导学生多思多说多练,使认识得到深化。

三、教学目标根据对教学大纲、教材内容的分析,结合学生已有的认识能力,心理特征及知识水平,我制定教学目标如下。

知识和技能:使学生从形与数两方面理解函数奇偶性的定义,初步掌握利用函数图象和奇偶性定义判断函数奇偶性的方法。

过程与方法:通过对函数奇偶性定义的探究,渗透数形结合思想方法,培养学生的直观想象素养与数学抽象素养;提高学生的逻辑推理素养与运算素养。

情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点与难点重点:函数奇偶性的概念及判断。

函数的奇偶性(数学教学课件)课件

函数的奇偶性(数学教学课件)课件
例如
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性知识讲解一、函数奇偶性的定义1.奇函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=-,则这个函数叫做奇函数.2.偶函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=,则这个函数叫做偶函数.二、奇偶函数的图象特征1.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;2.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.三、判断函数奇偶性的方法1.定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x -=-或()()f x f x -=是否为恒等式.定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-.2.图象法3.性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;四、奇偶函数的性质1.函数具有奇偶性⇒其定义域关于原点对称;2.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;3.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.4.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.5.若奇函数()y f x =的定义域包含0,则(0)0f =.五、常见函数的奇偶性1.正比例函数(0)y kx k =≠是奇函数;2.反比例函数(0)k y k x=≠是奇函数;3.函数(00)y kx b k b =+≠≠,是非奇非偶函数;4.函数2(0)y ax c a =+≠是偶函数;5.常函数y c =是偶函数;6.对勾函数(0)k y x k x=+≠是奇函数;经典例题一.填空题(共12小题)1.给定四个函数:①y=x3+3;②y=1(x>0);③y=x3+1;④y=2+1.其中是奇函数的有①④(填序号).【解答】解::①函数的定义域为R,则f(﹣x)=﹣(x3+3)=﹣f(x),则函数f(x)是奇函数;②函数的定义域关于原点不对称,则函数f(x)为非奇非偶函数;③函数的定义域为R,f(0)=0+1=1≠0,则函数f(x)为非奇非偶函数;④函数的定义域为(﹣∞,0)∪(0,+∞),f(﹣x)=2+1−=﹣2+1=﹣f (x),则函数f(x)是奇函数,故答案为:①④2.f(x)是定义在R上的奇函数,当x<0时,f(x)=x2﹣3x,则当x>0时,f(x)=﹣x2﹣3x.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),若x>0,则﹣x<0,∵x<0时,f(x)=x2﹣3x,∴当﹣x<0时,f(﹣x)=x2+3x=﹣f(x),∴f(x)=﹣x2﹣3x,故答案为:x2﹣3x,3.已知f(x)是R上偶函数,且在[0,+∞)上递减,比较o−34)与f(1+a+a2)的大小关系为f(1+a+a2)≤f(﹣34).【解答】解:根据题意,1+a+a2=(14+a+a2)+34=(a+12)2+34≥34,则又由f (x )在[0,+∞)上递减,则有f (1+a +a 2)≤f (34),又由f (x )是R 上偶函数,则有f (1+a +a 2)≤f (﹣34),故答案为:f (1+a +a 2)≤f (﹣34).4.已知f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数,若f (a ﹣2)<f (4﹣a 2),求a 2).【解答】解:因为f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数.所以f (a ﹣2)<f (4﹣a 2)等价于−1<−2<1−1<4−2<1−2<4−2,化简可得1<<33<2<5−3<<2解可得3<a <2.故答案为(3,2).5.设函数f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,且f (2a 2+a +1)<f (2a 2﹣2a +3),则a 的取值范围=(23,+∞).【解答】解:根据题意,2a 2+a +1=2(a 2+12a +116)+78=2(a +12)2+78≥78,而2a 2﹣2a +3=2(a 2﹣a +14)+52=2(a ﹣12)2+52≥52;由f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,可知f (x )在(0,+∞)上递减.若f (2a 2+a +1)<f (2a 2﹣2a +3),则2a 2+a +1>2a 2﹣2a +3,即3a ﹣2>0,解可得a >23,则a 的取值范围(23,+∞);故答案为:23,+∞).6.已知定义在R上的奇函数f(x)满足f(x)=x2+2x(x≥0),若f(3﹣a2)>f(2a﹣a2),则实数a的取值范围是a<32.【解答】解:∵函数f(x)=x2+2x(x≥0)是增函数,且f(0)=0,f(x)是奇函数∴f(x)是R上的增函数.由f(3﹣a2)>f(2a﹣a2),于是3﹣a2>2a﹣a2,因此,解得a<32.故答案为:a<32.7.若f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,则a+b= 3.【解答】解:∵f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,∴﹣4+a+a=0,f(0)=0.解得a=2,b=1.∴a+b=3.故答案为:3.8.若f(a+b)=f(a)•f(b)且f(1)=2.则o2)o1)+o3)o2)+…+o2012)o2011)=4022.【解答】解:令b=1.∴f(a+1)=f(a)f(1)or1)op=f(1)=2o2)o1)=2.o3)o2)=2. (2012)o2011)=2o2)o1)+o3)o2)+…+o2012)o2011)=2011×2=4022.答案:4022.9.