实验-探究弹力和弹簧伸长的关系
实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析
实验专题:探究弹簧弹力和弹簧伸长量的关系答案解析答案解析1.【答案】(1)C(2)等于【解析】(1)因为弹簧是被放在水平桌面上测得的原长,然后把弹簧竖直悬挂起来后,由于重力的作用,弹簧的长度会增大,所以图线应出现x轴上有截距,C正确,A、B、D错误.(2)如果将指针固定在A点的下方P处,在正确测出弹簧原长的情况下,再作出x随F变化的图象,则在图象上x的变化量不变,得出弹簧的劲度系数与实际值相等.2.【解析】(1)F-L图线如图所示:(2)弹簧的原长L0即弹力为零时弹簧的长度,由图象可知,L0=5×10-2m=5 cm.劲度系数为图象直线部分的斜率,k=20 N/m.(3)记录数据的表格如下表(4)优点:可以避免弹簧自身重力对实验的影响.缺点:弹簧与桌面及绳子与滑轮间存在的摩擦会造成实验误差.3.【解析】(1)在做实验的时候一般步骤为先组装器材,然后进行实验,最后数据处理,故顺序为CBDAEF.(2)①根据描点法,图象如图所示②、③根据图象,该直线为过原点的一条直线,即弹力与伸长量成正比,即F=kx=0.43x.式中的常数表示弹簧的劲度系数,即表示使弹簧伸长或者压缩1 cm所需的外力大小为0.43 N.4.【答案】(1)如图所示30F弹=30Δx(2)B(3)A【解析】(1)如图所示,直线的斜率的倒数表示弹簧的劲度系数,即k=,代入数据得kA =N/m≈30 N/m,所以弹簧的弹力大小F弹跟弹簧伸长量Δx的函数关系是F弹=30Δx.5.【解析】(1)描点作图,如图所示:(2)图象的斜率表示劲度系数,故有:k==N/m=50 N/m(3)图线与L轴的交点坐标表示弹簧不挂钩码时的长度,其数值大于弹簧原长,因为弹簧自身重力的影响.6.【答案】(1)6.93(2)A(3)弹簧受到的拉力超过了其弹性限度【解析】(1)弹簧伸长后的总长度为14.66 cm,则伸长量Δl=14.66 cm-7.73 cm=6.93 cm.(2)逐一增挂钩码,便于有规律地描点作图,也可避免因随意增加钩码过多超过弹簧的弹性限度而损坏弹簧.(3)AB段明显偏离直线OA,伸长量Δl不再与弹力F成正比,是超出弹簧的弹性限度造成的.7.【解析】(1)根据题意知,刻度尺的最小刻度为1毫米.读数时,应估读到毫米的十分位,故l5、l6记录有误.(2)按(1)中的读数规则,得l3=6.85 cm,l7=14.05 cm.(3)根据题中求差方法,可知d4=l7-l3=7.20 cm(4)根据l4-l0=4Δl=d1,l5-l1=4Δl=d2,l6-l2=4Δl=d3,l7-l3=4Δl=d4,有Δl==1.75 cm.(5)根据胡克定律F=kx得mg=kΔl,k==N/m=28 N/m8.【答案】(1)450(2)10【解析】(1)当F=0时,弹簧的长度即为原长,由胡克定律可知图象的斜率表示劲度系数大小.(2)弹簧秤的示数为3 N,则伸长量为3/50=0.06 m,则长度为10 cm.9.【解析】(1)描点作出图象,如下图所示.(2)图象跟坐标轴交点的物理意义表示弹簧原长.由图象可知,弹簧的劲度系数应等于直线的斜率,即k==200 N/m.10.【答案】(1)竖直(2)稳定L3 1 mm(3)Lx(4)4.910【解析】(1)为保证弹簧的形变只由砝码和砝码盘的重力产生,所以弹簧轴线和刻度尺均应在竖直方向.(2)弹簧静止稳定时,记录原长L0;表中的数据L3与其他数据有效位数不同,所以数据L3不规范,标准数据应读至cm位的后两位,最后一位应为估读值,精确至0.1 mm,所以刻度尺的最小分度为1 mm.(3)由题图知所挂砝码质量为0时,x为0,所以x=L-Lx(L为弹簧长度).(4)由胡克定律F=kΔx知,mg=k(L-Lx),即mg=kx,所以图线斜率即为弹簧的劲度系数k==N/m=4.9 N/m同理,砝码盘质量m==kg=0.01 kg=10 g11.【解析】(1)根据表格中的各组数据在坐标纸上标出相应的点,然后用平滑曲线连接这些点,作出的图象如图所示.(2)根据作出的图线可知,钩码质量在0~500 g范围内图线是直线,表明弹力大小与弹簧伸长量关系满足胡克定律.在这个范围内的曲线上找到相距较远的两点,利用这两点的坐标值计算弹簧的劲度系数k==N/m=25.00 N/m.12.【解析】(1)本题考查探究弹簧弹力与形变关系的实验,意在考查考生对实验步骤的识记、实验数据的处理方法、分析归纳能力.根据实验先后顺序可知,实验步骤排列为CBDAEF.(2)②由图象可得k==0.43 N/cm,所以F=0.43x(N).13.【答案】(1)10(2)200(3)b【解析】(1)当F=0时,弹簧长度为原长,由题图得,原长为10 cm.(2)由公式F=kx得k===N/m=200 N/m(3)当弹簧长度小于原长时,处于压缩状态,故是图线b14.【答案】(1)弹簧测力计刻度尺(2)kFL(3)控制变量法(4)12.5【解析】(1)用弹簧测力计测量力的大小,用刻度尺测量长度.(2)由题目所给数据分析可知:当力一定时,伸长量和长度成正比;当长度一定时,伸长量和力成正比,故有x=kFL(取一组数据验证,式中的k不为零).(3)研究伸长量与拉力、长度的关系时,可以先控制其中一个量不变,如长度不变,再研究伸长量和拉力的关系,这种方法称为控制变量法.这是物理实验中的一个重要研究方法.(4)代入表中数据把式中的k求出,得k=0.000 8 N-1,再代入已知数据,L=20 cm,x=0.2 cm,可求得最大拉力F=12.5 N.15.【答案】CBDAEFG【解析】根据实验的实验操作过程应先安装仪器,再挂钩码然后记录数据,分析数据,最后整理即可,排列先后顺序为CBDAEFG.。
高中物理 第三章 相互作用 实验 探究弹力和弹簧伸长的关系(含解析)
实验:探究弹力和弹簧伸长的一、实验目的1.探究弹力与弹簧伸长的关系。
2.学会利用列表法、图像法、函数法处理实验数据。
3.验证胡克定律。
二、实验原理1.如图所示,在弹簧下端悬挂钩码时弹簧会伸长,平衡时弹簧产生的弹力与所挂钩码的重力大小相等。
2.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算。
这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系了。
3.求弹簧的劲度系数弹簧的弹力F 与其伸长量x 成正比,比例系数k =F x,即为弹簧的劲度系数;另外,在F x 图像中,直线的斜率也等于弹簧的劲度系数。
三、实验器材铁架台、弹簧、毫米刻度尺、钩码若干、坐标纸。
四、实验步骤1.按下图安装实验装置,记下弹簧下端不挂钩码时所对应的刻度l 0。
2.在弹簧下端悬挂一个钩码,平衡时记下弹簧的总长度并记下钩码的重力。
3.增加钩码的个数,重复上述实验过程,将数据填入表格,以F 表示弹力,l 表示弹簧的总长度,x =l -l 0表示弹簧的伸长量。
五、数据处理1.以弹力F (大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x 为横坐标,用描点法作图。
连接各点,得出弹力F 随弹簧伸长量x 变化的图线,如图所示。
2.以弹簧伸长量为自变量,写出弹力和弹簧伸长量之间的函数关系,函数表达式中常数即为弹簧的劲度系数,这个常数也可据F x 图线的斜率求解,k =ΔFΔx。
六、误差分析由于弹簧原长及伸长量的测量都不便于操作,存在较大的测量误差,另外由于弹簧自身的重力的影响,即当未放重物时,弹簧在自身重力的作用下,已经有一个伸长量,这样所作图线往往不过原点。
七、注意事项1.所挂钩码不要过重,以免弹簧被过分拉伸,超出它的弹性限度。
2.每次所挂钩码的质量差尽量大一些,从而使坐标上描的点尽可能稀一些,这样作出的图线精确。
3.测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,刻度尺要保持竖直并靠近弹簧,以免增大误差。
实验2 弹力与弹簧伸长的关系
3.某同学在做“探索弹力和弹簧伸长的关系”的实 验中,组成了如图所示的装置,所用的每个钩码的 质量都是30 g.他先测出不挂钩码时弹簧的自然 长度,再将5个钩码逐个挂在弹簧的下端,每次都 测出相应的弹簧总长度,将数据填在了下面的表中.(弹簧认 为是轻弹簧,弹力始终未超出弹性限度,取g=10 m/s2)
解析 由于考虑弹簧自身重力的影响,当不挂钩码时,弹簧 的伸长量x≠0,所以选C.
2.如图所示的装置测定弹簧的劲度系数,被测弹簧一端固定于 A点,另一端B用细绳绕过定滑轮挂钩码,旁边附有一竖直刻 度尺,当挂两个钩码时,绳上一定点P对应的刻度线如图中 的ab虚线所示,再增加一个钩码后,P点对应的刻度线如图 中的虚线cd所示.已知每个钩码质量均为50 g,重力加速度 g=9.8 m/s2.则被测弹簧的劲度系数为 70 N/m.
