广东省佛山市顺德区伦教翁祐中学八年级(上)第二次月考数学试卷
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题 1.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .12.若等腰三角形的一个内角为92°,则它的顶角的度数为( )A .92°B .88°C .44°D .88°或44°3.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .22320m mn n -++=B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --= 4.下列图案中,不是轴对称图形的是( )A .B .C .D .5.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D . 6.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2, 3 7.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( )A .(﹣2,﹣3)B .(2,﹣3)C .(﹣4,3)D .(3,﹣4) 8.下列四个图案中,不是轴对称图案的是( )A .B .C .D .9.设2的整数部分用a 表示,小数部分用b 表示,4﹣2的整数部分用c 表示,小数部分用d 表示,则b d ac +值为( ) A .12 B .14 C .21- D .2+1 10.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC二、填空题11.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 12.当a =_______时,分式2123a a a +--的值为1. 13.若1712a =,则352020a a -+=__________. 14.等边三角形有_____条对称轴. 15.已知直角三角形的两边长分别为3、4.则第三边长为________.16.2,227,2543.14,这些数中,无理数有__________个.17.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.18.比较大小:-2______-3.19.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.20.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题21.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A 、B 两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱. (1)求y 关于x 的函数表达式;(2)若要求购进A 水果的数量不少于B 水果的数量,则应该如何分配购进A 、B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少?22.已知25a =+25b =(1)22a b ab +;(2)223a ab b -+23.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.24.(新知理解)如图①,若点A 、B 在直线l 同侧,在直线l 上找一点P ,使AP BP +的值最小. 作法:作点A 关于直线l 的对称点A ',连接A B '交直线l 于点P ,则点P 即为所求. (解决问题)如图②,AD 是边长为6cm 的等边三角形ABC 的中线,点P 、E 分别在AD 、AC 上,则PC PE +的最小值为 cm;(拓展研究)如图③,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠.(保留作图痕迹,并对作图方法进行说明)25.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC=6,求△ADE的周长.(2)若∠DAE=60°,求∠BAC的度数.四、压轴题26.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.27.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.29.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.30.如图,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥AD ,且AB =AD +BC ,E 是DC 的中点,连结BE 并延长交AD 的延长线于G .(1)求证:DG =BC ;(2)F 是AB 边上的动点,当F 点在什么位置时,FD ∥BG ;说明理由.(3)在(2)的条件下,连结AE 交FD 于H ,FH 与HD 长度关系如何?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键.2.A解析:A【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.3.B解析:B【解析】【分析】作图,根据等腰三角形的性质和勾股定理可得2220m mn n +-=,整理即可求解【详解】解:如图,222m m n m , 22222m n mn m ,2220m mn n +-=.故选:B .【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.4.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、是轴对称图形,故此选项不合题意;B 、是轴对称图形,故此选项不合题意;C 、是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项符合题意.故选:D .【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.5.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.6.B解析:B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可: A 、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.7.B解析:B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;故选:B.【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.8.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A.此图案是轴对称图形,不符合题意;B.此图案不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是轴对称图形,不符合题意;故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a=1,b﹣1,∵2<4<3∴c=2,d=4﹣2=2.∴b+d=1,ac=2.∴b dac=12.故选:A.【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键. 10.C解析:C【解析】试题分析:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.考点:全等三角形的判定.二、填空题11.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】解:根据题意得:=1,即可得到解得 :根据中 得到舍弃所以故答案为:-3.【点睛】此题主要考查了可化为一元解析:-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】 解:根据题意得:2123a a a +--=1, 即可得到 2123a a a +-=-解得 :3a =±根据2123a a a +--中 30a -≠ 得到3a ≠ 舍弃3a =所以3a =-故答案为:-3.【点睛】此题主要考查了可化为一元二次方程的分式方程,关键是根据题意列出分式方程. 13.2024【解析】【分析】,代入a 值,根据乘法法则进行计算即可.【详解】===4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公解析:2024【解析】【分析】352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.【详解】352020a a -+=()225202052020a a ⎡⎤⎢⎥-+=-+⎢⎥⎝⎭⎣⎦=1185202024⎡⎤+⨯-+⎢⎥⎣⎦=11202022⨯+ =4+2020=2024故答案为:2024【点睛】 考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.14.3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.解析:3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.15.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用.16.1【解析】【分析】根据无理数的定义,即可得到答案.【详解】解:根据题意,是无理数;,,3.14是有理数;∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟解析:1【解析】【分析】根据无理数的定义,即可得到答案.【详解】是无理数;227, 3.14是有理数; ∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟练掌握无理数的定义. 17.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =,∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.18.>【解析】, .解析:>【解析】23< ,>19.68°【解析】【分析】由在△ABC 中,AC=AD=BD ,∠B=28°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C 的度数,可得结论.【详解】解:∵AD=BD ,∴∠BAD=∠解析:68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠B=28°,∴∠ADC=∠B+∠BAD=28°+28°=56°,∵AD=AC,∴∠C=∠ADC=56°,∴∠CAD=180°-∠ADC-∠C=180°-56°-56°=68°,故答案为:68°.【点睛】此题考查了等腰三角形的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.20..【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE 的面积=12×1×1=12. 故答案为:12. 【点睛】 本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键.三、解答题21.(1)3245y =-+;(2)应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元【解析】【分析】(1)根据A 水果总价+B 水果总价=1200列出关于x 、y 的二元一次方程,对方程进行整理变形即可得出结论;(2)设利润为W 元,找出利润W 关于x 的函数关系式,由购进A 水果的数量不得少于B 水果的数量找出关于x 的一元一次不等式,解不等式得出x 的取值范围,再利用一次函数的性质即可解决最值问题.【详解】(1)∵30501200x y∴y 关于x 的函数表达式为:3245y =-+. (2)设获得的利润为w 元,根据题意得510w x y , ∴240w x =-+∵A 水果的数量不得少于B 水果的数量,∴x y ≥,解得15x ≥.∵10-<,∴w 随x 的增大而减小,∴当15x =时,w 最大225=,此时120315155y -⨯==. 即应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元.【点睛】本题考查了二元一次方程的应用、一次函数的应用;根据题意得出等量关系列出方程组或得出函数关系式或由不等关系得出不等式是解决问题的关键.22.(1)-4;(2)21【解析】【分析】(1)根据a ,b 的值求出a+b ,ab 的值,再根据a 2+b 2=(a+b )2-2ab ,代入计算即可; (2)根据(1)得出的a+b ,ab 的值,再根据代入计算即可.【详解】(1)∵2a =+2b =∴4a b +=,222525251ab, ∴22=144ab aa b a b b (2)由(1)得4a b +=,1ab =-,∴223a ab b -+2225a ab b ab25a b ab 245121=【点睛】此题考查了二次根式的化简求值,用到的知识点是二次根式的性质、完全平方公式、平方差公式,关键是对要求的式子进行化简.23.(1)详见解析;(2;(3【解析】【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE∠=∠=,利用勾股定理得AE =,,根据(1)思路得.【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS), 所以30FEA BDA ∠=∠=,CE=BD=5 所以90BDE BDA ADE ∠=∠+∠= 所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠= 所以AE=222AB AC AC += 因为AB AC =所以AE 2AB =又因为45CAB ∠=所以90ABE ∠=所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠= 所以BC=CD, 90BCD ∠= 因为同(1)可得△ACD ≌△ECB(SAS) 所以AD=BE=3AB所以33AD AB AB AB==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.24.(1)33;(2)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】如图②,作点E关于AD的对称点F,连接PF,则PE=PF,当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),当CF⊥AB时,CF最短,此时BF=12AB=3(cm),∴Rt△BCF中,CF=2222=63=33BC BF--(cm),∴PC+PE的最小值为33cm;(2)【拓展研究】方法1:如图③,作B关于AC的对称点E,连接DE并延长,交AC于P,点P即为所求,连接BP,则∠APB=∠APD.方法2:如图④,作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,点P 即为所求,连接DP,则∠APB=∠APD.25.(1)6;(2)120°【解析】【分析】(1)根据线段垂直平分线性质得出AD=BD,CE=AE,求出△ADE的周长=BC,即可得出答案;(2)由∠DAE=60°,即可得∠ADE+∠AED=120°,又由DA=DB,EA=EC,即可求得∠BAC 的度数.【详解】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于D、E,∴DB=DA,EA=EC,又BC=6,∴△ADE的周长=AD+DE+EA=BD+DE+EC=BC=6,(2)∵∠DAE=60°,∴∠ADE+∠AED=120°∵DB=DA,EA=EC,∴∠B=∠BAD,∠C=∠CAE∴∠ADE=∠B+∠BAD=2∠B,∠AED=∠C+∠CAE=2∠C∴2∠B+2∠C=120°∴∠B+∠C=60°∴∠BAC=180°﹣(∠B+∠C)=120°【点睛】本题考查的知识点是线段垂直平分线的性质,熟记性质内容是解此题的关键.四、压轴题26.(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或9+2或9﹣2或6时,△APQ为等腰三角形.【解析】分析:(1)把P(m,3)的坐标代入直线1l的解析式即可求得P的坐标,然后根据待定系数法即可求得b;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-,解得t =6. 故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.27.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211【解析】【分析】(1)①先证明∠DAC =∠ECB ,由AAS 即可得出△ADC ≌△CEB ;②由全等三角形的性质得出AD =CE =8,CD =BE =6,即可得出DE =CD +CE =14; (2)①当点N 在线段CA 上时,根据CN =CN−BC 即可得出答案;②点M 与点N 重合时,CM =CN ,即3t =8t−10,解得t =2即可;③分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,则CM =CN ,得3t =10−8t ,解得t =1011;当点N 在线段CA 上时,△PCM ≌△QCN ,则3t =8t−10,解得t =2;即可得出答案.【详解】(1)①证明:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∵∠ACB =90°,∴∠DAC +∠DCA =∠DCA +∠BCE =90°,∴∠DAC =∠ECB , 在△ADC 和△CEB 中ADC CEB DAC ECB AC CB ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC ≌△CEB (AAS );②由①得:△ADC ≌△CEB ,∴AD =CE =8,CD =BE =6,∴DE =CD +CE =6+8=14;(2)解:①当点N 在线段CA 上时,如图3所示:CN =CN−BC =8t−10;②点M 与点N 重合时,CM =CN ,即3t =8t−10,解得:t =2,∴当t 为2秒时,点M 与点N 重合;③分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,∴CM =CN ,∴3t =10−8t ,解得:t =1011; 当点N 在线段CA 上时,△PCM ≌△QCN ,点M 与N 重合,CM =CN ,则3t =8t−10,解得:t =2;综上所述,当△PCM 与△QCN 全等时,则t 等于1011s 或2s , 故答案为:1011s 或2s . 【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠,PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠,FEP OPE ∴∠=∠,CEP CEF FEP ∠=∠+∠,CEP CEF OPE ∴∠=∠+∠,CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.29.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.30.(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【解析】【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.。
第一学期八年级数学第二次月考试卷(含解析)