已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(72)=3p+2q.【解答】解:由题意可知:f(6)=f(2)+f(3)=p+q∴f(18)=f(6)+f(3)=p+q+q=p+2q∴f(36)=f(18)+f(2)=p+2q+p=2p+2q∴f(72)=f(36)+f(2)=2p+2q+p=3p+2q故答案为:3p+2q.10.已知函数f(x)的定义域D=(0,+∞),且对于任意x1,x2∈D,均有f(x1•x2)=f(x1)+f(x2)﹣1,且当x>1时,f(x)>1(1)求f(1)的值;(2)求证:f(x)在(0,+∞)上是增函数;(3)若f(16)=3,解不等式f(3x+1)≤2.【解答】解:(1)令x1=x2=1,∴f(1)=f(1)+f(1)﹣1∴f(1)=1,(2):设令0<x1<x2,21>1,当x>1时,f(x)>1∴f(21)>1,∴f(21•x1)=f(x2)=f(21)+f(x1)﹣1>f(x1),∴f(x)在(0,+∞)上是增函数;(3)令x1=x2=4,∴f(16)=f(4)+f(4)﹣1=3∴f(4)=2,∴f(3x+1)≤2=f(4),∵f(x)在(0,+∞)上是增函数;∴3+1>03+1≤4,解得−13<x≤1,故不等式f(3x+1)≤2的解集为(−13,1].11.已知f(x)是定义域在(0,+∞)上的单调递增函数.且满足f(6)=1.f(x)﹣f(y)=f()(x>0,y>0).则不等式f(x+3)<f(12的解集是(0,−3+3172).【解答】解:∵f(x)﹣f(y)=f()(x>0,y>0),令x=36,y=6,得f(36)﹣f(6)=f(6)∴f(36)=2f(6)=2,∵f(x+3)<f(1)+2,∴f(x+3)﹣f(1)=f(x(x+3))<2=f(36),∵f(x)是定义域在(0,+∞)上的单调递增函数,+3>0>0o+3)<36∴0<x−3+3172故不等式f(x+3)<f(1)+2的解集是(0,−3+3172),故答案为:(0−3+3172),12.已知函数f(x),对任意实数x1,x2都有f(x1+x2)=f(x1)+f(x2),且当x>0时f(x)>0,f(2)=1.解不等式f(2x2﹣1)<2的解集为[﹣102,102].【解答】解:∵f(x1+x2)=f(x1)+f(x2),设x1=x2=0,可得f(0)=2f(0),解得f(0)=0,令x1+x2=0,可得f(0)=f(x1)+f(x2),即有f(﹣x)=﹣f(x),即f(x)为奇函数;令x1<x2,即有x2﹣x1>0,f(x2﹣x1)>0,即为f(x2)=f(x1+x2﹣x1)=f(x1)+f(x2﹣x1)>f(x1),即有f(x)在R上为增函数;令x1=x2=2,可得f(4)=2f(2),解得f(4)=2,∵不等式f(2x2﹣1)<2=f(4)∴2x2﹣1<4,102<x<102102,102].102,102].二.解答题(共6小题)13.设函数y=f(x)(x∈R)对任意实数均满足f(x+y)=f(x)+f(y),求证f(x)是奇函数.【解答】证明:定义域关于原点对称,令x=y=0,代入f(x+y)=f(x)+f(y)得f(0)=0,令y=﹣x得:f(0)=f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)是奇函数.14.判断并证明下列函数的奇偶性.(Ⅰ)f(x)=|x|+12;(Ⅱ)f(x)=x2+2x;(Ⅲ)f(x)=x+1.【解答】解:(Ⅰ)可得x≠0f(﹣x)=|﹣x|+1(−p2=f(x),故函数为偶函数;(Ⅱ)函数的定义域为R,且f (x )=x 2+2x 的图象为抛物线,对称轴为x=﹣1,不关于y 轴对称,也不关于原点对称,故函数非奇非偶;(Ⅲ)可得x ≠0,f (﹣x )=﹣x ﹣1=﹣f (x ),故函数为奇函数.15.判断下列函数的奇偶性:(1)f (x )=3,x ∈R ;(2)f (x )=5x 4﹣4x 2+7,x ∈[﹣3,3];(3)f (x )=|2x ﹣1|﹣|2x +1|;(4)f (x )=1−2,>00,=02−1,<0.【解答】解:(1)由f (﹣x )=3=f (x ),x ∈R ,可得函数f (x )为偶函数;(2)f (﹣x )=5(﹣x )4﹣4(﹣x )2+7=5x 4﹣4x 2+7=f (x ),x ∈[﹣3,3],可得函数f (x )为偶函数;(3)定义域为R ,f (﹣x )=|﹣2x ﹣1|﹣|﹣2x +1|=|2x +1|﹣|2x ﹣1|=﹣f (x ),可得f (x )为奇函数;(4)f (x )=1−2,>00,=02−1,<0,定义域为R ,当x >0时,﹣x <0,可得f (﹣x )=(﹣x )2﹣1=x 2﹣1=﹣f (x ),当x=0可得f (0)=0;当x <0时,﹣x >0,可得f (﹣x )=1﹣(﹣x )2=1﹣x 2=﹣f (x ),即有f(﹣x)=﹣f(x),可得f(x)为奇函数.16.判断下列函数的奇偶性(1)f(x)=a(a∈R)(2)f(x)=(1+x)3﹣3(1+x2)+2(3)f(x)=o1−p,<0o1+p,>0.【解答】解:(1)由奇偶性定义当a=0时,f(x)=0既是奇函数又是偶函数,当a≠0时,f(x)=f(﹣x)=a,故是偶函数;(2)f(x)=(1+x)3﹣3(1+x2)+2=x3+3x,由于f(x)+f(﹣x)=x3+3x+(﹣x)3+3(﹣x)=0,故f(x)=(1+x)3﹣3(1+x2)+2是奇函数.(3)当x<0时,﹣x>0,f(﹣x)=﹣x(1﹣x)=﹣f(x);当x>0时,﹣x<0,f(﹣x)=﹣x(1+x)=﹣f(x);由上证知,在定义域上总有f(﹣x)=﹣f(x);故函数f(x)=o1−p,<0o1+p,>0是奇函数.17.已知函数op=B2+23r是奇函数,且o2)=53.(1)求实数a,b的值;(2)判断函数f(x)在(﹣∞,﹣1]上的单调性,并加以证明.【解答】解:(1)函数op=B2+23r是奇函数,且o2)=53,可得f(﹣x)=﹣f(x),B2+2−3r=﹣B2+23r,可得﹣3x+b=﹣3x﹣b,解得b=0;4r26=53,解得a=2;(2)函数f(x)=22+23在(﹣∞,﹣1]上单调递增;理由:设x1<x2≤﹣1,则f(x1)﹣f(x2)=23(x1+11)﹣23(x2+12)=23(x1﹣x2)(1﹣112),由x1<x2≤﹣1,可得x1﹣x2<0,x1x2>1,即有1﹣112>0,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),则f(x)在(﹣∞,﹣1]上单调递增.18.已知f(x)=1+.(1)求f(x)+f(1)的值;(2)求f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)的值.【解答】解:(1)∵f(x)=1+.∴f(x)+f(1)=1++11+1=1++11+=1,(2)由(1)得:f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)=7.。