2 m长,截面积为0.05 cm2的比例系数为K2
1 m长,截面积为0.10 cm2的比例系数为K3
则K = 1
F x1 10.02 41 50 2 0N/m 6. 215 50N/m
K = 2
F x1 10.02 8 1 5 0 2 0N/m 1 26.2 5 150 N/m
1
1
∴K0=2.5×106 N/m
又金属细杆最大伸长量为xm=4×
1
1 000
m=4×10-3
m
所以金属细杆承受的最大拉力为
Fm=K0xm=2.5×106×4×10-3 N=104 N 答案 (1)正比 反比 (2)104
2.探究弹簧的弹性势能跟弹簧的形变量的关系
【例5】某同学为了研究弹簧的弹性势能Ep跟弹簧的形变量 x之间的关系,设计了这样一个实验:在固定于地面的光滑
⑤根据图线的特点,分析弹簧的弹力F与弹簧长度x的关系, 并得出实验结论. 以上步骤有3处不合理,请将不合理的地方找出来并进行修 正. 【思路剖析】 (1)弹簧的形变量是指什么? 答 指弹簧受到拉力或压力时的长度与弹簧原长的差值. (2)弹簧在使用时应注意些什么? 答 一定不能超出弹簧的弹性限度,因为超出了弹簧的弹性
2024高考物理一轮复习--力学实验专题(二)--探究弹力和弹簧伸长的关系
探究弹力和弹簧伸长的关系一、实验数据的处理:几种常见情形下的数据处理方法常见情形 处理方法根据)(l x F -图像的斜率求出弹簧的劲度系数k 值;若图像不过原点,根据l F -图像的横截距求出弹簧的原长.根据表中的数据,在x F -(或l F -)坐标系中描点连线,结合图像的斜率求出弹簧的劲度系数k 值;在l F -坐标系中,由图像的横截距求出弹簣的原长题中直接给出弹簧弹力F ,以及对应的弹簧伸长量x ∆或题中直接给出所吊钩码质量m ,以及对应的弹簧伸长量x ∆ 利用x k F ∆=或x k mg ∆=求解二、原理迁移的处理方法1.利用等效法来处理数据原始变量等效变量弹簧弹力变化量 弹簧圈数弹簧弹力变化量 质量变化量或钩码个数变化量弹簧伸长量 弹簧长度图像表达式 kx F =)(0l l k F -=(0l 为弹簧原长)相同点 弹簧的劲度系数就是图像的斜率不同点图像过原点,横坐标表示形变量,纵坐标表示弹力,图像与横轴所围面积表示该状态下弹簧的弹性势能横坐标表示弹簧长度,纵坐标表示弹力,图像不过原点,且横截距表示弹簧原长2.弹簧串、并联时劲度系数的处理方法实验装置 实验参量实验结论两个弹簧的劲度系数分别为1k 、2k ,两个弹簧的伸长量分别为1x 、2x ,总伸长量为x ,重物的重力为mg对于1k ,有mg x k =11,得到11k mgx =。
对于2k ,有mg x k =22,得到22k mgx =。
对于整体,mg kx =,21x x x +=,得2121k k k k k +=两个弹簧的劲度系数均为1k 两个弹簧的伸长量均为x重物的重力为mg对于一根弹簧,有mg x k 211=,得到12k mg x =。
对于整体,有mg kx =,可得12k k =三、针对练习1、小张同学做“探究弹簧弹力与形变量的关系”的实验。
他先把弹簧放在水平桌面上,量出弹簧原长为0 4.20m L =,再将弹簧按图甲的装置将弹簧竖直悬挂。
实验探究弹力和弹簧伸长量的关系
(4)若有一根合金丝的长度为20 cm,截面直径为
0.200 mm,使用中要求其伸长量不能超过原长的百分
之一,那么这根合金丝能承受的最大拉力为______N.
精品课件!
精品课件!
解析 (2)由题目所给的数据分析可知:当力、直径
一定时,伸长量与长度成正比,当力、长度一定时,伸
长量与直径成反比,当长度、直径一定时,伸长量与力
3.得出弹力和弹簧伸长之间的定量关系,解释函数表 达式中常数的物理意义.
【误差分析】
1.弹簧拉力大小的不稳定会造成误差.因此,使弹簧 的悬挂端固定,另一端通过悬挂钩码来充当对弹簧 的拉力,待稳定后再读数可以提高实验的准确度.
2.尽量精确地测量弹簧的长度,也是减小实验误差 的基本方法.
3.描点、作图不准确.
砝码质量
0
m/×102 g
标尺刻度 15.00 x/×10-2 m
1.00 18.94
2.00 22.82
3.00 26.78
4.00 5.00 6.00 7.00 30.66 34.60 42.00 54.50
(1)根据所测数据,在图4坐标纸上作出弹簧指针所指 的标尺刻度x与砝码质量m的关系曲线.
图6
解析 根据胡克定律F=k(h+L-L0)=kL+k(h-L0),从图 中知道当L=0时,F=10 N;当L=10 cm时,F=20 N;
将其代入方程联立得k=100 N/m,L0=15.0 cm.
答案 100
15.0
5.用纳米技术处理过的材料叫纳米材料,其性质与处 理前相比会发生很多变化.如机械性能会成倍地增 加,对光的反射能力会变得很低,熔点会大大地降 低,甚至有特殊的磁性质.现有一纳米合金丝,欲测 出其伸长量x与所受到的拉力F、长度L、截面直径 D的关系. (1)测量上述物理量需要的主要器材是:_______、 ________、___________等. (2)若实验中测量的数据如下表,根据这些数据请写 出x与F、L、D间的关系式:x=_________.(若用到 比例系数,可用k表示)
弹簧弹力与伸长量的关系
弹簧的弹力与伸长量的关系一对一个性化讲义第一讲教师冯___茂___珊基本实验要求1.实验原理弹簧受到拉力作用会伸长,平衡时弹簧产生的弹力和外力大小相等;弹簧的伸长量越大,弹力也就越大.2.实验器材铁架台、弹簧、钩码、刻度尺、坐标纸.3.实验步骤(1)安装实验仪器(如实验原理图所示).(2)测量弹簧的伸长量(或总长)及所受的拉力(或所挂钩码的质量),列表作出记录,要尽可能多测几组数据.(3)根据所测数据在坐标纸上描点,以力为纵坐标,以弹簧的伸长量为横坐标.(4)按照在图中所绘点的分布与走向,尝试作出一条平滑的曲线(包括直线),所画的点不一定正好在这条曲线上,但要注意使曲线两侧的点数大致相同.(5)以弹簧的伸长量为自变量,写出曲线所代表的函数,首先尝试一次函数,如果不行再考虑二次函数.规律方法总结1.实验数据处理方法(1)列表法将测得的F、x填入设计好的表格中,可以发现弹力F与弹簧伸长量x的比值在误差允许范围内是相等的.(2)图象法以弹簧伸长量x为横坐标,弹力F为纵坐标,描出F、x各组数据相应的点,作出的拟合曲线是一条过坐标原点的直线.(3)函数法弹力F与弹簧伸长量x满足F=kx的关系.2.注意事项(1)不要超过弹性限度:实验中弹簧下端挂的钩码不要太多,以免弹簧被过分拉伸,超过弹簧的弹性限度.(2)尽量多测几组数据:要使用轻质弹簧,且要尽量多测几组数据.(3)观察所描点的走向:本实验是探究性实验,实验前并不知道其规律,所以描点以后所作的曲线是试探性的,只是在分析了点的分布和走向以后才决定用直线来连接这些点.(4)统一单位:记录数据时要注意弹力及弹簧伸长量的对应关系及单位.3.误差分析(1)钩码标值不准确、弹簧长度测量不准确带来误差.(2)画图时描点及连线不准确也会带来误差.考点一实验原理与实验操作1.[对实验原理的考查]一个实验小组在“探究弹力和弹簧伸长量的关系”的实验中,使用两条不同的轻质弹簧a和b,得到弹力F与弹簧长度l的图象如图1所示.下列表述正确的是( )图1A.a的原长比b的长B.a的劲度系数比b的大C.a的劲度系数比b的小D.测得的弹力与弹簧的长度成正比2.[对实验操作的考查]如图2甲所示,用铁架台、弹簧和多个已知质量且质量相等的钩码探究在弹性限度内弹簧弹力与弹簧伸长量的关系.图2(1)为完成实验,还需要的实验器材有:____________.(2)实验中需要测量的物理量有:________________.(3)图乙是弹簧弹力F与弹簧伸长量x的F-x图线,由此可求出弹簧的劲度系数为________N/m.图线不过原点的原因是由于___________________________________.(4)为完成该实验,设计的实验步骤如下:A.以弹簧伸长量为横坐标,以弹力为纵坐标,描出各组(x,F)对应的点,并用平滑的曲线连接起来;B.记下弹簧不挂钩码时其下端在刻度尺上的刻度l0;C.将铁架台固定于桌子上,并将弹簧的一端系于横梁上,在弹簧附近竖直固定一把刻度尺;D.依次在弹簧下端挂上1个、2个、3个、4个…钩码,并分别记下钩码静止时弹簧下端所对应的刻度,并记录在表格内,然后取下钩码;E.以弹簧伸长量为自变量,写出弹力与弹簧伸长量的关系式.首先尝试写成一次函数,如果不行,则考虑二次函数;F.解释函数表达式中常数的物理意义;G.整理仪器.请将以上步骤按操作的先后顺序排列出来:________.3.[对实验原理与实验操作的考查](1)在“探究弹力和弹簧伸长量的关系”的实验中,以下说法正确的是( )A.弹簧被拉伸时,不能超出它的弹性限度B.用悬挂钩码的方法给弹簧施加拉力,应保证弹簧位于竖直位置且处于平衡状态C.用直尺测得弹簧的长度即为弹簧的伸长量D.用几个不同的弹簧,分别测出几组拉力与伸长量,得出拉力与伸长量之比相等(2)某同学做“探究弹力和弹簧伸长量的关系”的实验,他先把弹簧平放在桌面上使其自然伸长,用直尺测出弹簧的原长L0,再把弹簧竖直悬挂起来,挂上钩码后测出弹簧伸长后的长度L,把L-L0作为弹簧的伸长量x,这样操作,由于弹簧自身重力的影响,最后画出的图线可能是下列选项中的( )考点二数据处理及误差分析4.[实验误差分析]为了探究弹力和弹簧伸长的关系,某同学选了甲、乙两根规格不同的弹簧进行测试,根据测得的数据绘出如图3所示图象.图3(1)从图象上看,该同学没能完全按照实验要求做,从而使图象上端成为曲线,图象上端成为曲线是因为____________________________________.