第一学期八年级数学第二次月考试卷(含解析)一、选择题1.若a满足3a a =,则a 的值为( )A .1B .0C .0或1D .0或1或1-2.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,3.下列等式从左到右的变形,属于因式分解的是( )A .()a x y ax ay -=-B .()()311x x x x x -=+- C .()()21343x x x x ++=++D .()22121x x x x ++=++4.下列各式从左到右变形正确的是( ) A .0.220.22a b a ba b a b++=++B .231843214332x yx y x y x y ++=-- C .n n a m m a-=-D .221a b a b a b+=++5.下列图案中,不是轴对称图形的是( ) A .B .C .D .6.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .37.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 8.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤9.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>010.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )二、填空题11.关于x 的分式方程211x ax +=+的解为负数,则a 的取值范围是_________. 12.49的平方根为_______ 13.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.14.写出一个比4大且比5小的无理数:__________.15.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 16.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________.17. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.18.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.19.已知直角三角形的两边长分别为3、4.则第三边长为________.20.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.三、解答题21.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A 、B 两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱.(1)求y 关于x 的函数表达式;(2)若要求购进A 水果的数量不少于B 水果的数量,则应该如何分配购进A 、B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少?22.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表: x/元 … 15 20 25 … y/件…252015…已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式; (2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?23.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2)2.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°3.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )A .B .C .D .4.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )A .3B .4C .3.5D .2 5.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .106.下列根式中是最简二次根式的是( )A .23B .3C .9D .127.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .768.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 9.下列说法正确的是( ) A .(﹣3)2的平方根是3 B 16±4C .1的平方根是1D .4的算术平方根是210.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( )A .AC =2CDB .AD =2CDC .AD =3BD D .AB =2BC 二、填空题11.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 12.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.13.在311,2π,122-,0,0.454454445…,319中,无理数有______个. 14.计算112242⨯+=__________. 15.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.16.已知直角三角形的两边长分别为3、4.则第三边长为________.17.点A (2,-3)关于x 轴对称的点的坐标是______.18.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.19.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题21.如图,在平面直角坐标系xOy 中,已知正比例函数43y x =与一次函数7y x =-+的 图像交于点A .(1)求点A 的坐标;(2)在y 轴上确定点M ,使得△AOM 是等腰三角形,请直接写出点M 的坐标;(3)如图,设x 轴上一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交43y x =和7y x =-+的图像于点B 、C ,连接OC ,若BC =145OA ,求△ABC 的面积及点B 、点C 的坐标;(4)在(3)的条件下,设直线7y x =-+交x 轴于点D ,在直线BC 上确定点E ,使得△ADE 的周长最小,请直接写出点E 的坐标.22.如图,在四边形ABCD中,90ABC∠=︒,过点B作BE CD⊥,垂足为点E,过点A作AF BE⊥,垂足为点F,且BE AF=.(1)求证:ABF BCE∆≅∆;(2)连接BD,且BD平分ABE∠交AF于点G.求证:BCD∆是等腰三角形.23.用函数方法研究动点到定点的距离问题.在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:S与x的函数关系为S=1,1,10,1,1,1,x xx xx x-<⎧⎪-==⎨⎪->⎩并画出图像如图:借助小明的研究经验,解决下列问题:(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.①随着x增大,y怎样变化?②当x取何值时,y取最小值,y的最小值是多少?③当x<1时,证明y随着x增大而变化的规律.24.如图,M、N两个村庄落在落在两条相交公路AO、BO内部,这两条公路的交点是O,现在要建立一所中学C,要求它到两个村庄的距离相等,到两条公路的距离也相等.试利用尺规找出中学的位置(保留作图痕迹,不写作法).25.如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B 地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?四、压轴题26.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平--=.面直角坐标系,点A(0,a),C(b,0a6b80(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).27.直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.28.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.29.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.30.如图,直线l1的表达式为:y=-3x+3,且直线l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【详解】如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.3.A解析:A【解析】【分析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【详解】由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除B选项,由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C、D选项,故选A.【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.A解析:A【解析】【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【详解】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF//BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE-DF=7-4=3.故选:A.【点睛】本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.5.C解析:C【解析】【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC 的长.【详解】在△ABC中,AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BC=2BD.∴∠ADB=90°在Rt△ABD中,根据勾股定理得:=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.6.B解析:B【解析】【分析】【详解】ABC ,故此选项错误;D =故选B .考点:最简二次根式.7.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴AE=BE ,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.8.B解析:B【解析】【分析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.9.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B、164=,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.10.B解析:B【解析】【分析】在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.【详解】解:∵△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC;∵CD⊥AB,∴AC=2CD,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,CD3,在Rt△ABC中,∠A=30°,AD3=3BD,故选:B.【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.二、填空题11..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x2.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.12.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=-32,∴所求函数解析式是y=-32 x;故答案为:y=-32 x.【点睛】本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.13.3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2 ,0.4544544453个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.14.【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】解:.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.解析:【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】1122426.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.15.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.16.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用.17.(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.18.【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是解析:40【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.19.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+bmx+n的解集.【详解】∵当x2时,一次函数y=kx+b的x≥解析:2【解析】【分析】观察函数图象得到,当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+b≥mx+n的解集.【详解】∵当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,∴不等式kx+b≥mx+n的解集为x≥2.故答案是:x≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题21.(1)(3,4);(2)点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)点B(9,12)、C(9,﹣2);(4)点E坐标为(9,1).【解析】试题分析:(1)联立方程组,求解.(2)分类讨论在y轴上确定点OM= OA,OM=AM,总共有4种可能性.(3)设点B(a,43a),C(a,﹣a+7),利用BC=145OA,求a值.过点A作AQ⊥BC,求得△ABC的面积及点B、点C的坐标.(4)利用对称求最小值.试题解析:解:(1)联立得:437y xy x⎧=⎪⎨⎪=-+⎩,解得:34xy=⎧⎨=⎩,则点A的坐标为(3,4).(2)根据勾股定理得:OA=2234+=5,如图1所示,分四种情况考虑:当OM1=OA=5时,M1(0,5);当OM2=OA=5时,M2(0,﹣5);当AM3=OA=5时,M3(0,8);当OM4=AM4时,M4(0,258),综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)设点B(a,43a),C(a,﹣a+7),∵BC=145OA=145×5=14,∴43a﹣(﹣a+7)=14,解得:a=9,过点A作AQ⊥BC,如图2所示,∴S△ABC=12BC•AQ=12×14×(9﹣3)=42,当a=9时,43a=43×9=12,﹣a+7=﹣9+7=﹣2,∴点B(9,12)、C(9,﹣2).(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE 周长最小,对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),由(3)得到直线BC为直线x=9,∴D′(11,0),设直线AD′解析式为y=kx+b,把A与D′坐标代入得:34 110k bk b+=⎧⎨+=⎩,解得:12112kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD′解析式为y=﹣12x+112,令x=9,得到y=1,则此时点E坐标为(9,1).点睛:1.平面上最短路径问题(1)归于“两点之间的连线中,线段最短”.凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”.凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题.2.平面直角坐标系下,两个一次函数图像的交点坐标问题,可以看作二元一次方程组的解的问题.3.待定系数法求函数的解析式.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°,∴∠ABE+∠BAF=90°.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠BAF=∠EBC.在ΔABF 和ΔBCE 中,∵∠AFB =∠BEC ,AF =BE ,∠BAF =∠EBC ,∴ΔABF ≌ΔBCE .(2)∵∠ABC =90°,∴∠ABD +∠DBC =90°.∵∠BED =90°,∴∠DBE +∠BDE =90°.∵BD 分∠ABE ,∴∠ABD =∠DBE ,∴∠DBC =∠BDE ,∴BC =CD ,即ΔBCD 是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF ≌ΔBCE .23.(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩,当x =-2时,S 的最小值为0;(2)①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大,②当1≤x ≤5时,y 取最小值,y 的最小值是4,③当x <1时,y 随x 增大而减小.【解析】【分析】(1)根据x 轴上两点之间的距离等于它们差的绝对值,以及绝对值的意义可直接写出结论; (2)根据x 轴上两点之间的距离等于它们差的绝对值,得出PM 和PN 的距离,它们之和即为y.①分情况讨论,根据一次函数的性质可得y 的变化情况;②根据y 的变化情况可求;③当x <1时,62y x =-,根据函数的增减性可得.【详解】(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩;∵当x <2时y 随x 增大而减小,当x >2时y 随x 的增大而增大,∴当x =-2时,S 的最小值为0.(2)由题意得y =|1|x -+|5|x -,根据绝对值的意义,可转化为y =62,14,1526,5x x x x x -<⎧⎪⎨⎪->⎩①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大.②当1≤x ≤5时,y 取最小值,y 的最小值是4.③当x <1时,62y x =-,∵-2<0∴当x <1时,y 随x 增大而减小.【点睛】本题考查一次函数的应用,一次函数的性质,化简绝对值.掌握x 轴上两点之间的距离公式,能分段讨论化简绝对值是解决此题的关键.24.作图见解析.【解析】【分析】先连接MN ,根据线段垂直平分线的性质作出线段MN 的垂直平分线DE ,再作出∠AOB 的平分线OF ,DE 与OF 相交于C 点,则点C 即为所求.【详解】点C 为线段MN 的垂直平分线与∠AOB 的平分线的交点,则点C 到点M 、N 的距离相等,到AO 、BO 的距离也相等,作图如下:.【点睛】此题考查作图-应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.25.(1)120,2,420;(2)线段PM 所表示的y 与x 之间的函数表达式是y =﹣60x +300,线段MN 所表示的y 与x 之间的函数表达式是y =60x ﹣300;(3)行驶时间x 满足2≤x ≤5时,甲、乙两车距离车站C 的路程之和最小.【解析】【分析】(1)根据题意和图象中的数据,可以求得a 、b 的值以及AB 两地之间的距离;(2)根据(1)中的结果和函数图象中的数据,可以求得线段PM 、MN 所表示的y 与x 之间的函数表达式;(3)根据题意,可以写出甲、乙两车距离车站C 的路程之和和s 之间的函数关系式,然后利用一次函数的性质即可解答本题.【详解】(1)两车的速度为:300÷5=60km/h ,a =60×(7﹣5)=120,b =7﹣5=2,AB 两地的距离是:300+120=420.故答案为:120,2,420;(2)设线段PM 所表示的y 与x 之间的函数表达式是y =kx +b ,30050b k b =⎧⎨+=⎩,得60300k b =-⎧⎨=⎩, 即线段PM 所表示的y 与x 之间的函数表达式是y =﹣60x +300;设线段MN 所表示的y 与x 之间的函数表达式是y =mx +n ,507120m n m n +=⎧⎨+=⎩,得60300m n =⎧⎨=-⎩, 即线段MN 所表示的y 与x 之间的函数表达式是y =60x ﹣300;(3)设DE 对应的函数解析式为y =cx +d ,12020d c d =⎧⎨+=⎩,得60120c d =-⎧⎨=⎩, 即DE 对应的函数解析式为y =﹣60x +120,设EF 对应的函数解析式为y =ex +f ,207300e f c f +=⎧⎨+=⎩,得60120e f =⎧⎨=-⎩, 即EF 对应的函数解析式为y =60x ﹣120,设甲、乙两车距离车站C 的路程之和为skm ,当0≤x ≤2时,s =(﹣60x +300)+(﹣60x +120)=﹣120x +420,则当x =2时,s 取得最小值,此时s =180,当2<x ≤5时,s =(﹣60x +300)+(60x ﹣120)=180,当5≤x ≤7时,s =(60x ﹣300)+(60x ﹣120)=120x ﹣420,则当x =5时,s 取得最小值,此时s =180,由上可得:行驶时间x 满足2≤x ≤5时,甲、乙两车距离车站C 的路程之和最小.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.四、压轴题26.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析【解析】【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论; (3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论.【详解】解:(1) 解:(1)∵a 6b 80-+-=, ∴a-6=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y 轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD ,∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.27.(1)证明见解析;(2)①CM =8t -,CN =63t -;②t =3.5或5或6.5.【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)①由折叠的性质可得出答案;②动点N 沿F→C 路径运动,点N 沿C→B 路径运动,点N 沿B→C 路径运动,点N 沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.【详解】(1)∵AD ⊥直线l ,BE ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE (AAS );(2)①由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ;故答案为:8-t ;6-3t ;②由折叠的性质可知,∠BCE=∠FCE ,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD ,∴当CM=CN 时,△MDC 与△CEN 全等,当点N 沿F→C 路径运动时,8-t=6-3t ,解得,t=-1(不合题意),当点N 沿C→B 路径运动时,CN=3t-6,则8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC与△CEN全等.【点睛】本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.28.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.29.