Current Understanding on EGFR and Wnt
槲皮素通过靶向GAS5/Notch1信号通路促进乳腺癌细胞凋亡的研究
司;小干扰 RNA,上海吉玛基因公司;TRIzolReagent 和 LipofectamineTM2000,Invitrogen(货号:15596026、 11668019);逆 转 录 试 剂 盒 和 qRTPCR试 剂 盒, TaKaRa(货号:RR047A、RR820A);Notch1、Jagged1、 Hes1单克隆抗体,CellSignalingTechnology(货 号: 3608、70109、11988);Caspase3单 克 隆 抗 体,Bioss (货号:bs0081R);Bcl2、Bax单 克 隆 抗 体,BOSTER (货号:BA0412、BA03152);βactin单 克 隆 抗 体 和 辣根过氧化物酶标记的山羊抗兔 /鼠二抗,中杉金桥 (货 号:TA09、ZB2301、ZB2305);AnnexinVFITC 凋亡检测试剂盒,BD(货号:556547);BCA试剂盒、 一 抗 稀 释 液 和 DEPC 无 酶 水,碧 云 天 (货 号: P0010S、P0023A、R0021)。 1.1.3 仪器 CO2 培养箱(HealForce);流式细胞 仪(BeckmanCoulter);ScanDrop2 超微 量 核 酸 蛋 白 测 定仪(Analytikjena);ThermalCyclerPCR仪(天隆); AppliedBiosystems7500实时荧光定量 PCR仪 (赛 默飞);化 学 发 光 成 像 仪 (培 清 ),酶 标 仪 (Molecular Devices)。 1.2 方法 1.2.1 细胞培养 MCF7细胞用 RPMI1640培养 基(含 10%胎牛血清和 1%双抗)在 37℃、5% CO2 培养箱中培养。待细胞处于对数生长期开始后续实 验。 1.2.2 细胞转染 6孔板接种对数生长期 MCF7 细胞,待细胞密度达 40% -60%,将 3条 GAS5小干 扰 RNA序列(siGAS5#1,siGAS5#2,siGAS5#3)及其 阴性对照的小干扰 RNA序列(sncRNA),分别与 Li pofectamineTM2000混 合 孵 育 后 加 入 各 孔 中 (siRNA 终浓度约为 066mg·L-1)。培养 6h后分别换成 含 10%胎牛血清的 RPMI1640培养基和槲皮素药 液(80μmol·L-1)继续培养 48h。小干扰 RNA序 列如 下 所 示:siGAS5#1:正 义 链 5′GGCUCUGGAU AGCACCUUATT3′,反 义 链 5′UAAGGUGCUAUCC AGAGCCTT3′; siGAS5#2:正 义 链 5′GCAAAGG ACUCAGAAUUCATT3′,反 义 链 5′UGAAUUCUG AGUCCUUUGCTT3′;siGAS5#3:正 义 链 5′GCAU GCAGCUUACUGCUUGTT3′,反 义 链 5′CAAGCAG UAAGCUGCAUGCTT3′;sncRNA :正 义 链 5′UUC UCCGAACGUGUCACGUTT3′,反义链 5′ACGUGAC ACGUUCGGAGAATT3′。 1.2.3 MTT法检测槲皮素对 MCF7细胞活力的影 响 96孔板接种对数生长期 MCF7细胞,加入 100 μL不同浓度的槲皮素(5、10、20、40、80、160和 320 μmol·L-1),空 白 组 和 对 照 组 加 入 等 量 培 养 基,作
生物芯片技术
FGR
FES
ABL
INT2
PIK3CA
NMYC
AKT2
FGFR1
JUNB
AKT1
KRAS2
CDK4
AR
RDA Protocol
RNA extraction and cDNA preparation from archived tissue specimens(tester and driver) Generation of amplified cDNA fragments (‘amplicons’) Subtractive hybridization of amplicons Enrichment of cDNA fragments from differentially expressed genes
DNA Chip Technology
Solid support (glass, plastic, metal, silicon) Miniaturized array of DNA (genetic material) Work on the biochemical principle of DNA/DNA hybridization Hybridized probes (DNA molecules) are fluorescently labeled
应用之一 基因表达谱(gene expression pattern)
Research Use. Clinical Diagnostic Use.
Biological Sample
Functional Information
One Disease——One Gene Expression Pattern
Prototype AmpliOnc™ I Biochip
基于Wnt信号通路探讨外泌体治疗椎间盘退变的机制
㊃综 述㊃[收稿日期]2022-10-01[作者简介]金芳全(1994-),男,甘肃武山人,甘肃中医药大学中医临床学院医学硕士研究生,从事中医药对脊柱疾病的防治研究㊂*通信作者㊂E -m a i l :F C H 0203@163.c o m基于W n t 信号通路探讨外泌体治疗椎间盘退变的机制金芳全1,樊成虎2*(综述),雍清锋2,陈彦同2(审校)(1.甘肃中医药大学中医临床学院,甘肃兰州730030;2.甘肃省中医院脊柱骨一科,甘肃兰州730050) [摘要] 椎间盘退变(i n t e r v e r t e b r a l d i s c d e g e n e r a t i o n ,I V D D )的主要机制是m i R N A s 靶向作用于基质金属蛋白酶(m a t r i xm e t a l l o p r o t e i n a s e s ,MM P s )诱导椎间盘细胞外基质(e x t r a c e l l u l a rm a t r i x ,E C M )分解㊂外泌体是一种细胞间可以传递遗传信息和交换物质的囊泡,通过扩散为椎间盘内细胞提供营养物质和传递生物信息㊂W n t 信号通路是一个在生物进化过程中高度保守的信号转导通路网络,对细胞的生存㊁增殖㊁分化㊁极化㊁凋亡等过程起关键调控作用,并参与椎间盘的发育㊁生长与退变,促使细胞内环境处于动态稳定平衡状态,但其中某些机制研究尚不明确㊂深入研究椎间盘退变病理机制及不同因素间的相互作用具有重要临床意义㊂本文将W n t 信号通路和外泌体对I V D D 的相互交叉协同作用进行综述,发现外泌体激活W n t 通路可加速E C M 降解㊁诱导间质干细胞定向分化;同时,外泌体抑制W n t 通路可促进髓核(n u c l e u s p u l p o s u s ,N P )细胞增值,协同W n t 通路抑制血管生成有效治疗I V D D ㊂进一步了解外泌体㊁W n t 信号㊁椎间盘退变三者之间的关系,为治疗I V D D 的基础研究和临床工作提供参考㊂[关键词] 椎间盘退行性变;基质金属蛋白酶类;外泌体 d o i :10.3969/j .i s s n .1007-3205.2023.08.022 [中图分类号] R 681.5 [文献标志码] A [文章编号] 1007-3205(2023)08-0990-04椎间盘退变(i n t e r v e r t e b r a l d i s cd e ge n e r a t i o n ,I V D D )继发腰椎间盘突出或腰椎椎管狭窄被认为是引起慢性下腰痛的主要原因之一,但当前药物治疗和手术干预均不能抑制I V D D [1]㊂随着基因工程㊁靶向治疗等生物技术的发展,来源于间质干细胞(m e s e n c h ym a l s t e mc e l l s ,M S C s )并能介导细胞间信息传递和物质交换的外泌体(e x o s o m e s ),在I V D D 的治疗方面展现出广泛的前景[2-3]㊂有证据表明外泌体靶向作用于椎间盘内特定结构蛋白治疗I V D D ,并抑制炎症介质如白细胞介素(i n t e r l e u k i n,I L )1β降低椎间盘细胞外基质(e x t r a c e l l u l a r m a t r i x ,E C M )中基质金属蛋白酶(m a t r i xm e t a l l o pr o t e i n a s e s ,MM P s )的分解代谢,延缓椎间盘的退变[2]㊂W n t 信号通路通过促进成骨细胞(o s t e o b l a s t ,O B )分化㊁抑制破骨细胞(o s t e o c l a s t,O C )活性调节骨稳态㊂研究发现M S C s 来源外泌体通过上调W n t 信号通路相关蛋白表达,促进m i R N A s 与靶基因的3'U T R 特异性结合而调节骨再生[4]㊂因此,本文就W n t 信号通路协同外泌体治疗I V D D 的调控机制进行综述,以期为I V D D 的防治提供参考㊂1 外泌体及其功能外泌体是由磷脂双分子层构成且直径在10~30n m 之间的扁平状胞外囊泡(e x t r a c e l l u l a rv e s i c l e s ,E V s ),作为信使可将其所含的不同内容物如蛋白质㊁磷脂㊁神经酰胺㊁核酸等成份传递到受体细胞,并激活效应器完成细胞间信息传递和物质交换[5]㊂此外,外泌体广泛存在于关节滑液㊁乳液㊁精液㊁血液㊁尿液等体液中,可通过超速离心和切向流过滤等方法获得[6],来源丰富㊂研究发现不同来源的外泌体通过基因调控信号转导通路在肿瘤转移㊁病毒感染和免疫调节等不同方面发挥着重要作用[7]㊂外泌体功能取决于胞吐时所包裹的分子物质㊂多数研究证明[5],外泌体所含物质多为蛋白质㊁脂类㊁核酸,但不同细胞来源的外泌体所携带的分子物质含量㊁形态大小㊁种类均不同㊂其中所含蛋白包括跨膜蛋白㊁脂锚定膜蛋白㊁外周相关膜蛋白和外泌体腔的可溶性蛋白,此类蛋白在质膜转运及融合时作为表面信号分子识别激活信号通路[4]㊂所含脂质主要是磷脂酰丝氨酸㊁磷脂酰乙醇胺,其作用是保护重要核酸物质在受体细胞接收时不被生物酶吞噬降解,从而发挥信息传递功能,另外,磷脂酰丝氨酸还是细胞凋亡标志物[7]㊂所含m i R N A s 通过碱基互补配对原则与m R N A 结合参与遗传物质的转录㊁翻译[8]㊂综上,外泌体是通过细胞间囊泡介导信号㊃099㊃第44卷第8期2023年8月河北医科大学学报J O U R N A L O F H E B E I M E D I C A L U N I V E R S I T YV o l .44 N o .8A u g. 2023 Copyright ©博看网. All Rights Reserved.传递和分子转移的复合信号颗粒㊂2外泌体治疗I V D D的可能作用机制I V D D导致下腰痛是脊柱外科医生面临的共同难题㊂外泌体作为细胞间信号传递的介质,其内容物可调节细胞功能,有效延缓I V D D㊂有研究发现[9],I V D D主要是I L-1β积累㊁蛋白多糖丢失和细胞因子扩散进入E C M,进而激活MM P s,引起髓核(n u c l e u s p u l p o s u s,N P)细胞的病理性凋亡㊂与干细胞相比,外泌体具有不同特性㊂首先,外泌体中m i R N A s作为转录后调节因子可作用于各个靶点直接改变相关蛋白的表达,调节N P功能,在细胞和组织工程学角度为改善甚至逆转I V D D提供可能[10];其次,外泌体更能适应由椎间盘退变造成的低细胞结构㊁低葡萄糖㊁高渗透压㊁低p H和低氧的恶劣环境[9,11];最后,外泌体通过转移游离的蛋白质和m i R N A s抑制T细胞免疫㊂通常T细胞在减少同种异体免疫排斥反应中发挥重要作用,本体M S C s提取的外泌体制剂在治疗I V D D时,间接激活T细胞可相对降低急性免疫炎症反应的发生[12-13],这提示外泌体可能是未来治疗I V D D的潜在研究方向㊂3W n t信号通路在治疗I V D D中的作用机制W n t信号通路在调节细胞生长发育和维持组织稳态中发挥重要的作用㊂W n t通路包括经典通路和非经典通路,其转导主要经过三个步骤:胞膜中W n t信号转导㊁细胞质中β-c a t e n i n蛋白的调节和细胞核中W n t靶基因的激活[14]㊂研究发现,激活W n t信号通路的靶因子主要有丝氨酸-苏氨酸激酶3㊁β-c a t e n i n蛋白㊁分泌型卷曲相关蛋白1㊁蛋白磷酸酶2A㊁A D P核糖基化因子[15]㊂将这类激活因子研发为成药,靶向治疗疾病已成为当前的科研热点㊂例如,Z h a n g等[16]在骨质疏松大鼠模型中,发现m i R-542-3p激活W n t通路靶向作用于分泌型卷曲相关蛋白1,抑制O C活性,促进O B分化,加速细胞外基质矿化进而增加大鼠骨量㊂由此可见,W n t通路在调控骨代谢中起正向调节作用㊂W n t信号通路在椎间盘的形成㊁生长㊁退变及修复中均发挥重要作用[17]㊂I V D D是由于椎间盘内糖化蛋白减少㊁胶原蛋白数量增加导致髓核失水,最终引起椎间盘结构改变㊂在正常椎间盘中E C M 的合成和降解处于动态平衡,其中β-c a t e n i n和MM P s可以加速E C M降解,因此,激活W n t信号通路可诱导I V D D[18]㊂研究证实在低氧㊁低p H环境中激活W n t通路,促进β-c a t e n i n蛋白表达,抑制N P细胞增殖并促进凋亡[19]㊂此外,髓核脱水致椎间盘压力负荷增加㊁细胞活力降低,随着暴露时间的延长,W n t1和β-c a t e n i n表达过量可加剧诱导N P 细胞凋亡[20]㊂总之,激活W n t通路㊁促进β-c a t e n i n 蛋白表达可促使N P细胞衰老㊁凋亡,加快E C M分解㊂如果抑制W n t信号通路表达则治疗I V D D成为可能㊂4外泌体协同W n t通路对I V D D的机制4.1外泌体激活W n t通路,加速E C M降解 E C M 加速降解是I V D D的重要标志,之前研究证实激活W n t通路可加快E C M降解㊂外泌体是m i R N A s的转运者,通过E V s在细胞间传递信息㊂因此探索外泌体携带的m i R N A s是否可以激活W n t通路治疗I V D D值得深入研究㊂通过实验发现,随着髓核间质干细胞来源的外泌体介入量增加,W n t3的m i R N A和β-c a t e n i n蛋白水平显著增加,说明W n t 通路被激活从而在I V D D中发挥作用[18]㊂大量研究证实来源于N P细胞的m i R N A s作为转录后调节因子通过W n t通路作用于MM P s调控E C M代谢,其中MM P-1/2/3/9/13/14表达与I V D D的严重程度呈正相关[21-27],见表1,因此寻找W n t通路激活剂及其MM P s作用靶点以减缓或改善I V D D,具有深远启发意义和探索价值㊂表1椎间盘中与E C M降解相关的m i R N A及其相应靶点M i R N A靶蛋白m i R N A来源参考文献M i R-93MM P-2N P[21] M i R-431MM P-1N P[22] M i R-15a MM P-3N P[23] M i R-140-5p MM P-7N C[24] M i R-22MM P-9N P[25] M i R-276MM P-13N P[26] M i R-193-3p MM P-14N P[27] 4.2外泌体联合W n t通路,诱导干细胞定向分化除研究W n t通路抑制剂或激活剂作用于靶基因治疗I V D D外,探究外泌体和W n t通路是否诱导M S C s定向分化为N P细胞以延缓I V D D同样具有一定价值㊂L u o等[28]通过超高速离心和透射电子显微镜提取并鉴定来自软骨终板干细胞(c a r t i l a g e e n d p l a t e s t e mc e l l s,C E S s)的外泌体(C E S s-E x o s),研究发现C E S s-E x o s通过自分泌机制,增加低氧诱导因子1α激活W n t信号通路,促进转化生长因子β表达,诱导C E S s向椎间盘迁移并分化为N P细胞,延缓I V D D㊂然而低氧诱导因子1α在转录信息时对m i R N A s的选择还具有争议,今后可能成为新的研究热点㊂Z h a n g等[29]通过甲苯胺蓝染色发现,在E x o-m i R-15a处理的共培养N P细胞-M S C s中,软㊃199㊃河北医科大学学报第44卷第8期Copyright©博看网. All Rights Reserved.