2014年4月自学考试00020高等数学一
自考笔记 00020 高等数学(一) 完整免费版
自考笔记 00020 高等数学(一)完整免费版小薇笔记免费提供各科自考笔记,完整版请访问前言《高等数学一》共6章第一章函数 1.主要是对高中知识的复习; 2.为今后知识打下良好的基础; 3.本章知识在历年考题中所占的分值并不多,一般是5分左右. 第二章极限和连续主要是学习极限与连续的概念,是后面章节的基础; 本章内容在历年考题中所占分值为20左右. 第三章导数与微分主要是学习函数的导数和微分,这是高数的核心概念. 本章内容在历年考题中所占分值为15分左右. 第四章微分中值定理和导数的应用主要是掌握微分中值定理的应用,这一章容易出大题、难题; 本章在历年考题中所占分值为20分左右. 第五章一元函数积分学主要学习不定积分和定积分,这又是高数的核心概念; 本章内容在历年考题中所占分值为25分左右. 第六章多元函数微积分主要是学习多元函数的微积分的计算; 本章内容在历年考试题中所占分值为15分左右. 第一章函数1.1 预备知识 1.1.1 初等代数的几个问题 1.一元二次方程 2关于x的方程ax,bx,c,0(a?0),称为一元二次方程,称为此方程的判别式. (1)求根公式: 当?,0时,方程有两个不同的实根: 当?,0时,方程有一个二重实根:当?,0时,方程有一对共轭复根: (2)根与系数的关系(韦达定理):2(3)一元二次函数(抛物线):y,ax,bx,c(a?0),当a,0时,开口向上,当a,0时,开口向下. 对称轴顶点坐标 322例1.若x,x,ax,b能被x,3x,2整除,则a、b是多少, 结论:多项式f(x),g(x).若f(x)能被g(x)整除,则g(x),0的根均为f(x),0的根. 2解:令x,3x,2,0,解得x,1或2,代入被除式得解得2.二元一次方程组两个未知量x,y满足的形如的方程组称为二元一次方程组. 当时,方程组有唯一解;当时,方程组无解;当时,方程组有无穷多解.例2.已知方程组 (1)若方程组有无穷多解,求a的值; (2)当a,6时,求方程组的解.解:(1)因为方程组有无穷多组解,所以, 解得a,4.(2)当,6是,原方程组变为, a解得 3.不等式 (1)一元二次不等式 22考虑不等式ax,bx,c,0,如果记一元二次方程ax,bx,c=0的两个不同实根分别为x,x,且x,x,根据一元二次函数的图形可知: 1212当a,0时,这个不等式的解集是{x?x,x或x,x}; 12当a,0时,它的解集是{x?x,x,x}. 12222用类似的方法可以求解不等式ax,bx,c?0,ax,bx,c,0和ax,bx,c?0. 2例3.解不等式x,5x,6?0. 2解:令,5,6,0,xx(x,2)(x,3),0, 得,2或=3, xx? 解集为(,?,2]?[3,,?). 2例4.解不等式x,(1,a)x,a,0. 2解:令x,(1,a)x,a,0, (x,a)(x,1),0, 得x,a或x,,1, ?若a,,1,解集为(a,,1), ?如a,,1,解集为Φ, ?若a,,1,解集为(,1,a). (2)绝对值不等式不等式?f(x)?,a,0等价于f(x),a或f(x),,a; 不等式?f(x)?,a等价于,a,f(x),a. 例5.解下列含有绝对值符号的不等式: (1)?2x,3??5 (2)?3x,1??7 解:(1)原不等式等价于,5?2x,3?5 解得:,1?x?4. 所以解集为[,1,4]. (2)原不等式等价于3x,1?,7或3x,1?7, 3x,1?,7的解集为x?,2,3x,1?7的解集为x?, 1小薇笔记免费提供各科自考笔记,完整版请访问所以解集为(,?,,2]?[,,?). 2例6.解不等式?x,2x,5?,3. 解:原不等式等价于2x,2x,5,,3的解集为(,?,]?[,,?), 2x,2x,5,3的解集为(,2,4),所以原不等式的解集为(,2,]?[,,4). 4.数列 (1)等差数列:相邻两项的差为定值,即a,a,d,d称为公差. n,1n通项公式:a,a,(n,1)d n1前n项和公式:当m,n,k,l时,a,a,a,a mnkl特别地有例7.设{a}是一个等差数列,且a,a,a,a,64,求a,a和S. 2310116712n解:因为 2,11,3,10,13 所以a,a,a,a,32, 211310又因为 6,7,13,所以a,a,32, 67S,(a,a)×12?2,6(a,a),6×32,192. 12112112(2)等比数列:相邻两项的商为定值,即,q称为公比. n-1通项公式:a,aq n1前n项和公式: 当m,n,k,l时,aa,aa mnkl特别地有例8.设{a}是一个等比数列,且a,12,a,48,求a,a和aa的值.n3511026解: 所以q,?25a,a?q,48×(?2),?1536 1055因为2,6,3,5,8 所以a?a,a?a,12×48,576. 26351.1.2 集合与逻辑符号 1.集合的概念集合是指由一些特定的对象汇集的全体,其中每个对象叫做集合的元素. 数集分类: N——自然数集Z——整数集 Q——有理数集R——实数集 C——复数集合 2.元素与集合的关系元素a在集合A中,就说a属于A,记为a?A;否则就说a不属于A,记为aA. 3.集合与集合的关系集合A中的任何一个元素都是集合B中的元素,称为A包含于B,或B包含A,也说A是B的子集,记为A?B或者B?A. 若A?B,且B?A,就称集合A与B相等,记作A,B. 2例9.A,{1,2},C,{x?x,3x,2,0},则A和C是什么关系, 2解:解方程x,3x,2,0,得x,1或x,2. 所以C,{1,2},从而A,C. 4.空集不含任何元素的集合称为空集(记作Φ).规定空集为任何集合的子集. 2例10.{x?x?R,x,1,0},Φ 5.集合的表示方法:列举法,描述法一般的,有限集用列举法,无限集用描述法闭区间:[a,b],{x?a?x?b,x?R}; 开区间:(a,b),{x?a,x,b,x?R}; 半开半闭区间: 左开右闭区间:(a,b],{x?a,x?b,x?R},左闭右开区间:[a,b),{x?a?x,b,x?R}; (,?,b],{x?x?b,x?R},[a,,?],{x?x?a,x?R}; 点a的邻域:U(a,ε),(a,ε,a,ε),ε,0,即U(a,ε)是一个以a为中心的开区间.