模型建立:见解析;应用1:2:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=22260BH DH+==265;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(4,2),∴M(2,1),设直线Q M的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:213k bk b+=⎧⎨+=⎩,解得:25kb=-⎧⎨=⎩∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(52,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=4,∴y=﹣x+4,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+4,故答案为:y=﹣x+4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.30.(1)(1,0);(2)362y x -=;(3)92;(4)(6,3). 【解析】【分析】(1)由题意已知l 1的解析式,令y=0求出x 的值即可;(2)根据题意设l 2的解析式为y=kx+b ,并由题意联立方程组求出k ,b 的值;(3)由题意联立方程组,求出交点C 的坐标,继而即可求出S △ADC ;(4)由题意根据△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到AD 的距离进行分析计算.【详解】解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D (1,0);(2)设直线l 2的解析表达式为y=kx+b ,由图象知:x=4,y=0;x=3,y =32-,代入表达式y=kx+b , ∴40332k b k b +⎧⎪⎨+-⎪⎩==, ∴326k b ⎧⎪⎨⎪-⎩==, ∴直线l 2的解析表达式为362y x -=; (3)由33362y x y x ⎪-+-⎧⎪⎨⎩==,解得23x y ⎧⎨⎩-==, ∴C (2,-3),∵AD=3, ∴331922ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值=|-3|=3,则P 到AD 距离=3,∴P 纵坐标的绝对值=3,点P 不是点C ,∴点P 纵坐标是3,∵y=1.5x-6,y=3,∴1.5x-6=3,解得x=6,。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 2.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 3.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒4.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A .甲的速度保持不变B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人不相遇D .在起跑后第50秒时,乙在甲的前面5.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .22320m mn n -++=B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --=6.下列交通标识中,是轴对称图形的是( )A .B .C .D .7.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =ADC 2B ∠=∠,则BC的长为( )A .51-B .51+C .31-D .31+8.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .19.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( ) A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位10.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg二、填空题 11.1﹣π的相反数是_____.12.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.13.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______.14.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.15.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.16.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________.17.在实数:11-50.2-803.010010001 (72)π、、、、、、中,无理数有______个. 18.36的算术平方根是 . 19.点()2,3A 关于y 轴对称点的坐标是______.20.若分式2223x x -+的值为零,则x 的值等于___.三、解答题21.求下列各式中的x :(1)()2116x -=; (2)321x +=.22.如图①,A 、B 两个圆柱形容器放置在同一水平桌面上,开始时容器A 中盛满水,容器B 中盛有高度为1 dm 的水,容器B 下方装有一只水龙头,容器A 向容器B 匀速注水.设时间为t (s),容器A 、B 中的水位高度A h (dm)、B h (dm)与时间t (s)之间的部分函数图像如图②所示.根据图中数据解答下列问题:(1)容器A 向容器B 注水的速度为 dm 3/s(结果保留π),容器B 的底面直径m = dm;(2)当容器B 注满水后,容器A 停止向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为4πdm 3/s.请在图②中画出容器B 中水位高度B h 与时间 (4t ≥)的函数图像,说明理由;(3)当容器B 注满水后,容器A 继续向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为2πdm 3/s ,直至容器A 、B 水位高度相同时,立即停止放水和注水,求容器A 向容器B 全程注水时间.(提示:圆柱体积=圆柱的底面积×圆柱的高)23.先化简,再求值:()3212m m m ⎛⎫++÷+ ⎪-⎝⎭,其中22m -≤≤且m 为整数.请你从中选取一个喜欢的数代入求值.24.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE .(1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.25.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.四、压轴题26.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).27.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.28.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF29.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值.30.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P (a ,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C .【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A 、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B 、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C 、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D 、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确. 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.3.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.4.B解析:B【解析】【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【详解】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故不选A;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选B;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故不选C;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故不选D.故选:B.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.5.B解析:B【解析】【分析】作图,根据等腰三角形的性质和勾股定理可得22+-=,整理即可求解20m mn n【详解】解:如图,222m m n m,22222m n mn m,22m mn n+-=.20故选:B.【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.6.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B 是轴对称图形,故选B7.B解析:B【解析】【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1故选B【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.8.D解析:D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 9.D解析:D【解析】【分析】根据近似数的精确度求解.【详解】解:1.36×105精确到千位.故选:D .【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.10.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D .【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.二、填空题11.π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是.故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号. 解析:π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是()11ππ=﹣﹣﹣. 故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.12.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.13.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.14.(-1,-3)【解析】【分析】让点A 的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A (2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A 的横坐标减4,纵坐标减2即可得到平移后的坐标.点A (2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.15.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).16.【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点和点关于原点对称,∴,,∴;故答案为:.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记解析:4-【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点(,1)A a 和点(3,)B b 关于原点O 对称,∴3a =-,1b =-,∴3(1)4a b +=-+-=-;故答案为:4-.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数,比较简单.17.3【解析】【分析】根据无理数的三种形式求解即可.【详解】解:=-2,无理数有:,共3个.故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开解析:3【解析】【分析】根据无理数的三种形式求解即可.【详解】, 3.010010001 (2)π、、,共3个. 故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 18.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.19.(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对解析:(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,关于x轴对称的点,横坐标相同,纵坐标互为相反数.20.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x﹣2=0,解得:x=2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】 本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.三、解答题21.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.22.(1)34π,2;(2)见详解;(3)6s. 【解析】【分析】(1)通过注水速度=注水体积÷注水时间以及圆柱体积=圆柱的底面积×圆柱的高,代入公式进行计算即可;(2)通过放水时间=放水体积÷放水速度,求出时间即可求出放水时间,然后画出图像; (3)列出容器A 和容器B 中水的高度与时间t 的关系,通过水位高度相同求解即可.【详解】解:(1)由图象可知,4秒时间A 容器内水的高度下降了1dm ,B 容器内水的高度上升了3dm ,B 容器增加的水的体积等于A 容器减少的水的体积,A 容器减少的水的体积2132A V sh ππ⎛==⨯= ⎝⎭,则注水速度为3 4Vtπ=,B容器流入的水的体积2332BmV shππ⎛⎫==⨯=⎪⎝⎭,解得m=2,故答案为34π;2.(2)注满后B容器中水的总体积为:22442ππ⎛⎫⨯=⎪⎝⎭,∵放水速度为4π,∴放空所需要的时间为:4π÷4π=16 s.如图所示,(3)4秒时A容器体积为22326ππ⨯=⎝⎭此时B容器体积为4π根据注水速度,A容器内水的高度为()36414334ttπππ--=-B容器内水的高度:()()344245494t ttππππ+---=-由153944t t-=-解得t=6,∴容器A向容器B全程注水时间t为6s.【点睛】此题的关键是找到题中各个量之间的关系,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,理解题意是解题的关键.23.12m m --;当0m =时,原式12= 【解析】【分析】 根据分式的加法和除法可以化简题目中的式子,然后从22m -≤≤且m 为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:3212m m m 223121m m m m 243211m m m 11112m m m m21m m , ∵22m -≤≤且m 为整数, ∴当m=0时,原式011022 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1)见解析(2)9613 【解析】【分析】(1)连接BD ,依题意得BD=CD ,所以∠C=∠CBD ,可证明∠CBD=2E ∠,进而可得结论; (2)过点F 作FM BC ⊥,FN AC ⊥,根据已知求出CD=5,AC=10,由勾股定理求出BC=8,求出S △BCD =12S △ABC ,再根据BCD BCF CDF S S S ∆∆∆=+,即111222CD FN BC FM =⋅+⋅可求出FM ,从而可得结论. 【详解】(1)连接BD点D 为AC 中点,且90ABC ∠=︒,12BD AC CD AD ∴===, CD BE =,BE BD ∴=,BDE E ∴∠=∠,又BD CD ∴=,C DBC ∴∠=∠,2C DBC BDE E E ∴∠=∠=∠+∠=∠,(2)过点F 作FM BC ⊥,FN AC ⊥.CG 平分ABC ∠,FM FN ∴=,5BE =,5,10CD AD BE AC ∴====,又6AB =∴在Rt ABC ∆中,222AB BC AC +=,8BC ∴=BD 为ABC ∆中线, 11111681222222BCD ABC S S AB BC ∆∆∴==⨯⨯=⨯⨯⨯=, 又BCD BCF CDF S S S ∆∆∆=+, 111222CD FN BC FM ∴=⋅+⋅, 11581222FM FM ∴⨯⨯+⨯⨯=, 2413FM ∴=, 1124968221313BCF S BC FM ∆∴=⋅=⨯⨯=, 【点睛】此题考查了直角三角形的性质,角平分线的性质以及三角形中线的性质,熟练掌握这些性质是解题的关键.25.证明见解析【解析】试题分析:要证明AC=DF成立,只需要利用AAS证明△ABC≌△DEF即可.试题解析:证明:∵BF=EC(已知),∴BF+FC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF考点:全等三角形的判定与性质.四、压轴题26.(1)①E(3,﹣2)②见解析;③12OMBD,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.27.(1)4;2;(0,4);(2)125m=或285m=;(3)存在.Q点坐标为()45,4-,()45,4,()0,4-或()5,4.【解析】【分析】(1)根据待定系数法,将点C(4,2)代入解析式可求解;(2)设点E(m,142m+),F(m,2m-6),得()154261022EF m m m=-+--=-,由平行四边形的性质可得BO=EF=4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2,∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4,∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m ,∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =,∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.28.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD ≌△CBE ,再由全等三角形的性质即可证得CD=BE ;(2)先证明△BCD ≌△ABE ,得到∠BCD=∠ABE ,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC ,∠CQE=180°-∠DQB ,即可解答; (3)如图3,过点D 作DG ∥BC 交AC 于点G ,根据等边三角形的三边相等,可以证得AD=DG=CE ;进而证明△DGF 和△ECF 全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.29.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,(10+2)a【解析】【分析】 (1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a ==,即可求得BF【详解】(1)①连接AD ,如图1.∵点C 与点D 关于直线l 对称,∴AC = AD .∵AB = AC ,∴AB = AC = AD .∴点B ,C ,D 在以A 为圆心,AB 为半径的圆上.②∵AD=AB=AC ,∴∠ADB=∠ABD ,∠ADC=∠ACD ,∵∠BAM=∠ADB+∠ABD ,∠MAC=∠ADC+∠ACD ,∴∠BAM=2∠ADB ,∠MAC=2∠ADC ,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α 故答案为:12α. (2连接CE ,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=1α,2∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,,F是以AC为直径的圆上一点,设AC中点为O,∵在△BOF中,BO+OF≥BF,当B、O、F三点共线时BF最长;如图,过点O作OH⊥BC,∵∠BAC=90°,2a,∴24==,∠ACB=45°,且OH⊥BC,BC AC a∴∠COH=∠HCO=45°,∴OH=HC,∴OC=,∵点O是AC中点,ACa,∴OC=,∴OH HC a==,∴BH=3a,∴BO=,∵点C关于直线l的对称点为点D,∴∠AFC=90°,∵点O是AC中点,∴OF OC==,∴BF a=,∴当B、O、F三点共线时BF最长;最大值为)a.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.30.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=12CF=3.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,EDF DCADFE CADDE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.在平面直角坐标系中,点P (﹣3,2)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四3.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .104.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A .51-B .51+C .31-D .31+ 5.