高一上册数学第一章4《函数的奇偶性》讲义

高一上册数学第一章4《函数的奇偶性》讲义

知识点一:函数奇偶性的定义1、函数奇偶性的定义(1)如果对于函数()f x 定义域内任意一个x ,都有()()f x f x -=,则函数()f x 就叫做偶函数;(2)如果对于函数()f x 定义域内任意一个x ,都有()()f x f x -=-,则函数()f x 就叫做奇函数;(3)如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性。

2、具有奇偶性的函数图象特点:一般地,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称, 那么这个函数是奇函数;偶函数的图象关于y 轴对称,反过来,如果一个函数的图象关于y 轴对称,那么这个函数 是偶函数。

【题型一】概念应用例1、已知函数2()3f x ax bx a b =+++为偶函数,其定义域为[2,1]a a -,则函数的值域为 。

变式:已知函数()f x 为偶函数,且其图象与x 轴有四个交点,则方程()0f x =的所有实根之和为 。

【题型二】判断奇偶性例2、下列函数是否具有奇偶性.(1) 3()35f x x x =- (2) 2()3||1f x x x =--(3) 22()22f x x x =-+-; (4) 2|2|2()1x f x x --=-(5) 22230()230x x x f x x x x ⎧++<=⎨-+->⎩ (6)1()(1)1x f x x x +=--例3、已知函数()y f x =是定义在R 上的奇函数,则下列函数中是奇函数的是 . ① ()||y f x =; ②()y f x =-; ③()·y x f x =; ④()y f x x =+.【题型三】利用奇偶性求值例4、若函数3()7f x ax bx =++,有(5)3f =,则(5)f -= 。

变式1:(),()f x g x 都是定义在R 上的奇函数,且()()()35g 2F x f x x =++,若()F a b =,则()F a -= 。

函数奇偶性经典讲义---新

函数奇偶性经典讲义---新

Ⅰ复习提问((二)(非奇非偶) (三)、奇偶函数的性质:1、奇函数的反函数也是奇函数2、奇偶函数的加减:±±±奇奇=奇,偶偶=偶,奇偶=非奇非偶;奇偶函数的乘除:同偶异奇 3、奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反。

4、定义在R上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和()()()()()()()22f x f x f x f x f x --+-=+奇偶 (四)、函数奇偶性的做题方法与步骤。