骨分化增加,进一步研究表明,E x o-m i R-15a激活W n t3a/β-c a t e n i n轴,下调MM P-3促进髓核间质干细胞软骨分化,诱导I V D D㊂因此,筛选外泌体m i R N A诱导干细胞定向分化为N P细胞治疗I V D D具有重要研究意义㊂4.3外泌体产生m i R N A s抑制W n t通路,促进N P 细胞增殖外泌体产生的m i R N A s已被证明在诱导C E S s分化为N P的过程中扮演重要角色,通过激活W n t通路,上调相关蛋白表达可进一步促进C E S s分化㊁增值㊂有研究表明外泌体携带的m i R N A s并不都是激活W n t通路,部分可抑制W n t 通路调节N P㊂Y u n等[30]证实m i R-185可抑制W n t通路,特异性结合β-c a t e n i n蛋白,负调节半乳糖凝集素3㊁促进自噬因子和促凋亡因子表达,增强N P细胞活力,抑制N P细胞自噬和凋亡,从而阻止I V D D的发展㊂但是m i R N A种类数量较多,目前研究发现椎间盘内表达的R N A有1800多种, m i R N A50有多个[31],如何区分这些m i R N A s是W n t通路抑制剂或激活剂,仍是现阶段研究面临的巨大挑战㊂4.4 W n t通路协同外泌体抑制血管生成W n t通路在I V D D中已有较为系统的研究,随着外泌体研究的逐步发展,对其转运的m i R N A s研究也取得初步结果,若能证明W n t通路对某种来源的干细胞产生m i R N A s的水平有正向调节作用,也能为I V D D 的治疗提供新的思路㊂椎间盘是由髓核㊁纤维环㊁软骨终板组成的人体最大的无血管器官,有学者认为血管生成和异常神经侵犯激活免疫细胞和炎性细胞因子,从而打破椎间盘稳态,在I V D D进展中发挥重要作用[32]㊂有研究指出,W n t通路被激活时,骨髓间质干细胞来源的外泌体携带的m i R-140-5p水平显著上升,MM P-7表达水平下调,抑制血管生成[24]㊂此外,正常椎间盘来源的纤维环细胞分泌外泌体,下调MM P-3/13和血管内皮生长因子表达,抑制血管生成[33]㊂因此W n t通路协同外泌体所含m i R N A s抑制血管生成可延缓I V D D㊂抑制血管生成不仅在防治I V D D领域至关重要,在癌症㊁心肌梗死等疾病的治疗上同样具有探索价值[34-35]㊂5小结与展望综上所述,本研究主要综述外泌体与W n t通路协同调节E C M代谢治疗I V D D的机制㊂当前研究表明外泌体具备作为理想药物载体的条件和特性,有望发展为一种新的诊疗方法[36]㊂但外泌体医学领域研究尚处于初始阶段,在I V D D方向研究相对较少,多数研究主要集中在骨质疏松症等骨代谢异常疾病上[37],与W n t通路相互作用的机制研究更是缺乏㊂本研究所知W n t通路不仅参与椎间盘的退变,还参与发育和生长,说明不同时间阶段激活W n t通路具有不同效应,但发育阶段分子水平的研究机制尚未统一定论,能否在发育阶段通过基因水平改造椎间盘值得憧憬㊂因此,研究前景机遇与挑战并存,挑战在于目前外泌体分离方法所获得的产量有限,作为临床药物而言,外泌体的药代动力学仍然相对模糊,人体内吸收㊁分布和代谢机制尚未阐明,最佳有效剂量和给药频率目前尚无共识,并且不同来源的外泌体效应具有明显异质性[38],如何区分并加以利用是重点㊂机遇在于随着研究的深入,外泌体与靶细胞间信息传递机制逐步揭示,且对W n t 通路的研究也逐步成熟,为进一步探究二者之间的相互作用奠定了基础㊂在接下来的工作中应该注重外泌体输送方法,包括直接注射和将m i R N A s载体化,将注射MM P s水凝胶多聚体胶束作为m i R N A s 的两级递送系统,在退变的椎间盘中识别更多的m i R MA s及对应的作用靶点㊂加强c i r c R N A-m i R N A-m R N A网状系统研究,深入探索W n t通路与外泌体协同治疗I V D D的机制,为研发高效药物并早日运用于临床奠定基础㊂[参考文献][1] K i r n a z S,C a p a d o n a C,W o n g T,e t a l.F u n d a m e n t a l s o fi n t e r v e r t e b r a l d i s cd e g e n e r a t i o n[J].W o r l dN e u r o s u r g,2022,157:264-273.[2] X i aC,Z e n g Z,F a n g B,e t a l.M e s e n c h y m a l s t e mc e l l-d e r i v e de x o s o m e s a m e l i o r a t e i n t e r v e r t e b r a l d i s c d e g e n e r a t i o nv i a a n t i-o x i d a n t a n da n t i-i n f l a mm a t o r y e f f e c t s[J].F r e e R a d i c B i o lM e d,2019,143:1-15.[3]S h a nS K,L i nX,L iF,e t a l.E x o s o m e sa n db o n ed i s e a s e[J].C u r rP h a r mD e s,2019,25(42):4536-4549.[4] Y a n g S,G u o S,T o n g S,e t a l.E x o s o m a l m i R-130a-3pr e g u l a t e s o s t e o g e n i c d i f f e r e n t i a t i o n o f H u m a n A d i p o s e-D e r i v e ds t e m c e l l st h r o u g h m e d i a t i n g S I R T7/W n t/β-c a t e n i na x i s e[J].C e l l P r o l i f,2020,53(10):e12890[5] K a l l u r iR,L e B l e u V S.T h eb i o l o g y,f u n c t i o n,a n db i o m e d i c a la p p l i c a t i o n so fe x o s o m e s[J].S c i e n c e,2020,367(6478):e a a u6977[6] Z h a n g Y,B iJ,H u a n g J,e ta l.E x o s o m e:A R e v i e w o fi t sc l a s s i f i c a t i o n,i s o l a t i o n t e c h n i q u e s,s t o r a g e,d i a g n o s t i c a n dt a r g e t e d t h e r a p y a p p l i c a t i o n s[J].I n tJ N a n o m e d i c i n e,2020,15:6917-6934.[7]S k o t l a n dT,H e s s v i k N P,S a n d v i g K,e ta l.E x o s o m a l l i p i dc o m p o s i t i o na nd t he r o l e of e t h e r l i p i d s a n d p h o s p h o i n o s i t i d e si ne x o s o m e b i o l o g y[J].JL i p i dR e s,2019,60(1):9-18.[8] L i B,C a oY,S u nM,e t a l.E x p r e s s i o n,r e g u l a t i o n,a n d f u n c t i o no f e x o s o m e-d e r i v e d m i R N A s i n c a n c e r p r o g r e s s i o n a n dt h e r a p y[J].F a s e bJ,2021,35(10):e21916.㊃299㊃河北医科大学学报第44卷第8期Copyright©博看网. All Rights Reserved.[9] K o s N,G r a d i s n i k L,V e l n a r T.A B r i e f r e v i e w o f t h ed e g e n e r a t i v e i n t e r v e r t e b r a l d i s c d i s e a s e[J].M e dA r c h,2019,73(6):421-424.[10] C a z z a n e l l i P,W u e r t z-K o z a k K.M i c r o R N A s i ni n t e r v e r t e b r a ld i s c de g e n e r a t i o n,a p o p t o s i s,i nf l a mm a t i o n,a n dm e c h a n o b i o l o g y[J].I n t JM o l S c i,2020,21(10):3601. [11] N a k a s e I,U e n o N,M a t s u z a w a M,e ta l.E n v i r o n m e n t a l p Hs t r e s s i n f l u e n c e s c e l l u l a r s e c r e t i o na n du p t a k e o f e x t r a c e l l u l a rv e s i c l e s[J].F e b sO p e nB i o,2021,11(3):753-767. [12] G o n z a l e z-N o l a s c oB,W a n g M,P r u n e v i e i l l eA,e t a l.E m e r g i n gr o l e o f e x o s o m e s i na l l o r e c o g n i t i o na n d a l l o g r a f t r e j e c t i o n[J].C u r rO p i nO r g a nT r a n s p l a n t,2018,23(1):22-27.[13] B e n i c h o uG,W a n g M,A h r e n sK,e t a l.E x t r a c e l l u l a rv e s i c l e si na l l o g r a f t r e j e c t i o na n dt o l e r a n c e[J].C e l l I mm u n o l,2020,349:104063.[14] H u a n g P,Y a n R,Z h a n g X,e ta l.A c t i v a t i n g W n t/β-c a t e n i ns i g n a l i n g p a t h w a y f o r d i s e a s e t h e r a p y:C h a l l e n g e s a n do p p o r t u n i t i e s[J].P h a r m a c o lT h e r,2019,196:79-90. [15] K a r n e rC M,L o n g F.W n t s i g n a l i n g a n d c e l l u l a rm e t a b o l i s mi no s t e o b l a s t s[J].C e l lM o l L i f eS c i,2017,74(9):1649-1657.[16] Z h a n g X,Z h u Y,Z h a n g C,e t a l.m i R-542-3p p r e v e n t so v a r i e c t o m y-i n d u c e do s t e o p o r o s i s i n r a t s v i a t a r g e t i n g S F R P1[J].JC e l l P h y s i o l,2018,233(9):6798-6806. [17] W uZ L,X i eQ Q,L i uT C,e t a l.R o l eo f t h e W n t p a t h w a y i nt h e f o r m a t i o n,d e v e l o p m e n t,a n d d e g e n e r a t i o n o fi n t e r v e r t e b r a l d i s c s[J].P a t h o lR e sP r a c t,2021,220:153366.[18] Z h a n g F,L i nF,X uZ,e ta l.C i r c u l a rR N AI T C H p r o m o t e se x t r a c e l l u l a rm a t r i xd e g r a d a t i o nv i aa c t i v a t i n g W n t/β-c a t e n i ns i g n a l i n g i n i n t e r v e r t e b r a l d i s c d e g e n e r a t i o n[J].A g i n g(A l b a n y N Y),2021,13(10):14185-14197.[19] L u K,L i H Y,Y a n g K,e t a l.E x o s o m e s a s p o t e n t i a la l t e r n a t i v e s t o s t e m c e l l t h e r a p y f o r i n t e r v e r t eb r a l d i s cd e g e n e r a t i o n:i n-v i t r o s t u d y o n e x o s o m e si ni n t e r a c t i o n o fn u c l e u s p u l p o s u sc e l l sa n db o n e m a r r o w m e s e n c h y m a l s t e mc e l l s[J].S t e m C e l lR e sT h e r,2017,8(1):108.[20] H o l g u i n N,S i l v a M J.I n-v i v o n u c l e u s p u l p o s u s-s p e c i f i cr e g u l a t i o no f a d u l tm u r i n e i n t e r v e r t e b r a l d i s c d e g e n e r a t i o n v i aW n t/B e t a-C a t e n i n s i g n a l i n g[J].S c i R e p,2018,8(1):11191.[21] G a o D,H a o L,Z h a o Z.L o n g n o n-c o d i n g R N A P A R T1p r o m o t e s i n t e r v e r t e b r a l d i s cd e g e n e r a t i o nt h r o u g hr e g u l a t i n gt h em i R93/MM P2p a t h w a y i nn u c l e u s p u l p o s u s c e l l s[J].I n tJM o lM e d,2020,46(1):289-299.[22] W a n g X,W a n g B,Z o uM,e t a l.C i r c S E MA4B t a r g e t sm i R-431m o d u l a t i n g I L-1β-i n d u c e d d e g r a d a t i v e c h a n g e s i n n u c l e u sp u l p o s u sc e l l si ni n t e r v e r t e b r a ld i s c d e g e n e r a t i o n v i a W n tp a t h w a y[J].B i o c h i m B i o p h y sA c t aM o l B a s i sD i s,2018,1864(11):3754-3768.[23] Z h a n g Q,S h e nY,Z h a oS,e t a l.E x o s o m e sm i R-15a p r o m o t e sn u c l e u s p u l p o s u s-m e s e n c h y m a l s t e m c e l l s c h o n d r o g e n i cd i f fe r e n t i a t i o nb y t a r g e t i n g MM P-3[J].C e l l S i g n a l,2021,86:110083.[24]S u n Z,L i u B,L i u Z H,e t a l.N o t o c h o r d a l-c e l l-d e r i v e de x o s o m e s i n d u c e d b y c o m p r e s s i v el o a di n h i b i ta n g i o g e n e s i sv i at h e m i R-140-5p/W n t/β-C a t e n i n A x i s[J].M o l T h e rN u c l e i cA c i d s,2020,22:1092-1106.[25] W a n g X,Z o u M,L i J,e t a l.L n c R N A H19t a r g e t sm i R-22t om o d u l a t eH2O2-i n d u c e dd e r e g u l a t i o n i nn u c l e u s p u l p o s u s c e l ls e n e s c e n c e,p r o l i f e r a t i o n,a n d E C M s y n t h e s i st h r o u g h W n ts i g n a l i n g[J].JC e l l B i o c h e m,2018,119(6):4990-5002.[26] L iH R,C u iQ,D o n g Z Y,e t a l.D o w n r e g u l a t i o no fm i R-27b i si n v o l v e di nl o s s o ft y p eⅡc o l l a g e n b y d i r e c t l y t a r g e t i n gm a t r i x m e t a l l o p r o t e i n a s e13(MM P13)i n h u m a ni n t e r v e r t e b r a l d i s cd e g e n e r a t i o n[J].S p i n e(P h i l aP a1976),2016,41(3):E116-123.[27]J i M L,Z h a n g X J,S h i P L,e t a l.D o w n r e g u l a t i o n o fm i c r o R N A-193a-3p i s i n v o l v e d i n i n v e r t e b r a l d i s cd e g e n e r a t i o nb y t a r g e t i n g MM P14[J].J M o l M e d(B e r l),2016,94(4):457-468.[28] L u oL,G o n g J,Z h a n g H,e t a l.C a r t i l a g ee n d p l a t es t e mc e l l st r a n s d i f f e r e n t i a t ei n t o n u c l e u s p u l p o s u sc e l l s v i a a u t o c r i n ee x o s o m e s[J].F r o n tC e l lD e vB i o l,2021,9:648201.