在不强调邻域的大小时,点a的邻域也用U表示; a点a的去心邻域:N(a,ε),(a,ε,a)?(a,a,ε),ε,0.点a的去心邻域也可以表示为N. a6.集合之间的运算 (1)并:由A、B中所有元素组成的集合称为A和B的并集,记为A?B. A?B,{x?x?A或x?B},A?B,B?A. 例11.已知:A,{1,2,3,4},B,{2,4,6,8,10,12},求:A?B. 解:A?B,{1,2,3,4,6,8,10,12}. 例12.已知:,{?1,,5},,{?,3,?2},求:?. AxxBxxAB解:A?B,{x?,3,x,5}. (2)交:由既属于A又属于B的元素组成的集合称为A和B的交集,记为A?B. A?B,{x?x?A且x?B},A?B,B?A 例13.已知:A,{1,2,3,4},B,{2、4、6、8、10、12},求:A?B. 解:A?B,{2,4}. 例14.已知:A,{x?1,x,4},B,{x?,3,x?3},求:A?B. 解:A?B,{x?1,x?3}. (3)余集(差集):由中不属于的元素组成的集合称为与的差集,记为,. ABABABA,B,{x?x?A但xB}. 例15.已知:A,{1,2,3,4},B,{2,4,6,8,10,12},求:A,B. 解:A,B,{1,3}. 7.一些逻辑符号p能推出q,记为pq,此时称p是q的充分条件,q是p的必要条件. 如果pq,qp 同时成立,就成p与q等价,或者说p与q互为充分必要条件(充要条件),记作pq. 1.2 函数的概念与图形 1.2.1 函数的概念 1.定义设D是一个非空数集,f 是定义在D上的一个对应关系,如果对于任意的实数x?D,都有唯一的实数y通过f与之对应,则称f是定义在D上的一个函数,记作y,f(x),x?D. 也称是的函数,其中称为自变量,称为因变量.当?时,称()为函数在点处的函数值.数集叫做这个函数的定义域,函数值全体组成的数,{?,(),?}称为函数的值域. yxxyxDfxxDWyyfxxD000例1.已知:,求:y的定义域、值域. 2解:令1,x?0,解得:,1?x?1, 所以定义域为[,1,1]. 2因为0?1,x?1,所以0??1,所以值域为[0,1].例2.已知:,求:y的定义域、值域.解:根据题意,得,解得,1,x,1,所以定义域为(,1,1), 2小薇笔记免费提供各科自考笔记,完整版请访问因为 0,?1,从而,所以值域为[1,,?). 2.函数的三要素:定义域、对应法则、值域. 约定:定义域是自变量所能取的使算式有意义的一切实数值.在具体问题中定义域会根据实际需要而有所变化. 例3.判断下列两个函数是否相等,(1)y,x,3; (2).例4.求函数的定义域. 解:根据题意,得解得:2?x,3或3,x,5,所以定义域为[2,3)?(3,5). 3.函数的表示法:表达式法(解析法)、图形法、数表法. 1.2.2 函数的图形 1.函数图形的概念函数y,f(x),x?D的图形是指在xOy平面上的点集{(x,y)?y,f(x),x?D}. 常见的几个幂函数的图形:2.函数的性质 (1)有界性函数f(x),x?D,存在两个实数m、M,满足条件:对于D中所有的x都有不等式m?f(x)?M,则称函数f(x)在D上有界,否则称无界.例5.判断下面函数在其定义域是否有界,(1)y=sinx, (2). (2)单调性设函数f(x)在区间D上有定义,如果对于区间D上任意两点x及x,当x,x时,恒有f(x),f(x),则称函数f(x)在区间D上是单调增加,称f(x)是D上的单调增加函数,称D是函数f(x)的单调增加区间. 121212设函数及,当,时,恒有),),则称函数f(x)在区间D上有定义,如果对于区间D上任意两点xxxxf(xf(xf(x)在区间D上是单调减少,称f(x)是D上的单调减少函数,称D是函数f(x)的单调减少区间. 1212122例6.求的单调性. y, x解:任取,,0, xx1222,,)(,),0, xx,(xxxx121212所以y,x在(,?,0)上单调减少.22同理可得:y, x在(0,,?)上单调增加. 例7.求y ,sinx的单调性. 解:y,sinx的图像如图,y=sinx在(2kπ,,2kπ,)上单调增加,在(2kπ,,2kπ,)上单调减少. (3)奇偶性设D关于原点对称,对于任意的x?D,有 f(,x),f(x),称 f(x) 为偶函数;设D关于原点对称,对于任意的x?D,有 f(,x),,f(x),称 f(x) 为奇函数.例8.判断下面函数的奇偶性(1)(2)解:(1)因为,所以定义域为R.3小薇笔记免费提供各科自考笔记,完整版请访问所以f(x)为奇函数.(2) x-x因为a,a?0,故x ?0,所以定义域为(,?,0)?(0,,?).所以()为奇函数. fx(4)幂函数的性质α形如y,x的函数为幂函数,其中α为任意常数. 性质: α对任意实数α,曲线y,x都通过平面上的点(1,1);αα,0时,y,x在(0,+?)单调增加; αα,0时,y,x在(0,+?)单调减少; ,+?); α为正整数时,幂函数的定义域是(,?αα为偶数时,,为偶函数; yxαα为奇数时,, 为奇函数; yxα为负整数时,幂函数的定义域是 (,?,0)?(0,+?). α幂函数y,x(α是常数)的图形:1.2.3 分段函数在自变量的不同变化范围中,对应法则用不同的式子来表示的函数,称为分段函数. 例9.画出符号函数的图形:例10.画出下面分段函数的图形:例11.求下面分段函数定义域并画出图形.1.3 三角函数、指数函数、对数函数… … (剩余部分略)完整免费版请访问—— 1.4 函数运算 1.4.1函数的四则运算定义1.10 设函数f(x),g(x)都在D上有定义,k?R,则对它们进行四则运算的结果还是一个函数,它们的定义域不变(除法运算时除数为0的点除外),而函数值的对应定义如下: (1)加法运算 (f,g)(x),f(x),g(x),x?D . (2)数乘运算(kf)(x),kf(x),x?D. (3)乘法运算 (fg)(x),f(x)g(x),x?D .(4) 除法运算 g(x)?0, x?D. 其中等号左端括号表示对两个函数f,g 进行运算后所得的函数,它在x处的值等于右端的值.例1. 已知f(x)=ln(1,x),g(x)=1,cosx,求 . 因为函数f(x)=ln(1,x)的定义域为(,1,+?),函数g(x)=1,cosx 的定义域为(,?,+?),且当x=2 kπ(k为整数)时,g(x)=0,所以,解,x?(,1, +?)\{2kπ}(k为整数) 1.4.2复合函数如有函数()和(),它们的定义域分别为和,值域分别是和当时,对于任意?,都有唯一的()?,,从而有唯一的(())?与?对应,这样就确定了一个从到的函数,此函数称fxgxDD ZZ.ZD xDgxZDfgxZxDDZfgf g.gfggffggf为 f和g的复合函数,记作重点是学会函数的分解与复合。