第一步,判断函数的定义域是否关于原点对称;第二步,求出()f x -的表达式;第三步,比较()()f x f x -与的关系()()()()f x f x f x f x -⎧⎪⎨-⎪⎩与相等,函数为偶与互为相反数,函数为奇函数Ⅱ 题型与方法归纳题型与方法()()()()()0,0,020,===f x f x f x f x ⎧+-=⎧⎪→⎪⎨--=⎪⎪⎩⎨±±±⎧⎪⎨⎪⎩⎩则是奇函数定义法:1)看定义域是否关于对称,)若则是偶函数奇偶加减:奇奇奇,偶偶偶,奇偶非奇非偶快速判定奇偶乘除:同偶异奇。

一、判定奇偶性例1:判断下列函数的奇偶性1) ()()21f x x x =+ 2)()112log x x f x -⎛⎫ ⎪+⎝⎭= 3)()f x =4)()f x = 5)()2211021102x x f x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩解:1)()f x 的定义域为R,()()()()2211f x x x x x -=--+=+()f x =所以原函数为偶函数。

2)()f x 的定义域为11x x-+0>即11x -<<,关于原点对称()()()111122log log x x x x f x ⎛⎫--+⎛⎫⎪ ⎪ ⎪+--⎝⎭⎝⎭-==()21log 1x f x x -⎛⎫=-=- ⎪+⎝⎭,所以原函数为奇函数。