[29] Z h a n g Q,S h e nY,Z h a oS,e t a l.E x o s o m e sm i R-15a p r o m o t e sn u c l e u s p u l p o s u s-m e s e n c h y m a l s t e m c e l l s c h o n d r o g e n i cd i f fe r e n t i a t i o nb y t a r g e t i n g MM P-3[J].C e l l S i g n a l,2021,86:110083.[30] Y u nZ,W a n g Y,F e n g W,e t a l.O v e r e x p r e s s i o n o fm i c r o R N A-185a l l e v i a t e s i n t e r v e r t e b r a l d i s c d e g e n e r a t i o n t h r o u g hi n a c t i v a t i o n o f t h e W n t/β-c a t e n i n s i g n a l i n g p a t h w a y a n dd o w n re g u l a t i o n of G a l e c t i n-3[J].M o l P a i n,2020,16:1744806920902559.[31] L i Z,S u n Y,H e M,e ta l.D i f f e r e n t i a l l y-e x p r e s s e d m R N A s,m i c r o R N A s a n d l o n g n o n c o d i n g R N A s i n i n t e r v e r t e b r a l d i s cd e g e n e r a t i o n i d e n t i f i e d b y R N A-s e q u e n c i n g[J].B i o e n g i n e e r e d,2021,12(1):1026-1039.[32] K w o n WK,M o o n H J,K w o n T H,e ta l.I n f l u e n c eo fr a b b i tn o t o c h o r d a l c e l l s o n s y m p t o m a t i c i n t e r v e r t e b r a l d i s cd e g e n e r a t i o n:a n t i-a n g i o g e n i cc a p a c i t y o n h u m a ne n d o t h e l i a lc e l l p r o l i f e r a t i o nu nde rh y p o x i a[J].O s t e o a r t h r i t i sC a r t i l a g e,2017,25(10):1738-1746.[33]S u n Z,Z h a o H,L i u B,e ta l.A F c e l ld e r i v e d e x o s o m e sr e g u l a t e e n d o t h e l i a l c e l l m i g r a t i o n a n d i n f l a mm a t i o n:I m p l i c a t i o n s f o r v a s c u l a r i z a t i o n i n i n t e r v e r t e b r a l d i s cd e g e n e r a t i o n[J].L i f eS c i,2021,265:118778.[34] O l e j a r z W,K u b i a k-T o m a s z e w s k a G,C h r z a n o w s k a A,e ta l.E x o s o m e si n a n g i o g e n e s i s a n d a n t i-a n g i o g e n i c t h e r a p y i nc a n c e r s[J].I n t JM o l S c i,2020,21(16):5840.[35]S u nJ,S h e n H,S h a o L,e ta l.H I F-1αo v e r e x p r e s s i o ni nm e s e n c h y m a l s t e m c e l l-d e r i v e d e x o s o m e s m e d i a t e sc a rd i o p r o te c t i o n i n m y o c a r d i a l i nf a r c t i o n b y e n h a n c e da n g i o g e n e s i s[J].S t e m C e l lR e sT h e r,2020,11(1):373.[36] L u a nX,S a n s a n a p h o n g p r i c h a K,M y e r sI,e ta l.E n g i n e e r i n ge x o s o m e s a s r ef i n e d b i o l og i c a l n a n o p l a t f o r m s f o r d r u gd e l i v e r y[J].A c t aP h a r m a c o l S i n,2017,38(6):754-763.[37] L u J,Z h a n g Y,L i a n g J,e ta l.R o l eo fe x o s o m a lm i c r o R N A sa n d t h e i r c r o s s t a l kw i t h o x i d a t i v e s t r e s s i n t h e p a t h o g e n e s i s o fo s t e o p o r o s i s[J].O x i dM e dC e l l L o n g e v,2021,2021:6301433.[38] L i M,L iS,D u C,e ta l.E x o s o m e sf r o m d i f f e r e n tc e l l s:c h a r a c t e r i s t i c s,m od i f i c a t i o n s,a n d t he r a p e u t i c a p p l i c a t i o n s[J].E u r JM e dC h e m,2020,207:112784.(本文编辑:刘斯静)金芳全等基于W n t信号通路探讨外泌体治疗椎间盘退变的机制Copyright©博看网. All Rights Reserved.。
乳腺癌诊治新进展2009年
微小扭曲 微小病灶非均匀密度
应重视
诊断非触及性钙化
如果超声检查不出・・
1. 钼钯或・・・
2. 立体定位辅助活检(钼钯下麦默通)
即使是恶性,也可能是原位癌
一定要给病人一个立体定位辅助活检的选择 在一些病例中MRI可能有帮助
超声引导小细针穿刺
早期乳腺癌
有乳头溢液,肿物不能触及
③葱环类辅助治疗失败的患者,可以选择的方案有XT(卡 培他滨联合多西他赛)和GT(吉西他滨联合紫杉醇)方 案,紫杉类治疗失败的患者,目前尚无标准方案推荐; 可以考虑的药物有卡培他滨、长春瑞滨、吉西他滨和铂 类,采取单药或联合化疗。
2009 ASCO
辅助化疗领域报告了很有临床意义的阴性结果
• (研究1) CALGB/CTSU49907研究针对老年早期乳腺癌,比较了卡培他 滨单药与标准辅助化疗方案(CMF或AC)的疗效。
Challenges in triple negative breast cancer
三阴性乳腺癌面临的挑战?
三阴性乳腺癌的发病机制尚不清楚 三阴性乳腺癌更易早期复发和内脏转移 三阴性乳腺癌目前尚无有效化疗方案 对蒽环和紫杉类耐药者治疗更为困难 乳腺癌的基因分型也难以广泛应用 靶向药物正在研究中,前途未卜
10年无事件生存率均为46%,5年OS率分别为89%和 88%,10年OS率分别为72%和76%,均无显著性差异 。
• 对于腋窝淋巴结阳性的早期乳腺癌患者,4个周期ET方 案和6个周期CEF方案是等效的。
紫杉类药物对腋窝淋巴结阴性者的意义
(研究3 )
(1)紫杉类药物对于腋窝淋巴结阳性乳腺癌的作用比较明确,但是鲜有 研究探讨其在腋窝淋巴结阴性患者辅助治疗中的地位。本届年会中报 告的一项Ⅲ期研究——GEICAM9805研究证实了紫杉类药物对腋窝淋 巴结阴性患者的作用。
靶向于癌症治疗的信号通路
靶向于癌症治疗的信号通路丁燕【期刊名称】《中国肺癌杂志》【年(卷),期】2012(015)009【总页数】3页(P561-563)【关键词】癌症;EGFR;信号通路;靶向治疗;VEGF【作者】丁燕【作者单位】天津医科大学总医院,天津市肺癌研究所,天津市肺癌转移与肿瘤微环境重点实验室【正文语种】中文【中图分类】R734.2癌细胞以存在多种遗传上的改变为特征,这些变异的累积驱动正常细胞向侵袭性癌症进展。
在癌变过程中,正常细胞转变为肿瘤细胞至少必须四到六种基因突变[1]。
近年来,大量遗传学研究以及基于新一代测序技术的全基因组测序研究丰富了我们对癌症进展中分子机制复杂性的认识[2]。
研究人员已详尽分析了癌症标志的概念,为描述癌症的复杂生物学提供了有用的概念性框架[3]。
以通路为基础的功能实验研究亦致力于识别癌症中不同信号通路的潜在癌变,这或可为更有效的治疗及更好的效果铺砌一条道路[4]。
遗传变异的分子系统性研究或有助于改善我们对癌细胞内信号通路网络如何运作的了解。
一项有关胰腺癌的综合性遗传学分析鉴定了63种遗传变异,由这些变异确立了12个核心细胞信号通路,该12个核心信号通路在67%-100%的肿瘤中存在遗传变异[5]。
亦有研究分析斯坦福微阵列数据库(Stanford Microarray Database)中的人类肿瘤数据,建立了一个功能性癌症图,该图可将数以百计的基因表达谱转化为相应的肿瘤特异性通路活性谱。
同样地,研究发现与肿瘤进展相关的多种通路是大多数肿瘤的共同特征。
通过在通路活性水平对比肿瘤,该功能性癌症图或可提供不同癌症类型间分子相似性的系统观点[6]。
癌细胞基因组的突变影响了在细胞生长、增殖、血管新生、存活、凋亡和转移中具有关键作用的信号通路。
这些通路的激活可引起转录因子的上调,诱导细胞中的上皮-间质转化[7]。
有些信号通路对于胚胎发育至关重要,而胚胎发育在不同人类癌症的肿瘤进展和对治疗反应的变化中发挥关键作用,如Hedgehog和Wnt通路[8]。
表皮生长因子在皮肤科临床应用的安全性研究进展
表皮生长因子在皮肤科临床应用的安全性研究进展彭霖;林彤【摘要】表皮生长因子及其受体通路在上皮细胞增殖分化中发挥重要作用,表皮生长因子在皮肤科临床应用中主要作为外用制剂使用,红斑、瘙痒等不良反应发生率低且能耐受.本文就表皮生长因子在皮肤科临床应用的安全性进行综述.%The epidermal growth factor and the signaling pathway play an important role in the proliferation and differentiation of epithelial cells. Epidermal growth factor is mainly used for topical application in derma-tology. The incidence of adverse reactions such as erythema or pruritus is low and well-tolerated. The safety of epidermal growth factor in clinical application of dermatology is reviewed in this article.【期刊名称】《中国麻风皮肤病杂志》【年(卷),期】2018(034)002【总页数】4页(P118-121)【关键词】表皮生长因子;皮肤科;安全性【作者】彭霖;林彤【作者单位】中国医学科学院北京协和医学院皮肤病研究所,南京, 210042;中国医学科学院北京协和医学院皮肤病研究所,南京, 210042【正文语种】中文1962年Stanley Cohen[1]在研究神经生长因子(NGF)时首次在小鼠颌下腺发现表皮生长因子(EGF)。
表皮生长因子是生长因子多肽家族中的代表,它能通过结合表皮生长因子受体(EGFR),通过EGF/EGFR信号转导通路在不同的细胞类型,特别是在上皮细胞的增殖、分化和迁移中发挥重要作用[1,2]。
FAM83蛋白调控肿瘤发生机制及临床应用研究进展
doi:10.3969/j.issn.2095-1736.2021.01.093FAM83蛋白调控肿瘤发生机制及临床应用研究进展刘南茜陈兴珍周策凡】Q,唐景峰I:(1.湖北工业大学生物工程与食品学院,武汉430068;2.湖北工业大学国家外专局/教育部细胞调控与分子药物学科创新“111”引智基地,武汉430068)摘要根据FAM83A蛋白家族的结构特点和生物学特性,综述肿瘤细胞中FAM83异常表达及功能活性调控的因素(非编码微小RNA和蛋白质修饰作用)和它们促成肿瘤发生的潜在机制(MAPK,Wnt和TGF-0信号通路)及在肿瘤诊断与临床治疗方面的应用(分子marker诊断和肿瘤耐药)。
分析FAM83基因在多种人类恶性肿瘤细胞中过表达,并且与肿瘤细胞的增殖、迁移、侵袭、转化和耐药等过程相关。
探讨FAM83蛋白在肿瘤治疗中的前景和挑战,未来将探究每个FAM83蛋白的独特功能,为今后以FAM83蛋白家族为癌症治疗的新靶点提供理论依据。
关键词FAM83;异常表达;信号通路;肿瘤细胞;治疗靶点中图分类号R730.2文献标识码A文章编号2095-1736(2021)01-0093-05Research progress on the mechanism and clinical applicationof FAM83protein in regulating tumorigenesisLIU Nanxi b\CHEN Xingzhen b\ZHOU Cefan b2,TANG Jingfeng1^(1.School of Food and Biological Engineering,Hubei Uni v ers让y of Technology,Wuhan430068,China;2.National"111"Center for Cellular Regulation and Molecular Pharmaceutics,Hubei University of Technology,Wuhan430068,China)Abstract Based on the structural and biological characteristics of the FAM83protein family,this paper reviewed the regulatory factors,such as MicroRNA and protein posttranslational modification,for FAM83proteins dysregulated expression and the functional activity in tumor cells and their potential mechanisms for tumorigenicity(MAPK,Wnt and TGF-0signaling pathways),as well as their application in cancer diagnosis and clinical treatment(molecular marker diagnosis and tumor drug resistance).The FAM83genes were found to be up-regulated in various tumor cells and associated with cellular biological processes such as proliferation,migration,invasion,transformation and drug resistance.Finally,the prospects and challenges of the FAM83protein in tumor therapy were discussed. In the future,the unique functions of each FAM83protein will be explored to provide theoretical basis for future novel targets of the FAM83protein family for cancer treatment.Key words FAM83;abnormal expression;signal pathway;tumor cells;therapeutic target1FAM83蛋白家族成员及结构特点FAM83蛋白家族(序列相似性家族83)有8个基因成员,它们位于染色体不同的基因组位点,根据其N 末端-未知功能域(DUF1669)的保守性进行分类(图1),命名为FAM83A-H。
非小细胞肺癌EGFR-TKI耐药机制及应对策略研究进展
节 p21
-RAS 信号 传 导 通 路。NF
1通过增加鸟苷三磷酸降
[]
T790M 原 发 性 突 变 7 。 原 发 性 T790M 突 变 通 常 与
子 的 功 能 是 通 过 限 制 正 常 细 胞 中 的 RAS 活 性 而 发 生 的。
突变。1 1% 的 患 者 没 有 经 过 EGFR-TKI 治 疗 之 前 就 有
t
hnon
sma
l
lc
e
l
ll
ungc
anc
e
rF
i
r
s
t
r
a
t
i
on
g
gn
gene
EGFR-TKI sucha
sge
f
i
t
i
n
i
bande
r
l
o
t
i
n
i
b o
rs
e
c
ond
r
a
t
i
onEGFR-TKI sucha
sa
f
a
t
i
n
i
band
gene
da
c
omi
t
i
n
i
b a
r
ee
f
f
e
c
t
i
vei
nt
道不良反应加大,而且总体生存率方面并没有显 着 改 善
。
[
4]
奥希替尼 是 美 国 食 品 药 品 监 督 管 理 局 唯 一 批 准 的 第 三 代
EGFR 胞 内 酪 氨 酸 激 酶 被 EGFR-TKI