自考笔记 00020 高等数学(一) 完整免费版
自考笔记 00020 高等数学(一)完整免费版小薇笔记免费提供各科自考笔记,完整版请访问前言《高等数学一》共6章第一章函数 1.主要是对高中知识的复习; 2.为今后知识打下良好的基础; 3.本章知识在历年考题中所占的分值并不多,一般是5分左右. 第二章极限和连续主要是学习极限与连续的概念,是后面章节的基础; 本章内容在历年考题中所占分值为20左右. 第三章导数与微分主要是学习函数的导数和微分,这是高数的核心概念. 本章内容在历年考题中所占分值为15分左右. 第四章微分中值定理和导数的应用主要是掌握微分中值定理的应用,这一章容易出大题、难题; 本章在历年考题中所占分值为20分左右. 第五章一元函数积分学主要学习不定积分和定积分,这又是高数的核心概念; 本章内容在历年考题中所占分值为25分左右. 第六章多元函数微积分主要是学习多元函数的微积分的计算; 本章内容在历年考试题中所占分值为15分左右. 第一章函数1.1 预备知识 1.1.1 初等代数的几个问题 1.一元二次方程 2关于x的方程ax,bx,c,0(a?0),称为一元二次方程,称为此方程的判别式. (1)求根公式: 当?,0时,方程有两个不同的实根: 当?,0时,方程有一个二重实根:当?,0时,方程有一对共轭复根: (2)根与系数的关系(韦达定理):2(3)一元二次函数(抛物线):y,ax,bx,c(a?0),当a,0时,开口向上,当a,0时,开口向下. 对称轴顶点坐标 322例1.若x,x,ax,b能被x,3x,2整除,则a、b是多少, 结论:多项式f(x),g(x).若f(x)能被g(x)整除,则g(x),0的根均为f(x),0的根. 2解:令x,3x,2,0,解得x,1或2,代入被除式得解得2.二元一次方程组两个未知量x,y满足的形如的方程组称为二元一次方程组. 当时,方程组有唯一解;当时,方程组无解;当时,方程组有无穷多解.例2.已知方程组 (1)若方程组有无穷多解,求a的值; (2)当a,6时,求方程组的解.解:(1)因为方程组有无穷多组解,所以, 解得a,4.(2)当,6是,原方程组变为, a解得 3.不等式 (1)一元二次不等式 22考虑不等式ax,bx,c,0,如果记一元二次方程ax,bx,c=0的两个不同实根分别为x,x,且x,x,根据一元二次函数的图形可知: 1212当a,0时,这个不等式的解集是{x?x,x或x,x}; 12当a,0时,它的解集是{x?x,x,x}. 12222用类似的方法可以求解不等式ax,bx,c?0,ax,bx,c,0和ax,bx,c?0. 2例3.解不等式x,5x,6?0. 2解:令,5,6,0,xx(x,2)(x,3),0, 得,2或=3, xx? 解集为(,?,2]?[3,,?). 2例4.解不等式x,(1,a)x,a,0. 2解:令x,(1,a)x,a,0, (x,a)(x,1),0, 得x,a或x,,1, ?若a,,1,解集为(a,,1), ?如a,,1,解集为Φ, ?若a,,1,解集为(,1,a). (2)绝对值不等式不等式?f(x)?,a,0等价于f(x),a或f(x),,a; 不等式?f(x)?,a等价于,a,f(x),a. 例5.解下列含有绝对值符号的不等式: (1)?2x,3??5 (2)?3x,1??7 解:(1)原不等式等价于,5?2x,3?5 解得:,1?x?4. 所以解集为[,1,4]. (2)原不等式等价于3x,1?,7或3x,1?7, 3x,1?,7的解集为x?,2,3x,1?7的解集为x?, 1小薇笔记免费提供各科自考笔记,完整版请访问所以解集为(,?,,2]?[,,?). 2例6.解不等式?x,2x,5?,3. 解:原不等式等价于2x,2x,5,,3的解集为(,?,]?[,,?), 2x,2x,5,3的解集为(,2,4),所以原不等式的解集为(,2,]?[,,4). 4.数列 (1)等差数列:相邻两项的差为定值,即a,a,d,d称为公差. n,1n通项公式:a,a,(n,1)d n1前n项和公式:当m,n,k,l时,a,a,a,a mnkl特别地有例7.设{a}是一个等差数列,且a,a,a,a,64,求a,a和S. 2310116712n解:因为 2,11,3,10,13 所以a,a,a,a,32, 211310又因为 6,7,13,所以a,a,32, 67S,(a,a)×12?2,6(a,a),6×32,192. 12112112(2)等比数列:相邻两项的商为定值,即,q称为公比. n-1通项公式:a,aq n1前n项和公式: 当m,n,k,l时,aa,aa mnkl特别地有例8.设{a}是一个等比数列,且a,12,a,48,求a,a和aa的值.n3511026解: 所以q,?25a,a?q,48×(?2),?1536 1055因为2,6,3,5,8 所以a?a,a?a,12×48,576. 26351.1.2 集合与逻辑符号 1.集合的概念集合是指由一些特定的对象汇集的全体,其中每个对象叫做集合的元素. 数集分类: N——自然数集Z——整数集 Q——有理数集R——实数集 C——复数集合 2.元素与集合的关系元素a在集合A中,就说a属于A,记为a?A;否则就说a不属于A,记为aA. 3.集合与集合的关系集合A中的任何一个元素都是集合B中的元素,称为A包含于B,或B包含A,也说A是B的子集,记为A?B或者B?A. 若A?B,且B?A,就称集合A与B相等,记作A,B. 2例9.A,{1,2},C,{x?x,3x,2,0},则A和C是什么关系, 2解:解方程x,3x,2,0,得x,1或x,2. 所以C,{1,2},从而A,C. 4.空集不含任何元素的集合称为空集(记作Φ).