已知a >0,b <0,那么点P(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,动点P 从点A 出发,按顺时针方向绕半圆O 匀速运动到点B ,再以相同的速度沿直径BA 回到点A 停止,线段OP 的长度d 与运动时间t 的函数图象大致是( )A .B .C .D .7.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( ) A .7cmB .9cmC .9cm 或12cmD .12cm8.若2x -在实数范围内有意义,则x 的取值范围( ) A .x≥2 B .x≤2 C .x >2D .x <29.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠=D .ACB ACD ∠=∠10.下列各数中,无理数是( ) A .πB .C .D .二、填空题11.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.12.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.13.计算222mm m+--的结果是___________ 14.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B 点后,B 点的位置可以用数对表示为__________.15.计算:16=_______.16.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______. 17.点A (2,-3)关于x 轴对称的点的坐标是______.18.已知直角三角形的两边长分别为3、4.则第三边长为________. 19.当x =_____时,分式22xx x-+值为0. 20.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,OA =6,OC =3.∠DOE =45°,OD ,OE 分别交BC ,AB 于点D ,E ,且CD =2,则点E 坐标为_____.三、解答题21.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用四种方法分别在如图方格内再填涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.22.某校组织全校2000名学生进行了环保知识竞赛,为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整): 分组 频数 频率 50.5~60.5 20 0.05 60.5~70.5 48 △ 70.5~80.5 △ 0.20 80.5~90.51040.2690.5~100.5148△合计△1根据所给信息,回答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在 90.5 ~ 100.5 分之间的学生进行奖励,请你估算出全校获奖学生的人数.23.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=6,求△ADE的周长.(2)若∠DAE=60°,求∠BAC的度数.24.已知一次函数y=(1﹣2m)x+m+1及坐标平面内一点P(2,0);(1)若一次函数图象经过点P(2,0),求m的值;(2)若一次函数的图象经过第一、二、三象限;①求m的取值范围;②若点M(a﹣1,y1),N(a,y2),在该一次函数的图象上,则y1y2(填“>”、”=”、”<”).25.计算:(1)2a b aa b b a ++--;(2)221(1)11x x x -÷+-. 四、压轴题26.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度; (2)当2t =时,请说明//PQ BC ; (3)设BCQ ∆的面积为()2S cm,求S 与t 之间的关系式.27.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时, ①若D 点的坐标为(﹣5,0),求点E 的坐标. ②求证:M 为BE 的中点. ③探究:若在点D 运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).28.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.29.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补. (1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK =∠HPK ,作PQ 平分∠EPK ,求∠HPQ 的度数.30.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.2.C解析:C【解析】试题分析:直线y=﹣5x+3与y轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C.考点:一次函数的图象和性质.3.A解析:A 【解析】 【分析】由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,易得△BCF 的周长等于AB+BC ,则可求得答案. 【详解】解:由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,所以△BCF 的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8. 故答案选A . 【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.4.B解析:B 【解析】 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1. 【详解】解:∵∠ADC 为三角形ABD 外角 ∴∠ADC=∠B+∠DAB ∵ADC 2B ∠=∠ ∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1 故选B 【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.5.D解析:D 【解析】试题分析:根据a >0,b <0和第四象限内的坐标符号特点可确定p 在第四象限.∵a>0,b<0,∴点P(a,b)在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.B解析:B【解析】【分析】根据P点半圆O、线段OB、线段OA这三段运动的情况分析即可.【详解】解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选B.【点睛】本题主要考查动点问题的函数图象,熟练掌握是解题的关键.7.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.8.A解析:A【解析】【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.【详解】∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 9.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【详解】解:A、AB=AD,BC=DC,再加上公共边AC=AC可利用SSS判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC可利用HL判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.A解析:A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.12.3-【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC的长度即为AF的长度. 【详解】解析:3【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出,可求出HC的长度即为AF的长度.【详解】解:如下图,作AH⊥BC于H.则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.13.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.14.【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B 点的位置.【详解】解:∵红方“马”的位置可以用一个数对来表示,则建立平面直角坐标系,如图:∴B 点的位解析:(1,6)【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B 点的位置.【详解】解:∵红方“马”的位置可以用一个数对(2,4)来表示,则建立平面直角坐标系,如图:∴B 点的位置为(1,6).故答案为:(1,6).【点睛】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键.15.4【解析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.16.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.17.(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.18.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用.19.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;而分式值为0,即分子2﹣x=0,解得:x=2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.20.(,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,解析:(65,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,通过证明△ODC∽△FDH,可得HF HDOC CD,即可求解.【详解】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,∵∠EOF=45°,EF⊥EO,∴∠EOF=∠EFO=45°,∴OE=EF,∵∠AOE+∠AEO=90°,∠AEO+∠GEF=90°,∴∠GEF=∠AOE,且∠OAE=∠G=90°,OE=EF,∴△AEO≌△GEF(AAS)∴AE=GF,EG=AO=6,∴BG=EG﹣BE=6﹣(3﹣AE)=3+AE,∵FH⊥BC,∠G=∠CBG=90°,∴四边形BGFH是矩形,∴BH=GF=AE,BG=HF=3+AE,HF∥BG∥OC,∴HD=BD﹣BH=4﹣AE,∵HF∥OC,∴△ODC∽△FDH,∴HF HD OC CD=,∴3432AE AE +-=∴AE=65,∴点E(65,6)故答案为:(65,6)【点睛】此题主要考查利用全等三角形和相似三角形的判定与性质判定矩形在平面直角坐标系中的坐标,解题关键是利用其性质构建方程.三、解答题21.详见解析.【解析】【分析】根据轴对称的性质画出图形即可.【详解】解:如图所示:.【点睛】本题考查的利用轴对称设计图案,用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.22.(1)见解析;(2)见解析;(3)740人【解析】【分析】(1)先根据第1组的频数和频率求出抽查学生的总人数,再利用频数、频率及样本总数之间的关系分别求得每一个小组的频数与频率即可得到答案;(2)根据(1)中频数分布表可得70.5~80.5的频数,据此补全图形即可;(3)用总人数乘以90.5~100.5小组内的频率即可得到获奖人数.【详解】解:(1)抽取的学生总数为20÷0.05=400,则60.5~70.5的频率为48÷400=0.12,70.5~80.5的频数为400×0.2=80,90.5~100.5的频率为148÷400=0.37,补全频数分布表如下:分组频数频率50.5~60.5200.0560.5~70.5480.1270.5~80.5800.2080.5~90.51040.2690.5~100.51480.37合计4001(3)2000×0.37=740(人),答:估算出全校获奖学生的人数约为740人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,根据第1组的数据求出被抽查的学生数是解题的关键,也是本题的突破口.23.(1)6;(2)120°【解析】【分析】(1)根据线段垂直平分线性质得出AD=BD,CE=AE,求出△ADE的周长=BC,即可得出答案;(2)由∠DAE=60°,即可得∠ADE+∠AED=120°,又由DA=DB,EA=EC,即可求得∠BAC 的度数.【详解】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于D、E,∴DB=DA,EA=EC,又BC=6,∴△ADE的周长=AD+DE+EA=BD+DE+EC=BC=6,(2)∵∠DAE=60°,∴∠ADE+∠AED=120°∵DB=DA,EA=EC,∴∠B=∠BAD,∠C=∠CAE∴∠ADE=∠B+∠BAD=2∠B,∠AED=∠C+∠CAE=2∠C∴2∠B+2∠C=120°∴∠B+∠C=60°∴∠BAC=180°﹣(∠B+∠C)=120°【点睛】本题考查的知识点是线段垂直平分线的性质,熟记性质内容是解此题的关键.24.(1)m的值是1;(2)①﹣1<m<12;②<【解析】【分析】(1)根据一次函数y =(1﹣2m )x +m +1图象经过点P (2,0),可以求得m 的值; (2)①一次函数y =(1﹣2m )x +m +1的图象经过第一、二、三象限,可以得到关于m 的不等式,从而可以求得m 的取值范围;②根据一次函数y =(1﹣2m )x +m +1的图象经过第一、二、三象限和一次函数的性质,可以判断y 1和y 2的大小关系.【详解】(1)∵一次函数y =(1﹣2m )x +m +1图象经过点P (2,0),∴0=(1﹣2m )×2+m +1,解得,m =1,即m 的值是1;(2)①∵一次函数y =(1﹣2m )x +m +1的图象经过第一、二、三象限,∴12010m m ->⎧⎨+>⎩, 解得,﹣1<m <12; ②∵一次函数y =(1﹣2m )x +m +1的图象经过第一、二、三象限,∴1﹣2m >0,∴该函数y 随x 的增大而增大,∵点M (a ﹣1,y 1),N (a ,y 2)在该一次函数的图象上,a ﹣1<a ,∴y 1<y 2,故答案为:<.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.25.(1)1-;(2)1x x -. 【解析】【分析】(1)根据异分母分式的加减法法则计算即可;(2)先把括号里的通分,再根据分式的除法法则计算即可.【详解】解:(1)原式=2a b a a b a b +--- =2a b a a b +-- =b a a b--a b a b-=-- =1-; (2)原式=211(1)(1)1x x x x x +-+-⋅+ =1x x-. 【点睛】本题考查了分式的混合运算,在运算过程中,分子、分母能进行因式分解的先因式分解,熟练掌握分式的加减乘除运算是解题的关键.四、压轴题26.(1)CP=3t ,BQ=8-t ;(2)见解析;(3)S=16-2t .【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC ≅,得到∠PQC=∠BCQ,即可求证; (3)过点C 作CM⊥AB,垂足为M ,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t ,BQ=8-t ;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD ∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC ≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C 作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm)∴118t4162 22BCQS BQ CM t ==⨯-⨯=-因此,S与t之间的关系式为S=16-2t.【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.27.(1)①E(3,﹣2)②见解析;③12OMBD=,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD ﹣OA =2(AM ﹣AO ),∴OD+OA =2AM .当点D 在点B 右侧时,过点E 作EH ⊥y 轴于点H∵∠AOD =∠AHE =∠DAE =90°,∴∠DAO+∠EAH =90°,∠EAH+∠AEH =90°,∴∠DAO =∠AEH ,∵AD=AE∴△DOA ≌△AHE (AAS ),∴EH=AO=3=OB ,OD=AH∴∠EHO =∠BOH =90°,∵∠BMO =∠EMH ,OB =EH =3,∴△BOM ≌△EHM (AAS ),∴OM =MH∴OA +OD= OA +AH=OH=OM +MH=2MH=2(AM +AH )=2(AM +OD )整理可得OA ﹣OD =2AM .综上:OA+OD =2AM 或OA ﹣OD =2AM .【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.28.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.29.(1)AB ∥CD ,理由见解析;(2)证明见解析;(3)45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,所以易证AB ∥CD ;(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ; (3)利用三角形外角定理、三角形内角和定理求得90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知1452QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.【详解】(1)AB ∥CD ,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF ,∠2=∠CFE ,∴∠AEF +∠CFE =180°,∴AB ∥CD ;(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.又∵∠BEF 与∠EFD 的角平分线交于点P , ∴1()902FEP EFP BEF EFD ︒∠+∠=∠+∠= ∴∠EPF =90°,即EG ⊥PF .∵GH ⊥EG ,∴PF ∥GH ;(3)∵∠PHK =∠HPK ,∴∠PKG =2∠HPK .又∵GH ⊥EG ,∴∠KPG =90°﹣∠PKG =90°﹣2∠HPK ,∴∠EPK =180°﹣∠KPG =90°+2∠HPK .∵PQ 平分∠EPK ,∴145 2QPK EPK HPK︒∠=∠=+∠,∴∠HPQ=∠QPK﹣∠HPK=45°.答:∠HPQ的度数为45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.30.(1)5;(2)221;(3)221【解析】【分析】(1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.【详解】解:(1)如图,分别过点B,C向l1作垂线,交l1于M,N两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,===AMB CNAMAB NCAAB AC∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b , ∴2221=4a a +,2222=4b b +,解得:3=3a ,23=3b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=43, ∴AB=22AP BP +=()22AM PM BP ++=221;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中, BNC CMA NBCMAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:NP=23, ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:QM=3,∴AM=23=CN ,∴PC=CN-NP=AM-NP=433, 在△BPC 中,BP 2+CP 2=BC 2,即BC=22224322123BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=2213.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的。
佛山市八年级上学期数学第二次月考试卷
佛山市八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题。
(共10题;共20分)1. (2分) (2020七下·枣阳期末) 下列说法正确的是()A . 是分数B . 圆周率是无理数C . 是无理数D . 无限小数都是无理数2. (2分)使分式有意义的x的取值是()A .x≠-3B . x≠0C .x≠±3D . x≠33. (2分) (2019八下·东莞月考) 下列各式计算正确的是()A .B .C . 3+ =3D .4. (2分)若三角形的三边分别为a,b,c,则下面四种情况中,构成直角三角形的是()A . a=2,b=3,c=4B . a=12,b=5,c=13C . a=4,b=5,c=6D . a=7,b=18,c=175. (2分) (2019七下·湖州期中) 下列方程中,二元一次方程是()A .B .C .D .6. (2分)(2018·余姚模拟) 关于x,y的方程组的解满足x+y=6,则 m的值为()A . ﹣1B . 2C . 1D . 47. (2分)(2018·安徽模拟) 如图所示,在矩形ABCD中,AB=,BC=2,对角线AC,BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A .B .C . 1D . 1.59. (2分) (2018九上·渭滨期末) 菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A . 64B . 60C . 52D . 5010. (2分) (2019八下·芜湖期中) 已知一个直角三角形斜边为20,一条直角边长为16,那么它的面积是()A . 160B . 48C . 60D . 96二、填空题。