抑制后,其他酪氨酸 激 酶 受 体 形 成 异 源 二 聚 体, 代 偿 激 活
肺干细胞和肺癌干细胞的研究进展
肺干细胞和肺癌干细胞的研究进展尹荟菁;邓炯【摘要】癌干细胞是目前癌症研究的热点之一。
肺癌干细胞与正常肺干细胞有许多共同之处,包括自我更新能力和多分化潜能。
许多癌干细胞分子标志为肺癌干细胞所共有,如CD133、CD44、乙醛脱氢酶(aldehyde dehydrogenase, ALDH)以及ATP结合转运蛋白G超家族成员2(ATP-binding cassette sub-family G member 2, ABCG2)。
肺癌干细胞的扩增与作用不仅受胚胎干细胞途径如Notch、Hedgehog和Wnt调控,也受肿瘤信号途径如表皮生长因子受体(epidermal growth factor receptor, EGFR)、信号传导转录激活因子3(signal transducer and activator of transcription 3, STAT3)和磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase, PI3K)等的调控。
由于癌干细胞在肿瘤复发、转移和耐药性等方面发挥着重要作用,揭示肺癌干细胞与正常干细胞的区别,鉴定并靶向癌干细胞特异性表面标志物及其介导的信号通路,将有望改善肺癌治疗效果和提高患者生存率。
%Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many char-acteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt path-ways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signaltransducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recur-rence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the effcacy of therapy on lung cancer and improved survival of lung cancer patients.【期刊名称】《中国肺癌杂志》【年(卷),期】2015(000)010【总页数】7页(P633-639)【关键词】肺干细胞;肺肿瘤;表面标志;信号通路;靶向治疗【作者】尹荟菁;邓炯【作者单位】200025上海,上海交通大学医学院病理生理系,细胞分化与凋亡教育部重点实验室;200025上海,上海交通大学医学院病理生理系,细胞分化与凋亡教育部重点实验室; 200025上海,上海交通大学肿瘤微环境与炎症上海市重点实验室; 200030上海,上海胸科医院转化医学中心【正文语种】中文肺癌的致死率为癌症中之最。
Wnt和Notch信号通路在肺癌干细胞调控中的研究进展
Wnt和Notch信号通路在肺癌干细胞调控中的研究进展况里杉;罗虎【摘要】Cancer stem cells which have self-renewal and multi-directional differentiation potential are a small number of undifferentiated cell group and they play an important role in the development and progression of human tumors. The lung cancer stem cells were thought to be the root of lung cancer with renewal, differentiation, metastasis and tumorigenesis capacity. Recent researches indicate that lung cancer stem cells are under the co-regulation of the inside genes themselves and the microenvironmental signals around them. Wnt and Notch signal pathways which are two classic development regulation pathways play important roles in them. The profound research on Wnt and Notch signal pathways in the regulation of lung cancer stem cells is beneficial to the discovery of potential targets for the treatment and diagnosis of lung cancer.%肿瘤干细胞是具有自我更新和多向分化潜能的少部分未分化细胞,在多种肿瘤的发生、发展中发挥重要作用.肺癌干细胞被认为是肺癌发生的根源,具有自我更新、分化、转移、致瘤性等特征.已有研究表明,肺癌干细胞受自身内在基因和其所处微环境信号的共同调控,两条经典的发育调控通路Wnt、Notch在其中发挥重要作用.深入研究Wnt和Notch信号通路在肺癌干细胞调控中的作用,有望在肺癌的诊断及治疗中找到新靶点.【期刊名称】《医学综述》【年(卷),期】2013(019)002【总页数】4页(P268-271)【关键词】肺癌干细胞;调控;Wnt信号通路;Notch信号通路【作者】况里杉;罗虎【作者单位】第三军医大学第一附属医院呼吸内科,重庆,400038;第三军医大学第一附属医院呼吸内科,重庆,400038【正文语种】中文【中图分类】R734.2近年来,由于发病率和病死率居高不下,肺癌已经成为各种恶性肿瘤中导致死亡的首要病因,对人类健康和生命造成了严重威胁,在过去25年内,其5年生存率仍未见显著提高,约为 15%[1]。
Cell Signaling Pathways in Development
Cell Signaling Pathways in Development Cell signaling pathways are crucial in the development of organisms. These pathways are complex networks of biochemical reactions that enable cells to communicate with each other, allowing them to coordinate their activities and ultimately form tissues and organs. In this essay, we will explore the importance of cell signaling pathways in development from multiple perspectives.From a biological perspective, cell signaling pathways play a critical role in the development of an organism. During embryonic development, cells must differentiate and specialize into various cell types, such as muscle cells, nerve cells, and skin cells. This differentiation is controlled by signaling pathways that activate specific genes and proteins, leading to the development of specific cell types. For example, the Sonic Hedgehog pathway is essential for the development of the nervous system, while the Wnt pathway is crucial for the development of the digestive system. Without these signaling pathways, the development of an organism would be severely impaired.From a medical perspective, understanding cell signaling pathways is essential for the development of new treatments for various diseases. Many diseases, such as cancer, are caused by abnormalities in cell signaling pathways. By understanding these pathways, researchers can develop drugs that target specific proteins or genes involved in the pathway, leading to more effective treatments. For example, drugs that target the Epidermal Growth Factor Receptor (EGFR) pathway have been developed to treat various types of cancer, including lung cancer and breast cancer.From a philosophical perspective, the study of cell signaling pathways raises questions about the nature of life and the role of genetics in shaping our development. The fact that cells can communicate with each other and coordinate their activities to form complex organisms is a testament to the incredible complexity and beauty of life. Furthermore, the fact that our development is controlled by our genes raises questions about the extent to which we are predetermined by our genetic makeup. While our genes certainly play a significant role in shaping our development, it is also clear that environmental factors can have a profound impact on our development as well.From a social perspective, the study of cell signaling pathways has important implications for issues such as genetic engineering and stem cell research. The ability to manipulate cell signaling pathways raises the possibility of creating organisms with specific traits or curing diseases by replacing damaged or diseased cells with healthy ones. However, these technologies also raise ethical questions about the extent to which we should manipulate the genetic makeup of living organisms. Furthermore, the fact that these technologies are often expensive and only available to those with access to healthcare raises questions about social justice and the distribution of resources.From a personal perspective, the study of cell signaling pathways highlights the incredible complexity and interconnectedness of the human body. It is humbling to consider the vast number of signaling pathways that are involved in our development and the intricate ways in which they interact with each other. Furthermore, the fact that abnormalities in these pathways can lead to serious health problems underscores the importance of taking care of our bodies and seeking medical attention when necessary.In conclusion, cell signaling pathways are essential for the development of organisms and have important implications for medicine, philosophy, society, and personal health. By studying these pathways, we can gain a deeper understanding of the nature of life and the role of genetics in shaping our development. Furthermore, we can develop new treatments for diseases and explore the ethical implications of genetic engineering and stem cell research. Ultimately, the study of cell signaling pathways reminds us of the incredible complexity and interconnectedness of the human body and the importance of taking care of ourselves and each other.。
肺癌患者呼出气冷凝液与血液中egfr、kras基因及其变异的检测
本研究涉及的病例未考虑患者临床分期㊁手术方式㊁手术满意度及后续治疗等相关因素对肿瘤复发及转移的影响,并局限于样本量和观查对象的选择偏倚,同时对CPE 及其变异体在肿瘤转移和复发中的作用机制尚未完全明了,因此有待更大样本量和更深入的研究㊂4 参考文献[1] Cawley NX,Wetsel WC,Murthy SR,et al.New roles of car⁃boxypeptidase E in endocrine and neural function and cancer[J].Endocr Rev,2012,33(2):216-253.[2] Skalka N,Caspi M,Caspi E,et al.Carboxypeptidase E:a negative regulator of the canonical Wnt signaling pathway[J].On⁃cogene,2012,32(23):2836-2847.[3] Lee TK,Murthy SR,Cawley NX,et al.An N-terminal trun⁃cated carboxypeptidase E splice isoform induces tumor growth and is a biomarker for predicting future metastsis in human cancers[J].J Clin Invest,2011,121(3):880-892.[4] Horing E,Harter PN,Seznec J,et al.The 'go or grow'po⁃tential of gliomas is linked to the neuropeptide processing enzyme carboxypeptidase E and mediated by metabolic stress [J].Acta Neuropathol,2012,124(1):83-97.[5] Bachtiary B,Boutros PC,Pintilie M,et al.Gene expression profiling in cervical cancer:an exploration of intratumor heteroge⁃neity[J].Radiotherapy &Oncology,2006,78(19):S91-S91.[6] Techasen A,Loilome W,Namwat N,et al.Loss of E-cad⁃herin promotes migration and invasion of cholangiocarcinoma cells and serves as a potential marker of metastasis [J].Tumor Biol,2014,35(9):8645-8652.