规定空集为任何集合的子集. 2例10.{x?x?R,x,1,0},Φ 5.集合的表示方法:列举法,描述法一般的,有限集用列举法,无限集用描述法闭区间:[a,b],{x?a?x?b,x?R}; 开区间:(a,b),{x?a,x,b,x?R}; 半开半闭区间: 左开右闭区间:(a,b],{x?a,x?b,x?R},左闭右开区间:[a,b),{x?a?x,b,x?R}; (,?,b],{x?x?b,x?R},[a,,?],{x?x?a,x?R}; 点a的邻域:U(a,ε),(a,ε,a,ε),ε,0,即U(a,ε)是一个以a为中心的开区间.在不强调邻域的大小时,点a的邻域也用U表示; a点a的去心邻域:N(a,ε),(a,ε,a)?(a,a,ε),ε,0.点a的去心邻域也可以表示为N. a6.集合之间的运算 (1)并:由A、B中所有元素组成的集合称为A和B的并集,记为A?B. A?B,{x?x?A或x?B},A?B,B?A. 例11.已知:A,{1,2,3,4},B,{2,4,6,8,10,12},求:A?B. 解:A?B,{1,2,3,4,6,8,10,12}. 例12.已知:,{?1,,5},,{?,3,?2},求:?. AxxBxxAB解:A?B,{x?,3,x,5}. (2)交:由既属于A又属于B的元素组成的集合称为A和B的交集,记为A?B. A?B,{x?x?A且x?B},A?B,B?A 例13.已知:A,{1,2,3,4},B,{2、4、6、8、10、12},求:A?B. 解:A?B,{2,4}. 例14.已知:A,{x?1,x,4},B,{x?,3,x?3},求:A?B. 解:A?B,{x?1,x?3}. (3)余集(差集):由中不属于的元素组成的集合称为与的差集,记为,. ABABABA,B,{x?x?A但xB}. 例15.已知:A,{1,2,3,4},B,{2,4,6,8,10,12},求:A,B. 解:A,B,{1,3}. 7.一些逻辑符号p能推出q,记为pq,此时称p是q的充分条件,q是p的必要条件. 如果pq,qp 同时成立,就成p与q等价,或者说p与q互为充分必要条件(充要条件),记作pq. 1.2 函数的概念与图形 1.2.1 函数的概念 1.定义设D是一个非空数集,f 是定义在D上的一个对应关系,如果对于任意的实数x?D,都有唯一的实数y通过f与之对应,则称f是定义在D上的一个函数,记作y,f(x),x?D. 也称是的函数,其中称为自变量,称为因变量.当?时,称()为函数在点处的函数值.数集叫做这个函数的定义域,函数值全体组成的数,{?,(),?}称为函数的值域. yxxyxDfxxDWyyfxxD000例1.已知:,求:y的定义域、值域. 2解:令1,x?0,解得:,1?x?1, 所以定义域为[,1,1]. 2因为0?1,x?1,所以0??1,所以值域为[0,1].例2.已知:,求:y的定义域、值域.解:根据题意,得,解得,1,x,1,所以定义域为(,1,1), 2小薇笔记免费提供各科自考笔记,完整版请访问因为 0,?1,从而,所以值域为[1,,?). 2.函数的三要素:定义域、对应法则、值域. 约定:定义域是自变量所能取的使算式有意义的一切实数值.在具体问题中定义域会根据实际需要而有所变化. 例3.判断下列两个函数是否相等,(1)y,x,3; (2).例4.求函数的定义域. 解:根据题意,得解得:2?x,3或3,x,5,所以定义域为[2,3)?(3,5). 3.函数的表示法:表达式法(解析法)、图形法、数表法. 1.2.2 函数的图形 1.函数图形的概念函数y,f(x),x?D的图形是指在xOy平面上的点集{(x,y)?y,f(x),x?D}. 常见的几个幂函数的图形:2.函数的性质 (1)有界性函数f(x),x?D,存在两个实数m、M,满足条件:对于D中所有的x都有不等式m?f(x)?M,则称函数f(x)在D上有界,否则称无界.例5.判断下面函数在其定义域是否有界,(1)y=sinx, (2). (2)单调性设函数f(x)在区间D上有定义,如果对于区间D上任意两点x及x,当x,x时,恒有f(x),f(x),则称函数f(x)在区间D上是单调增加,称f(x)是D上的单调增加函数,称D是函数f(x)的单调增加区间. 121212设函数及,当,时,恒有),),则称函数f(x)在区间D上有定义,如果对于区间D上任意两点xxxxf(xf(xf(x)在区间D上是单调减少,称f(x)是D上的单调减少函数,称D是函数f(x)的单调减少区间. 1212122例6.求的单调性. y, x解:任取,,0, xx1222,,)(,),0, xx,(xxxx121212所以y,x在(,?,0)上单调减少.22同理可得:y, x在(0,,?)上单调增加. 例7.求y ,sinx的单调性. 解:y,sinx的图像如图,y=sinx在(2kπ,,2kπ,)上单调增加,在(2kπ,,2kπ,)上单调减少. (3)奇偶性设D关于原点对称,对于任意的x?D,有 f(,x),f(x),称 f(x) 为偶函数;设D关于原点对称,对于任意的x?D,有 f(,x),,f(x),称 f(x) 为奇函数.例8.判断下面函数的奇偶性(1)(2)解:(1)因为,所以定义域为R.3小薇笔记免费提供各科自考笔记,完整版请访问所以f(x)为奇函数.(2) x-x因为a,a?0,故x ?0,所以定义域为(,?,0)?(0,,?).所以()为奇函数. fx(4)幂函数的性质α形如y,x的函数为幂函数,其中α为任意常数. 性质: α对任意实数α,曲线y,x都通过平面上的点(1,1);αα,0时,y,x在(0,+?)单调增加; αα,0时,y,x在(0,+?)单调减少; ,+?); α为正整数时,幂函数的定义域是(,?αα为偶数时,,为偶函数; yxαα为奇数时,, 为奇函数; yxα为负整数时,幂函数的定义域是 (,?,0)?(0,+?). α幂函数y,x(α是常数)的图形:1.2.3 分段函数在自变量的不同变化范围中,对应法则用不同的式子来表示的函数,称为分段函数. 例9.画出符号函数的图形:例10.画出下面分段函数的图形:例11.