知识讲解_ 奇偶性_基础

知识讲解_ 奇偶性_基础

函数的奇偶性编稿:丁会敏 审稿:王静伟【学习目的】1.理解函数的奇偶性定义;2.会利用图象和定义判断函数的奇偶性;3.掌握利用函数性质在解决有关综合问题方面的应用.【要点梳理】要点一、函数的奇偶性概念及判断步骤1.函数奇偶性的概念偶函数:假设对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数.奇函数:假设对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数.要点诠释:〔1〕奇偶性是整体性质;〔2〕x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; 〔3〕f(-x)=f(x)的等价形式为:()()()0,1(()0)()f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠,; 〔4〕由定义不难得出假设一个函数是奇函数且在原点有定义,那么必有f(0)=0;〔5〕假设f(x)既是奇函数又是偶函数,那么必有f(x)=0.2.奇偶函数的图象与性质〔1〕假如一个函数是奇函数,那么这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,假如一个函数的图象是以坐标原点为对称中心的中心对称图形,那么这个函数是奇函数.〔2〕假如一个函数为偶函数,那么它的图象关于y 轴对称;反之,假如一个函数的图像关于y 轴对称,那么这个函数是偶函数.3.用定义判断函数奇偶性的步骤〔1〕求函数()f x 的定义域,判断函数的定义域是否关于原点对称,假设不关于原点对称,那么该函数既不是奇函数,也不是偶函数,假设关于原点对称,那么进展下一步;〔2〕结合函数()f x 的定义域,化简函数()f x 的解析式;〔3〕求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性.假设()f x -=-()f x ,那么()f x 是奇函数;假设()f x -=()f x ,那么()f x 是偶函数;假设()f x -()f x ≠±,那么()f x 既不是奇函数,也不是偶函数;假设()f x -()f x =且()f x -=-()f x ,那么()f x 既是奇函数,又是偶函数要点二、判断函数奇偶性的常用方法〔1〕定义法:假设函数的定义域不是关于原点对称,那么立即可判断该函数既不是奇函数也不是偶函数;假设函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.〔2〕验证法:在判断()f x -与()f x 的关系时,只需验证()f x -()f x ±=0及()1()f x f x -=±是否成立即可.〔3〕图象法:奇〔偶〕函数等价于它的图象关于原点〔y 轴〕对称. 〔4〕性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.〔5〕分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.在函数定义域内,对自变量x 的不同取值范围,有着不同的对应关系,这样的函数叫做分段函数.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考察函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进展比拟.要点三、关于函数奇偶性的常见结论奇函数在其对称区间[a,b]和[-b ,-a]上具有一样的单调性,即()f x 是奇函数,它在区间[a,b]上是增函数〔减函数〕,那么()f x 在区间[-b ,-a]上也是增函数〔减函数〕;偶函数在其对称区间[a,b]和[-b ,-a]上具有相反的单调性,即()f x 是偶函数且在区间[a,b]上是增函数〔减函数〕,那么()f x 在区间[-b ,-a]上也是减函数〔增函数〕.【典型例题】类型一、判断函数的奇偶性例1. 判断以下函数的奇偶性:(1)()(f x x =+ (2)f(x)=x 2-4|x|+3 ;(3)f(x)=|x+3|-|x-3|; (4)()f x = (5)22-(0)()(0)x x x f x x x x ⎧+≥⎪=⎨+<⎪⎩; (6)1()[()-()]()2f x g x g x x R =-∈. 【思路点拨】利用函数奇偶性的定义进展判断.【答案】〔1〕非奇非偶函数;〔2〕偶函数;〔3〕奇函数;〔4〕奇函数;〔5〕奇函数;〔6〕奇函数.【解析】(1)∵f(x)的定义域为(]-1,1,不关于原点对称,因此f(x)为非奇非偶函数;(2)对任意x ∈R ,都有-x ∈R ,且f(-x)=x 2-4|x|+3=f(x),那么f(x)=x 2-4|x|+3为偶函数 ;(3)∵x ∈R ,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(4)[)(]2-1x 11-x 0 x -1,00,1x 0x -4x+22≤≤⎧≥⎧∴∴∈⋃⎨⎨≠≠≠±⎩⎩且(-)--()f x f x x∴===,∴f(x)为奇函数; (5)∵x ∈R ,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数; (6)11(-){(-)-[-(-)]}[(-)-()]-()22f xg x g x g x g x f x ===,∴f(x)为奇函数. 【总结升华】断定函数奇偶性容易失误是由于没有考虑到函数的定义域.函数的定义域关于原点对称是函数具有奇偶性的前提条件,因此研究函数的奇偶性必须“坚持定义域优先〞的原那么,即优先研究函数的定义域,否那么就会做无用功.如在本例〔4〕中假设不研究定义域,在去掉|2|x +的绝对值符号时就非常费事.举一反三:【变式1】判断以下函数的奇偶性: (1)23()3x f x x =+; (2)()|1||1|f x x x =++-; (3)222()1x x f x x +=+; (4)22x 2x 1(x 0)f (x)0(x 0)x 2x 1(x 0)⎧+-<⎪==⎨⎪-++>⎩. 【答案】〔1〕奇函数;〔2〕偶函数;〔3〕非奇非偶函数;〔4〕奇函数.【解析】(1)()f x 的定义域是R , 又223()3()()()33x x f x f x x x --==-=--++,()f x ∴是奇函数. 〔2〕()f x 的定义域是R ,又()|1||1||1||1|()f x x x x x f x -=-++--=-++=,()f x ∴是偶函数.〔3〕函数定义域为1x ≠-,定义域不关于原点对称,∴()f x 为非奇非偶函数.〔4〕任取x>0那么-x<0,∴f(-x)=(-x)2+2(-x)-1=x 2-2x-1=-(-x 2+2x+1)=-f(x)任取x<0,那么-x>0 f(-x)=-(-x)2+2(-x)+1=-x 2-2x+1=-(x 2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x ∈R 时,f(-x)=-f(x) ∴f(x)为奇函数.【高清课堂:函数的奇偶性356732例2〔1〕】【变式2】f(x),g(x)均为奇函数,且定义域一样,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数. 证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)那么F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x)∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.【高清课堂:函数的奇偶性 356732 例2〔2〕】【变式3】设函数()f x 和g(x )分别是R 上的偶函数和奇函数,那么以下结论恒成立的是 〔 〕.A .()f x +|g(x)|是偶函数B .()f x -|g(x)|是奇函数C .|()f x | +g(x)是偶函数D .|()f x |- g(x)是奇函数【答案】A类型二、函数奇偶性的应用(求值,求解析式,与单调性结合)例2.f(x)=x 5+ax 3-bx-8,且f(-2)=10,求f(2).【答案】-26【解析】法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.【总结升华】此题要会对式进展变形,得出f(x)+8= x 5+ax 3-bx 为奇函数,这是此题的关键之处,从而问题(2)g 便能迎刃而解.举一反三:【变式1】()f x 为奇函数,()()9,(2)3g x f x g =+-=,那么(2)f 为〔 〕.【答案】6【解析】(2)(2)93,(2)6g f f -=-+=-=-则,又()f x 为奇函数,所以(2)(2)6f f =--=.例3.()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.【答案】2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪==⎨⎪-++<⎩【解析】()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,当0x <时,0x ->,又奇函数()f x 在原点有定义,(0)0f ∴=.【总结升华】假设奇函数()f x 在0x =处有意义,那么必有(0)0f =,即它的图象必过原点〔0,0〕. 举一反三:【高清课堂:函数的奇偶性356732 例3】【变式1】〔1〕偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.〔2〕奇函数()g x 的定义域是R ,当0x >时,2()21g x x x =+-,求()g x 的解析式.【答案】〔1〕2231(0)()31(0)x x x f x x x x ⎧+->⎪=⎨--≤⎪⎩;〔2〕2221(0)()0021(0)x x x g x x x x x ⎧+->⎪==⎨⎪-++<⎩ () 例4.设定义在[-2,2]上的偶函数f(x)在[0,2]上是单调递增,当(1)()f a f a +<时,求a 的取值范围. 【答案】122a -≤<- 【解析】∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a+1|,|a|∈[0,2]【总结升华】假设一个函数()f x 是偶函数,那么一定有()(||)f x f x =,这样就减少了讨论的费事. 类型三、函数奇偶性的综合问题例5.设a 为实数,函数f(x)=x 2+|x-a|+1,x ∈R ,试讨论f(x)的奇偶性,并求f(x)的最小值.【思路点拨】对a 进展讨论,把绝对值去掉,然后把f(x)转化成二次函数求最值问题。