(共4题;共5分)11. (1分)请写出两组勾股数:________ 、________ .12. (1分) (2019七下·港南期中) 若方程是二元一次方程,则m=________,n=________.13. (1分) (2019七下·秀洲月考) 已知方程3x-2y=6,用含y的代数式表示x:________.14. (2分)(2017·房山模拟) 《九章算术》是我国古代最重要的数学著作之一,在“勾股”章,记载了一道“折竹抵地”问题,叙述为:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”翻译成数学问题是:在Rt△ABC 中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,可列出的方程为________.三、解答题。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.若分式12x x -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .22.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒ 3.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四 4.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .5.点(3,2)A -关于y 轴对称的点的坐标为( )A .(3,2)B .(3,2)-C .(3,2)--D .(2,3)- 6.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( ) A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位 7.以下问题,不适合用普查的是( )A .旅客上飞机前的安检B .为保证“神州9号”的成功发射,对其零部件进行检查C .了解某班级学生的课外读书时间D .了解一批灯泡的使用寿命 8.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( ) A .13 B .5 C .2 D .3.5 9.计算2263y y x x÷的结果是( ) A .3318y xB .2y xC .2xyD .2xy 10.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题11.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.12.计算112242⨯+=__________. 13.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.14.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B 点后,B 点的位置可以用数对表示为__________.15.计算:8的平方根______,-8的立方根是_____.16.2,4π,227-,3.1416______个. 17.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.18.23(3)2716-=_____.19.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.20.如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为_____.三、解答题21.如图,矩形ABCD 中,AB =12,BC =8,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.22.先化简再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中2a =. 23.如图,AC=DC ,BC=EC ,∠ACD=∠BCE .求证:∠A=∠D .24.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D坐标;(3)如图②,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O运动,到达点O时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几∆是等腰三角形.秒时ADQ25.已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a=_____,b=______.(2)求甲、乙两车相遇后y与x之间的函数关系式,并写出相应的自变量x的取值范围.四、压轴题26.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C,且OC=3.图1 图2(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;27.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.28.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P 顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.29.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.30.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A .【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.2.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.3.C解析:C【解析】试题分析:直线y=﹣5x+3与y 轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C .考点:一次函数的图象和性质.4.C解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C.点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.=+的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、一次函数y kx b二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.5.A解析:A【解析】【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,A-关于y轴对称的点为(3,2).∴点(3,2)故选:A【点睛】本题考查了坐标系中的轴对称,掌握坐标系中的轴对称的特点是解题的关键.在平面直角坐标系中,关于x轴对称的点,横坐标相同,纵坐标互为相反数,关于y轴对称的点,纵坐标相同,横坐标互为相反数.6.D解析:D【解析】【分析】根据近似数的精确度求解.【详解】解:1.36×105精确到千位.故选:D.【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.7.D解析:D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:旅客上飞机前的安检适合用普查;为保证“神州9号”的成功发射,对其零部件进行检查适合用普查;了解某班级学生的课外读书时间适合用普查;了解一批灯泡的使用寿命不适合用普查.故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.C解析:C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.9.D解析:D【解析】【分析】利用分式的除法法则,将分式的除法转化为乘法再约分即可.【详解】解:原式22362y x xyx y==.故选:D.【点睛】本题主要考查了分式的除法,熟练掌握分式的除法运算是解题的关键.10.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题11.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.12.【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】解:.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.解析:【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】1122426.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.13.a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.14.【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对来表示,则建立平面直角坐标系,如图:∴B点的位解析:(1,6)【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对(2,4)来表示,则建立平面直角坐标系,如图:∴B点的位置为(1,6).故答案为:(1,6).【点睛】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键.15.-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±2)2=8,∴8的平方根是:±2;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±2,解析: 2-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±)2=8,∴8的平方根是:±;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±,-2.【点睛】本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a (x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.16.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义2,4属于无理数,所以无理数有2个.故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键.17.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.18.4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】解:故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.解析:4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】=-+=3344故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.19.22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【解析:22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【点睛】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.20.k =±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当 解析:k =±1.【解析】【分析】根据一次函数y =kx +4(k ≠0)图象一定过点(0,4),点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y =kx +4(k ≠0)与直线AB 平行时,②当直线y =kx +4(k ≠0)与直线AB 不平行时分别进行解答即可.【详解】一次函数y =kx +4(k ≠0)图象一定过(0,4)点,①当直线y =kx +4(k ≠0)与直线AB 平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3,∴一次函数y=kx+4(k≠0)中的k=1;②当直线y=kx+4(k≠0)与直线AB不平行时,如图2,根据题意,直线y=kx+4(k≠0)垂直平分线段AB,此时一定经过点C,∴点C的坐标为(4,0),代入得,4k+4=0,解得,k=﹣1,因此,k=1或k=﹣1.故答案为:k=±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k值相等和一次函数的图象和性质是解决问题的关键.三、解答题21.(1)见解析;(2813【解析】【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出DE,由勾股定理求出BD,得出OD,再由勾股定理求出EO,即可得出EF的长.【详解】解:(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,,,OBE ODFOB ODBOE DOF∠∠⎧⎪⎨⎪∠∠⎩===∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)∵四边形BEDF为菱形,∴BE=DE DB ⊥EF ,又∵AB=12,BC=8,设BE=DE=x ,则AE=12-x ,在Rt △ADE 中,82+(12-x )2=x 2,∴x =263.又BD =∴DO =12BD =∴OE .∴EF=2OE=3. 【点睛】 本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.22.1a -+,-1.【解析】【分析】先对括号里的减法运算进行通分,再把除法运算转化为乘法运算,约去分子分母中的公因式,化为最简形式,再把a 的值代入求解.【详解】 原式1(1)1(1)(1)a a a a a --=÷++- (1)(1)1a a a a a-+-=⋅+ 1a =-+.当a =2时,原式=-2+1=-1.【点睛】本题考查了分式的化简求值.掌握分式的混合运算法则是解答本题的关键.23.证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE 得出∠ACB=∠DCE ,结合已知条件利用SAS 判定△ABC 和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC ≌△DEC ∴∠A=∠D考点:三角形全等的证明24.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒或102秒或3.75秒. 【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC 对应的函数表达式为(0)y kx b k =+≠,把(6,0),(0,3)A C 代入,得603k b b +=⎧⎨=⎩,解得123kb⎧=-⎪⎨⎪=⎩,∴直线AC对应的函数关系是为132y x=-+,(2)AC垂直平分BB',DB DB='∴,BDB∆'∴是等腰直角三角形,90BDB∠'=∴°过点D作DE x⊥轴于点E,DF y⊥轴于点F.90DFO DFB DEB'︒∴∠=∠=∠=,360EDF DFB DEO EOF︒∠=-∠-∠-∠,90EOF︒∠=,90EDF︒∴∠=,EDF BDB'∴∠=∠,BDF EDB'∴∠=∠,FDB EDB∴∆∆'≌,DF DE∴=,∴设点D坐标为(,)a a,把点(,)D a a代入132y x=-+,得0.53a a=-+2a∴=,∴点D坐标为(2,2),(3)同(2)可得PDF QDE∠=∠又2,90DF DE PDF QDE︒==∠=∠=PDF QDE∴∆∆≌PF QE∴=①当DQ DA=时,DE x⊥∵轴,4QE AE==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=-,204PF QE ∴==-6(204)1020BP BF PF ∴=-=--=-∴点P 运动时间为10202-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为1秒或1020-秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解.25.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q .设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩,解得11135270k b =⎧⎨=-⎩ ∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩, 解得22600k b =⎧⎨=⎩, 当3.6 4.5x <≤时,60y x =.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.四、压轴题26.(1)443y x =-+;(2)612(,)55M ;(3)23(0,)7G 或(0,-1)G 【解析】【分析】(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,∴A (-2,0),B (0,4),,又∵OC=3,∴C (3,0),设直线BC 的解析式为y=kx+b ,将B 、C 的坐标代入得: 304k b b +=⎧⎨=⎩, 解得:434k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为443y x =-+;(2)连接OM,∵S △AMB =S △AOB ,∴直线OM 平行于直线AB ,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组2443y x y x =⎧⎪⎨=-+⎪⎩, 解得:65125x y ⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M ; (3)∵FA=FB ,A (-2,0),B (0,4),∴F (-1,2),设G (0,n ),①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,易证△FMG ≌△GNQ ,∴MG=NQ=1,FM=GN=n-2,∴Q (n-2,n-1),∵点Q 在直线443y x =-+上,∴41(2)43n n -=--+, ∴23=7n , ∴23(0,)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+, ∴n=-1,∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.27.(1)HL ;(2)见解析;(3)如图②,见解析;△DEF 就是所求作的三角形,△DEF 和△ABC 不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL ”证明;(2)过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作FH ⊥DE 交DE 的延长线于H ,根据等角的补角相等求出∠CBG=∠FEH ,再利用“角角边”证明△CBG 和△FEH 全等,根据全等三角形对应边相等可得CG=FH ,再利用“HL ”证明Rt △ACG 和Rt △DFH 全等,根据全等三角形对应角相等可得∠A=∠D ,然后利用“角角边”证明△ABC 和△DEF 全等;(3)以点C 为圆心,以AC 长为半径画弧,与AB 相交于点D ,E 与B 重合,F 与C 重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.28.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】 (1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +点3(3,3)Ck-+,如图2, -1<Cy≤2,即:-1<33k+≤2,则334k-≤<-.【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.29.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【解析】【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH2AF,∵在Rt△AEF中,AE2=AF2+EF2,2AF)2+2EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.30.(1)AD=DE,见解析;(2)AD=DE,见解析;(3)见解析,△ADE是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC∆∆≌即可得解;(2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE∆∆≌即可得解;(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD=DE.证明:∵ABC∆是等边三角形∴AB=BC,60B BAC BCA∠∠∠︒===∵DF∥AC∴BFD BAC∠∠=,∠BDF=∠BCA∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴DF=BD∵点D是BC的中点∴BD=CD∴DF=CD∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵ABC∆是等边三角形,点D是BC的中点∴AD⊥BC∴90ADC∠︒=∵60BDF ADE∠∠︒==∴30ADF EDC∠∠︒==在ADF∆与EDC∆中AFD ECDDF CDADF EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()ADF EDC ASA∆∆≌∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.下列调查中适合采用普查的是()A.了解“中国达人秀第六季”节目的收视率B.