求下面分段函数定义域并画出图形.1.3 三角函数、指数函数、对数函数… … (剩余部分略)完整免费版请访问—— 1.4 函数运算 1.4.1函数的四则运算定义1.10 设函数f(x),g(x)都在D上有定义,k?R,则对它们进行四则运算的结果还是一个函数,它们的定义域不变(除法运算时除数为0的点除外),而函数值的对应定义如下: (1)加法运算 (f,g)(x),f(x),g(x),x?D . (2)数乘运算(kf)(x),kf(x),x?D. (3)乘法运算 (fg)(x),f(x)g(x),x?D .(4) 除法运算 g(x)?0, x?D. 其中等号左端括号表示对两个函数f,g 进行运算后所得的函数,它在x处的值等于右端的值.例1. 已知f(x)=ln(1,x),g(x)=1,cosx,求 . 因为函数f(x)=ln(1,x)的定义域为(,1,+?),函数g(x)=1,cosx 的定义域为(,?,+?),且当x=2 kπ(k为整数)时,g(x)=0,所以,解,x?(,1, +?)\{2kπ}(k为整数) 1.4.2复合函数如有函数()和(),它们的定义域分别为和,值域分别是和当时,对于任意?,都有唯一的()?,,从而有唯一的(())?与?对应,这样就确定了一个从到的函数,此函数称fxgxDD ZZ.ZD xDgxZDfgxZxDDZfgf g.gfggffggf为 f和g的复合函数,记作重点是学会函数的分解与复合。
高等数学一课程描述
第三部分:课程描述高等数学(一)1. 课程代码: 000202. 课程名称:高等数学(一)3. 课程类别:公共必修课4. 教学时数:周学时: 4 总学时: 1365. 学分: 66. 教学目标与要求:《高等数学(一)微积分》是经济管理类各专业高等专科自学考试计划中的一门重要的基础理论课程,是为培养各种与经济管理有关的人才而设置的。
在当今科技飞速发展,特别是计算机科学及其应用日新月异的时代,数学科学已渗透到各个科技领域(包括经济科学和管理学),学习任何一门科学或经济管理专业都要用到许多数学知识,而其中最基本的则是微积分学。
学习本课程不仅为学习自学考试计划中多门后继课程提供必要的数学基础,而且也是提高自身科学素养的一个重要组成部分。
本课程的重点是一元函数的导数和积分概念、计算及其应用。
各章节教学目标具体如下:函数及其图形:理解一元函数的定义及函数与图形之间的关系;了解函数的几种常用表现法;理解函数的几种基本特性;理解函数的反函数及它们的图形之间的关系;掌握函数的复合与分解;熟练掌握基本初等函数及其图形的性态;知道什么是初等函数;知道几种常见的经济函数;能从比较简单的实际问题建立其中蕴含的函数关系。
极限和连续:理解极限和无穷小量的概念以及它们之间的关系;掌握无穷小量的基本性质和极限的运算法则;清楚无穷大量的概念及其与无穷小量的关系;熟练掌握两个重要极限;理解无穷小量的阶的比较和高阶无穷小量的概念;理解函数的连续性和间断点;知道初等函数的连续性;清楚闭区间上连续函数的基本性质。
一元函数的导数和微分:理解导数和微分的定义,清楚它们之间的关系;知道导数的几何意义和实际意义;知道平面曲线的切线方程的求法;理解函数可导与连续之间的关系;熟练掌握函数求导的各种法则,特别是复合函数的求导法则;熟记基本初等函数的求导公式;会求函数的高阶导数;掌握微分的基本公式和运算法则;理解函数的边际函数和弹性函数及其意义。
微分中值定理和导数的应用:能准确陈述微分中值定理;熟练掌握洛必达法则;会用导数的符号判定函数的单调性;理解函数的极值概念并掌握其求法;清楚函数的最值及其求法并能解决简单的应用问题;了解曲线的凹凸性和拐点的概念,会用函数的二阶导数判定曲线的凹凸性和计算拐点的坐标;会求曲线的水平和铅直渐近线。
《高等数学(一)》(课程代码00020)
1、函数f(x)= 与g(x)=x表示同一函数,则它们的定义域是()• A.• B.• C.• D.参考答案:B2、设函数f(x)在[-a, a](a>0)上是偶函数,则f(-x)在[-a, a]上是()• A.奇函数• B.偶函数• C.非奇非偶函数• D.可能是奇函数,也可能是偶函数参考答案:B3、• A.1• B.0• C.∞• D.2参考答案:A4、设则m=()• A.• B.2• C.-2• D.参考答案:C5、设f(x)= ,则()• A.2• B.∞• C.1• D.4参考答案:D6、设是无穷大量,则x的变化过程是()• A.x→0+• B.x→0-• C.x→+∞• D.x→-∞参考答案:B7、函数在一点附近有界是函数在该点有极限的()• A.必要条件• B.充分条件• C.充分必要条件• D.无关条件参考答案:A8、定义域为[-1,1],值域为(-∞,+∞)的连续函数()• A.存在• B.不存在• C.存在但不唯一• D.在一定条件下存在参考答案:B9、下列函数中在x=0处不连续的是()• A.f(x)=• B.f(x)=• C.f(x)=• D.f(x)=参考答案:A10、设函数f(x)=,则() ,• A.-1• B.-∞• C.+∞• D.1参考答案:C11、设总收益函数R(Q)=40Q-Q2,则当Q=15时的边际收益是()• A.0• B.10• C.25• D.375参考答案:B12、设函数f(x)=x(x-1)(x-3),则f'(0)=()• A.0• B.1• C.3• D.3!参考答案:C13、• A.• B.• C.• D.参考答案:D14、f'(x)<0,x∈(a, b) ,是函数f(x)在(a, b)内单调减少的()• A.充分条件• B.必要条件• C.充分必要条件• D.无关条件参考答案:A15、函数y=|x-1|+2的极小值点是()• A.0• B.1• C.2• D.3参考答案:B16、函数y=2ln的水平渐近线方程为()• A.y=2• B.y=1• C.y=-3• D.y=0参考答案:C17、设f(x)在[a, b](a<b)上连续且单调减少,则f(x)在[a, b]上的最大值是( )• A.f(a)• B.f(b)• C.• D.参考答案:A18、• A.• B.• C.• D.参考答案:D19、设f(x)在(-∞,+∞)上有连续的导数,则下面等式成立的是(),• A.• B.• C.• D.参考答案:B20、• A.tgxlnsinx-x+C• B.tgxlnsinx+x+C• C.tgxlnsinx-• D.tgxlnsinx+参考答案:A21、• A.-1-3ln2• B.-1+3ln2• C.1-3ln2• D.1+3ln2参考答案:B22、• A.• B.• C.• D.