必修一函数的奇偶性讲义

必修一函数的奇偶性讲义

1.3.2 函数的奇偶性一、对称区间(关于原点对称)[a ,b]关于原点的对称区间为[-b ,-a] (-∞,0)关于原点的对称区间为(0,+∞) [-1,1]关于原点的对称区间为[-1,1]二、奇函数与偶函数(一)奇函数的定义:对于任意函数f(x)在其对称区间(关于原点对称)内,对于x ∈A ,都有f(..-.x)..=-..f(x)....,则f(x)为奇函数。

(二)偶函数的定义:对于任意函数f(x)在其对称区间(关于原点对称)内,对于x ∈A ,都有f(..-.x)..=.f(x)....,则f(x)为偶函数。

如果函数f(x)是奇函数或是偶函数,则我们就说函数f(x)具有奇偶性。

(三)判断函数奇偶性的步骤:(1)求函数f(x)的定义域;(2)若函数的定义域不关于原点对称,则该函数不具备奇偶性,此时函数既不是奇函数,也不偶函数;若函数f(x)的定义域关于原点对称,再进行下一步; (3)求f(-x);(4)根据f(-x)与f(x)之间的关系,判断函数f(x)的奇偶性;①若f(-x)=-f(x),函数是奇函数;②若f(-x)=f(x),函数f(x)是偶函数;③若f(-x)≠±f(x),则f(x)既不是奇函数,也不是偶函数;④若f(-x)=-f(x),且f(-x)=f(x),则f(x)既是奇函数,也是偶函数。

【即..f(x)....=.0.,即定义域关于原点对称的常数函数................f(x)....=.a ;当..a ≠.0.时,常数函数是.......偶函数;.... 当.a =.0.时,常数函数既是奇函数,也是偶函数。

】...................例1:判断下列函数奇偶性。

(1)f(x)=x x+1(2)f(x)=x 3+x (3)f(x)=1+x ×1-x(4)f(x)=113+x(5)f(x)=x 2+cosx【解析】:(1)奇(2)奇(3)非(4)非(5)偶变式练习:判断下列函数的奇偶性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生: 赵怡 科目: 数学 第 2 阶段第 3 次课 教师: 于利 时间:20 13 年 9 月 30 日 15-17 时段课题函数的奇偶性 教学目标1、掌握函数的奇偶性的定义,2、学会判断具体函数的奇偶性,3、掌握奇偶性在函数图像对称方面的应用重点、难点1、判断函数的奇偶性先判断函数的定义域是否对称,2、奇偶性在图像对称方面的应用考点及考试要求1、函数奇偶性是判断图像对称的一个重要依据,2、在函数性质中处于重要地位。

教学内容知识框架知识点一:函数奇偶性的定义 1. 函数奇偶性的定义(1)如果对于函数()f x 定义域内任意一个x ,都有()()f x f x -=,则函数()f x 就叫做偶函数; (2)如果对于函数()f x 定义域内任意一个x ,都有()()f x f x -=-,则函数()f x 就叫做奇函数; (3)如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性。

2. 具有奇偶性的函数图象特点一般地,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;偶函数的图象关于y 轴对称,反过来,如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。

【题型一】概念应用例1.已知函数2()3f x ax bx a b =+++为偶函数,其定义域为[2,1]a a -,则函数的值域为 。

变式:已知函数()f x 为偶函数,且其图象与x 轴有四个交点,则方程()0f x =的所有实根之和为 。

【题型二】判断奇偶性例2. 下列函数是否具有奇偶性.(1) 3()35f x x x =- (2) 2()3||1f x x x =-- (3) 22()22f x x x =-+-;(4) 2|2|2()1x f x x--=- (5) 22230()230x x x f x x x x ⎧++<=⎨-+->⎩ (6)1()(1)1xf x x x +=--例3.已知函数()y f x =是定义在R 上的奇函数,则下列函数中是奇函数的是 . ① ()||y f x =;②()y f x =-;③()·y x f x =;④()y f x x =+.【题型三】利用奇偶性求值例4. 若函数3()7f x ax bx =++,有(5)3f =,则(5)f -= 。

变式1:(),()f x g x 都是定义在R 上的奇函数,且()()()35g 2F x f x x =++, 若()F a b =,则()F a -= 。

变式2:(2011年高考福建理)对于函数()3(),,f x ax bx c a b R c Z =++∈∈,选取,,a b c 的一组值计算(1)f 和(1)f -,所得出的正确结果一定不可能.....是( ) A.4和6 B.3和1 C.2和4 D.1和2例5.(2010年高考山东)设()f x 为定义在R 上的奇函数,当0x ≥时,()22x f x x b =++ (b 为常数),则(1)f -= 。