调查某学校某班学生喜欢上数学课的情况C.调查我市市民知晓“礼让行人”交通新规的情况D.调查我国目前“垃圾分类”推广情况2.下列长度的三条线段能组成直角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,8 3.下列实数中,无理数是()A.0 B.﹣4 C.5D.1 74.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()A.21 B.22或27 C.27 D.21或275.如图,在放假期间,某学校对其校内的教学楼(图中的点A),图书馆(图中的点B)和宿含楼(图中的点C)进行装修,装修工人需要放置一批装修物资,使得装修物资到点A,点B和点C的距离相等,则装修物资应该放置在()A.AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在A∠、B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处6.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形;命题4:直角三角形中斜边最长;以上真命题的个数是()A.1 B.2 C.3 D.47.已知点(,21)P a a-在一、三象限的角平分线上,则a的值为()A.1-B.0 C.1 D.28.在下列各数中,无理数有()33224,3,,8,9,07π A .1个 B .2个 C .3个 D .4个9.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=10.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.点P (﹣5,12)到原点的距离是_____.12.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 13.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.14. 在实数范围内分解因式35x x -=___________.15.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.16.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.17.3的平方根是_________.18.平行四边形的周长是20,两条对角线相交于O,△AOB的周长比△BOC的周长大2,则AB的长为_____.19.如图,等边△ABC的周长是18,D是AC边上的中点,点E在BC边的延长线上.如果DE=DB,那么CE的长是_____.20.在第二象限内的点P到x轴的距离是1,到y轴的距离是4,则点P的坐标是_________.三、解答题21.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.22.已知函数y1=2x-4与y2=-2x+8的图象,观察图象并回答问题:(1)x取何值时,2x-4>0?(2)x取何值时,-2x+8>0?(3)x取何值时,2x-4>0与-2x+8>0同时成立?(4)求函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积?23.如图1,在Rt△ABC中,∠ACB=90°,动点M从点A出发沿A-C-B向点B匀速运动,动点N从点B出发沿B-C-A向点A运动.设MC的长为y1(cm),NC的长为y2(cm),点M的运动时间为x(s);y1、y2与x的函数图像如图2所示.(1)线段AC= cm,点M运动 s后点N开始运动;(2)求点P的坐标,并写出它的实际意义;(3)当∠CMN=45°时,求x的值.24.已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.25.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点上(网格线的交点).(1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A坐标为(﹣1,2),点B的坐标为(﹣5,2);(画出直角坐标系)(2)点C的坐标为(,)(直接写出结果)(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①请在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出点P2的坐标为(,);(直接写出结果)③试在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小,此时,QA 2+QC 2的长度之和最小值为 .(在图中画出点Q 的位置,并直接写出最小值答案)四、压轴题26.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的內数是______,6的內数是______;(2)若3是x 的內数,求x 的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;……①用n 表示t 的內数;②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)27.如图,已知A(3,0),B(0,-1),连接AB ,过B 点作AB 的垂线段BC ,使BA=BC ,连接AC(1)如图1,求C 点坐标;(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;(3)在(2)的条件下若C 、P ,Q 三点共线,直接写出此时∠APB 的度数及P 点坐标28.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长; (2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .29.直角三角形ABC 中,∠ACB =90°,直线l 过点C .(1)当AC =BC 时,如图①,分别过点A 、B 作AD ⊥l 于点D ,BE ⊥l 于点E .求证:△ACD ≌△CBE .(2)当AC =8,BC =6时,如图②,点B 与点F 关于直线l 对称,连接BF ,CF ,动点M 从点A 出发,以每秒1个单位长度的速度沿AC 边向终点C 运动,同时动点N 从点F 出发,以每秒3个单位的速度沿F →C →B →C →F 向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒.①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示) ②直接写出当△MDC 与△CEN 全等时t 的值.30.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 4.C解析:C【解析】【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在; 当腰取11,则底边为5,则三角形的周长=11+11+5=27.故选C .【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.5.D解析:D【解析】【分析】根据线段垂直平分线的性质判断即可.【详解】作AC,BC两边的垂直平分线,它们的交点为P,由线段垂直平分线的性质,P A=PB=PC,故选:D.【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关性质要点是解决本题的关键.6.D解析:D【解析】【分析】根据三角形边与角的关系逐一分析即可得解.【详解】假设它们所对的边相等,则根据等腰三角形的性质定理,“等边对等角”知它们所对的角也相等,这就与题设两个角不等相矛盾,因此假设不成立,故原结论成立,同时根据三角形中大边对大角,大角对大边可知命题1,2正确;因为三角形中大边对大角,大角对大边,所以当最大边所对角是锐角时,可知另外两个角也为锐角,则命题3正确;因为直角三角形中,直角所对的边时斜边,而另外两个角为锐角,所以直角所对斜边最大,所以命题4正确,故选:D.【点睛】本题主要考查了三角形边与角的关系,熟练掌握相关知识点是解决本题的关键.7.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.8.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.D解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】解:A3=,所以A选项错误;B B选项错误;C3=,所以C选项错误;D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.12.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】 方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA, 解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.14.【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为解析:(x x x -【解析】提取公因式后利用平方差公式分解因式即可,即原式=2(5)(x x x x x -=-.故答案为(.x x x15.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【解析:m +3n =120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB ,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP ,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【详解】解:∵点D 是BC 边的中点,DE ⊥BC ,∴PB=PC ,∴∠PBC=∠PCB ,∵BP 平分∠ABC ,∴∠PBC=∠ABP ,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,180,A ABC ACB ∠+∠+∠=︒∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.17.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为18.6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.19.3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.【详解】∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E,∴CD=CE=12AC=3.故答案为:3.【点睛】此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE是解题的关键.20.(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,解析:(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,∴点P的横坐标是-4,纵坐标是1,∴点P 的坐标为(-4,1).故答案为:(-4,1).【点睛】此题考查点的坐标,解题关键在于熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度.三、解答题21.(1)1个甲种乒乓球的售价是5元,乙种售价是7元;(2)当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【解析】【分析】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,根据题意列出二元一次方程组,解方程组即可;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,根据题意列出费用关于a 的一次函数,根据一次函数的性质解答即可.【详解】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1个甲种乒乓球的售价是5元,乙种售价是7元;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,()5720021400w a a a =+-=-+,∵()3200a a -,∴150a ≤,∴当150a =时,w 取得最小值,此时1100w =,20050a -=,答:当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【点睛】本题考查的是列二元一次方程组、一元一次不等式解实际问题/一次函数的性质等知识,解题的关键是学会利用一次函数的性质解决最值问题.22.(1)x >2;(2)x <4 ;(3)2<x <4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积.【详解】由图可知:(1)当x >2时,2x−4>0;(2)当x <4时,-2x +8>0;(3)由(1)(2)可知当2<x <4时,2x−4>0与−2x +8>0同时成立;(4)联立y1=2x-4与y2=-2x+8,解得x=3,y=2,∴函数y1=2x-4与y2=-2x+8的图象的交点坐标为(3,2),所以函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.23.(1)10,1;(2)P为(103,0);点P的实际意义为:点M运动到点C,MC=0;(3)当∠CMN=45°时,x的值为2或4.【解析】【分析】(1)由函数图像可知,AC=10,点M运动1秒后,点N开始运动;(2)由点M为匀速运动,则先计算点M的速度,然后求出点M运动到点C时的时间,即求出点P的坐标;(3)先求出点N在BC上的运动速度和在AC上的运动速度,结合∠CMN=45°,则CM=CN,可分为两种情况进行分析:①点M在AC上,点N在BC上;②点M在BC上,点N在AC上;分别列式求解即可.【详解】解:(1)根据函数的图像可知,当点M与点A重合时,AC=MC=10cm,当点N与点B重合时,BC=NC=8cm,由图可知,点M运动1秒后,点N开始运动,故答案为:10,1;(2)由题意,点M为匀速运动,则点M的速度为:1083/6cm s+=,∴当点M运动到点C时,MC=0,则点P的横坐标为:103,∴点P的坐标为:(103,0);点P的实际意义为:点M运动到点C,MC=0;(3)由图可知,点N在BC上运动的速度为:84/31cm s=-,点N 在AC 上运动的速度为:102/83cm s =-; ∵∠CMN=45°, ∴△CMN 是等腰直角三角形,即MC=NC ,①如图,当点M 在AC 上,点N 在BC 上时,有设x 秒后,∠CMN=45°,∴103MC x =-,84(1)NC x =--,∴10384(1)x x -=--,解得:2x =;②如图,当点M 在BC 上,点N 在AC 上时,有点N 到达点C 所用的时间为3x =,设x 秒后,∠CMN=45°,∴310MC x =-,2(3)NC x =-,∴3102(3)x x -=-,解得:4x =;综合上述,当∠CMN=45°时,x 的值为2或4.【点睛】本题考查了等腰直角三角形的判定和性质,从函数图像获取信息,解一元一次方程,线段动点问题,解题的关键是弄清函数图像,根据函数图像找到关键点,从而进行计算,注意运用分类讨论的思想进行解题.24.(1)y =x +3;(2)x ≤3.【解析】试题分析:()1把14x y ==,代入3y kx =+, 求出k 的值是多少,即可求出这个一次函数的解析式.()2首先把()1中求出的k 的值代入36kx +≤,然后根据一元一次不等式的解法,求出关于x 的不等式36kx +≤,的解集即可.试题解析:(1)∵一次函数y =kx +3的图象经过点(1,4),∴ 4=k+3,∴k=1,∴这个一次函数的解析式是:y=x+3.(2)∵k=1,∴x+3≤6,∴x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.25.(1)见解析;(2)(-2,5);(3)①见解析;②点P2的坐标为(﹣m,n﹣6);③32【解析】【分析】(1)建立适当的平面直角坐标系,根据点A坐标为(﹣1,2),点B的坐标为(﹣5,2)即可画出直角坐标系;(2)根据坐标系即可写出点C的坐标;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①即可在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,即可写出点P2的坐标;③根据对称性即可在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,进而可以求出QA2+QC2的长度之和最小值.【详解】(1)∵点A坐标为(﹣1,2),点B的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系;(2)根据坐标系可知:点C的坐标为(﹣2,5),故答案为:﹣2,5;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①如图即为坐标系中画出的△A2B2C2;②点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,∴点P2的坐标为(﹣m,n﹣6),故答案为:﹣m,n﹣6;③根据对称性可知:在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,∴连接A2C1交y轴于点Q,此时QA2+QC2的长度之和最小,即为A2C1的长,A2C1=2,∴QA2+QC2的长度之和最小值为2.故答案为:2.【点睛】此题主要考查平面直角坐标系中三角形的平移以及对称性的运用,熟练掌握,即可解题.四、压轴题26.(1)2,7,4;(2)83x ≥;(3)①t 的内数=有2个,离原点最远的格点的坐标有两个,为()8,4-±.【解析】【分析】(1)根据内数的定义即可求解;(2)根据内数的定义可列不等式2331x ≤+,求解即可;(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.【详解】解:(1)22311=⨯+,所以1的内数是2;232017⨯+>,所以20的内数是7;23614⨯+>,所以6的内数是4;(2)∵3是x 的內数,∴2331x ≤+, 解得83x ≥; (3)①当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =,……∴t 的内数=②当t 的内数为2时,最大实心正方形有1个;当t 的内数为3时,最大实心正方形有2个,当t 的内数为4时,最大实心正方形有1个,……即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;∴当t 的內数为9时,符合条件的最大实心正方形有2个,由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,∴此时最大实心正方形的边长为8,离原点最远的格点的坐标有两个,为()8,4-±.【点睛】本题考查图形类规律探究,明确题干中内数的定义是解题的关键.27.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠= BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC ∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P 点坐标为(1,0) .。
广东省佛山市八年级上学期数学第二次月考试卷
广东省佛山市八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)函数中,自变量x的取值范围是()A . x≠0B . x<1C . x>1D . x≠12. (2分) (2018七下·市南区期中) 下列运算,结果正确的是()A .B .C .D .3. (2分)如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为()A . 7B . 8C . 9D . 104. (2分) (2019七下·瑞安期末) 下列选项中,运算正确的是()A . a2·a4=a8B . (a2)3=a5C . a6÷a3=a2D . (ab)3=a3b35. (2分) (2019八上·蓝山期中) 下列分式是最简分式的是()A .B .C .D .6. (2分)下列因式分解错误的是()A . 2a3﹣8a2+12a=2a(a2﹣4a+6)B . x2﹣5x+6=(x﹣2)(x﹣3)C . (a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c)D . ﹣2a2+4a﹣2=2(a+1)27. (2分) (2017八下·泰兴期末) 将分式中的m、n都扩大为原来的3倍,则分式的值()A . 不变B . 扩大3倍C . 扩大6倍D . 扩大9倍8. (2分)平面上4条直线相交,交点的个数是()A . 1个或4个B . 3个或4个C . 1个、4个或6个D . 1个、3个、4个、5个或6个9. (2分) (2019八上·南昌月考) 如图所示,△ABC≌△DEF , DF 和 AC , FE 和 CB 是对应边.若∠A =100°,∠F=47°,则∠B 的度数是()A . 33°B . 47°C . 53°D . 100°10. (2分) (2020八上·郁南期末) 已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=()A . 10°B . 15°C . 20°D . 25°二、填空题 (共6题;共11分)11. (6分)计算:(﹣2)2013+(﹣2)2014=________.12. (1分) (2019八上·富顺月考) 已知点A(m-1,3)与点B(2,n)关于x轴对称,则P(m,n) 的坐标为________.13. (1分) (2019八上·泰州月考) 如图,在中,,是的垂直平分线,交于点,交于点 . 已知,则的度数为________.14. (1分) (2017七下·兴化月考) 若a-b=1,ab=-2,则(a+1)(b-1)=________.15. (1分)(2016·泰安) 如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.16. (1分) (2018七上·酒泉期末) 单项式与是同类项,则a-b的值为________。
2020-2021学年广东佛山八年级上数学月考试卷(2)
二、填空题
的立方根是________.