参考答案:C23、经过变换,( )• A.• B.• C.• D.参考答案:D24、• A.• B.-• C.2e• D.-2e 参考答案:A25、• A.2• B.1• C.∞• D.参考答案:A26、级数的和等于 ( )• A.• B.-• C.5• D.-5参考答案:B27、下列级数中,条件收敛的是( )• A.• B.• C.• D.参考答案:C28、幂级数的收敛区间是()• A.• B.• C.• D.参考答案:A29、点(-1,-1,1)在下面哪一张曲面上 ( )• A.• B.• C.• D.参考答案:D30、设 f(u,v)=(u+v)2,则 =( )• A.• B.• C.• D.参考答案:B31、设,则( )• A.• B.1• C.2• D.0参考答案:A32、设,则 ( )• A.6• B.3• C.-2• D.2参考答案:B33、下列函数中为微分方程的解的是( )• A.• B.-• C.• D.参考答案:C34、下列微分方程中可分离变量的是( )• A.• B.• C.• D.参考答案:B35、设D:0≤x≤1,0≤y≤2,则 =( )• A.ln2• B.2+ln2• C.2• D.2ln2参考答案:D36、函数f(x)=arcsin(2x-1)的定义域是()• A.(-1,1)• B.[-1,1]• C.[-1,0]• D.[0,1]参考答案:D37、设f(x)= , 则() ,• A.0• B.1• C.-1• D.不存在参考答案:B38、设函数f(x)满足=0, 不存在, 则() ,• A.x=x0及x=x1都是极值点• B.只有x=x0是极值点• C.只有x=x1是极值点• D.x=x0与x=x1都有可能不是极值点参考答案:D39、设f(x)在[-a,a](a>0)上连续, 则()• A.0• B.• C.• D.参考答案:C40、设供给函数S=S(p)(其中p为商品价格), 则供给价格弹性是()• A.• B.• C.• D.参考答案:B41、设 ,则x=0是f(x)的()• A.可去间断点• B.跳跃间断点• C.无穷间断点• D.连续点参考答案:A42、设函数y=f(x)在点x0的邻域V(x0)内可导,如果∀x∈V(x0)有f(x)≥f(x0),则有()• A.• B.• C.• D.参考答案:C43、已知某商品的成本函数为,则当产量Q=100时的边际成本为() , ,• A.5• B.3• C.3.5• D.1.5参考答案:C44、在区间(-1,0)内,下列函数中单调增加的是()• A.• B.• C.• D.参考答案:B45、无穷限积分()• A.1• B.0• C.-• D.参考答案:D46、下列区间中,函数f (x)= ln (5x+1)为有界的区间是() ,• A.(-1, )• B.(- ,5)• C.(0, )• D.( ,+参考答案:C47、设函数g (x)在x = a连续而f (x) = (x-a)g(x),则(a) =()• A.0• B. (a)• C.f (a)• D.g (a)参考答案:D48、设函数f (x)定义在开区间I上, I,且点(x0, f (x0) )是曲线y= f (x)的拐点,则必有()• A.在点(x0,f (x0))两侧,曲线y=f (x)均为凹弧或均为凸弧.• B.当xx0时,曲线y=f (x)是凸弧(或凹弧).• C.xx0时,f(x)>f(x0).• D.xf(x0) 而x>x0时,f(x)<f(x0).< li=""></f(x0).<>参考答案:B49、设某商品的需求函数为D(P)=475-10P-P2,则当P = 5时的需求价格弹性为()• A.0.25• B.-0.25• C.100• D.-100参考答案:A50、,• A.-1• B.1• C.-• D.参考答案:B51、设,则f (x)=()• A.• B.• C.• D.参考答案:B52、下列极限存在的是()• A.• B.• C.• D.参考答案:D53、曲线上拐点的个数是()• A.0• B.1• C.2• D.3参考答案:C54、• A.• B.0• C.• D.参考答案:B55、• A.• B.-• C.1• D.-1参考答案:A56、数列的极限是()• A.0• B.• C.1• D.不存在参考答案:C57、广义积分()• A.• B.• C.• D.0参考答案:B58、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为()• A.[0,2]• B.[0,16]• C.[-16,16]• D.[-2,2]参考答案:C59、=()• A.0• B.1• C.-1• D.不存在参考答案:A60、设f(x)为可微函数,且n为自然数,则 =()• A.0• B.• C.-• D.不存在参考答案:B61、设f(x)是连续函数,且f(0)=1,则()• A.0• B.• C.1• D.2参考答案:C62、已知某商品的产量为x时,边际成本为,则使成本最小的产量是()• A.23• B.24• C.25• D.26参考答案:B63、设f(x)=ln4,则()• A.4• B.• C.0• D.参考答案:C64、• A.16!• B.15!• C.14!• D.0参考答案:D65、• A.• B.• C.• D.参考答案:B66、已知生产某商品x个的边际收益为30-2x,则总收益函数为()• A.• B.• C.• D.参考答案:D67、函数y=1-cosx的值域是()• A.[-1,1]• B.[0,1]• C.[0,2]• D.(-∞,+∞)参考答案:C68、• A.0• B.1• C.不存在• D.参考答案:D69、下列各式中,正确的是()• A.• B.• C.• D.参考答案:D70、下列广义积分中,发散的是()• A.• B.• C.• D.参考答案:A71、() ,• A.• B.• C.• D.参考答案:B72、()• A.|x|≤1• B.|x|<1• C.0<|x|≤1• D.0<|x|<1参考答案:C73、()• A.• B.△y=0• C.dy=0• D.△y=dy参考答案:A74、()• A.0• B.1• C.-1• D.不存在参考答案:A75、()• A.• B.• C.• D.参考答案:D76、()• A.• B.• C.• D.参考答案:C77、()• A.