[7] Livak KJ,Schmittgen TD.Analysis of relative gene expres⁃sion data using real -time quantitative PCR and the 2-△△CTmethod[J].Method,2001,25(4):402-408.[收稿日期:2019-05-25 编校:徐 强]肺癌患者呼出气冷凝液与血液中EGFR ㊁KRAS 基因及其变异的检测聂 莉,陈济明,李一禄,巫翠华 (深圳市南山区人民医院呼吸科,广东 深圳 518052)基金项目:深圳市南山区科技计划区属事业单位研发项目[项目编号:南科研卫2016016号][摘 要] 目的:研究肺癌患者检测呼出气冷凝液(EBC )中表皮生长因子受体(EGFR )㊁KRAS 基因及其变异的可行性,与肺癌患者血液中EGFR ㊁KRAS 基因及其变异的检测进行对比研究,并结合病理及影像学等临床资料分析其临床意义㊂方法:将收治的30例肺癌患者作为研究组,选取同一时间健康志愿者30例作为对照组㊂分别采集两组研究对象的EBC 和血液标本,检测EBC 和血液EGFR ㊁KRAS 基因表达及变异性情况㊂结果:研究组和对照组对象EBC 标本中,通过多种检测方法均未提取到EBC 样本基因组DNA ,无法扩增出检测目的基因㊂研究组中EGFR 基因中有18例发生突变,其中有15例样本中19外显子缺失敏感型突变,仅3例发现21外显子L858R 突变,KRAS 基因仅1例发生突变,为Gly12Asp 突变㊂15例19外显子缺失敏感型突变中腺癌12例,鳞癌3例㊂对照组中EGFR 基因中均未发生突变㊂KRAS 基因中均未发生突变㊂研究组EGFR 基因野生型和突变型比例与对照组比较,差异有统计学意义(P <0.05);KRAS 基因野生型和突变型两组差异无统计学意义(P >0.05)㊂结论:用EBC 标本检测肺癌患者中EGFR ㊁KRAS 基因是一个理想的无创的方法,但目前因多种原因及条件限制无法完成㊂血液中EGFR ㊁KRAS 基因及其变异性是目前比较实用的方法,创伤小㊂[关键词] 肺癌;呼出气冷凝液;EGFR 基因;KRAS 基因Detection of exhaled breath condensate and blood EGFR and KRAS genes and their variation in lung cancer patients NIE Li ,CHEN Ji -ming ,LI Yi -lu ,et al (Department of Respiratory ,The People′s Hospital of NanshanDistrict ,Shenzhen City ,Shenzhen 518052,China )Abstract :Objective To study the feasibility of detecting EGFR and KRAS genes and their variants in exhaled breath con⁃densate(EBC)of lung cancer patients,and compare them with the detection of EGFR and KRAS genes and their variants in blood of lung cancer patients.Method 30lung cancer patients were selected as the study group,and 30healthy volunteers at the same time from the physical examination center of our hospital were selected as the control group.EGFR and KRAS gene ex⁃pression and variability were detected in exhaled breath condensate and blood samples of the two groups.Results The genomic DNA of the respiratory condensate sample was not extracted from the EBC samples of the study group and the control group byvarious detection methods,and the target gene could not be amplified.There were18mutations in EGFR gene in the study group,of which19mutations were sensitive to exon deletion in15samples,only3mutations in exon21L858R.Only1mutation occurred in the KRAS gene,which was a Gly12Asp mutation.In15cases,19exon deletion sensitive mutations were found in 12cases of adenocarcinoma and3cases of squamous cell carcinoma.In the control group,no mutation was found in the EGFR gene.No mutation was found in the KRAS gene.The wild type and mutation ratio of EGFR gene in the study group were signifi⁃cantly different from those in the control group(P<0.05);There was no difference in the wild-type and mutant KRAS between the two groups(P>0.05).Conclusion It is an ideal noninvasive method to detect EGFR and KRAS genes in lung cancer pa⁃tients with exhaled air condensate,but it can not be completed due to various reasons and conditional limitations.EGFR and KRAS genes in blood and their variability are relatively practical methods with little trauma.Key Words:Lung cancer;Exhaled breath condensate;EGFR gene;KRAS gene 原发性肺癌(以下简称肺癌)是临床常见呼吸道恶性肿瘤之一,目前已成为严重危害人类健康的公众问题㊂肺癌发病率㊁死亡率极高,且呈明显上升趋势,尤其在发展中国家,上升趋势更明显[1]㊂肺癌的研究目前主要集中在组织学和血清学,对于组织病理,主要是通过气管镜㊁肺穿刺,甚至开胸肺活检才能取得标本,但上述大多是侵入性的检查,很多患者及家属对创伤性的检查带来的痛苦以及对身体的伤害有顾虑,拒绝行上述检查㊂另外,有的肿瘤病灶生长部位特殊,通过上述各方法甚至肺穿刺难以获取明确病理㊂呼出气冷凝液(ex⁃haled breath condensate,EBC)可反映呼吸道疾病变化情况,评估药物治疗效果和氧化应激反应程度,是一种无创检查方式㊂EBC可反映出呼吸道㊁肺内的细微病理变化,所以国际医学界对于EBC的检测关注度非常高,被誉为生化肺功能[2]㊂EBC 在国内外研究较多的是炎性标志物,有关EBC中肿瘤基因的研究报道较少,通过观察EBC可能对肺部疾病具有早诊断㊁早发现的作用,同时为以基因变异为基础的靶向药物治疗提供依据㊂目前国内关于肺癌患者EBC中EGFR基因及其突变暂无相关研究,国外也很少㊂本研究为探索性研究,通过肺癌患者EBC及血液中EGFR基因及其突变的检测对比,寻找一种可能的肺癌无创㊁早期检测的新手段,为肺癌诊断提供一种新希望㊂现报告如下㊂1 资料与方法1.1 一般资料:选取2016年5月~2018年3月期间深圳市南山区人民医院住院部收治的30例肺癌患者作为研究组㊂纳入标准:①经检查和诊断均符合肺癌诊断标准的患者[3];②自愿参加本次研究并签字的患者;③年龄在40~90岁之间的患者㊂排除标准:①已接受过放化疗治疗的患者;②有其他肺部疾病(如COPD㊁哮喘㊁肺心病以及间质纤维化等)的患者;③有明确结缔组织疾病的患者;④有严重心血管疾病(如心力衰竭㊁冠心病等)的患者;⑤其他系统肿瘤患者;⑥肝肾功能不全者;⑦不能配合研究的患者㊂选取同一时间我院健康志愿者30例作为对照组㊂研究组中男22例,女8例,年龄41~85岁,平均(61.4±4.8)岁㊂吸烟情况:吸烟者15例,不吸烟者15例㊂对照组中男20例,女10例,年龄40~88岁,平均(62.1±4.6)岁㊂吸烟情况:吸烟者17例,不吸烟者13例㊂两组患者上述资料(性别㊁年龄以及吸烟情况)比较,差异无统计学意义(P>0.05),具有可比性㊂1.2 方法1.2.1 EBC收集及检测:收集EBC前受试者用蒸馏水漱口3次㊂采用呼气冷凝液收集装置(Ecoscreen,德国耶格公司)进行EBC收集㊂收集EBC前打开收集装置30min,受检者取坐位㊁经口㊁平静潮式呼吸,收集10~15min㊂采集过程中若出现咳嗽或嗳气时需暂停收集㊂收集约1~2ml,分装EP管中,冷冻于-80℃冰箱待用㊂后采用传统的酚氯仿沉淀法提取EBC中DNA,由于呼吸冷凝液样本基因组DNA比较少无法扩增出检测目的基因㊂后使用QIAamp DNA mini kit试剂盒进行呼吸冷凝液DNA的提取,仍无法提取呼吸冷凝液样本基因组DNA㊂1.2.2 血液收集及检测:收集研究对象清晨空腹血浆,血液以3000r/min离心10min,分离血浆,分装,血浆标本放-80℃冰箱冻存,待用,并收集相关影像㊁病理等临床资料㊂使用Qiagen试剂盒进行血清或血浆游离DNA的提取㊂主要操作步骤包括:裂解㊁结合㊁洗涤㊁干燥㊁洗脱㊂在血清或血浆中,游离DNA通常是与蛋白质结合,或者是在囊泡中㊂加入蛋白酶K和ACL缓冲液,并且高温处理,游离DNA能够得到完全释放,同时能够使DNase和RNase失活㊂样品裂解后,DNA在高盐条件下与硅胶膜特异结合,在低盐,高pH值时DNA从硅胶膜上洗脱下来㊂此法简便㊁快捷,所得游离DNA无蛋白㊁核酸酶或其他杂质的污染,可直接用做PCR扩增㊁测序和检测等后续实验㊂PCR扩增EGFR基因18~21外显子㊁KRAS基因2~3外显子区域㊂后使用PSTAR-Ⅱplus高通量基因测序仪(华因康,IDN01-M-P3)进行测序,测序完成后,安全退出PStar软件,关闭计算机㊁测序仪和汞灯㊂采用软件Pstar-Ⅱ6.0.4build3进行生物学分析统计分析㊂1.3 观察指标:观察研究对象呼出气冷凝液EGFR㊁KRAS基因表达及变异情况,并与血液EGFR㊁KRAS基因表达及变异情况进行对比,分析肺癌患者检测呼出气冷凝液EGFR㊁KRAS 基因表达及变异的可行性㊂1.4 统计学处理:采用SPSS18.0统计软件,计量资料用均数±标准差(x±s)表示,采用t检验,计数资料用百分比(%)表示,采用χ2检验,P<0.05为差异有统计学意义㊂2 结果2.1 EBC中EGFR㊁KRAS表达情况:研究组和对照组对象EBC标本中,通过多种检测方法均未提取到呼吸冷凝液样本基因组DNA,无法扩增出检测目的基因㊂2.2 血液EGFR㊁KRAS表达情况:研究组中EGFR基因中有18例发生突变,其中有15例样本中19外显子缺失敏感型突变,仅3例发现21外显子L858R突变㊂KRAS基因仅1例发生突变,为Gly12Asp突变㊂15例19外显子缺失敏感型突变中腺癌12例,鳞癌3例㊂对照组中EGFR基因均未发生突变㊂KRAS基因中均为发生突变㊂研究组EGFR基因野生型和突变型比例与对照组比较,差异有统计学意义(P<0.05);KRAS 基因野生型和突变型两组差异无统计学意义(P>0.05)㊂见表1㊂表1 血液EGFR㊁KRAS表达情况[例(%)]组别例数EGFR 野生型 突变型 KRAS 野生型 突变型 对照组3030(100.00)030(100.00)0研究组3012(40.00)18(60.00)29(96.67)1(3.33)χ2值85.7141.017P值<0.05>0.053 讨论 EBC是一种新型检测肺癌的方法,并且具有非侵入性和可重复性,可用来检测筛选灵敏性和特异性比较可靠的生物标记物,将有助于辅助肺癌早期诊断,且对病情㊁疗效及患者预后评估等方面起到重要作用[4-5]㊂EBC目前得到国际越来越多的重视,2011年在帕尔玛(意大利)举行的呼吸分析峰会,众多的科学家㊁工程师和医生展示他们在呼吸分析的最新发现并和相关行业管理者和企业家讨论其主要发展趋势,未来的发展方向和技术可供呼吸的分析[6]㊂ EGFR(epidermal growth factor receptor,EGFR)是表皮生长因子受体(HER)家族成员之一㊂EGFR是一种糖蛋白,属于酪氨酸激酶型受体,EGFR位于细胞膜表面,靠与配体结合来激活㊂研究表明在许多实体肿瘤中存在EGFR的高表达或异常表达[7-8]㊂目前,表皮生长因子受体-酪氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitors,EG⁃FR-TKIs)等靶向药物已经在非小细胞癌(NSCLC)中广泛应用㊂在EGFR基因突变的晚期NSCLC患者,EGFR靶向治疗使部分患者生存时间明显延长,改善部分生活质量[9]㊂而在EGFR基因未发生突变的非小细胞肺癌患者中,其靶向药物疗效不明显㊂EGFR基因主要包括两种突变,包括19外显子缺失和21外显子L858R突变,19外显子缺失约占45.00%,21外显子L858R突变约占40.00%,二者均可导致酪氨酸激酶结构域活化,且均为EGFR-TKIs的敏感性突变[10]㊂本研究结果显示,研究组患者血液检测到EGFR基因中有18例发生突变,突变率高达60.00%,其中有15例样本中19外显子缺失敏感型突变,仅3例发现21外显子Lys858Arg突变㊂而对照组中EGFR均未发生突变,明显低于研究组㊂ KRAS基因通常与EGFR基因同时检测,但其基因突变的阳性率较低,其基因突变预示着对EGFR-TKI原发耐药,预示着肺癌预后差㊂目前关于KRAS基因的组织学研究较多,国内也仅有少许血液方面的研究[11]㊂本研究30例样本仅发现1例KRAS基因突变,为Gly12Asp突变,考虑一方面与样本量较小有关,另一方面考虑与KRAS基因本身突变阳性率不高有关㊂进一步研究需加大样本量㊂ 综上所述,肺癌患者EBC中检测EGFR㊁KRAS基因及其变异目前的条件暂不成熟,但有望在不久的将来成为可能㊂EGFR基因的突变和KRAS基因变异预示着不同预后,在一部分难以取得病理的患者,可使用外周血代替,减少患者的痛苦,提高生存质量㊂4 参考文献[1] 张瑞祥,李 印,陈亚伟,等.肺癌与食管癌患者血浆游离DNA含量与患者临床特征的相关性[J].中华医学杂志, 2015,95(47):3839.[2] 李 静,潘跃银,张颖,等.索拉菲尼对EGFR及K-ras 基因突变肺癌细胞株的增殖抑制作用及其作用机制[J].安徽医科大学学报,2013,48(3):220.[3] 华 丽,覃 莉,岳海英,等.EGFR和KRAS基因状态对肺癌脑转移放疗敏感性的影响[J].东南大学学报(医学版),2016,35(6):947.[4] Dent AG,Sutedja TG,Zimmerman PV.Exhaled breath anal⁃ysis for lung cancer[J].J Thorac Dis,2013,5(5):S540. [5] 吴东霞,沈溪明.肿瘤标志物在肺癌早期诊断与治疗中的价值[J].吉林医学,2016,37(8):1976.[6] 凌 云,邱 田,李 卓,等.非小细胞肺癌中EGFR和KRAS基因突变的特点及与临床病理特征的关系[J].临床与实验病理学杂志,2015,31(5):536.[7] 刘 蕾,魏素菊.KRAS突变的非小细胞肺癌的研究进展[J].中国肺癌杂志,2018,21(5):419.[8] 胡 舜,余英豪.EGFR㊁KRAS和ALK+肺癌患者细胞形态学与分子检测的相关性[J].临床与实验病理学杂志,2014, 30(11):1293.[9] 田 野,王 园,刘思洋,等.肺癌伴恶性胸腔积液中EGFR突变检测及其临床意义[J].中国医科大学学报,2016, 45(2):150.[10] 孙丽娟,付 群,李宏云,等.EGFR㊁KRAS㊁BRAF㊁PI3K 基因突变与非小细胞肺癌靶向药物治疗的关系[J].郑州大学学报(医学版),2013,48(1):147.[11] Corradi M,Mutti A.News from the Breath Analysis Sum⁃mit2011[J].J Breath Res,2012,6(2):020201.[收稿日期:2018-11-09 编校:陈 伟/郑英善]。
小檗碱治疗消化系统疾病的作用机制研究进展
小檗碱资源丰富、安全性高且价格低廉,已在多种消化系统疾病中表现出治疗作用, 其机制主要围绕在抗炎、调脂、诱导肿瘤细胞凋亡、抗肿瘤血管生成和调控细胞因子表达等方面。然而,对小檗碱治疗作用的研究多停留于几种特定细胞和动物模型。因此, 需要更多的分子机制研究和更广泛的随机对照试验来验证小檗碱治疗消化系统疾病的作用。此外,以小檗碱作为先导物进行结构改造,研究构效关系,充分考虑其多靶点调控疾病网络的作用机制, 并且在保证活性的同时改善生物利用度,成为开发相关新药的一条重要途径。
2.3.2 结肠癌 目前,小檗碱对结直肠癌的防治作用研究仍停留在临床前模型, 其机制的研究进展主要包括以下几个方面。
(1)细胞水平 环氧合酶2(COX-2)在结肠癌组织中表达升高。 Wu等[12]研究表明小檗碱可抑制结肠癌LoVo细胞的增殖,还可减少细胞中COX-2 mRNA和COX-2蛋白的表达,这可能为小檗碱抑制结肠癌细胞增殖的机制之一。
2 小檗碱在消化系统疾病治疗领域中的应用
2.1 小檗碱治疗Hp相关性疾病
小檗碱具有较强的抗Hp作用,主要表现在抑制Hp的增殖和N-乙酰基转移酶的活性[2]。小檗碱、肝素、壳聚糖制成的纳米粒能使小檗碱特异性地定位在Hp感染的细胞间隙和胞质,增强小檗碱对Hp增殖的抑制,同时降低Hp感染对细胞的毒性作用[3]。初步的临床研究发现,小檗碱单独应用或与质子泵抑制剂(PPI)、抗生素同时应用治疗Hp相关性胃炎和消化性溃疡均显示出较高的Hp清除率和溃疡愈合率,还可降低溃疡复发率。
小檗碱治疗消化系统疾病的作用机制研究进展
宋淑莉;曹海龙;王邦茂
【摘 要】小檗碱用于治疗肠道感染性疾病的历史悠久.近年来,其抗炎、调脂和抗肿瘤等多重药理作用已得到广泛认可.本文旨在对小檗碱在消化系统疾病治疗领域尤其是炎症性肠病和结直肠癌方面涉及的分子机制研究进展作一综述.