(2)这两根弹簧的劲度系数分别为________ N/m和________ N/m;若要制作一个精确程度较高的弹簧测力计,应选弹簧________(选填“甲”或“乙”).(3)从上述数据和图线中分析,请对这个研究课题提出一个有价值的建议.建议:_____________________________________________________________________.5.[实验误差分析](2015·福建理综·19(1))某同学做“探究弹力和弹簧伸长量的关系”的实验.①图4甲是不挂钩码时弹簧下端指针所指的标尺刻度,其示数为7.73 cm;图乙是在弹簧下端悬挂钩码后指针所指的标尺刻度,此时弹簧的伸长量Δl为________cm;图4②本实验通过在弹簧下端悬挂钩码的方法来改变弹簧的弹力,关于此操作,下列选项中规范的做法是________;(填选项前的字母)A.逐一增挂钩码,记下每增加一只钩码后指针所指的标尺刻度和对应的钩码总重B.随意增减钩码,记下增减钩码后指针所指的标尺刻度和对应的钩码总重③图丙是该同学描绘的弹簧的伸长量Δl与弹力F的关系图线,图线的AB段明显偏离直线OA,造成这种现象的主要原因是____________________________.6.[对数据处理的考查](2015·四川理综·8(1))某同学在“探究弹力和弹簧伸长的关系”时,安装好实验装置,让刻度尺零刻度与弹簧上端平齐,在弹簧下端挂1个钩码,静止时弹簧长度为l1,如图5甲所示.图乙是此时固定在弹簧挂钩上的指针在刻度尺(最小分度是1毫米)上位置的放大图,示数l1=________ cm.在弹簧下端分别挂2个、3个、4个、5个相同钩码,静止时弹簧长度分别是l2、l3、l4、l5.已知每个钩码质量是50 g,挂2个钩码时,弹簧弹力F2=________N(当地重力加速度g=9.8 m/s2).要得到弹簧伸长量x,还需要测量的是____________,作出F-x曲线,得到弹力与弹簧伸长量的关系.图5考点三实验拓展与创新7.[实验拓展]如图6甲所示,一根弹簧一端固定在传感器上,传感器与电脑相连.当对弹簧施加变化的作用力(拉力或压力)时,在电脑上得到了弹簧的形变量与弹簧产生的弹力大小的关系图象,如图乙所示.则下列判断不正确的是( )图6A.弹簧产生的弹力和弹簧的长度成正比B.弹力的增加量与对应的弹簧长度的增加量成正比C.该弹簧的劲度系数是200 N/mD.该弹簧受到反向压力时,劲度系数不变8.[实验创新](2014·浙江·21)在“探究弹力和弹簧伸长量的关系”时,某同学把两根弹簧如图7连接起来进行探究.图7 图8(1)某次测量如图8所示,指针示数为______cm.(2)在弹性限度内,将50 g的钩码逐个挂在弹簧下端,得到指针A、B的示数L A和L B如表所示.用表中数据计算弹簧Ⅰ的劲度系数为______N/m(重力加速度g=10 m/s2).由表中数据______(填“能”或“不能”)计算出弹簧Ⅱ的劲度系数.钩码数123 4L A/cm15.7119.7123.6627.76L B/cm29.9635.7641.5147.369.[实验创新](2014·新课标Ⅱ·23)某实验小组探究弹簧的劲度系数k与其长度(圈数)的关系.实验装置如图9所示:一均匀长弹簧竖直悬挂,7个指针P0、P1、P2、P3、P4、P5、P6分别固定在弹簧上距悬点0、10、20、30、40、50、60圈处;通过旁边竖直放置的刻度尺,可以读出指针的位置,P0指向0刻度,设弹簧下端未挂重物时,各指针的位置记为x0,挂有质量为0.100 kg的砝码时,各指针的位置记为x.测量结果及部分计算结果如下表所示(n为弹簧的圈数,取重力加速度为9.80 m/s2),已知实验所用弹簧总圈数为60,整个弹簧的自由长度为11.88 cm.图9P 1P 2P 3P 4P 5P 6x 0(cm) 2.04 4.06 6.06 8.05 10.03 12.01 x (cm) 2.64 5.26 7.81 10.30 12.93 15.41 n 10 20 30 40 50 60 k (N/m)163 ① 56.0 43.6 33.8 28.8 1k(m/N)0.006 1②0.017 90.022 90.029 60.034 7(1)将表中数据补充完整:①________,②________.(2)以n 为横坐标,1k 为纵坐标,在图10给出的坐标轴上画出1k-n 图象.图10(3)图10中画出的直线可近似认为通过原点.若从实验中所用的弹簧截取圈数为n 的一段弹簧,该弹簧的劲度系数k 与其圈数n 的关系的表达式为k =________N/m.该弹簧的劲度系数k 与其自由长度l 0(单位为m)的关系的表达式为k =________N/m..实验原理和数据处理的创新1.实验原理的创新(如图11甲、乙、丙所示)图112.数据处理的创新(1)弹力的获得:弹簧竖直悬挂,重物的重力作为弹簧的拉力,存在弹簧自重的影响→弹簧水平使用,重物的重力作为弹簧的拉力,消除了弹簧自重的影响.(2)图象的获得:由坐标纸作图得F-x图象→由传感器和计算机输入数据直接得F-x图象.。
(高中物理)实验3探究弹力与弹簧伸长量的关系
实验3:探究弹力与弹簧伸长量的关系【例1】以下是某同学所进行的“探究弹力和弹簧伸长量的关系〞的实验步骤:①将一个弹簧的上端固定在铁架台上,竖直悬挂起来,在弹簧下挂一个钩码,记下钩码的质量m1,此时弹簧平衡时,弹力大小为F1=m1g,并用刻度尺测量出此时弹簧的长度L1,并记录到表格中.②再增加钩码,重复上述的操作,逐渐增加钩码的重力,得到多组数据.③以力F为纵坐标,以弹簧的长度L x为横坐标,根据所测的数据在坐标纸上描点.④按坐标纸上所描各点的分布与走向,作出一条平滑的曲线(包括直线).⑤根据图线的特点,分析弹簧的弹力F与弹簧长度L x的关系,并得出实验结论.以上步骤有3处不合理,请将不合理的地方找出来并进行修正.答案以上步骤中第①、②、③①步还应该测出弹簧的原长L0;第②步在增加砝码时要取下砝码,看弹簧是否能恢复原长;第③步,应该以弹簧的形变量为横坐标,因为探究的是弹力和弹簧伸长量的关系.【例2】某同学用如图实所示装置做探究弹力和弹簧伸长量的关系的实验.他先测出不挂砝码时弹簧下端指针所指的标尺刻度,然后在弹簧下端挂上砝码,并逐个增加砝码,测出指针所指的标尺刻度,所得数据列表如下:(重力加速度g=9.8 m/s2砝码质量m/102 g标尺刻度x/10-2 m(1)根据所测数据,在图上作出弹簧指针所指的标尺刻度x与砝码质量m的关系曲线.(2)根据所测得的数据和关系曲线可以判断,在N/m.答案 (1)(2)0~490 g 25【例3】下表是某同学为探究弹簧弹力和伸长量的关系所测的几组数据.弹力F/N伸长量x/cm(1)请你在以下列图实的坐标纸上作出F-x图线.(2)写出曲线所代表的函数式.(3)解释函数表达式中常量的物理意义.(4)假设弹簧的原长为40 cm,并且以弹簧的总长为自变量,请你写出它的函数式.答案 (1)如以下列图所示(2)F=20x+0.04 (3)劲度系数 (4)F=20L x【例4】用金属制成的线材(如钢丝、钢筋)受到拉力会伸长,十七世纪英国物理学家胡克发现:金属丝或金属杆在弹性限度内它的伸长与拉力成正比,这就是著名的胡克定律.这一发现为后人对材料的研究奠定了重要根底.现有一根用新材料制成的金属杆,长为4 m,横截面积为0.8 cm2,设计要求它受到拉力后的伸长不超过原长的1/1 000,问最大拉力多大?由于这一拉力很大,杆又较长,直接测试有困难,选用同种材料制成样品进行测试,通过测试取得数据如下:(1)测得结果说明线材受拉力作用后,其伸长与材料的长度成,与材料的截面积成.(2)上述金属细杆承受的最大拉力为N.答案 (1)正比反比 (2)104【例5】某同学为了研究弹簧的弹性势能E p跟弹簧的形变量x之间的关系,设计了这样一个实验:在固定于地面的光滑的桌面上靠近桌边处,将弹簧的一端固定,用一只小球压缩弹簧,然后释放小球弹出,小球弹出后刚好离开桌面做平抛运动,测出弹簧的压缩量x,求出小球被弹出时的速度,算出对应的动能E k(认为等于弹簧的弹性势能),从而研究E p和x间的函数关系.该实验中除上述器材外还需的测量仪器有:,必须测量的物理量有.答案刻度尺、天平水平距离l、桌面的高度h、弹簧的形变量x、小球的质量m“探究弹力和弹簧伸长量的关系〞实验中,他先把弹簧平放在桌面上使其自然伸长,用直尺测出弹簧的原长l0,再把弹簧竖直悬挂起来,挂上钩码后测出弹簧伸长后的长度l,把l-l0作为弹簧的伸长量x.这样操作,由于弹簧自身重力的影响,最后画出的图线可能是以下列图中的哪一个( )答案 C“探究弹力和弹簧伸长量的关系〞的实验中关于操作步骤的先后顺序,以下说法正确的选项是( )A.先测量原长,后竖直悬挂B.先竖直悬挂,后测量原长答案 BD3.“探究弹力和弹簧伸长量的关系〞的实验中,选用的螺旋弹簧如以下列图甲所示.(1)将弹簧的上端O点固定悬吊在铁架台上,旁边置一刻度尺,刻度尺的零刻线跟O点对齐,在弹簧的下端A处做一标记(如固定一个指针).在弹簧下端的挂钩上挂上钩码(每个钩码的质量都是50 g A=N/m.(结果取两位有效数字);此弹簧的弹力大小F弹跟弹簧伸长量∆x的关系是.(2)如果将指针固定在A点的下方P处,再作出x随F变化的图象,得出弹簧的劲度系数与k A相比,可能是( )AAA(3)如果将指针固定在A点的上方Q处,再作出x随F变化的图象,得出弹簧的劲度系数与k A相比,可能是( )AAA答案 (1)42(±2) F弹=42∆x 〔2〕B (3)A50 g,重力加速度g=9.8 m/s2.