[a,3a]• B.[a,2a]• C.[-a,4a]• D.[0,2a]参考答案:B78、()• A.1• B.• C.不存在• D.0参考答案:D79、设D=D(p)是市场对某一商品的需求函数,其中p是商品价格,D是市场需求量,则需求价格弹性是()• A.• B.• C.• D.参考答案:B80、()• A.0• B.1• C.-1• D.参考答案:C81、()• A.π• B.4• C.2π• D.2参考答案:C82、()• A.• B.• C.• D.参考答案:D83、()• A.• B.5• C.2• D.参考答案:A84、• A.0• B.1• C.-0.5• D.-4参考答案:C85、下列无穷限积分中,发散的是()• A.• B.• C.• D.参考答案:B86、• A.• B.• C.• D.参考答案:D87、( )• A.• B.• C.(0,1]• D.(0,1)参考答案:D88、• A.无定义• B.无极限• C.不连续• D.连续参考答案:D89、• A.必要条件• B.充分条件• C.充分必要条件• D.既非充分条件又非必要条件参考答案:A90、• A.• B.• C.• D.参考答案:B91、下列广义积分中,收敛的是()• A.• B.• C.• D.参考答案:C92、下列集合中为空集的是()• A.• B.• C.• D.参考答案:D 93、• A.0• B.1• C.• D.-参考答案:C 94、• A.△x• B.• C.• D.0 参考答案:D 95、• A.• B.• C.• D.参考答案:C96、• A.• B.• C.• D.参考答案:D97、• A.• B.• C.• D.参考答案:D98、• A.x(x-1)• B.x(x+1)• C.• D.(x+1)(x-2)参考答案:B99、• A.• B.• C.• D.参考答案:C100、• A.5• B.3• C.3.5• D.1.5参考答案:C101、在区间(-1,0)内,下列函数中单调增加的是()• A.y=-4x+1• B.y=5x-3• C.• D.y=|x|+2参考答案:B102、• A.1• B.0• C.• D.参考答案:D103、• A.0• B.1• C.-1• D.不存在参考答案:B104、• A.• B.• C.• D.参考答案:D105、设供给函数S=S(p)(其中p为商品价格), 则供给价格弹性是()• A.• B.• C.• D.参考答案:B106、设函数y=f (x)的定义域为(1,2),则f (ax)(a<0)的定义域是( )• A.• B.• C.(a,2a)• D.参考答案:B107、设f (x)=x|x|,则f ′(0)=( )• A.1• B.-1• C.0• D.不存在参考答案:C108、设f (x)是连续函数,且,则f (x)=( )• A.cos x—xsin x• B.cos x + xsin x• C.sin x—xcos x• D.sin x + xcos x参考答案:A109、函数f(x)=lnx— ln(x—1)的定义域是()• A.(-1,+∞)• B.(0,+∞)• C.(1,+∞)• D.(0,1)参考答案:C110、极限()• A.0• B.• C.• D.3参考答案:B111、x=0是函数f(x)= 的()• A.零点• B.驻点• C.极值点• D.非极值点参考答案:D112、初值问题的隐式特解为()• A.• B.• C.• D.参考答案:A113、函数f(x)=是()• A.奇函数• B.偶函数• C.有界函数• D.周期函数参考答案:C114、函数f(x)= —x的极大值点为()• A.x= —3• B.x= —1• C.x= 1• D.x= 3参考答案:B115、正弦曲线的一段与x 轴所围平面图形的面积为()• A.1• B.2• C.3• D.4参考答案:B116、函数f(x)= 的定义域为()• A.[-1,1]• B.[-1,3]• C.(-1,1)• D.(-1,3)参考答案:B117、设函数f(x)= 在x=0点连续,则k=()• A.0• B.1• C.2• D.3参考答案:C118、曲线y=的渐近线的条数为()• A.1• B.2• C.3• D.4参考答案:B119、设sin x 是f(x)的一个原函数,则()• A.sin x+C• B.cos x+C• C.—cos x+C• D.—sin x+C参考答案:A120、下列反常积分收敛的是()• A.• B.• C.• D.参考答案:D 121、• A.• B.• C.• D.参考答案:D。
全国2016年4月自学考试00020高等数学(一)试题
全国2016年4月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共10小题,每小题3分,30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设x>0=()A.16x B.16x-C.56x D.56x-2.函数y=A.7[,)2+∞B.7[,)2-+∞C.7(,)2+∞D.7(,)2-+∞3.设函数232,0()1,0xx xf xe x⎧+≤⎪=⎨->⎪⎩,则lim()xf x-→为()A.不存在B.0 C.1 D.2 4.当x→1时,下列变量为无穷小量的是()A.1xx-B.ln(1)x+C.cos(1)x-D.ln x 5.下列说法正确的是()A.函数f(x)在点x0处可导,则f(x)在该点连续B.函数f(x)在点x0处连续,则f(x)在该点可导C.函数f(x)在点x0处不可导,则f(x)在该点不连续D.函数f(x)在点x0处不可导,则f(x)在该点极限不存在6.设函数y=ln(2x),则微分dy=()A .12dx xB .1dx x C .12x D .1x 7.下列函数在区间(-∞,+∞)上单调减少的是()A .y=e -xB .y=sinxC .y=x²D .y=|x| 8.已知2x π=是函数1()cos sin 22f x a x x =+的驻点,则常数a=() A .-3B .-2C .-1D .0 9.微分2()x d adx -=⎰() A .2x a -B .2x a dx -C .22ln x a a --D .22ln x a adx -- 10.