【肺癌进展报告2021】靶向耐药并非穷途末路!EGFR-TKI耐药应对策略大盘点
【肺癌进展报告2021】靶向耐药并非穷途末路!EGFR-TKI耐药应对策略大盘点靶向治疗的出现,给肺癌治疗领域带来重大突破。
表皮生长因子受体(EGFR)突变是非小细胞肺癌(NSCLC)患者最常见的突变,靶向EGFR的小分子酪氨酸激酶抑制剂(TKIs)是这部分患者的首选治疗。
令人遗憾的是,无论是一代和二代EGFR-TKIs,还是三代EGFR-TKI,用的时间久了,多数病人不可避免地会发生耐药。
不过,靶向耐药并非穷途末路!EGFR-TKI耐药的机制是什么?一旦发生耐药,该如何应对?下文将一一为大家盘点。
一、EGFR突变以及次第涌现的三代EGFR-TKI▲▲▲EGFR属于酪氨酸激酶型受体,在哺乳动物的正常组织广泛中表达。
在正常细胞中,EGFR受体和配体结合,信号通路激活,促使细胞生长、增殖,但完成使命后就会收到指令立即关闭。
当EGFR发生突变时,受体不再需要服从其它信号的控制,自己不停地发出信息,让细胞不受控制地拼命生长,正常细胞就变成了癌细胞。
EGFR突变是NSCLC患者最常见的驱动基因改变,高达50%的东亚NSCLC患者可观察到EGFR突变,女性、从未吸烟者或曾经少量吸烟者发生率较高。
EGFR突变主要是指EGFR第18~21外显子上酪氨酸激酶区域的突变,其中第19号外显子的非移码缺失突变和21号外显子的L858R 错意突变为常见突变,约占到EGFR突变的85%~90%,其余的10%~15%的突变则称之为罕见突变,包括G719X、L861Q、S768I 及20外显子插入突变。
EGFR-酪氨酸激酶抑制剂(EGFR-TKI)主要通过与EGFR酪氨酸激酶区域的三磷酸腺苷(ATP)竞争性结合,从而阻断EGFR信号通路的传递。
根据药物结合特点和作用位点不同,分为第一代、第二代和第三代EGFR-TKI。
第一代EGFR-TKI可逆性地抑制EGFR的酪氨酸激酶活性,代表性药物为吉非替尼、厄洛替尼和埃克替尼。
第二代EGFR-TKI不可逆地抑制EGFR的酪氨酸激酶活性,同时对ERBB家族的其它成员产生抑制作用,代表性药物为达克替尼和阿法替尼。
高同型半胱氨酸血症与IgA肾病临床和牛津病理的相关性
中国公共卫生,241,30(1):149-1352.9.Fel S,Li W,Xiana L,et ai.Protective effect of alpustabii onacute pancrea/Xs in rats via inhibitina janus kinase6(JAK2)/ STAT3signai transyucOon path w ay1Med Sei Monit,201,25(1):6299-7722.1.王伟,卢志远,任稹,等.前列地尔与福辛普利联合治疗对糖尿病肾病患者肾功能、氧化应激的影响.海南医学院学报, 201,22(1):196-199.1.Yana X,Wana X,Nie F,et ai.miR-15family members mediate podocyte inju/throuah the activa/on of WnC0-catexin signadna.1nt J Moi Med,201,36(3、:669-677.19.Senouthai S,Wana J,Fu D,et ai.FractalUine is Invelved in Li-aopolysaccha/de-Induced Podocyte Injur/throuah the WnCL-Catenin Pathway in an Acote Kidney Inju/Mouse Model.I-Ommeion,201,42(4):182-1344.1.王珍,冼丽英,叶伟标,等•Wnt/0-catexin在IgA肾病中的表达及意义•中国中西医结合肾病杂志,201,1(6):649-50911.Zhou L,Chex X,Lu M,et ai.WnC0-catexin linds oxidativestress to pogocyte inju/and puteRu/a.Kidney Int,221,95(4):834-845.15.Guo Q,Zhona W,Duan A,et ai.Protective or deleteUous role ofWnCbeta-catexin signa/na in diabehe nephropathy:an unresolved imue.Pharmacoi Res,201,14(1、:11-152.(收稿:2626-65-69修回:2626-65-26)高同型半胱氨酸血症与IgA肾病临床和牛津病理的相关性鲁珍珍①邓跃毅①^刘旺意①〔摘要〕目的:探索肾活检时IgA肾病患者血清同型半胱氨酸(homocysteine,Hey)水平与临床及牛津病理的相关性。
白藜芦醇通过EGFR/AKT/mTOR通路改善结直肠癌细胞伊立替康化疗耐药性
was33 0mmol·L-1exceptthattheblankcontrolgroupwas5 5mmol·L-1.After24hoursofCFscul ture,WesternblotandRT qPCRwereusedtodetecttheexpressionofAR,FASN,PCNA,cyclinD1,α SMA,andcollagenⅠ.OilredOandCCK 8wereusedtodetectthechangesinlipidsynthesisandcellproliferationability,respectively.Results Comparedwiththeblankcontrolgroup,thelipidsynthesisandproliferationofCFsinthehighglucosemodelgroupwereenhanced.WesternblotandRT qPCRresultsshowedthattheexpressionofARdecreased,whiletheexpressionoffatlipidsynthase(FASN),proliferationmarkerPCNA,cyclinD1andfibrosismarkerα SMAandcollagenⅠincreased.AfterARoverexpressedplasmidwastransfectedintotheCFstreatedbyhighglucose,ARoverexpressionmarkedlydecreasedtheexpressionofFASN,PCNA,cyclinD1,α SMAandcollagenⅠcomparedwiththeemptyplasmid trans fectedgroup.Meanwhile,oilredOstainingandCCK 8resultsshowedthatthelipidsynthesisandprolifera tionabilityoftheoverexpressedARgroupdecreasedcomparedwiththeemptyvectorgroup,respectively.Conclusions Highglucosepromotestheproliferationandlipidsynthesisofcardiacfibroblasts.Besides,themechanismmayberelatedtotheregulationoflipidsynthesisregulatedbyAR.Keywords:lipidsynthesis;myocardialfibrosis;cellproliferation;cardiacfibroblasts;cellmetabolism;an drogenreceptor网络出版时间:2023-12-0116:36:29 网络出版地址:https://link.cnki.net/urlid/34.1086.R.20231130.1320.028◇肿瘤药理学◇白藜芦醇通过EGFR/AKT/mTOR通路改善结直肠癌细胞伊立替康化疗耐药性王 丽1,庞 静2,沈 慧1,寇茜睿1,王玉珏1,张 静1,李 芳1(1.延安大学医学院基础医学院,2.延安大学附属医院内分泌代谢科,陕西延安 716000)doi:10.12360/CPB202303020文献标志码:A文章编号:1001-1978(2023)12-2280-08中国图书分类号:R284 1;R329 28;R735 35;R979 1摘要:目的 探讨白藜芦醇(resveratrol,RES)联合伊立替康(irinotecan,IRI)治疗结直肠癌(colorectalcancer,CRC)的可能性及RES改善CRC细胞IRI化疗耐药性的相关分子机制。
21258422_不同年龄及体重2型糖尿病患者肾小球滤过率影响因素分析
do
i:
10.
3969/
.
s
sn.
1007
3205.
2020.
03.
009
ji
[文章编号] 1007
3205(
2020)
03
0287
05
Ana
l
s
i
so
ff
a
c
t
o
r
si
n
f
l
u
e
nc
i
ngg
l
ome
r
u
l
a
rf
i
l
t
r
a
t
i
onr
a
t
ei
nt
i
ab
e
t
e
sme
l
l
i
t
u
s
y
ype2d
t
i
e
n
t
swi
p
t
heco
r
r
e
l
a
t
i
onbe
twe
eneGFRando
t
he
r me
t
abo
l
i
cpa
r
ame
t
e
r
s wa
sana
l
z
ed.L
i
ne
a
rr
eg
r
e
s
s
i
on
y
[收稿日期]
2019-12-27;[修回日期]
2020-01-16
[基金项目]邢台市科技计划项目(
WNT信号通路在KRAS基因突变型结直肠癌中的作用
2006ꎬ193(6) :792
[15] JY AꎬSOHN YꎬLEE SHꎬet al. Use of convalescent plasma
[18] PEIRIS JSꎬCHU CMꎬCHENG VCꎬet al. Clinical progres ̄
distress syndrome in Korea[ J] . J Korean Med Sciꎬ2020ꎬ35
靶点对于 KRAS 基因突变患者的治疗意义重大ꎮ
WNT 信号通路的异常表达参与多种肿瘤的发
生发展ꎬ 促 进 肿 瘤 细 胞 的 增 殖ꎬ 抑 制 其 凋 亡 [9 ̄10] ꎮ
RNA 反 转 录 为 cDNAꎬ 并 进 行 PCR 循 环 扩 增ꎮ β ̄
TACTG ̄3’ ꎬ下游引物序列:5’  ̄CCATCCCTFCCTGTT
was 37. 8% . The mRNA expressions of β ̄catenin and Cyclin D1 were significantly increased in samples with KRAS muta ̄
tions compared with those with wild type ( P < 0. 05) . Compared with negative control group and blank groupꎬthe prolifera ̄
殖下降( P < 0. 05) 、凋亡升高( P < 0. 05) ꎮ 结论:与野生型相比ꎬβ ̄catenin 和 Cyclin D1 两种蛋白在 KRAS 突变型结直
肠癌样本中的表达水平更高ꎬ且抑制 β ̄catenin 表达后降低了 KRAS 突变型结直肠癌细胞的增殖ꎬ促进了细胞的凋亡ꎮ
整合素与EGFR交叉信号通路在恶性肿瘤侵袭转移机制中的研究进展
整合素与EGFR交叉信号通路在恶性肿瘤侵袭转移机制中的研究进展段媛媛;王瑜玲;梁欢;张燕;刘慈【摘要】侵袭转移是恶性肿瘤的基本生物学特征,是临床抗肿瘤失败及患者死亡的最主要原因.整合素(integrin)作为黏附分子家族的成员之一,通过介导细胞与细胞或细胞与基质间的黏附作用,经一系列信号转导,在肿瘤转移进程中发挥关键作用,且与肿瘤耐药机制有很大相关性.而表皮生长因子受体(epidermal growth factor receptor,EGFR)在恶性肿瘤转移及耐药中亦扮演着重要角色.随着研究深入,整合素家族与EGFR信号通路的交叉关系逐步明确,这将进一步揭开肿瘤转移的面纱,为以后新药开发、临床应用开辟新的思路.现就整合素家族中部分成员分子与EGFR信号通路间存在的交叉关系及其在肿瘤转移中的作用做简要概述.【期刊名称】《医学研究杂志》【年(卷),期】2017(046)006【总页数】4页(P12-15)【关键词】整合素;EGFR;侵袭;转移;恶性肿瘤【作者】段媛媛;王瑜玲;梁欢;张燕;刘慈【作者单位】050017石家庄,河北医科大学研究生学院;050021 石家庄市第五医院;050011 石家庄市第一医院;050011 石家庄市第一医院;050011 石家庄市第一医院【正文语种】中文【中图分类】R730.2恶性肿瘤的侵袭转移是目前肿瘤治疗的最大难题,是临床上肿瘤复发、治疗失败和患者死亡的最主要原因[1]。
有研究表明,肿瘤细胞之所以能在特定的器官发生和转移,肿瘤微环境在其中起着至关重要的作用[2]。
而肿瘤侵袭转移又是肿瘤细胞、宿主和肿瘤微环境之间一系列复杂、多因素、多步骤相互作用的序贯连续过程。
在肿瘤微环境中,黏附分子家族是介导肿瘤转移的关键分子,其中整合素作为黏附分子家族的重要成员之一,是一类跨膜糖蛋白受体,在肿瘤发生、发展及侵袭转移等生物学过程中发挥至关重要的作用。
而EGFR属于酪氨酸激酶I型受体家族,可通过其下游Ras/Raf/Erk/MAPK和PI3K/PDK1/Akt( PKB) 等信号通路调节多种恶性肿瘤细胞的生长、分化、增殖、凋亡及转移等生物学行为[3~6]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Genes & Cancer4(11-12) 427 –446© The Author(s) 2013Reprints and permissions: /journalsPermissions.nav DOI: 10.1177/1947601913503341 IntroductionMalignancies of the central nervous system are generally classified as meningiomas, oligodendrogliomas, and astro-cytomas. Astrocytomas are further subdivided into pilo-cytic (grade I), diffuse (grade II), anaplastic (grade III), and glioblastoma multiforme (GBM; grade IV). GBM repre-sents the most common and aggressive primary brain tumor with a median survival of approximately 12 months after diagnosis. Despite aggressive therapeutic modalities includ-ing surgical resections followed by radiotherapy and the most up-to-date chemotherapeutic regimen, the prognostic statistics for GBM patients is discouraging. Treatment of GBM demands a multipronged attack, based on a compre-hensive understanding of the molecular principles govern-ing the growth and survival of malignant cells. The biggest challenges in GBM treatment are (a) the extremely narrow window for operative approaches, which is mostly pallia-tive and rarely curative; and (b) the blood–brain barrier, which poses a major challenge in successful drug delivery. Similarly, radiation therapy alone for GBM patients is unlikely to be curative. Therefore, most investigators and clinicians believe that development of better chemothera-peutic agents targeting multiple and specific aspects of gli-oma holds the best promise for patient outcome.1 More than 2 decades of research has identified important molecular events, such as overactivation of the EGFR and PI3K (phosphatidylinositide 3 kinase)/Akt pathways and inactivation of the p53/Rb pathways to be important con-tributors for glioma development. These alterations facili-tate cell survival, proliferation, and migration and thus are crucial for tumorigenesis.2 Another important factor that has recently emerged to be a significant determinant of gli-oma initiation and progression is the canonical Wnt/β-catenin signaling pathway. Apart from a direct survival advantage provided by Wnt signaling to the tumor cells,3 its role in stem cell biology is crucial.4 The widespread atten-tion the concept of cancer stem cells (CSCs) has gained in the last few years makes Wnt signaling an attractive target for glioma therapy.5However, it is surprising that very little work has been devoted to studying the crosstalk between these 2 signaling pathways in the context of glioma. Although published evi-dences are limited, in the last part of the review we focus on the collusion of EGFR and canonical Wnt pathways in gli-1Signal T ransduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India*Authors contributed equally.Corresponding Author:Mrinal K. Ghosh, Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road,Kolkata-700 032, India (Email: mrinal.res@).Current Understanding on EGFRand Wnt/β-Catenin Signaling inGlioma and Their Possible CrosstalkIndranil Paul1,*, Seemana Bhattacharya1,*, Anirban Chatterjee1,and Mrinal K. Ghosh1Submitted 9-Apr-2013; accepted 31-Jul-2013AbstractGlioblastoma multiformes (GBMs) are extensively heterogeneous at both cellular and molecular levels. Current therapeutic strategies include targeting of key signaling molecules using pharmacological inhibitors in combination with genotoxic agents such as temozolomide. In spite of all efforts, the prognosis of glioma patients remains dismal. Therefore, a proper understanding of individual molecular pathways responsible for the progression of GBM is necessary. The epidermal growth factor receptor (EGFR) pathway is probably the most significant signaling pathway clinically implicated in glioma. Not surprisingly, anti-EGFR therapies mostly prevail for therapeutic purposes. The Wnt/β-catenin pathway is well implicated in multiple tumors; however, its role in glioma has only recently started to emerge. We give a concise account of the current understanding of the role of both these pathways in glioma. Last, taking evidences from a limited literature, we outline a number of points where these pathways intersect each other and put forward the possibility of combinatorially targeting them for treatment of glioma.Keywordsglioma, signaling, EGFR, β-catenin, crosstalkReview428 Genes & Cancer / vol 4 no 11-12 (2013)oma and try to point toward the possibility of combinatori-ally targeting them for the treatment of glioma.EGFR and Wnt Are Important Survival and Growth Signaling PathwaysEGFR Signaling. The epidermal growth factor receptor (EGFR; also ErbB1 or Her1) belongs to the ErbB family consisting of 4 receptors (ErbB or Her 1-4) and 13 polypep-tide extracellular ligands with a conserved EGF domain. Structurally, this 170 kDa protein consists of an extracellu-lar ligand-binding domain, a hydrophobic domain spanning the membrane, and a cytosolic tyrosine kinase domain. On binding of ligand to the extracellular domain, the receptor dimerizes (homo or heterodimers), leading to phosphoryla-tion of the cytosolic tail (autophosphorylation and/or cross-phosphorylation) with subsequent activation of several downstream kinases and finally transcription factors.6 On activation of the EGFR, various adaptor and effector mole-cules like Shc (Src homology 2 containing transforming protein); Grb2 and Grb7 (growth factor receptor-bound pro-tein); c-Crk-p38; PLC-γ (phospholipase C-γ); kinases—JAKs (Janus kinases), Src (c-Src tyrosine kinase), and PI3K; protein tyrosine phosphatases—SH P1 and 2; E3 ligase Cbl; and transcription factors like STAT (signal transducer and activator of transcription) 1, 3, and 5 are activated, triggering several signaling cascades—Ras/Raf (rat sarcoma/rapidly accelerated fibrosarcoma), MAPK (mitogen activated protein kinase), PKC (protein kinase C), PI3K/PKB (protein kinase B), JAK/STAT, and so on—which results in the activation of Erk (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), p38-MAPK, NF-κB (nuclear factor κ-light-chain-enhancer of activated B-cells), transcription factors like c-Myc, and so on, that ultimately regulate the expression of genes involved in proliferation, survival, differentiation, and migration7-9 (see Fig. 1).EGFR phosphorylated at residues Y1068 and Y1086 can recruit Grb2 directly or indirectly via tyrosine phosphory-lated Shc leading to translocation of Grb2/Sos complex to the membrane, where it activates Ras proteins, which in turn induce Raf kinases, MEKs and MAPKs, and Erk1/2 nuclear transport leading to cell proliferation by activating