那么被测弹簧的劲度系数为N/m.答案 70“探究弹力和弹簧伸长量的关系〞的实验中,组成了如图实所示的装置,所用的每个钩码的质量都是30 g.他先测出不挂钩码时弹簧的自然长度,再将5个钩码逐个挂在弹簧的下端,每次都测出相应的弹簧总长度,将数据填在了下面的表中.(弹簧认为是轻弹簧,弹力始终未超出弹性限度,取g=10 m/s2)砝码质量〔g〕0 30 60 90 120 150 弹簧总长〔cm〕弹力大小〔N〕(1)试根据这些实验数据在以下列图实给定的坐标纸上作出弹簧所受弹力大小跟弹簧总长之间的函数关系的图线.(2)该图线跟横轴的交点表示的物理意义是.(3)该弹簧的劲度系数k是.答案 (1)(2)弹簧的原长 (3)25.9 N/m6.〔·模拟〕用纳米技术处理过的材料叫纳米材料,其性质与处理前相比会发生很多变化.如机械性能会成倍地增加,对光的反射能力会变得很低,熔点会大大地降低,甚至有特殊的磁性质.现有一纳米合金丝,欲测出其伸长量x与所受到的拉力F、长度L、截面直径D的关系.(1)测量上述物理量需要的主要器材是:、、等.(2)假设实验中测量的数据如下表,根据这些数据请写出x与F、L、D间的关系式:x=.(假设用到比例系数,可用k表示)长度(3)在研究并得到上述关系的过程中,主要运用的科学研究方法是(只需写出一种).(4)假设有一根合金丝的长度为20 cm,截面直径为0.200 mm,使用中要求其伸长量不能超过原长的百分之一,那么这根合金丝能承受的最大拉力为N.kFL答案 (1)弹簧测力计刻度尺螺旋测微器 (2)x=D。
实验2 探究弹力和弹簧伸长的关系
(4)为完成该实验,设计的实验步骤如下: A.以弹簧伸长量为横坐标,以弹力为纵坐标,描出各组(x,F)对应的 点,并用平滑的曲线连接起来; B.记下弹簧不挂钩码时其下端在刻度尺上的刻度 l0; C.将铁架台固定于桌子上,并将弹簧的一端系于横梁上,在弹簧附近 竖直固定一把刻度尺; D.依次在弹簧下端挂上 1 个、2 个、3 个、4 个……钩码,并分别记 下钩码静止时弹簧下端所对应的刻度,并记录在表格内,然后取下钩码; E.以弹簧伸长量为自变量,写出弹力与伸长量的关系式。首先尝试写 成一次函数,如果不行,则考虑二次函数; F.解释函数表达式中常数的物理意义; G.整理仪器。 请将以上步骤按操作的先后顺序排列出来:__C__B_D__A_E_F__G__。
1
2
3
10.18
13.09
4 14.58
5 16.08
6 17.54
(1) 表 格 中 第 二 组 数 据 的 弹 簧 长 度 如 图 所 示 , 则 弹 簧 长 度 为 __1_1_.6_0_(_1_1_.5_8_~__1_1_._6_2_均__正__确__)____ cm。
(2)用所学知识尽量精确地计算出弹簧的劲度系数 k=___3_3_.1___ N/m。(g =9.8 m/s2,结果保留三位有效数字)
尝试解答 (1)①200 ②0.1 相同 (2)B A。
(1)①由图 b 中图象可知,弹簧的劲度系数:k=ΔΔFx=3.56--21.5 N/cm=2
N/cm=200 N/m。
②由图 b 图象可知:mg=kx1,解得小盘质量:m=kgx1=2×100.5 kg=
实验:探究弹力与弹簧伸长量的关系 Word版含解析
第5节实验:探究弹力与弹簧伸长量的关系验证力的平行四边形定则一、探究弹力和弹簧伸长量的关系1.实验目的知道弹力与弹簧伸长量的定量关系,学会利用列表法、图象法、函数法处理实验数据.2.实验原理弹簧受力会发生形变,形变的大小与受到的外力有关,沿弹簧轴线的方向拉弹簧,当形变稳定时,弹簧产生的弹力与使它发生形变的拉力在数值上是__相等的__,用悬挂法测量弹簧的弹力,运用的正是弹簧的弹力与挂在弹簧下面的砝码的重力__相等__.弹簧的长度可用刻度尺直接测出,伸长量可以由__拉长后的长度减去弹簧原来的长度__进行计算.这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系.3.实验器材弹簧、毫米刻度尺、铁架台、钩码若干、__坐标纸__.4.实验步骤(1)将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧__自然伸长状态时的长度L0__,即原长.(2)如图所示,将已知质量的钩码挂在弹簧的下端,在平衡时测量__弹簧的总长__并计算__钩码的重力__,填写在记录表格里.(3)(4)以弹力F(大小等于__所挂钩码的重力__)为纵坐标,以__弹簧的伸长量x__为横坐标,用描点法作图.根据点的分布情况和走向,作出一条直线,让尽可能多的点在这条直线上,其他点均匀分布在直线两旁,得出弹力F随弹簧伸长量x变化的图线.(5)以__弹簧的伸长量__为自变量,写出曲线所代表的函数.首先尝试一次函数,如果不行则考虑二次函数.(6)得出弹力和弹簧伸长量之间的定量关系,解释函数表达式中常数的物理意义.二、验证力的平行四边形定则1.实验目的验证互成角度的两个力合成时的平行四边形定则.2.实验原理等效法:使一个力F′的作用效果和两个力F1、F2的作用效果相同,就是__让同一条一端固定的橡皮条伸长到同一点__,所以这一个力F′就是两个力F1和F2的合力,作出F′的图示,再根据__平行四边形定则__作出力F1和F2的合力F的图示,比较F和F′的大小和方向是否都相同.3.实验器材方木板,白纸,弹簧测力计(两只),__橡皮条(一条)__,细绳套(两个),三角板,刻度尺,图钉(几个).4.实验步骤(1)用图钉把白纸钉在水平桌面的方木板上.(2)用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套.(3)用两只弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长到某一位置O,如图所示,记录__两弹簧测力计的读数__,用铅笔描下__O点的位置__及此时两__细绳的方向__.(4)用铅笔和刻度尺从结点O沿两条细绳方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以__F1和F2为邻边__用刻度尺作平行四边形,过__O点__画平行四边形的对角线,此对角线即为合力F的图示.(5)只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下__弹簧测力计的读数__和__细绳的方向__,用刻度尺从O点按同样的标度沿记录的方向作出这只弹簧测力计的拉力F′的图示.(6)比较一下,力F′与用平行四边形定则求出的合力F在大小和方向上是否相同.(7)改变两个力F1与F2的大小和夹角,再重复实验两次.“验证力的平行四边形定则”实验注意事项:1.同一实验中的两只弹簧测力计的选取方法是:将两只弹簧测力计调零后互钩对拉,若两只弹簧测力计在对拉过程中读数相同,则可选;若读数不同应调整或另换,直至相同为止.2.在同一次实验中,使橡皮条拉长时的结点O位置一定要相同.3.用两只弹簧测力计钩住绳套互成角度地拉橡皮条时,夹角不宜太大也不宜太小,在60°~100°之间为宜.4.读数时应注意使弹簧测力计与木板平行,并使细绳套与弹簧测力计的轴线在同一条直线上,避免弹簧测力计的外壳与弹簧测力计的限位卡之间有摩擦.读数时眼睛要正视弹簧测力计的刻度,在合力不超过量程及橡皮条弹性限度的前提下,拉力的数值尽量大些.5.细绳套应适当长一些,便于确定力的方向.不要直接沿细绳套的方向画直线,应在细绳套末端用铅笔画一个点,去掉细绳套后,再将所标点与O点连接,即可确定力的方向.6.在同一次实验中,画力的图示所选定的标度要相同,并且要恰当选取标度,使所作力的图示稍大一些.)【变式1】在“探究弹力和弹簧伸长量的关系”实验中,以下说法正确的是() A.弹簧被拉伸时,能超出它的弹性限度B.用悬挂钩码的方法给弹簧施加拉力,应保证弹簧位于竖直位置且处于平衡状态C.用直尺测得弹簧的长度即为弹簧的伸长量D.用几个不同的弹簧,分别测出几组拉力与伸长量,得出拉力与伸长量之比相等[解析] 弹簧被拉伸时,不能超出它的弹性限度,否则弹簧会损坏,故A错误.用悬挂钩码的方法给弹簧施加拉力,要保证弹簧位于竖直位置,使钩码的重力等于弹簧的弹力,要待钩码平衡时再读数,故B正确.弹簧的长度不等于弹簧的伸长量,故C错误.拉力与伸长量之比是劲度系数,由弹簧决定,同一弹簧的劲度系数是不变的,不同的弹簧的劲度系数不一定相同,故D错误.故选B.[答案] B【变式2】验证“力的平行四边形定则”,如图所示,实验步骤如下:①用两个相同的弹簧测力计互成角度拉细绳套,使橡皮条伸长,结点到达纸面上某一位置,记为O1;②记录两个弹簧测力计的拉力F1和F2的大小和方向;③只用一个弹簧测力计,将结点仍拉到位置O1,记录弹簧测力计的拉力F3的大小和方向;④按照力的图示要求,作出拉力F1、F2、F3;⑤根据力的平行四边形定则作出F1和F2的合力F;⑥比较F3和F的一致程度.(1)下列说法中正确的是________.A.应使橡皮条与两绳夹角的平分线在同一直线上B.为了便于计算合力大小,两绳间夹角应取30°、45°、90°等特殊角度C.系在橡皮条末端的两绳要一样长D.同时改变两个弹簧测力计拉力的大小和方向,结点可能保持在位置O1(2)改变F1、F2,重复步骤①至⑥进行第二次实验,记下结点位置O2,位置O2________(选填“必须”或“不必”)与位置O1相同.