比较大小: ________ .
如图,一支铅笔放在圆柱体笔简中,笔筒的内部底面直径是 ,内壁高 ,露出笔简部分长度为 ,则可以计算得这只铅笔的长度是________.
如图,已知 ,那么数轴上点 所表示的数是________.
如图,三级台阶,每一级的长,宽,高分别为 , , . 和 是这个台阶上两个相对的端点,点 处有一只蚂蚁,想到点 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点 的最短路程为________.
此题暂无解答
2.
【答案】
此题暂无答案
【考点】
无理较的识轻
【解析】
此题暂无解析【Biblioteka 答】此题暂无解答3.
【答案】
此题暂无答案
【考点】
最简表次弹式
【解析】
此题暂无解析
【解答】
此题暂无解答
4.
【答案】
此题暂无答案
【考点】
算三平最根
立方于的性术
【解析】
此题暂无解析
【解答】
此题暂无解答
5.
【答案】
此题暂无答案
【考点】
此题暂无答案
【考点】
实数根盖比较
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
勾股表理抛应用
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
在数轴来表示兴数
勾体定展
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
2021-2022学年-有答案-广东省佛山市某校初二(上)第二次阶段性测试数学试卷
2021-2022学年广东省佛山市某校初二(上)第二次阶段性测试数学试卷一、选择题1. 根据下列表述,能确定位置的是( ) A.天益广场南区 B.凤凰山北偏东42∘ C.红旗影院5排9座 D.学校操场的西面2. 下列各数中是无理数的有( )−0.33…,3.14, √1000, √32,2.010*******…(相邻0之间数在增加), 20162017, π0.A.1个B.2个C.3个D.4个3. 点(−3,4)关于y 轴对称的点的坐标为( ) A.(−4,3) B.(3,−4) C.(−3,−4) D.(3,4)4. 下列各式中正确的是( ) A.√3×√2=√6 B.√1916=134C.√3+√2=√5D.√81=±95. 已知y =(m +2)x +(m −2)是x 的正比例函数,则m =( ) A.−2 B.2C.±2D.以上答案都不对6. 如图,直角△ABC 中, AC:BC =3:4,且AB =15,则AC =( )A.8B.9C.10D.117. 如图,已知等边△ABC的两个顶点坐标为A(−2,0),B(2,0),则点C的坐标为( )A.(0,2√3)B.(0,2)或(0,−2)C.(0,2)D.(0,2√3)或(0,−2√3)8. 下列几种说法正确的有( )①无理数都是无限小数;②带根号的数是无理数;③实数分为正实数和负实数;④无理数包括正无理数、0和负无理数.A.①②③④B.②③C.①④D.①9.某次数学趣味竞赛共有10组题日,某班得分情况如下表.全班40名同学的成绩的中位数和众数分别是()A.70,70B.75,70C.80,80D.75,8010. 两条直线y1=kx−k与y2=−x在同一平面坐标系中的图象可能是( )A. B.C. D.二、填空题在平面直角坐标系中,直线y =−x +1不经过第________象限,经过(0,________).如图,学校有一块长方形花圃,极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们只少走了________m ,却踩伤了花草.点P 在第三象限,若该点到x 轴的距离为3,到y 轴的距离为1,则点P 的坐标是________.已知某旅游公司的优惠方式是:第一位游客全额收费,其他人六折优惠,收费单价是2000元,则费用y 与旅游人数x (x >1)的函数关系式是________.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选________已知点A (0,1).规定“把点A 先作关于x 轴对称,再向左平移1个单位”为一次变换,第二次变换是“把第一次变换所得的点先关于x 轴对称,再向右平移2个单位”,第三次变换是“把第二次变换所得的点先关于x 轴对称,再向左平移3个单位”⋯⋯.经过第三次变换后所得点A 的坐标为________;那么连续经过2021次变换后,点A 的坐标为________. 三、解答题计算: (3+√28)(3−√28)+(4+√3)2−(3−√3).解方程组: {x +2y =0,2x −y =5.为准备参加2020年度中小学生机器人竞赛,学校对甲、乙两支机器人制作小队所创作的机器人分别从创意、设计、编程与制作三方面进行量化,各项量化满分100分,根据量化结果择优推荐。
广东省八年级上学期数学第二次月考试卷
广东省八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、填空题 (共16题;共24分)1. (2分) (2016七下·岑溪期中) 4的平方根是()A . 2B . ﹣2C . ±2D . 162. (2分) (2019八上·金堂期中) 在-2,,,0,这四个数中,为无理数的是()A . -2B .C .D .3. (2分)平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0)、B(0,2)、C(3,0)、D(0,-2),四边形ABCD是().A . 矩形B . 菱形C . 正方形D . 梯形4. (2分) (2020七下·上饶月考) 如图,笑脸盖住的点的坐标可能为()A . (5,2)B . (﹣6,3)C . (﹣4,﹣6)D . (3,﹣4)5. (2分) (2020八下·微山期末) 下列函数中,是的一次函数的是()A .B .C .D .6. (2分) (2020八上·达拉特旗期中) 点(-1,2)和(-1,-2)关于()A . y轴对称B . x轴对称C . 原点对称D . 直线y=x对称7. (2分)若a﹥0,则点P(-a,2)应在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分) (2020八上·重庆月考) 下列图案是用四种基本图形按照一定规律拼成的,第10个图案中的最下面一行从左至右的第2个基本图形应是()A .B .C .D .9. (1分) (2020七上·莆田期末) 已知,则的值为________.10. (1分)如果的算术平方根是m,-64的立方根是n,那么m-n=________.11. (1分) (2019七上·高安期中) 用四舍五入法对23.96取近似值,其中精确到十分位的是________.12. (1分)(2017·芜湖模拟) 如图,若点A的坐标为,则sin∠1=________.13. (1分) (2019八下·北京期末) 已知矩形,给出三个关系式:① ② ③如果选择关系式________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是________ .14. (1分) (2011七下·广东竞赛) 点P(-5,1)沿x轴正方向平移2个单位,再沿y轴负方向平移4个单位所得的点的坐标为________15. (1分)(2020·济南模拟) 如图,已知正方形ABCD的边长为4,点E.F分别在边AB.BC上,且AE=BF=1,CE.DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S四边形BEOF中,正确的有________.16. (1分)找出下列数的规律:a1=2×12﹣1,a2=2×22﹣1,a3=2×32﹣1,a4=2×42﹣1,…,an=________二、解答题 (共10题;共116分)17. (10分) (2020七下·福州期末) 计算:.18. (20分) (2019八上·右玉月考) 已知,求的算术平方根19. (5分)把下列各数填在相应的大括号里:﹣4,﹣|﹣|,0,,,2013,﹣(+5),+1.88,0.010010001…,﹣2.33….整数集合{ }非负数集合{ }分数集合{ }无理数集合{ }.20. (15分) (2020七下·津南月考) 已知3a+21的立方根是3,4a﹣b﹣1的算术平方根是2.(1) a的值________;(2)求3a+10b的平方根.21. (10分)(2021·南充) 如图,反比例函数的图象与过点,的直线交于点B和C.(1)求直线AB和反比例函数的解析式.(2)已知点,直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求的面积.22. (20分) (2017七下·上饶期末) 如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC的各顶点都在网格的格点上,若记点A的坐标为(﹣1,3),点C的坐标为(1,﹣1).(1)请在图中找出x轴、y轴及原点O的位置;(2)把△ABC向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△A1B1C1 ,若△ABC 内部一点P的坐标为(a,b),则点P的对应点P1的坐标是________;(3)试求出△ABC的面积.23. (5分) (2020九上·科尔沁左翼中旗期中) 已知,如图所示,直线l经过点A(4,0)和B(0,4),它与抛物线y=ax2在第一象限内交于点P,又△AOP的面积为,求a的值.24. (10分) (2019九上·长丰月考) 通过学习锐角三角比,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化。
广东省八年级上学期数学第二次月考试卷
广东省八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分) (2020七上·门头沟期末) 的绝对值是()A .B .C .D .2. (2分)(2019·湘西) 在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是()A . (0,5)B . (5,1)C . (2,4)D . (4,2)3. (2分)在:()0、()3、3.14、()-2、sin60°、cos60° 这六个数中,无理数的个数是()A . 2个B . 3个C . 4个D . 5个4. (2分) (2021七下·埇桥期末) 如果三角形的两个内角都小于,那么这个三角形是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 不能确定5. (2分) (2016八上·博白期中) 如图,在等腰三角形纸片ABC中,AB=AC,∠A=40°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE的度数是()A . 20°B . 30°C . 40°D . 70°6. (2分) (2015七下·无锡期中) 已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A . 12 cmB . 16cmC . 20cmD . 16cm或20cm7. (2分)如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,4),先把△ABC向右平移4个单位得到△A1B1C1 ,再作△A1B1C1关于原点对称图形△A2B2C2 ,则顶点A2的坐标是()A . (2,4)B . ( 2,-4)C . (-2,4)D . (-2,-4)二、填空题 (共10题;共11分)8. (1分) (2021八下·越秀期末) 若二次根式有意义,则x的取值范围是.9. (1分)将点A(2,3)向上平移2个单位长度得到点A',点A'关于y轴的对称点是点A",则点A"的坐标是10. (1分)(2020·南县) 我国北斗全球导航系统最后一颗组网卫星于2020年6月30日成功定位于距离地球36000千米的地球同步轨道,将用科学记数法表示为.11. (1分) (2021八下·河间期末) 如图在边长为acm的正方形ABCD中,E为BC上一点,EF⊥AC于点F,EG⊥BD于点G,那么EF+EG=cm.12. (1分) (2020七下·丰润月考) 已知P(3,-2),则点P在第象限.13. (1分) (2020八上·中山期中) 如果△ABC是等腰三角形,若周长是18,一边长是8,则另两边长是.14. (1分) (2020七下·赤壁期中) 实数的整数部分是.15. (2分) (2018八上·裕安期中) 完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠2=180°(),+∠EFD=180°(邻补角定义),∴(同角的补角相等)∴AB∥(内错角相等,两直线平行)∴∠ADE=∠3()∵∠3=∠B(已知)∴(等量代换)∴∥BC(同位角相等,两直线平行)∴∠AED=∠C()16. (1分) (2021八下·余姚期末) 如图,在矩形ABCD中,AB=8,AD=6,将矩形沿EF翻折,使点C与点A 重合,点B落在B'处,折痕与DC , AB分别交于点E , F ,则DE的长为.17. (1分) (2020九上·正定期中) 如图,有-块形状为的斜板余料.已知,,,要把它加工成一个形状为的工件,使在上,,两点分别在,上,且,则的面积为.三、解答题 (共8题;共49分)18. (10分) (2019八上·西安月考) 计算题:(1)(2)(3)(4)19. (5分) (2018七上·蕲春期中) 已知a、b互为相反数,c、d互为倒数,m的绝对值是3,n是最大的负整数,求: .20. (2分)如图,已知∠1=∠2,∠3=∠4.(1)若∠A=100°,求x的值;(2)若∠A=n°,求x的值.21. (5分)如图,有两根长杆隔河相对,一杆高3m,另一杆高2m,两杆相距5m.两根长杆都与地面垂直,现两杆顶部各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮出一条小鱼,于是同时以同样的速度飞下来夺鱼,结果两只鱼鹰同时叼住小鱼.求两杆底部距小鱼的距离各是多少米.(假设小鱼在此过程中保持不动)22. (2分) (2019八下·吉林期末) 如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.23. (5分)(2021·铁东模拟) 在平面直角坐标系中,的位置如图所示:(每个方格都是边长为1个单位长度的正方形,的顶点都在格点上).(1)画出关于轴对称的;写出点对应点的坐标;(2)将绕点逆时针旋转得到,请你求出线段旋转过程中扫过的面积.24. (5分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.(1)判断直线DE与⊙O的位置关系,并说明理由.(2)若⊙O的半径R=5,tanA=,求线段CD的长.25. (15分)如图所示,将△ABC绕其顶点A顺时针旋转30°后得△ADE.(1)问△ABC与△ADE的关系如何?(2)求∠BAD的度数.参考答案一、单选题 (共7题;共14分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:二、填空题 (共10题;共11分)答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共8题;共49分)答案:18-1、答案:18-2、答案:18-3、答案:18-4、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:。