transcription factors like c-Myc and RSK (ribosomal S6 kinase).10 Recently, EGFR-mediated MAPK signaling has been shown to attenuate the Groucho-mediated gene repres-sion, establishing a node for crosstalk between the EGFR, Notch, Wnt, and TGF-β (transforming growth factor-β) sig-naling pathways.11-13 EGFR-mediated PI3K/ PDK1(phosphoinositide-dependent protein kinase 1)/Akt pathway plays a crucial role in sustained cell survival and proliferation. Phospho-EGFR-Y920 can dock PI3K, con-verting PIP2 to PIP3 (phosphatidyl inositol (4,5) bisphos-phate to (3,4,5) triphosphate), phosphorylating Akt, which inactivates the apoptotic cascade via Bad (Bcl2 associated death factor) and caspase-9.14 In PTEN (phosphatase and tensin homolog) null or mutated GBMs also, Akt is consti-tutively activated, thus providing survival signals.15 STATs are very important transcription factors downstream of EGFR responsible for cellular transformation and migra-tion.16,17 JAK dependent activation of STAT1 and STAT3 or JAK-independent activation of STAT 5b (docking at EGFR Y845)18 leads to their dimerization (homo and heterodi-mers) and nuclear translocation, where they act as tran-scription factors for several growth promoting genes like C-JuN, C-FOS, and so on.19,20 Interestingly, inhibiting the activity of PI3K and in turn Akt significantly increases the DNA-binding activity of STAT3 in u87MG and D54 cells. While considering this apparent contradiction, it should be noted that the major oncogenic role of STAT3 is because of the phosphorylation at Y705 while the negative regulation being discussed here concerns S727 and the other Ser/Thr residues at the C-terminal end of STAT3. Also, the phos-phorylation at S727 has opposing roles, both oncogenic and tumor suppressive, in a context-specific manner. The find-ing, however, indicates a crosstalk between the 2 survival pathways, which decides the cell fate via a common player, Mcl-1 in this case.21 Regulation of angiogenesis and metas-tasis are important functions of the EGFR. EGFR promotes angiogenesis by upregulating VEGF (vascular endothelial growth factor) and MMPs (matrix metalloproteinases).22 Also, phosphorylated EGFR (Y992) directly interacts with and activates PLC-γ, which regulates actin cytoskeletal reorganization and hence cell motility.23 Thus, in general, the multifaceted nature of the EGFR signaling in cancer can be clearly understood, which is being exploited as therapy, and some of the molecules in the EGFR pathway are impor-tant targets for drug development.The EGFR gene is a major target for alterations in glioma. EGFR is one of the major genetic factors affecting the pathogenesis and prognosis of GBM. Genetic amplifica-tion, elevated expression, and mutation of EGFR have been widely implicated in various cancers and its role in influ-encing multiple aspects of tumorigenesis is well docu-mented. Almost 50% to 60% of GBMs are genetically marked with overactivated EGFR and multiple functionally distinct forms of EGFR have been associated with glioma (see Table 1). The most common mutation is EGFRvIII (in-frame deletion spanning exons 2-7, imparting ligand- independent activation and high oncogenicity). In primary GBMs, EGFR aberrations are accompanied with mutations in tumor suppressors p16Ink4a, p19Arf, and PTEN, consti-tutively activating several oncogenes like STATs, Akt, Erk1/2, and so on, while secondary GBMs are mostly asso-ciated with mutation/deletions in p53, deregulating the cell cycle and also aberrant activation of PDGFR (platelet-derived growth factor receptor) pathway and IDH1EGFR and Wnt/β-catenin signaling crosstalk in glioma / Paul et al. 429(isocitrate dehydrogenase 1) mutations. In PTEN null/mutated GBMs, Akt is constitutively activated, providing survival signals.24,25Alternate mechanisms for activating EGFR in glioma . Apart from EGFR itself, a number of different mechanisms have been used by cancer cells to overactivate EGFR signaling. For example, the ligands of receptor tyrosine kinase (RTK) family such as PDGF, TGF-α, and EGF are often overex-pressed in glioma leading to positive feedback autocrine loops.35,36 Also, the need for EGFR overactivation can bebypassed or complemented by activating other RTKFigure 1. An overview of EGFR and Wnt/β-catenin signaling. EGFR signaling pathway . On binding of specific ligands, the EGF receptor dimerizes, activating an array of molecules including kinases, Grbs, and so on, initiating several downstream signaling cascades—MAPK, PI3K/Akt, JAK/STAT—which upregulate multiple transcription factors, anti-apoptotic and prosurvival proteins pushing the cells toward prolonged survival, proliferation, migration, and tumorigenesis. Wnt signaling pathway. In the absence of Wnt, β-catenin is captured by APC and Axin and forms a destruction complex in which its phosphorylation by the kinases CK1α and GSK3β is facilitated, which, in turn, allows binding of β-T rCP , which subsequently mediates the proteasomal degradation of β-catenin. On binding of the Wnt ligand to its cognate receptors Fzd and LRP5/6 triggers the formation of Dvl–Fzd complexes and the phosphorylation of LRP by CK1γ, facilitating relocation of Axin to the membrane and inactivation of the destruction complex. This allows β-catenin to accumulate and enter the nucleus, where it interacts with members of the Tcf/Lef family and exerts its transcriptional activity. For a more comprehensive and detailed account of these pathways, the readers should consult excellent reviews available in the literature.Abbreviations: AR, amphiregulin; EPG, epigen; EREG, epiregulin; Cbl E3 ligase, casitas B-lineage lymphoma; mTOR, mammalian target of rapamycin; CK1γ, casein kinase 1 γ; uPAR, urokinase-type plasminogen activator receptor. EGF , EGFR, TGF α, LRP , Shc, PLC, Shp, MAPK, PI3K, PTEN, JAK, Stat, Dvl, Fzd, CK1α, GSK3β, APC, β-TRCP , Tcf, Lef, VEGF , IL, PPAR—see text.430 Genes & Cancer / vol 4 no 11-12 (2013)T able 1. Various Mutations in EGFR Leading to Its Constitutive Activity and Enhanced Oncogenicity in Glioma.Mutant Genetics Size (kDa)Functional Significance Occurrence References Overexpression WT Gene amplification170EGFR overexpression associated withtumoral proliferation37% to 58%26 WT No gene amplification12% to 38% In-frame deletion vI N-terminal deletion145T ranslation starts at 543. Structur-ally similar to v-erbB1 productand shows constitutive receptoractivation In a small number of human gliomas27-29 vIIΔ521-603 (exons14-15; cysteine-richregion)150Impairs disulphide bonds, binds ligand,enhanced TK activity; inducesgrowth advantage12% to 16%28-30 vIIIΔ6-273 (exons 2-7)140Highly oncogenic. Constitutive,ligand-independent, tyrosine kinaseactivity; imparts a selective growthadvantage Most common—55%to 62%28-30 vIVΔ959-1030 (exons25-27)167Associated with an overresponse inthe presence of exogenous ligands28-30 vV (958T or C-958)T runcated at the C-terminal at position958105Increased ligand-dependent kinaseactivity; shows an overresponse withexogenous ligands; imparts a selec-tive growth advantage11% to 17%28-30 vVIΔ6-273 and C-1030Oncogenic27, 31 vVIIΔ6-273 and C-958Oncogenic27, 31 Δ2-5Deletion of exons 2-5Oncogenic27, 31 vIII/Δ12-13Δ6-273 and Δ409-520(exons 2-7 and12-13)125Oncogenic27, 31 Δ14Deletion of 521-603Oncogenic27, 31 Δ14/vVΔ521-603 and trun-cated beyond 958Oncogenic27, 31 Δ25Deletion of exon 25Oncogenic27, 31DeletionLREA; Δ746-750Deletion of 4 con-served amino acids(LREA) in exon 19Oncogenic mutant with increased TKdomain dimerization and enhancedautophosphorylation32, 33T andem duplication TDM/2-7Exons 2-7 (codons6-273)180Constitutive ligand-independent acti-vation with high basal phosphoryla-tion TDM/18-25Exons 18-25 (codons664-1014)185Ligand-independent and constitutivelyautophosphorylated. Induces colonyformation in soft agar and rapidtumor growth in nude miceFound in A1235 andKE glioma cell lines27, 29, 31, 33 TDM/18-26Exons 18-26 (codons664-1030)190Poorly downregulated by ligand andconstitutively autophosphorylatedExpressed in A172glioma cells27, 29, 31, 33 TDM/I7-E8 (315T)Duplication in intron7 through exon 8(truncation at 315)Oncogenic27, 31, 34Point mutation L858R170Oncogenic mutant with increased TKdomain dimerization and enhancedautophosphorylation32, 33 572, 604Missense170Within the second cysteine-richregion of the extracellular domain.Probably have a role to play inreceptor activation28EGFR and Wnt/β-catenin signaling crosstalk in glioma / Paul et al.431signaling such as PDGFR or by functionally obliterating important negative regulators such as PTEN. As a result, several crucial downstream players of EGFR pathway such as Akt and Ras gain constitutive activity.37-39 Similarly, in a subset of GBM, monoallelic loss of NF-κB has been shown to cooperate with EGFR to negatively affect patient prog-nosis.40 Furthermore, observation that the bispecific EGFR/ HER2 inhibitor AEE788 displays radiosensitizing effect on EGFR overexpressing cells suggests that at least in certain treatment modalities the responsiveness of therapy depends on the relative ratio between EGFR and HER2 and not on any individual receptor.EGFR is involved in sustenance of glioma stem cells (GSCs). EGFR signaling regulates proliferation and migration of neural stem cells (NSCs). The balance between EGFR sig-naling and a classical stem-cell signaling like Notch decides the proportion of cells in the stem cell niche.41 Hence, the tumor microenvironment is a crucial factor in the mainte-nance of tumor initiating and self-renewing capacity of the CSCs. Like normal NSCs, the GSCs probably maintain their undifferentiated state and multipotency due to regulation of signaling in their niche.42 Constitutively activated EGFR signaling (EGFRvIII) in GBM leads to activation of Akt, which can directly phosphorylate Smad5, which in turn leads to overexpression of ID3 (inducer of differentiation 3) and the cytokines like GRO1 (growth regulated alpha pro-tein), interleukins (IL-6 and IL-8) supporting proliferation, angiogenesis, and acquisition of GSC-like characteristics. This signaling cascade imparts tumorosphere-forming abil-ity to the GSCs and can be inhibited by EGFR inhibitors.43 The growing tumor mass around the GSCs are often exposed to several stresses like hypoxia, low pH, nutrient deprivation at later stages,44 and over 2 decades of research has established hypoxia to promote tumor cell proliferation, survival, angiogenesis, and motility, by triggering the adap-tive transcriptional mechanisms. During hypoxic stress, the stem cell properties of neural progenitors (NPCs) are enhanced,45 and also CD133+ (cluster of differentiation 133 positive) GSCs proliferate.46 One of the key factors induced by hypoxia is H IF-1α (hypoxia-inducible factor 1α),47 which is also regulated by EGF and other growth promoting signals like bFGF (basic fibroblast growth factor), PDGF, IGF (insulin-like growth factor), although to a lesser extent. Studies have revealed the crucial role of EGFR signaling cascade in the maintenance of GSCs, wherein EGF is capa-ble of promoting sphere formation and self-renewal of the CD133+ subpopulation. This can be inhibited by specific pharmacological inhibitors like Gefitinib and AG1478 (tyrosine kinases), PD98059 (Erk1/2, MAPK), LY294002 (PI3K), and Rapamycin (mTOR).48 Hypoxia inhibits differ-entiation of these CD133+ GSCs and supports their prolif-eration mainly by upregulating HIF-1α and VEGF (acting as a paracrine signal) and also by activating the EGFR downstream signaling molecules PI3K/Akt and Erk1/2, which in turn regulate HIF-1α.46,49Targeting EGFR signaling for glioma therapy. EGFR signal-ing has been classically the central target for GBM therapy. The past 3 to 4 decades has seen the development of several strategies to curb EGFR activities ranging from small mol-ecule inhibitors to engineered antibodies and viruses. Blocking the tyrosine kinase activity of EGFR has been the most attractive strategy in antitumor therapy. One approach has been to use several competitive and noncompetitive kinase inhibitors like erlotinib, gefitinib, and other second-generation inhibitors like afatinib, dacomitinib, often in combination with radiation and temozolomide. Another approach in targeting EGFR is using monoclonal antibodies (mAbs), like cetuximab, nimotuzumab, and so on, which have also shown preliminary antitumor effects in GBM. Apart from EGFR itself, various downstream effectors