[解析] (1)F1、F2方向间夹角大小适当即可,不一定要橡皮条和两绳套夹角的角平分线在一条直线上,故A错误;两细线拉橡皮条时,只要确保拉到同一点即可,两绳间夹角不一定要取30°、45°、90°等特殊角度,故B错误;细线的作用是能显示出力的方向,所以不必等长,故C错误;同时改变两个弹簧测力计的拉力,结点可能保持在位置O1,故D正确.(2)重复实验时,O2不必与O1位置相同.[答案] (1)D(2)不必数据处理、误差分析3某学习小组探究弹簧的伸长与形变的关系,在操作的同时记录数据,其步骤如下:(1)测出钩码的质量为m0.把弹簧平放在水平桌面上,测出弹簧的原长l0.(2)将该弹簧悬吊在铁架台上,让弹簧自然下垂,如图甲所示.挂上一个钩码,测出此时弹簧的长度为l1.(3)之后逐渐增加钩码的个数,并测出弹簧对应的长度分别为l2、l3…….(4)撤去实验装置,将以上过程中记录的数据汇总,并作出钩码质量m与伸长量x的关系图如图乙所示.已知m =im 0,x =l i -l 0,其中i 是钩码个数,重力加速度为g.请根据以上操作、记录和图象回答以下问题:①m -x 图象的横截距为1.00 cm ,你认为产生的原因是________(填字母代号).A .数据计算错误B .水平放置弹簧测量原长C .选择的弹簧是损坏的D .选择的弹簧是轻弹簧②m -x 图线在伸长量x >5.00 cm 之后变弯曲,说明了________(填字母代号).A .此弹簧已被损坏B .悬挂钩码过多C .钩码下端触地D .添加钩码后,钩码在竖直方向振动,且选择钩码到最高点读数l i③从图乙上看,该弹簧水平放置使用时的弹性限度________(填“大于”“等于”或“小于”)5m 0g.④已知钩码的质量m 0=0.2 kg ,重力加速度g =9.8 m /s 2,利用图乙求弹簧的劲度系数k =________ N /m .[解析] ①m -x 图象的横截距为1.00 cm ,产生的原因是测量弹簧原长时是水平放置的,应该让弹簧竖直放置测量原长,故选B .②m -x 图线在伸长量x >5.00 cm 之后变弯曲,说明了弹簧已被损坏,或者是悬挂钩码过多,弹簧超出了弹性限度,故选AB .③从图乙上看,该弹簧水平放置使用时,当弹力大于5m 0g 时图象发生了弯曲,可知弹簧的弹性限度等于5m 0g.④利用图乙求得弹簧的劲度系数k =5m 0g Δl =5×0.2×9.8(5-1)×10-2N /m =245 N /m . [答案] ①B ②AB ③等于 ④245“探究弹力与弹簧伸长量的关系”实验注意事项:1.所挂钩码不要过重,以免弹簧被过分拉伸而超出它的弹性限度,要注意观察,适可而止.2.每次所挂钩码的质量差尽量大一些,从而使坐标上描的点的间距尽可能大,这样作出的图线更精确.3.测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,以免增大误差.4.描点画线时,所描的点不一定都落在一条直线上,但应注意一定要使各点均匀分布在直线的两侧.5.记录数据时要注意弹力及弹簧伸长量的对应关系及单位.)4小明通过实验“验证力的平行四边形定则”.(1)实验记录纸如图甲所示,O点为橡皮筋被拉伸后伸长到的位置,两弹簧测力计共同作用时,拉力F1和F2的方向分别过P1和P2点;一个弹簧测力计拉橡皮筋时,拉力F3的方向过P3点.三个力的大小分别为:F1=3.30 N、F2=3.85 N和F3=4.25 N.请根据图中给出的标度作图求出F1和F2的合力.(2)仔细分析实验,小明怀疑实验中的橡皮筋被多次拉伸后弹性发生了变化,影响实验结果.他用弹簧测力计先后两次将橡皮筋拉伸到相同长度,发现读数不相同,于是进一步探究了拉伸过程对橡皮筋弹性的影响.实验装置如图乙所示,将一张白纸固定在竖直放置的木板上,橡皮筋的上端固定于O 点,下端N挂一重物.用与白纸平行的水平力缓慢地移动N,在白纸上记录下N的轨迹.重复上述过程,再次记录下N的轨迹.乙丙两次实验记录的轨迹如图丙所示.过O点作一条直线与轨迹交于a、b两点,则实验中橡皮筋分别被拉伸到a和b时所受水平力F a、F b的大小关系为________.(3)根据(2)中的实验,可以得出的实验结果有________.(填写选项前的字母)A.橡皮筋的长度与受到的拉力成正比B.两次受到的拉力相同时,橡皮筋第2次的长度较长C.两次被拉伸到相同长度时,橡皮筋第2次受到的拉力较大D.两次受到的拉力相同时,拉力越大,橡皮筋两次的长度之差越大(4)根据小明的上述实验探究,请对验证力的平行四边形定则实验提出两点注意事项.________________________________________________________________________ ________________________________________________________________________[解析] 根据力的合成法则及平衡条件解题.(1)作出的图示如图所示.(2)重物受力情况如图所示,由于重力不变,两次实验时,橡皮筋弹力T的方向相同,故水平拉力F大小相等,即F a=F b.(3)根据题图丙可知,选项B 、D 正确,选项A 、C 错误.(4)橡皮筋拉伸不宜过长,选用新橡皮筋等可减小误差.[答案] (1)如图所示(F 合=4.60~4.90 N 都算对)(2)F a =F b (3)BD(4)橡皮筋拉伸不宜过长;选用新橡皮筋(或:拉力不宜过大;选用弹性好的橡皮筋;换用弹性好的弹簧)【变式3】 在做“探究弹簧弹力与弹簧形变的关系”实验时:(1)甲同学将弹簧水平放置测出其自然长度,然后竖直悬挂让其自然下垂,在其下端施加竖直向下的外力F ,通过实验得出弹簧弹力与弹簧形变量的关系,此操作对实验结果产生影响的原因是__________________.(2)乙同学按正确操作步骤进行实验,但未测量弹簧原长和形变量,而是每次测出弹簧的总长度L ,并作出外力F 与弹簧总长度L 的关系图线如图a 所示,由图可知,该弹簧的原长为________cm ;该弹簧的劲度系数为________N /m .(3)丙同学通过实验得出弹簧弹力与弹簧形变量的关系图线如图b 所示,造成图线后来弯曲的原因是____________________________________.[解析] (1)由于弹簧自身重力的影响,弹簧竖直悬挂时,弹簧在没有外力的情况下已经伸长了一段距离,故作出的F -x 图象不过坐标原点;(2)由图线和坐标轴交点的横坐标表示弹簧的原长可知弹簧的原长为10 cm ;当拉力为10 N 时,弹簧的形变量为x =(30-10) cm =20 cm =0.2 m ,由胡克定律F =kx 得:k =F x =100.2=50 N /m ;(3)丙图,当弹力达到一定范围时,出现拉力与形变量不成正比,说明弹力超出最大限度.[答案] (1)弹簧自身有重量(2)1050(3)外力已超过弹性限度【变式4】用等效代替法验证力的平行四边形定则的实验情况如下图甲所示,其中A 为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳,图乙是白纸上根据实验结果画出的图.(1)本实验中“等效代替”的含义是________.A.橡皮筋可以用细绳替代B.左侧弹簧测力计的作用效果可以替代右侧弹簧测力计的作用效果C.右侧弹簧测力计的作用效果可以替代左侧弹簧测力计的作用效果D.两弹簧测力计共同作用的效果可以用一个弹簧测力计的作用效果替代(2)图乙中的F与F′两力中,方向一定沿着AO方向的是________,图中________是F1、F2合力的理论值,______是合力的实验值.(3)(多选)完成该实验的下列措施中,能够减小实验误差的是________.A.拉橡皮筋的绳细一些且长一些B.拉橡皮筋时,弹簧秤、橡皮筋、细绳应贴近木板且与木板面平行C.拉橡皮筋的细绳要长些,标记同一细绳方向的两点要远些D.使拉力F1和F2的夹角很小[解析] (1)该实验采用了“等效法”,即用两个弹簧秤拉橡皮筋的效果和用一个弹簧秤拉橡皮筋的效果是相同的,即要求橡皮筋的形变量相同,故ABC错误,D正确.(2)F是通过作图的方法得到的合力的理论值,在平行四边形的对角线上,而F′是通过一个弹簧称沿AO方向拉橡皮条,使橡皮条伸长到O点,使得一个弹簧称的拉力与两个弹簧称的拉力效果相同,测量出的合力,因此其方向沿着AO方向.(3)为减小实验误差,拉橡皮筋的绳细一些且长一些,故A正确;为减小实验误差,拉橡皮筋时,弹簧秤、橡皮筋、细绳应贴近木板且与木板面平行,故B正确;拉橡皮筋的细绳要长些,标记同一细绳方向的两点要远些,故C正确;使拉力F1和F2的夹角适当大些,故D 错误.[答案] (1)D (2)F′ F F′ (3)ABC实验的改进与创新5 如图所示为某物理兴趣小组测定弹簧劲度系数的实验装置.弹簧下端固定在水平桌面上,上端连接一托盘P ,在托盘P 下方和桌面上方同一竖直线上安装有光电测距仪A 和B ,通过数据线可以将二者间的距离信息输入到电脑,距离测量精度可达到0.1 mm .实验时,小组同学将6个规格为m =50 g 的砝码逐个放在托盘P 上,每加放一个砝码待系统静止后均打开光电测距电路开关进行测距,测距结果直接输入电脑,测距完成关闭测距开关,然后将对应的托盘上放置砝码的数目信息输入电脑,形成一组测量数据.实验过程中弹簧始终保持竖直且在弹性限度内.实验完成后小组同学在电脑上对坐标轴和坐标轴所表示物理量的单位进行了设置,纵轴表示托盘P 上砝码的总重力F 与单个砝码重力mg 的比值;横轴表示A 、B 间的距离h ,单位设置为 cm .设置完成后,电脑系统根据实验数据自动拟合出F mg-h 图象如图所示,已知当地的重力加速度为9.8 m /s 2.(1)根据图象可求出弹簧的劲度系数k =__________ N /m .