变式:设()f x (x R ∈)是奇函数,(2)()(2)f x f x f +=+,且1(1)2f =,则(5)f = 。

【题型四】求函数解析式例 6. 已知定义在R 上的奇函数()f x ,当0x >时,2()2f x x x =-,则0x <时()f x 的解析式为 。

变式1:已知函数()f x 是奇函数,且当0x >时,32()21f x x x =+-,求()f x 在R 上的表达式。

变式2:若函数2()1x af x x bx +=++在[1,1]-上是奇函数,试确定()f x 的解析式例7. 设函数()f x 是偶函数,()g x 是奇函数,且3()()3f xg x x +=+,求(),()f x g x变式:()f x 和()g x 的定义域都是非零实数,()f x ,()g x 分别是偶函数与奇函数,且2()()1f x g x x x +=++,求()f x 与()g x 的解析式【题型五】函数的奇偶性与单调性综合应用例8. 奇函数()f x 在定义域(1,1)-上是减函数,且2()()0f a f a +<,求实数a 的取值范围。

变式1:设定义在[2,2]-上的偶函数()f x 在区间[0,2]上单调递减,若(1)()f m f m -<, 求实数m 的取值范围.变式2:设函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且12()25f =,(1)确定函数()f x 的解析式;(2)用定义证明()f x 在(1,1)-上是增函数; (3)解不等式(1)()0f t f t -+<。