of the cascade have also been targeted with varying degrees of success (see Table 2 and references therein).Wnt Signaling. Canonical Wnt signaling (β-catenin depen-dent) regulates a wide set of genes that in turn orchestrate diverse cellular functions such as morphogenesis, differen-tiation, and proliferation. Consequently, aberrant activation of the canonical Wnt pathway has been found to be the driver of several human cancers including glioma. In the absence of Wnt ligands, the cell gets rid of excess β-catenin by assembling a multiprotein destruction complex com-posed mainly of Axin, APC (adenomatous polyposis coli), and GSK3β (glycogen synthase kinase 3-β), on which β-catenin is first phosphorylated by CK1α (casein kinase 1-α), followed by GSK3β and then ubiquitinated by the E3 ligase β-TrCP (β-transducin repeat containing protein) to be subsequently degraded through the 26S proteasome system. In the absence of nuclear β-catenin, the Tcf/Lef (T-cell spe-cific transcription factor/lymphoid enhancer-binding fac-tor) family of transcription factors (Tcf1, Tcf3, Tcf4, and Lef1) recruit the transcriptional co-repressors Groucho/ TLE and efficiently repress expression of their target genes. The interaction of Wnt with Fzd/LRP (Frizzled/lipoprotein-receptor related protein) changes the state of things in ways for which a number of biochemical and cellular mecha-nisms have been proposed: first, it may trigger the forma-tion of Dishevelled (Dvl)–Fzd complex, which in turn, sequesters Axin (and possibly GSK3β) to the plasma mem-brane thus blocking the formation of destruction com-plex85-90; second, Wnt induced phosphorylation of LRP6 at PPPSPXS motifs by GSK3β and CK1γ may create docking sites for Axin, facilitating its sequestration on the mem-brane and inactivation of the destruction complex91,92; third, Wnt induced phosphorylation of PPPSPXS motifs of LRP6 may inactivate the catalytic pocket of GSK3β, thus directly blocking its activity against β-catenin93-96; fourth,432T a b l e 2. P h a r m a c o l o g i c a l C o m p o u n d s T a r g e t i n g E G F R a n d W n t /β-C a t e n i n P a t h w a y s i n G l i o m a .P h a r m a c o l o g i c a l I n h i b i t o r s /D r u g s [C o m p a n y ]M o d e o f A c t i o nC l i n i c a l O u t c o m e R e f e r e n c e sT a r g e t i n g E G F R p a t h w a y M R 1 i m m u n o t o x i nE n g i n e e r e d c h i m e r a o f s cF v a n d P s e u d o m o n a s e x o t o x i n A . R e c e p t o r b l o c k e r ; c y t o t o x i c t o EG F R v I I I e x p r e s s i n g c e l l s A g o o d t a r g e t f o r p r e c l i n i c a l t r i a l s 50T P -38R e c o m b i n a n t c h i m e r a o f T G F -α f u s e d w i t h a m u t a t e d f o r m o f P s e u d o m o n a s e x o t o x i n P E -38. T a r g e t s E G F R s i g n a l i n g 20% p a t i e n t s h a v e s h o w n r e s p o n s e i n p h a s e I t r i a l s i n r e c u r r e n t m a l i g n a n t b r a i n t u m o r s 51I M C -C 225/C e t u x i m a b /E r b i t u x [I m C l o n e ]M o n o c l o n a l a n t i b o d y a g a i n s t t h e e x t r a c e l l u l a r d o m a i n o f E G F R , b l o c k i n g l i g a n d a c t i v i t y I n d u c e s a p o p t o s i s a n d i n h i b i t s a n g i o g e n e s i s . I t h a s n o t b e e n i m p l e m e n t e d i n c l i n i c a l t r i a l s a s t h e m o d e o f d e l i v e r y i s s t i l l u n d e r s t u d y 52, 53E M D 55900/m A b 425 [M e r c k ]A m u r i n e m o n o c l o n a l a n t i b o d y a g a i n s t E GF R D i d n o t s u c c e s s f u l l y g e t t h r o u g h p h a s e I /I I t r i a l s i n r e c u r r e n tG B M p a t i e n t s 54G e f i t i n i b /Z D 1839/I R E S S A [A s t r a Z e n e c a ]R e v e r s i b l e t y r o s i n e k i n a s e i n h i b i t o r ; c o m p e t e s w i t h A T P f o r b i n d i n g t o t h e r e c e p t o r I n p h a s e I I c l i n i c a l t r i a l s f o r r e c u r r e n t G B M 55E r l o t i n i b /O S I -774/T a r c e v a [O S I P h a r m a c e u t i c a l s ]E GF R t y r o s i n e k i n a s e i n h i b i t o r I n p h a s e I I t r i a l s ; c o a d m i n i s t e r e d w i t h t e m o z o l o m i d e d u r i n g a n d f o l l o w i n g r a d i a t i o n t h e r a p y 56-58V a n d e t a n i b /Z D 6474/Z A C T I M A [A s t r a Z e n e c a ]D u a l i n h i b i t o r o f V E G F R 2 a n d E G F R t y r o s i n e k i n a s e a c t i v i t y ; m o r e e f f e c t i v e i n E G F R v I I I e x p r e s s i n g G B M c e l l s Q u a l i f i e d i n p h a s e I I t r i a l s . A l s o t e s t e d f o r a d m i n i s t r a t i o n w i t h c a r b o p l a t i n 59, 60A E E 788 [N o v a r t i s ]R e v e r s i b l e t y r o s i n e k i n a s e i n h i b i t o r ; t a r g e t s E G F R , E r bB 2 a n d V E G F R 2P r e s e n t l y i n p h a s e I /I I t r i a l s i n G B M /r e c u r r e n t c a s e s 61 G W -572016/L a p a t i n i b [G l a x o S m i t h K l i n e ]A d u a l i n h i b i t o r o f E G F R a n d E r b B 2U n d e r e a r l y c l i n i c a l t r i a l s i n p h a s e I I 56, 62 C I -1033 [P f i z e r /W a r n e r -L a m b e r t ]I r r e v e r s i b l e p a n -E r b B t y r o s i n e k i n a s e i n h i b i t o r S u p p r e s s e s g r o w t h i n x e n o g r a f t m o d e l s o f G B M a n d h a s s h o w n p r o m o s i n g r e s u l t s i n p h a s e I /I I c l i n i c a l t r i a l s 63 A f a t i n i b I r r e v e r s i b l e i n h i b i t o r o f E G F R U n d e r c l i n i c a l t r i a l s 64 D a c o m i t i n i b I r r e v e r s i b l e i n h i b i t o r o f E G F R U n d e r c l i n i c a l t r i a l s 64 N i m o t u z u m a b H u m a n i z e d m o n o c l o n a l a n t i b o d y a g a i n s t E G F R U n d e r c l i n i c a l t r i a l s 64 C D X -110A n E G F R v I I I p e p t i d e v a c c i n e I n p h a s e I I t r i a l s 64 W o r t m a n n i n [W a k o ]I r r e v e r s i b l e i n h i b i t o r o f P I 3K R a d i o s e n s i t i z e s G B M c e l l s i n v i t r o ; t o b e t e s t e d c l i n i c a l l y 65 L Y 294002 [E l i L i l l y ]I n h i b i t o r o f P I 3K ; r e v e r s i b l e c o m p e t i t i v e i n h i b i t o r o f A T P A c t i v e a g a i n s t g l i o m a c e l l l i n e s i n v i t r o b u t h a s n o t m o v e d i n t o c l i n i c a l t r i a l s 66 R a p a m y c i n /S i r o l i m u s [W y e t h ]I n h i b i t s A k t p a t h w a y b y t a r g e t i n g m T O R . R a p a m y c i n s h o w s c y t o s t a t i c e f f e c t o n x e n o g r a f t s o f g l i o b l a t o m a s a n d m e d u l l o b l a s t o m a s i n a P T E N -d e p e n d e n t m a n n e r . C C I -779 i n h i b i t s G B M p r o l i f e r a t i o n i n v i t r o A l t h o u g h e f f e c t i v e i n p r e c l i n i c a l s t u d i e s , d u e t o i n s t a b i l i t y i n s o l u t i o n , r a p a m y c i n h a s n o t b e e n u s e d i n c l i n i c a l t r i a l s . C C I -779 h a s e n t e r e d p h a s e I I t r i a l s i n r e c u r r e n t G B M s . R A D 001 h a s a l s o s h o w n p r o m i s i n g r e s u l t s i n p r e c l i n i c a l t r i a l s 67-69C C I -779 (e s t e r a n a l o g o f R a p a m y c i n )/T e m s i r o l i m u s [W y e t h ] R A D 001 (R a p a m y c i n a n a l o g d r u g )/E v i r o l i m u s [N o v a r t i s ] L Y 317615/E n z a s t a u r i n [E l i L i l l y ]S e r i n e /t h r e o n i n e k i n a s e i n h i b i t o r ; t a r g e t s P K C -β, A k t , a n d G S K 3βD i d n o t s h o w m u c h p r o m i s e i n p h a s e I I I t r i a l s i n r e c u r r e n t G B M s , a l t h o u g h s h o w e d g o o d r e s p o n s e i n p h a s e I /I I t r i a l s , w h e n c o a d m i n i s t e r e d w i t h t e m o z o l o m i d e d u r i n g a n d /o r f o l l o w i n g r a d i a t i o n t h e r a p y 70, 71P K I 166 [N o v a r t i s ]R e v e r s i b l e k i n a s e i n h i b i t o r ; d u a l a c t i v i t y a g a i n s t E G F R a n d E r b B 2P o t e n t i a l l y c o n t r o l s p r o g r e s s i o n o f G B M . I n d u c e s a p o p t o s i s i n g l i o m a c e l l l i n e s e i t h e r a l o n e o r i n c o m b i n a t i o n w i t h o t h e r d r u g s i s u n d e r s t u d y . H a s b e e n d i s c o n t i n u e d i n c l i n i c a l t r i a l s72(c o n t i n u e d )433P h a r m a c o l o g i c a l I n h i b i t o r s /D r u g s [C o m p a n y ]M o d e o f A c t i o nC l i n i c a l O u t c o m e R e f e r e n c e s G e n i s t e i n (a p l a n t d e r i v e d i s o f l a v o n e )T y r o s i n e k i n a s e i n h i b i t o r , t a r g e t s E G F RI n v i v o s t u d i e s p r o v e i t c a n c r o s s b l o o d –b r a i n b a r r i e r a n d a f f e c t s G B M c e l l i n v a s i v e n e s s i n v i t r o . S h o w s a s y n e r g i s t i c e f f e c t i n g c o m b i n a t i o n w i t h B C N U 73 R e o v i r u s e sO n c o l y t i c v i r u s ; t a r g e t s R a s /M A P K p a t h w a y a s i t s e l e c t i v e l y r e p l i c a t e s i n R a s a c t i v a t e d c e l l sE f f e c t i v e i n x e n o g r a f t m o d e l s o f g l i o m a a n d h a s b e e n i n p h a s e I /I I t r i a l s i n C a n a d a a n d h a s b e e n a p p r o v e d b y t h e U SF D A 74, 75 o H S V -M G 18LO n c o l y t i c r e c o m b i n a n t h e r p e s s i m p l e x v i r u s t a r g e t s G S C s a n d i s e f f e c t i v e i n c o m b i n a t i o n w i t h s m a l l m o l e c u l e i n h i b i t o r s o f P I 3K /A k t l i k e L Y 294002T h e s a f e t y o f o H S V t h e r a p y h a s b e e n s h o w n i n c l i n i c a l t r i a l s f o r G B M ; h o w e v e r , e f f i c a c y r e m a i n s a n e c d o t a l a n d n e e d s i m p r o v e m e n t76T a r g e t i n g W n t /β-c a t e n i n p a t h w a y A s p i r i n [B a y e r ]C O X -2 i n h i b i t o r ; c o n v e r t s β-c a t e n i n t o a p h o s p h o r y l a t e d f o r m i n c a p a b l e o f a c t i v a t i n g d o w n s t r e a m t a r g e t g e n e s P h a s e I I T r i a l f o r p r i m a r y p r o p h y l a x i s o f v e n o u s t h r o m b o e m b o l i s m i n G l i o b l a s t o m a p a t i e n t s77 V a l d e c o x i b /B e x t r a [G .D . S e a r l e ]A b r o g a t e s W n t s i g n a l i n g b y C O X -2 i n h i b i t i o nH a s b e e n i n u s e d i n c o m b i n a t o r i a l c h e m o t h e r a p y w i t h o t h e r d r u g s 78 R o f e c o x i b /V i o x x [M e r c k ] C e l e c o x i b /C e l e b r e x [P f i z e r ]I n h i b i t s W n t s i g n a l i n g b y C O X -2 i n h i b i t i o n a n d a l s o t a r g e t s C D 133+ c e l l s I s u s e d a s a r a d i o s e n s i t i z i n g d r u g i n c l i n i c a l a p p l i c a t i o n s78 I s o q u e r c e t i n (a p l a n t f l a v o n o i d )I n h i b i t s W n t s i g n a l i n g b y c h a n g i n g β-c a t e n i n n u c l e a r l o c a l i z a t i o n I n h i b i t s G B M c e l l p r o l i f e r a t i o n b u t d o e s n o i n d u c e a p o p t o s i s 79 X A V 939T a n k y r a s e i n h i b i t o r —i n c r e a s e s A x i n 1 a n d 2 l e v e l s l e a d i n g t o d e c r e a s e d β-c a t e n i n s t a b i l i z a t i o n , a c c u m u l a t i o n , a n d t r a n s c r i p t i o n a l a c t i v i t y , t u r n i n g o f f W n t s i g n a l i n gI m p a r t s r a d i o s e n s i t i z a t i o n t o G B M c e l l s 5, 80T a r g e t i n g b o t h p a t h w a y s Q u e r c e t i n (a p l a n t d e r i v e d f l a v o n o i d )D o w n r e g u l a t e sE r k a n d A k t s i g n a l i n g a n d s u r v i v i n . A l s o r e g u l a t e s W n t /β-c a t e n i n s i g n a l i n g v i a G S K 3βI n d u c e s a p o p t o s i s i n h u m a n g l i o m a c e l l s . P h a s e I a n d I I s t u d i e s w i t h c o m p o u n d s d i r e c t e d a t T R A I L r e c e p t o r s 79, 81, 82 C u r c u m i n (a n a t u r a l p l a n t c u r c u m i n o i d )T a r g e t s m u l t i p l e p a t h w a y s —E G F R a n d d o w n s t r e a m A k t a n d S T A T s , N F -κB s o n i c h e d g e h o g /G L I s , W n t /β-c a t e n i n , e t c .I n d u c e s a p o p t o s i s a n d i n h i b i t s p r o l i f e r a t i o n a n d i n v a s i o n i n c a n c e r c e l l s i n c l u d i n g c a n c e r s t e m /p r o g e n i t o r c e l l s (C D 133+ G S C s ). R e c e n t l y , a p o l y m e r i c n a n o p a r t i c l e e n c a p s u l a t i n g c u r c u m i n h a s b e e n u s e d f o r b e t t e r d e l i v e r y i n v a r i o u s c a n c e r s i n c l u d i n g g l i o m a s83, 84T a b l e 2. (C o n t i n u e d )。