(结果保留一位小数)(2)输入电脑的数据没有托盘和弹簧的重力,这一疏漏对测量结果__________(选填“有影响”或“无影响”).(3)针对实验小组在电脑上的设置操作,请你提出一条提高测量精度的改进建议:____________________________________________________________.[审题指导] 根据弹簧弹力和形变量的正比例关系,可知,砝码盘的质量遗漏对实验结果无影响,根据图象的函数关系,得到图象的斜率为-k mg,利用图象可计算出劲度系数k.横轴若改为mm ,在数据处理时会提高计算的准确度.[解析] (1)由图象可知,托盘上无砝码时,弹簧的长度为0.28 m ,每次添加砝码后系统静止,由平衡关系可得,托盘上砝码总重力F =k(0.28-h),即n =F mg =k mg(0.28-h),故该图象的斜率为-k mg ,即0-6.50.28=-k mg,解得劲度系数k ≈11.4 N /m ; (2)输入电脑的数据没有托盘和弹簧的重力,这一疏漏对测量无影响,因为弹簧的形变和受力成正比,满足k =ΔFΔx .(3)为了提高实验的精度,可将轴h 的单位设置成mm ,提高h 的显示精度.[答案] (1)11.4 N /m (2)无影响 (3)将横轴h 的单位设置成mm6 某小组为了验证力的平行四边形定则,设计了如图甲所示的实验:在一个半圆形刻度盘上安装两个可以沿盘边缘移动的拉力传感器A 、B ,两传感器的挂钩分别系着轻绳,轻绳的另一端系在一起,形成结点O ,并使结点O 位于半圆形刻度盘的圆心.在O 点挂上重G =2.00 N 的钩码,记录两传感器A 、B 的示数F 1、F 2及轻绳与竖直方向的夹角θ1、θ2,用力的图示法即可验证力的平行四边形定则.(1)当F 1=1.00 N 、F 2=1.50 N ,θ1=45°、θ2=30°时,请在图乙中用力的图示法作图,画出两绳拉力的合力F ,并求出合力F =________N .(结果保留三位有效数字)(2)该组同学在实验中,将传感器A 固定在某位置后,再将传感器B 从竖直位置的P 点缓慢顺时针旋转,得到了一系列B 传感器的示数F 2和对应的角度θ2,作出了如图丙所示的F 2-θ2图象,由图丙可知A 传感器所处位置的角度θ1=________.[解析] (1)先画出力的标度,根据题中所给的数据,利用平行四边形定则画出力的图示并求合力F =2.01 N .(2)由题图丙可知,当θ2=π3和0时,F 2的读数都为2.0 N ,根据平行四边形定则,画出如图所示的三角形,由图中几何关系,可得θ1=π3.[答案] (1)如图所示 2.01(1.97~2.05) (2)π3【变式5】 某实验小组进行测量动摩擦因数大小实验.(1)实验时,小明同学先在竖直方向上对弹簧测力计调零,然后用弹簧测力计拉着物体沿水平方向做匀速直线运动,那么弹簧测力计的示数与物体所受摩擦力相比________(选填“偏大”或“偏小”).(2)弹簧测力计正确调零后,小明同学设计了如图所示两种实验方案,来测量物体A 与长木板B 之间的滑动摩擦力大小.方案1:如图甲所示,把长木板B 固定在水平面上,匀速拉动物体A ;方案2:如图乙所示,把长木板B 放在水平面上,拉动长木板B.以上两种实验方案,你认为方案________更为合理;这是因为____________________________________.(3)小王同学利用合理的实验装置进行实验.在物体A 上放橡皮泥,准确测得物体A 和橡皮泥的总重量G ,实验中待弹簧测力计指针稳定后,将其读数记作F.改变物体A 上橡皮泥重量,重复多次,得到实验数据如表格所示:②由图线可以测得物体A 与长木板B 之间的动摩擦因数μ=________.[解析] (1)因为弹簧自身重力的作用,所以当在竖直方向上对弹簧测力计调零后,再在水平方向上测拉力的大小,指针的位置会有一定的回缩,至使所测出的摩擦力小于实际摩擦力的大小.(2)由图示实验可知,方案1中用弹簧测力计拉动A,需要控制A做匀速直线运动,难于控制A做匀速直线运动,另一方面弹簧测力计是运动的,难于准确读数;方案2中拉动物体B,不需要控制物体B做匀速直线运动,且弹簧测力计静止,便于弹簧测力计读数;因此2方案更合理.(3)①根据表格中的数据在坐标纸上作出F-G图线.如图所示:②由题意可知,稳定时,弹簧秤的示数F等于滑块与木板间的滑动摩擦力f,根据图线的斜率等于滑块与木板间的动摩擦因数得:μ=fF N =FG=0.90-03.00-0=0.3.[答案] (1)偏小(2)2摩擦力的测量更加方便、准确(3)①见解析图②0.30【变式6】如图所示的实验装置可以用来验证力的平行四边形定则,带有滑轮的方木板竖直放置,为了便于调节绳子拉力的方向,滑轮可以安放在木板上的多个位置.(1)请把下面的实验步骤补写完整.①三段绳子各自悬挂一定数目的等质量钩码,调整滑轮在木板上的位置,使得系统静止不动.②把一张画有等间距同心圆的厚纸紧贴木板放置在绳子与木板之间,使得圆心位于绳子结点O 处,有足够多等间距同心圆作为画图助手,这样做为的是方便作出力的图示.你认为本实验有必要测量钩码所受的重力大小吗?答________(选填“有”或“没有”,不必说明理由).③记录____________________以及__________________________.④三段绳子上的拉力F A 、F B 、F C 才可用钩码数量来表示,根据记录的数据作出力的图示F A 、F B 、F C .⑤以F A 、F B 为邻边,画出平行四边形,如果平行边形的对角线所表示的力与________(选填“F A ”“F B ”或“F C ”)近似相等,则在实验误差允许的范围内验证了力的平行四边形定则.(2)在图中A 、B 、C 三段绳子上分别悬挂了5、4、5个钩码而静止不动,图中OA 、OB 两段绳子与竖直方向的夹角分别为α、β,如果本实验是成功的,那么sin αsin β应接近于__________.[解析] (1)②实验中钩码都是相同的,一个钩码受到的重力为一个单位力,只要计钩码的个数即可,故没有必要测量钩码的重力;③该实验采用等效法,需要记录三段绳子上挂的钩码数,以及三段绳子的方向;⑤以F A 、F B 为邻边,画出平行四边形,如果F A 、F B 所夹的对角线与F C ,近似共线等长,说明F A 、F B 所夹的对角线表示的力即为F A 、F B 的合力,即验证了力的平行四边形定则.(2)作图几个力的关系如图所示:根据正弦定理有:F B sin α=F A sin β,且F A =5mg ,F B =4mg ,解得:sin αsin β=F B F A =45. [答案] (1)②没有 ③三段绳子悬挂的钩码个数 三段绳子的方向 ⑤F C (2)45。
高一物理必修一人教版3.实验1实验探究弹力和弹簧伸长的关系
缺点是:弹簧与桌面及绳子与滑轮间存在的摩擦造成实验的系
统误差。 答案:见解析
者之间的不同,明确三者之间的关系。
(4)记录数据时要注意弹力与弹簧伸长量的对应关系及单位。
(5)建立平面直角坐标系时,两轴上单位长度所代表的量值要适 当,不可过大,也不可过小。 (6)描线的原则是尽量使各点落在描画出的线上,少数点分布于 线两侧,描出的线不应是折线,而应是光滑的曲线。
【规律方法】
2.用悬挂法测量弹簧的弹力,运用的正是弹簧的弹力与挂在弹
簧下面的钩码的重力相等。
3.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长 度减去弹簧原来的长度进行计算。这样就可以研究弹簧的弹力 和弹簧伸长量之间的定量关系,即寻求F=kx的关系。
三、实验器材 轻质弹簧、钩码(一盒)、铁架台、坐标纸、毫米刻度尺。 四、实验过程 1.实验步骤
5
l5=
x5=l5-l0=
m5=
F5=
2.数据处理 (1)以弹力F(大小等于所挂钩码的重力)为纵坐标,以弹簧的伸
长量x为横坐标,用描点法作图。按图中各点的分布与走向,
尝试做出一条平滑的曲线(包括直线),所画的点不一定都正好 在这条线上,但要注意使各点大致均匀分布在曲线两侧,个别
点若偏离较大,可以舍去,得出弹力F随弹簧伸长量x变化的图
缺点在于:________________________________________。
【思路点拨】本题是对探究弹力和弹簧伸长的关系的进一步深 化和创新,在实验原理和数据处理等方面是相同的。
【解析】(1)描点连线法。用平滑的曲线将各点连接起来,使 点落在图线上,不能落在线上的点均匀分布在图线两侧,偏离图ຫໍສະໝຸດ 线过远的点应舍去,如图所示。
探究弹力和弹簧伸长的关系
图 2-5-5 ②F=0.43x.
一题一得 图象法处理数据要注意: (1)建立坐标系,标明横轴和纵轴所表示的物理量及单位; (2)标度:标度要适当,让所得到的图线布满整个坐标系; (3)描点:描点时要留下痕迹; (4)连线:让尽可能多的点落在同一直线上,让其余的点落 在直线的两侧,误差较大的点舍弃; (5)根据图象得出结论,要理解图象的斜率、截距所代表的 物理意义.
迁移训练 某同学利用如图 2-5-6 甲所示装置做“探究 弹簧弹力大小与其长度的关系”实验.
图 2-5-6
(1)在安装刻度尺时,必须使刻度尺保持________状态. (2)他通过实验得到如图 2-5-6 乙所示的弹力大小 F 与弹 簧长度 x 的关系图线.由此图线可得到该弹簧的原长 x0 = ________cm,劲度系数 k=________N/m. (3)他又利用本实验原理把该弹簧做成一把弹簧秤,当弹簧 秤上的示数如图 2-5-6 丙所示时,该弹簧的长度 x= ________cm.