例9.(2010·郑州)定义在R 上的函数f (x )满足:对于任意α,β∈R ,总有f (α+β)-[f (α)+f (β)]=2010,则下列说法正确的是( ) A .f (x )-1是奇函数 B .f (x )+1是奇函数 C .f (x )-2010是奇函数 D .f (x )+2010是奇函数例10.设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ⎝⎛⎭⎪⎫x +3x +4的所有x 之和为( ) A .-3 B .3 C .-8 D .8例11.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4}C .{x |x <0或x >6} D .{x |x <-2或x >2} 例13.已知函数f (x +1)是奇函数,f (x -1)是偶函数,且f (0)=2,则f (4)=________. 例14.对于定义在R 上的函数f (x ),有下述四个命题,其中正确命题的序号为________.①若f (x )是奇函数,则f (x -1)的图象关于点A (1,0)对称;②若对x ∈R ,有f (x +1)=f (x -1),则y =f (x )的图象关于直线x =1对称; ③若函数f (x -1)的图象关于直线x =1对称,则f (x )为偶函数; ④函数y =f (1+x )与函数y =f (1-x )的图象关于直线x =1对称.例15.已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a 、b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围例16.设函数f (x )的定义域关于原点对称,且满足f (x 1-x 2)=f (x 1)f (x 2)+1f (x 2)-f (x 1);求证:f (x )是奇函数;例17.(2013年潍坊模拟)已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2, 则x 1+x 2=-8.以上命题中所有正确命题的序号为________变式:(2013年大同模拟)已知函数y =f (x )是定义在R 上的偶函数,对任意x ∈R 都有f (x +6)=f (x )+f (3),当x 1,x 2∈[0,3],且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0,给出如下命题:①f (3)=0;②直线x =-6是函数y =f (x )的图象的一条对称轴;③函数y =f (x )在[-9,-6]上为增函数;④函数y =f (x )在[-9,9]上有四个零点. 其中所有正确命题的序号为( )A .①②B .②④C .①②③D .①②④例18.(2012年高考课标全国卷)设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________【题型六】抽象函数的奇偶性例16. 已知函数()f x 满足()()2()()f x y f x y f x f y -++=,且(0)0f ≠,试证()f x 是偶函数.变式: 已知定义在R 上的函数()f x 对任意实数,x y ,恒有()()()f x f y f x y +=+,且当0x >时,()0f x <,又2(1)3f =-.(1)求证:()f x 为奇函数;(2)求证:()f x 在R 上是减函数; (3)求()f x 在[3,6]-上的最大值与最小值.【题型七】函数的周期性例1.定义在R 上的函数f (x )满足:f (x )·f (x +2)=13,f (1)=2,则f (99)=( )A .13B .2 C.132D.213课堂练习1.下列命题中,真命题是( )A .函数y =1x 是奇函数,且在定义域内为减函数B .函数y =x 3(x -1)0是奇函数,且在定义域内为增函数C .函数y =x 2是偶函数,且在(-3,0)上为减函数D .函数y =ax 2+c (ac ≠0)是偶函数,且在(0,2)上为增函数2.奇函数f (x )在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f (-6)+f (-3)的值为( ) A .10 B .-10 C .-15 D .153.f (x )=x 3+1x 的图象关于( )A .原点对称B .y 轴对称C .y =x 对称D .y =-x 对称 4.如果定义在区间[3-a,5]上的函数f (x )为奇函数,那么a =________.5.下列函数为偶函数的是( )A .f (x )=|x |+xB .f (x )=x 2+1xC .f (x )=x 2+xD .f (x )=|x |x 2 6.设f (x )是R 上的任意函数,则下列叙述正确的是( )A .f (x )f (-x )是奇函数B .f (x )|f (-x )|是奇函数C .f (x )-f (-x )是偶函数D .f (x )+f (-x )是偶函数7.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( )A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .是非奇非偶函数 8.奇函数y =f (x )(x ∈R )的图象必过点( )A .(a ,f (-a ))B .(-a ,f (a ))C .(-a ,-f (a ))D .(a ,f (1a )) 9.f (x )为偶函数,且当x ≥0时,f (x )≥2,则当x ≤0时( )A .f (x )≤2B .f (x )≥2C .f (x )≤-2D .f (x )∈R 10.若函数f (x )=(x +1)(x -a )为偶函数,则a =________.11.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f (x )=0(x ∈R )既是奇函数,又是偶函数;④偶函数的图象关于y 轴对称.其中正确的命题是________.12.①f (x )=x 2(x 2+2);②f (x )=x |x |; ③f (x )=3x +x ;④f (x )=1-x 2x .以上函数中的奇函数是________.13.判断下列函数的奇偶性:(1)f (x )=(x -1) 1+x1-x ;(2)f (x )=⎩⎨⎧x 2+x (x <0)-x 2+x (x >0).14.判断函数f (x )=1-x 2|x +2|-2的奇偶性.15.若函数f (x )的定义域是R ,且对任意x ,y ∈R ,都有f (x +y )=f (x )+f (y )成立.试判断f (x )的奇偶性..课后练习1.若函数f (x )=x 3(x ∈R ),则函数y =f (-x )在其定义域上是( )A .单调递减的偶函数B .单调递减的奇函数C .单调递增的偶函数D .单调递增的奇函数2.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,若f (a )<f (b ),则一定可得( )A .a <bB .a >bC .|a |<|b |D .0≤a <b 或a >b ≥0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |+2)C .y =|x |(x -2)D .y =x (|x |-2) 4.函数f (x )=x 3+ax ,f (1)=3,则f (-1)=________.5.已知f (x )=ax 3+bx -4,其中a ,b 为常数,若f (-2)=2,则f (2)的值等于( )A .-2B .-4C .-6D .-106.若f (x )是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f (-32)与f (a 2+2a +52)的大小关系是( )A .f (-32)>f (a 2+2a +52)B .f (-32)<f (a 2+2a +52)C .f (-32)≥f (a 2+2a +52)D .f (-32)≤f (a 2+2a +52)7.若ρ(x ),g (x )都是奇函数,f (x )=aρ(x )+bg (x )+2在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( ) A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-38.若函数f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则( )A .f (3)+f (4)>0B .f (-3)-f (-2)<0C .f (-2)+f (-5)<5D .f (4)-f (-1)>09.已知定义在R 上的奇函数f (x ),当x >0时,f (x )=x 2+|x |-1,那么x <0时,f (x )的解析式为f (x )=( )A .x 2-|x |+1B .-x 2+|x |+1C .-x 2-|x |-1D .-x 2-|x |+110.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)11.若函数f (x )=(k -2)x 2+(k -1)x +3是偶函数,则f (x )的递减区间是________.12.若f (x )是偶函数,当x ∈[0,+∞)时f (x )=x -1,则f (x -1)<0的解集是________.13.函数f (x )是定义在R 上的奇函数,且它是减函数,若实数a ,b 满足f (a )+f (b )>0,则a +b ________0(填“>”、“<”或“=”).14.已知函数f (x )=ax +b 1+x2是定义在(-1,1)上的奇函数,且f (12)=25,求函数f (x )的解析式.15.设函数f (x )在R 上是偶函数,在区间(-∞,0)上递增,且f (2a 2+a +1)<f (2a 2-2a +3),求a 的取值范围.16.已知f (x )为偶函数,g (x )为奇函数,且满足f (x )+g (x )=1x -1,求f (x ),g (x ).17.对于定义域是R 的任意奇函数()f x 有 ( ) A .()()0f x f x --≥ B .()()0f x f x --≤ C .()()0f x f x -≤D .()()0f x f x -≥18.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则( ) A .)2()2()3(f f f << B .)2()3()2(f f f << C .)2()2()3(f f f << D .)3()2()2(f f f << 19. 若函数()(()0)f x f x ≠为奇函数,则必有(A )()()0f x f x ⋅-> (B )()()0f x f x ⋅-< (C )()()f x f x <- (D )()()f x f x >- 20.设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )(A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3)(C )f(π)<f(-3)<f(-2) (D )f(π)<f(-2)<f(-3) 21、函数()f x 是(,)-∞+∞上的增函数,若对于12,x x R ∈都有121()()()f x f x f x +≥-+2()f x -成立,则必有(A )12x x ≥ (B )12x x ≤ (C )120x x +≥ (D )120x x +≤ 22、已知函数f (x )、g (x )定义在同一区间D 上,f (x )是增函数,g (x )是减函数,且g (x )≠0,则在D 上 ( )A 、f(x)+g(x)一定是减函数B 、f(x)-g(x)一定是增函数C 、f(x)·g(x)一定是增函数D 、)()(x g x f 一定是减函数 23、已知函数)(x f 的图象关于直线2=x 对称,且在区间)0,(-∞上,当1-=x 时,)(x f 有最小值3,则在区间),4(+∞上,当=x ____时,)(x f 有最____值为_____.。

相关文档
最新文档