广东省佛山市八年级上学期数学第二次月考试卷
广东省佛山市八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·港南模拟) 在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分) (2018七上·龙港期中) 在实数 ,,,中,属于无理数是()A . 0B .C .D .3. (2分) (2017八上·涪陵期中) 下列各组条件中,能判定△ABC≌△DEF的是()A . AB=DE,BC=EF,∠A=∠DB . ∠A=∠D,∠C=∠F,AC=EFC . AB=DE,BC=EF,△ABC的周长=△DEF的周长D . ∠A=∠D,∠B=∠E,∠C=∠F4. (2分) (2019七下·深圳期中) 如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法错误的是()A . △ABE的面积=△BCE的面积B . ∠AFG=∠AGFC . BH=CHD . ∠FAG=2∠ACF5. (2分) (2016八上·沈丘期末) 将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形()A . 可能是锐角三角形B . 不可能是直角三角形C . 仍然是直角三角形D . 可能是钝角三角形6. (2分) (2020八上·新乡期末) 如图,在中,点是边、的垂直平分线的交点,已知,则()A .B .C .D .7. (2分)若一个菱形的边长为2,则这个菱形两条对角线长的平方和为()A . 16B . 8C . 4D . 18. (2分) (2019八上·龙湾期中) 具备下列条件的三角形为等腰三角形的是()A . 有两个角分别为20°,120°B . 有两个角分别为40°,80°C . 有两个角分别为30°,60°D . 有两个角分别为50°,80°二、填空题 (共8题;共8分)9. (1分)已知一个正数的平方根是2x和x﹣6,这个数是________.10. (1分) (2017八上·辽阳期中) 点P在第二象限,到x轴距离为3,到y轴距离为2,点P坐标________ 。
佛山市八年级上学期数学第二次月考试卷
佛山市八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、填空题 (共16题;共24分)1. (2分) (2016八下·费县期中) 下列计算错误的是()A .B .C .D .2. (2分)(2012·深圳) 下列命题①方程x2=x的解是x=1;②4的平方根是2;③有两边和一角相等的两个三角形全等;④连接任意四边形各边中点的四边形是平行四边形;其中正确的个数有()A . 4个B . 3个C . 2个D . 1个3. (2分)函数中,自变量的取值范围是()A .B .C .D .4. (2分) (2018八上·灌云月考) 已知点A在第四象限,且它到x轴的距离等于2,到y轴的距离等于3,则点A的坐标为()A . (3,﹣2)B . (3,2)C . (2,﹣3)D . (2,3)5. (2分) (2018八上·灌云月考) 下列函数中是一次函数的是()A .B .C .D .6. (2分) (2018八上·灌云月考) 已知点A(a,1)与点B(5,b)关于y轴对称,则实数a,b的值分别是()A . 5,1B . ﹣5,1C . 5,﹣1D . ﹣5,﹣17. (2分)规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣2,3)]等于()A . (﹣2,﹣3)B . (2,﹣3)C . (﹣2,3)D . (2,3)8. (2分) (2018八上·灌云月考) 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1 , A2 , A3 , A4表示,则顶点A2018的坐标是()A . (504,﹣504)B . (﹣504,504)C . (505,﹣505)D . (﹣505,505)9. (1分)计算:-=________;=________.10. (1分) (2018八上·灌云月考) 已知5x﹣2的立方根是﹣3,则x的值是________.11. (1分) (2018七上·新罗期中) 0.06180精确到0.01,用四舍五入法取近似数为________.12. (1分)点P(m+2,3m)在x轴上,则m的值为________.13. (1分) (2018八上·灌云月考) 已知长方形周长为20,则长方形的长y与宽x之间的函数关系式为y=________.14. (1分) (2018八上·灌云月考) 如图是一组密码的一部分,目前,已破译出“努力发挥”的真实意思是“今天考试”.小刚运用所学的“坐标”知识找到了破译的“钥匙”.他破译的“祝你成功”的真实意思是“________“.15. (1分) (2018八上·灌云月考) 如图,在平面直角坐标系中,已知点A(3,0),B(0,4),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是________.16. (1分) (2018八上·灌云月考) 观察下列各式: =2 , = , =,…请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是________.二、解答题 (共10题;共116分)17. (10分) (2018七上·咸安期末) 先化简,再求值2(3ab2﹣a3b)﹣3(2ab2﹣a3b),其中a=﹣,b=4.18. (20分)(2020·武汉模拟) 计算:(2x2 )3+x4×x219. (5分) (2018八上·灌云月考) 请把下列各数填入相应的集合中.2,0,2π,,2018,﹣0.030030003…有理数集合:{ …};无理数集合:{ …};非负整数集合:{ …}.20. (15分) (2018八上·灌云月考) 已知一个正数的两个不同平方根是a+6与2a﹣9.(1)求a的值;(2)求关于x的方程ax2﹣16=0的解;(3)并求出这个正数.21. (10分) (2018八上·灌云月考) 如图,在平面直角坐标系中有一个轴对称图形,A(3,-2),B(3,﹣6)两点在此图形上且互为对称点,若此图形上有一个点C(﹣2,+1).(1)求点C的对称点的坐标.(2)求△ABC的面积.22. (20分) (2018八上·灌云月考) 已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.23. (5分) (2018八上·灌云月考) 已知y是x的一次函数,表中列出了部分对应值,求m值.x﹣101y1m﹣524. (10分) (2018八上·灌云月考) 我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.计算:(1) i.i2.i3.i4(2)i+i2+i3+i4+…+i2017+i2018.25. (15分) (2018八上·灌云月考) 已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.26. (6分) (2018八上·灌云月考) 如图,在Rt△ABC中,∠B=90°,∠ACB=30°,其直角边分别与坐标轴垂直,已知顶点的坐标为A(,0),C(0,1).(1)如果A关于BC对称的点是D,则点D的坐标为________;(2)过点B作直线m∥AC,交CD连线于E,求△BCE的面积.参考答案一、填空题 (共16题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、解答题 (共10题;共116分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、22-4、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷
一.单选题(共 10 题;共 30 分)
1.(3 分)在函数
中,自变量 x 的取值范围是( )
A.x≥﹣1
B.x>﹣1 且 x≠ C.x≥﹣1 且 x≠ D.x>﹣1
2.(3 分)如图,半圆 O 的直径 AB=10cm,弦 AC=6cm,AD 平分∠BAC,则 AD 的长为( )
角形,则斜边长为
.
15.(3 分)设地面气温为 20℃,如果每升高 1km,气温下降 6℃.如果高度用 h
(km)表示,气温用 (t ℃)表示,那么 t 随 h 的变化而变化的关系式为
.
16.(3 分)化简:3 × 的结果为
.
17.(3 分)计算:
=
.
18.(3 分)函数
的自变量 x 的取值范围是
.
22.(6 分)在平面直角坐标系中,O 为坐标原点,点 A 的坐标为(a,﹣a),点
B 坐标为(b,c),a,b,c 满足
.
(1)若 a 没有平方根,判断点 A 在第几象限并说明理由; (2)若点 A 到 x 轴的距离是点 B 到 x 轴距离的 3 倍,求点 B 的坐标; (3)点 D 的坐标为(4,﹣2),△OAB 的面积是△DAB 面积的 2 倍,求点 B 的
; 22.
; 23.
; 24.
;
第5页(共5页)
D.第四象限
7.(3 分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点( )
第1页(共5页)
A.(1,2)
B.(﹣1,﹣2) C.(2,﹣1) D.(1,﹣2)
8.(3 分)使代数式 有意义的 x 的取值范围是( )
A.x>3
B.x≥3
C.x>4
D.x≥3 且 x≠4
9.(3 分)下面的四组数中的三个数值分别是三角形的三边长,能够成直角三角
11.(3 分)如图,已知函数 y=x﹣2 和 y=﹣2x+1 的图象交于点 P(1,﹣1),
根据图象可得方程组
的解是
.
12.(3 分)观察中国象棋的棋盘,其中“马”的位置可以用一个数对(3,5)
来表示,则表示“兵”点位置的数对是
.
13.(3 分)使式子
有意义的 x 的取值范围是
.
第2页(共5页)
14.(3 分)已知 a2﹣12a+36 与|b﹣8|互为相反数,以 a、b 长为直角边作直角三
④3.5:4.5:5.5.其中可以构成直角三角形的有( )
A.1 个
B.2 个
C.3 个
D.4 个
5.(3 分)用计算器求
结果为(保留四个有效数字)( )
A.12.17
B.±1.868
C.1.868
D.﹣1.868
6.(3 分)一次函数 y=﹣2x﹣1 的图象不经过( )
A.第一象限
B.第二象限
C.第三象限
坐标. 23.(6 分)求出下列函数中自变量 x 的取值范围.y= .
24.(6 分)如图,正方形 ABCD 关于 x 轴、y 轴均成轴对称,若这个正方形的面 积为 16,请分别写出点 A、B、C、D 的坐标.
四.综合题(10 分) 25.(10 分)写出下列问题中的关系式,并指出其中的变量和常量.
A. cm
B. cm
C. cm
D.4cm
3.(3 分)如图,已知 OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD
⊥OA 于点 D,PE⊥OB 于点 E.如果点 M 是 OP 的中点,则 DM 的长是( )
A.2
B.
C.
D.
4.(3 分)三角形的边长之比为:①1.5:2:2.5;②4:7.5:8.5;③1: :2;
11.
; 12.(6,7); 13.x 是实数; 14.10; 15.t=﹣6h+20; 16.240;
17.3; 18.x>﹣1;
三.解答题(共 6 题;共 36 分)
19.
; 20.
; 21.
四.综合题(10 分)
25.
;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/1/8 1 4:03:41; 用户:qgjyus er102 05;邮箱:qg jyus er10205.2195 7750;学号: 21985211
形的一组是( )
A.1, ,
B. , ,
C.2,3,4
D.6,7,8
10.(3 分)已知 P(x,y)是平面直角坐标系上的一个点,且它的横、纵坐标是
一次方程组
(a 为任意实数)的解,则当 a 变化时,点 P 一定
不会经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
二.填空题(共 8 题;共 24 分)
第3页(共5页)
(1)直角三角形中一个锐角 α 与另一个锐角 β 之间的关系; (2)一盛满 30 吨水的水箱,每小时流出 0.5 吨水,试用流水时间 t(小时)表
示水箱中的剩水量 y(吨).
第4页(共5页)
广东省佛山市顺德区伦教翁祐中学八年级(上)第二次
Байду номын сангаас
月考数学试卷
参考答案
一.单选题(共 10 题;共 30 分) 1.C; 2.A; 3.C; 4.C; 5.C; 6.A; 7.D; 8.D; 9.A; 10.C; 二.填空题(共 8 题;共 24 分)
三.解答题(共 6 题;共 36 分)
19.(6 分)已知 a 是 的整数部分,b 是 的小数部分,求 2a﹣b.
20.(6 分)已知:y= + ﹣3,求:(x+y)4 的值.
21.(6 分)在平面直角坐标系中,已知点 A(﹣2,﹣3)关于 x 轴对称的点为 B,
关于 y 轴对称的点为 C,求△ABC 的面积.