5.得出实验结论:在弹性限度内,弹簧的弹力 F 和弹簧的 形变量 x 成正比,即 F=kx,这就是胡克定律.其中 x 为弹簧伸 长或缩短的长度(弹簧的形变量),k 为弹簧的劲度系数.
五、注意事项 1.给弹簧施加的拉力不要太大,以免弹簧被过分拉伸,超 出它的弹性限度. 2.测量弹簧长度时,不要用手拉弹簧,在弹簧自然竖直状 态去测量.
四、实验步骤 弹簧的弹力用 F 来表示,弹簧原长(自然长度)用 l0 来表示, 弹簧现长用 l 来表示,弹簧的伸长量用 x 来表示,则 x=l-l0. 1.用直尺测出弹簧的原长 l0. 2.将弹簧一端固定,另一端挂上钩码,待弹簧平衡后,记 录下弹簧的长度及钩码的重量.然后改变钩码的质量,再读出 几组数据. 3.将数据记录在表格中(弹簧原长 l0=______cm). 1 2 3 4 5 6 7 F/N l/cm x/cm
实验二探究弹力和弹簧伸长的关系
实验二、探究弹力和弹簧伸长的关系江苏省特级教师戴儒京一、实验目的、器材和步骤探究弹力与弹簧伸长的关系(课程标准教科书人教版必修1第60页)实验目的:探究弹力与弹簧伸长的关系实验器材:计算机,数据采集器,位移传感器,力传感器,弹簧,支架等实验步骤:1.把smarts数据采集器与计算机连接,把力传感器和位移传感器分别接入采集器的第1、2通道,接上采集器电源;2.进入“TriE数字化信息系统”,点击“新建实验”,建立页面,用“公式编辑”功能根据弹簧伸长与位移传感器读数的关系,建立物理量弹簧伸长x, (设弹簧原长时,位移传感器的读数为s0, 受弹力时位移传感器的读数为s,则弹簧伸长为x=s0-s),然后点击“建立新图象”,建立弹力与弹簧伸长关系F-x图象;或点击“打开实验”,打开模板“探究弹力与弹簧伸长的关系”;3.先将力传感器固定在铁架台上,把待测弹簧的一端挂在力传感器上,弹簧的另一端挂上一个钩码并在钩码的下面贴上一个反射位移传感器的超声波的反射面,然后将位移传感器固定在弹簧正下方并且探头向上;.4.点击“手动采集”,.把弹簧下端挂一个砝码时,两个砝码时,……,,每一次改变砝码后的力和位移的数据记录下来;5.数据采集结束后得到xF 图象,分析弹力与弹簧伸长的关系;二、例题与习题(含近几年全国及各省市高考题)1.如图(a),一弹簧上端固定在支架顶端,下端悬挂一托盘:一标尺由游标和主尺构成,主尺竖直固定在弹簧左边;托盘上方固定有一能与游标刻度线准确对齐的装置,简化为图中的指针。
现要测量图(a)中弹簧的劲度系数,当托盘内没有砝码时,移动游标,使其零刻度线对准指针,此时标尺读数为1.950 cm;当托盘内放有质量为0.100 kg的砝码时,移动游标,再次使其零刻度线对准指针,标尺示数如图(b)所示,其读数为_______cm。
当地的重力加速度大小为9.80 m/s2,此弹簧的劲度系数为________N/m(保留3位有效数字)。
【高三一轮实验二:探究弹力与弹簧伸长之间的关系(教案)
第08讲 实验:探究弹力与弹簧伸长之间的关系【教学目标】1.学会用列表法、图象法等处理实验数据.2.探究弹簧弹力与弹簧伸长量的关系. 【教学过程】 【实验目的】1.探究弹力和弹簧伸长的定量关系。
2.学会用列表法和图象法处理实验数据。
【实验原理】1.如图所示,在弹簧下端悬挂钩码时弹簧会伸长,平衡时弹簧产生的弹力与所挂钩码的重力大小相等。
2.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算。
这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系了。
【实验器材】铁架台、弹簧、毫米刻度尺、钩码若干、三角板、坐标纸、重垂线、铅笔。
【实验过程】 一、实验步骤1.将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧自然伸长状态时的长度l 0,即原长。
2.如图所示,在弹簧下端挂质量为m 1的钩码,量出此时弹簧的长度l 1,记录m 1和l 1,填入自己设计的表格中。
3.改变所挂钩码的质量,量出对应的弹簧长度,记录m 2、m 3、m 4、m 5和相应的弹簧长度l 2、l 3、l 4、l 5,并得出每次弹簧的伸长量x 1、x 2、x 3、x 4、x 5。
钩码个数长度伸长量x钩码质量m弹力F0 l=1 l1=x1=l1-lm1=F1=2 l2=x2=l2-lm2=F2=3 l3=x3=l3-lm3=F3=⋮⋮⋮⋮⋮1.以弹力F(大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x为横坐标,用描点法作图。
连接各点,得出弹力F随弹簧伸长量x变化的图线。
2.以弹簧的伸长量为自变量,写出曲线所代表的函数。
首先尝试一次函数,如果不行则考虑二次函数。
3.得出弹力和弹簧伸长之间的定量关系,解释函数表达式中常数的物理意义。
【误差分析】1.弹簧拉力大小的不稳定会造成误差。
因此,使弹簧的悬挂端固定,另一端通过悬挂钩码来充当对弹簧的拉力,待稳定后再读数可以提高实验的准确度。
2.弹簧长度的测量,是本实验的主要误差来源。
实验探究弹力和弹簧伸长的关系
验数据记录有错误的是第
组.处理数据时,可在图(乙)中作出
F-x的图像,由图像可求得该橡皮筋的劲度
系数k=
N/m.(保留两位有效数字)
组数
1
2
3
4
5
拉力 F(N)
5
10
15
20
25
答案:见解析
(2)不同橡皮筋k值一般不同,k值通常与橡皮筋未受到拉力时的长度L、横 截面积S有关,理论与实际都表明k= ,其中Y是一个由材料决定的常数,材 料力学上称之为杨氏模量.若实验(1)使用的橡皮筋未受拉力的长度为L=
(教师参考) 其他方案 新方案一:弹簧水平放置法 把弹簧水平放置,如图所示.
原理、器材、方法均与本节实验方案相似. 点评:弹簧水平放置,消除了弹簧自身重力在竖直悬挂时带来的系统误差 ;但同时也产生了弹簧与桌面之间的摩擦力,带来了新的误差.
新方案二:传感器辅助法 实验装置如图(甲)所示.
原理:把一个弹簧一端固定在传感器上,传感器与电脑相连.当对弹簧施 加变化的作用力(拉力或压力)时,在电脑上得到了弹簧形变量与弹簧产 生的弹力大小的关系图像,如图(乙)所示.
0.20 m,直径D=4.0×10-3m,则该橡皮筋的杨氏模量Y= 有效数字).
(保留两位
答案:见解析
点击进入 课时训练
对应的点,并用平滑的曲线连接起来
B.记下弹簧不挂钩码时,其下端在刻度尺上的刻度L0 C.将铁架台固定于桌面上,并将弹簧的一端系于横梁上,在弹簧附近竖直固定一
刻度尺
D.依次在弹簧下端挂上1个、2个、3个、4个……钩码,并分别记下钩码静止时弹
簧下端所对应的刻度,并记录在表格内,然后取下钩码
E.以弹簧伸长量为自变量,写出弹力与弹簧伸长量的关系式
第3章6实验:探究弹力和弹簧伸长的关系
四、误差分析 由于弹簧原长及伸长量的测量都不便于操作,存在 较大的测量误差,另外由于弹簧自身的重力的影响,即 当未放重物时,弹簧在自身重力的作用下,已经有一个 伸长量,这样所作图线往往不过原点.
类型一 实验原理与实验操作 【典例 1】 (多选)(1)在“探究弹力和弹簧伸长量的 关系”的实验中,以下说法正确的是( )
第三章
相互作用
6 实验:探究弹力和弹簧 伸长的关系
一、实验目的 1.探究弹力与弹簧伸长量之间的关系. 2.学会利用列表法、图象法、函数法处理实验数据. 3.验证胡克定律.
二、实验原理 1.如图所示,在弹簧下端悬挂钩码时弹簧会伸长, 平衡时弹簧产生的弹力与所挂钩码的重力大小相等.
2.弹簧的长度可用刻度尺直接测出,伸长量可以由 拉长后的长度减去弹簧原来的长度进行计算. 这样就可以 研究弹簧的弹力和弹簧伸长量之间的定量关系了. 3.求弹簧的劲度系数 F 弹簧的弹力 F 与其伸长量 x 成正比, 比例系数 k= , x 即为弹簧的劲度系数;另外,在 F-x 图象中,直线的斜率 也等于弹簧的劲度系数.
三、注意事项 1.所挂钩码不要过重,以免弹簧被过分拉伸,超出 它的弹性限度. 2.每次所挂钩码的质量差尽量大一些,从而使坐标 上描的点尽可能稀一些,这样作出的图线精确. 3.测弹簧长度时,一定要在弹簧竖直悬挂且处于平 衡状态时测量,刻度尺要保持竖直并靠近弹簧,以免增 大误差.
4. 描点画线时, 所描的点不一定都落在一条直线上, 但应注意一定要使各点均匀分布在直线的两侧. 5.记录数据时要注意弹力及弹簧伸长量的对应关系 及单位.
弹簧下端挂上砝码盘时,长度记为 Lx;在砝码盘中每次 增加 10 g 砝码,弹簧长度依次记为 L1 至 L6.数据如下表.
代表 符号
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.探究弹力与弹簧伸长的定量关系.
2.学会利用列表法、图象法、函数法处理实 验数据的科学方法.
1.弹簧受力会发生形变,形变的大小与受到 的外力有关.沿着弹簧的方向拉弹簧,当形变稳 定时,弹簧产生的弹力与使它发生形变的拉力在 数值上是相等的.
2.用悬挂法测量弹簧的弹力,运用的正是弹 簧的弹力与挂在弹簧下面的钩码的重力相等.
D.依次在弹簧下端挂上1个、2个、3个、4 个、……钩码,并分别记下钩码静止时,弹簧下 端所对应的刻度并记录在表格内,然后取下钩码;
E.以弹簧伸长量为自变量,写出弹力与弹 簧伸长量的关系式;
F.解释函数表达式中常数的物理意义.
(2)下表是这名同学探究弹力大小与弹簧伸长 量之间的关系所测的几组数据:
1.(2010·福建理综)某实验小组研究橡皮筋
伸长与所受拉力的关系.实验时,将原长约200 mm的橡皮筋上端固定,在竖直悬挂的橡皮筋下 端逐一增挂钩码(质量均为20 g),每增挂一只钩 码均记下对应的橡皮筋伸长量;当挂上10只钩码 后,再逐一把钩码取下,每取下一只钩码,也记 下对应的橡皮筋伸长量.
③为充分利用测量数据,该同学将所测得的 数值按如下方法逐一求差,分别计算出了三个差 值:d1=L4-L0=6.90 cm,d2=L5-L1=6.90 cm,d3=L6-L2=7.00 cm.
请 你 给 出 第 四 个 差 值 : d4 = ________ = ________cm.
④根据以上差值可以求出每增加50 g钩码 的弹簧平均伸长量ΔL.ΔL用d1、d2、d3、d4表示 的式子为:ΔL=__________,代入数据解得ΔL =__________cm.
图1
2.记下弹簧下端不挂钩码时所对应的刻度L0. 3.在弹簧下端挂上一个钩码,待钩码静止后, 记下弹簧下端所对应的刻度L1. 4.用上面方法,记下弹簧下端挂2个、3个、 4个……钩码时,弹簧下端所对应的刻度L2、L3、 L4、……,并将所得数据记录在表格中.
5.用xn=Ln-L0计算出弹簧挂1个、2个、3 个……钩码时弹簧的伸长量,并根据当地重力加 速度值g,计算出所挂钩码的总重力,这个总重 力就等于弹簧弹力的大小,将所得数据填入表格.
3.弹簧的长度可用刻度尺直接测出,伸长量 可以由拉长后的长度减去弹簧原来的长度进行计 算.这样就可以研究弹簧的弹力和弹簧伸长量之 间的定量关系了.
轻质弹簧(一根),钩码(一盒),刻度尺,铁架 台,重垂线,坐标纸,毫米刻度尺.
1.如图1所示,将铁架台放在桌面上(固定 好),将弹簧的一端固定于铁架台的横梁上,在 靠近弹簧处将刻度尺(最小分度为1 mm)固定于铁 架台上,并用重垂线检查刻度尺是否竖直.
图2
砝码
质量
m/102
0
g
标尺
刻度
x/10-
15.00
2m
1.00 18.94
2.00 22.82
3.00 26.78
4.00 30.66
5.00 34.60
6.00 42.00
7.00 54.50
(1)根据所测数据,在图3所示的坐标纸上作 弹簧指针所指的标尺刻度x与砝码质量m的关系 曲线.
图3
1 m 2.52 mm 0.4 mm 0.8 mm 1.2 mm 1.6 mm
2 m 2.52 mm 0.8 mm 1.6 mm 2.4 mm 3.2 mm
1 m 3.57 mm 0.2 mm 0.4 mm 0.6 mm 0.8 mm
D.同学们对实验数据进行分析、归纳后, 对他们的假设进行了补充完善.
(1)上述科学探究活动中,属于“制定计划” 和 “ 搜 集 证 据 ” 的 环 节 分 别 是 ________ 、 ________.
(2)请根据上述过程分析他们的假设是否全部 正确?若有错误或不足,请给予修正.
___________________________________ _____________________________________.
图5
答案:(1)C,B,D,A,E,F
所示
弹力F/N
0.5 1.0 1.5 2.0
弹簧伸长量x/cm 1.2 2.3 3.5 4.6
(2)①如下表
2.5 5.8
②如图6所示
图6
③F=0.43x
④函数表达式中的常数为弹簧的劲度系数, 表示使弹簧每伸长或压缩0.01 m(1 cm)所需的拉 力大小为0.43 N.
(1)下列实验步骤是这名同学准备完成的,请你帮他 按操作的先后顺序,将各步骤的顺序号写在横线上 ________.
A.以弹簧伸长量为横坐标,以弹力为纵坐标,描 出各组数据(x,F)对应的点,并用平滑的曲线连接起来;
B.记下弹簧不挂钩码时,其下端在刻度尺上的刻 度l0;
C.将铁架台固定于桌子上,并将弹簧的一端系于 横梁上,在弹簧附近竖直固定一把刻度尺;
[答案] (1)如图4所示.(2)0~4.9 25.0
题后反思
在物理学中经常用图象处理物理问题,应用 图象的好处是:直观、方便.应用图象处理问题, 要注意:①图象斜率的意义(或曲线切线斜率的 意义);②图象与纵轴、横轴交点的物理意义.
变式1—1 以下是一名同学做“探究形变与弹力的 关系”的实验.
(2)由所得图象,计算图象的斜率即为弹簧的 劲度系数.
答案:(1)如图9所示 (2)25
图9
5.某同学和你一起探究弹力和弹簧伸长的关 系,并测弹簧的劲度系数k.做法是先将待测弹簧 的一端固定在铁架台上,然后将最小刻度是毫米
的刻度尺竖直放在弹簧一侧,并使弹簧另一端的
指针恰好落在刻度尺上.当弹簧自然下垂时,指 针指示的刻度数值记作L0;弹簧下端挂一个50 g 的钩码时,指针指示的刻度数值记作L1;弹簧下 端挂两个50 g 的钩码时,指针指示的刻度数值 记作L2;……;挂七个50 g的钩码时,指针指示的 刻度数值记作L7.
图8
A.弹簧产生的弹力和弹簧的长度成正比 B.弹簧长度的增加量与对应的弹力增加量 成正比
C.该弹簧的劲度系数是200 N/m D.该弹簧受到反向压力时,劲度系数不变 答案:BCD
3.(2011·南京师范大学附中模拟)17世纪英 国物理学家胡克发现:在弹性限度内,弹簧的形 变量与弹力成正比,这就是著名的胡克定律.受 此启发,一组同学研究“金属线材伸长量与拉力 的关系”的探究过程如下:
(2)根据所测得的数据和关系曲线可以判断, 在________牛范围内弹力大小与弹簧伸长关系 满足胡克定律,这种规格弹簧的劲度系数为 ________牛/米.
[解析] (1)根据表格中所测数据,在坐标系 中的描点连结如图4所示.
图4
(2)从x与砝码质量m的关系曲线可看出,在 0~4.9 N范围内弹力大小与弹簧伸长关系是一直 线,说明弹簧在这一范围内满足胡克定律,由直 线斜率的倒数可求得弹簧劲度系数为25.0 N/m.
答案:(1)B C (2)他们的假设不是全部正 确.在弹性限度内,金属丝的伸长量与拉力成正 比,与截面半径的平方成反比,还与金属丝的长 度成正比
4.某同学在竖直悬挂的弹簧下加挂钩码,探 究弹力与弹簧伸长量的关系.表中是该同学记录 的实验数据,实验中弹簧始终未超过弹性限 度.(g=10 m/s2)
根据测量数据,作出增挂钩码和减挂钩码时 的橡皮筋伸长量△l与拉力F关系的图象如图所 示.从图象中可以得出________.(填选项前的 字母)( )
图7
A.增挂钩码时△l与F成正比,而减挂钩码时 △l与F不成正比
B.当所挂钩码数相同时,增挂钩码时橡皮 筋的伸长量比减挂钩码时的大
C.当所挂钩码数相同时,增挂钩码时橡皮 筋的伸长量与减挂钩码时的相等
⑤计算弹簧的劲度系数k=________N/m.(g 取9.8 m/s2)
解析:①L5,L6 有效数字不准 ②读数可得 L3=6.85 cm,L7=14.05 cm ③逐差法可得 d4=L7-L3=7.20 cm ④L4-L0=4ΔL= d1 L5- L1=4ΔL=d2 L6- L2=4ΔL=d3 L7- L3=4ΔL=d4 所以 ΔL=d1+d24+×4d3+d4=1.75 cm
钩码质量m/g 0 30 60 90 120 150 弹簧总长度l/cm 6.0 7.2 8.4 9.6 10.8 12.4
(1)根据实验数据在坐标系中作出弹力F跟弹 簧伸长量x的关系图象;
(2) 根 据 图 象 得 到 弹 簧 的 劲 度 系 数 是 ________N/m.
解析:(1)利用题目给出的表格中,钩码质量 为零时弹簧的长度,可得弹簧原长为6.0 cm;根 据给出的六组数据分别计算出对应状态下弹簧的 伸长量,可在弹力F与弹簧伸长量x的关系图象中 确定出六个点,用平滑的曲线连接尽量多的 点.所得图象应该是过原点的一条直线,本实验 中最后一点要舍弃.
⑤由胡克定律 F=kx 可得 mg=kΔL 所以 k=ΔmLg=510.×7150×-130×-92.8N/m=28 N/m
答案:①L5 L6 ②6.85(6.84~6.86) 14.05(14.04~14.06) ③L7-L3 7.20(7.18~7.22) ④(d1+d24+×4d3+d4) 1.75 ⑤28
9.解释函数表达式中常数的物理意义.
1.实验中弹簧下端挂的钩码不要太多,以免 弹簧被过分拉伸,超过弹簧的弹性限度.
2.要使用轻质弹簧,且要尽量多测几组数 据.
3.本实验是探究性实验,实验前并不知道其 规律,所以描点以后所作的曲线是试探性的,只 是在分析了点的分布和走向以后才决定用直线来 连接这些点.
D.增挂钩码时所挂钩码数过多,导致橡皮 筋超出弹性限度
解析:若橡皮筋一直在弹性限度内,虚线和 实线应重合.由于图中虚线和实线并不重合,说 明增挂钩码时所挂钩码过多,导致橡皮筋超出了 弹性限度,选项D正确.
答案:D
2.如图8甲所示,一个弹簧一端固定在传感 器上,传感器与电脑相连.当对弹簧施加变化的 作用力(拉力或压力)时,在电脑上得到了弹簧形 变量与弹簧产生的弹力大小的关系图象(如图8乙 所示).则下列判断正确的是( )