设函数(,)y f x y x =,则偏导数(1,0)f y ∂=∂() A .-1B .0C .1D .2二、简单计算题(本大题共5小题,每小题4分,共20分)11.已知函数11()ln,()11x x f x g x x x ++==--,求复合函数f[g(x)]. 12.求极限22lim(1)x x x→∞-. 13.设函数11y x=+,求二阶导数y''. 14.求曲线y=x²-x³的凹凸区间. 15.求微分方程2(21)(1)dy x y dx =-+的通解. 三、计算题(本大题共5小题,每小题5分,共25分)16.已知函数cos ,0(),01,0x b x f x a x x x ⎧⎪+<⎪⎪==⎨⎪>⎪⎩在x=0点连续,试确定常数a ,b 的值.17.设函数y=ln(1+x²)+(arctanx)²,求导数y'.18.求极限0ln(23)ln 2lim x x x x→+-. 19.计算反常积分31ln e I dx x x+∞=⎰. 20.设z=(x ,y)是由方程x²+y²-2x-2yz=e z 所确定的隐函数,求偏导数,z z x y ∂∂∂∂. 四、综合题(本大题共4小题,共25分)21.(本小题6分)某厂生产某产品Q 件时的总成本为21()3969C Q Q Q =++,需求函数为Q=81-3P ,其中P 是产品的几个.问该厂生产多少件产品时获利最大?并求取得最大利润时的价格.22.(本小题6分)计算定积分20cos 2I x xdx π=⎰.23.(本小题6分)计算二重积分2(2)D I xy dxdy =-⎰⎰,其中D 是由直线x=0,y=1及y=x 所围成的平面区域,如图所示.24.(本小题7分)设D 是由曲线y=2x²与直线y=2所围成的平面区域,如图所示.求:(1)D 的面积A ;(2)D 饶y 轴旋转一周所得的旋转体体积V y .。
2014年成人高考专升本高等数学一真题及答案
2014年成人高考专升本高等数学一真题及答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题参考答案:D第2题参考答案:A第3题参考答案:B第4题设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点参考答案:B第5题参考答案:C第6题参考答案:D 第7题参考答案:C 第8题参考答案:A参考答案:A第10题设球面方程为(x一1)2+(y+2)2+(z一3)2=4,则该球的球心坐标与半径分别为( )A.(一1,2,一3);2B.(一1,2,-3);4C.(1,一2,3);2D.(1,一2,3);4参考答案:C二、填空题:本大题共10小题。
每小题4分,共40分,将答案填在题中横线上。
第11题参考答案:2/3第12题第14题参考答案:3第15题曲线y=x+cosx在点(0,1)处的切线的斜率k=_______.参考答案:1第16题参考答案:1/2第17题参考答案:1第18题设二元函数z=x2+2xy,则dz=_________.参考答案:2(x+y)dx-2xdy第19题过原点(0,0,0)且垂直于向量(1,1,1)的平面方程为________.参考答案:z+y+z=0第20题微分方程y’-2xy=0的通解为y=________.三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题第22题设Y=y(x)满足2y+sin(x+y)=0,求y’.第23题求函数f(x)一x3—3x的极大值.第24题第25题第26题第27题第28题求微分方程y”+3y’+2y=ex的通解.。
全国2014年4月自学考试00020高等数学(一)试题答案
全国2014年4月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共10小题,每小题3分,30分)在每小题列出的四个知识点。
备选项中只有一个知识点。
是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.下列运算正确的是(B )A.ln6+ln3=ln9B.ln6-ln3=ln2C.(1n6)•(ln3)=ln18D.ln6ln2ln3= 【解析】A :ln6+ln3=ln18B :6ln6ln3ln ln23-== C :(1n6)•(ln3)≠ln18D :ln6ln2ln3≠ 2.设函数f(x)可导,且1f x x ⎛⎫= ⎪⎝⎭,则导数f'(x)=(D ) A.1x B.-1xC.21xD.-21x第1章(上)第6个知识点。
【解析】1()f x x =,令1u x =,则有1()f u u=, 因为函数与自变量的符号无关, 所以1()f u u =跟1()f x x=表示的是同一个函数, 211()()f x x x''==- 3.设函数f (x ,y )=xy x y -,则11,f y x ⎛⎫ ⎪⎝⎭=(C )A.1y x -B.x y yx- C.1x y - D.22x y x y- 第1章(下)第2个知识点。
【解析】因为函数与自变量的符号无关, 所以(,)xy f x y x y =-跟(,)uv f u v u v=-表示的是同一个函数, 题目要求的是11(,)f y x ,则有11,u v y x ==, 1111111(,)11y x xy xy f x y x y y x x y y x xy xy xy⨯====----4.函数f(x)=sin x +cos x 是(C )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 第1章(下)第3个知识点。
【解析】f (-x)=sin(-x)+cos(-x)=-sinx+cosx 。
00020高等数学(一)0604
2006年4月高等教育自学考试全国统一命题考试
高等数学(一) 试卷
(课程代码0020)
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的。
请将其代码填写在题后的括号内。
错选、多选或未选均无分。
二、填空题(大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
三、计算题(一)(本大题共5小题,每小题5分,共25分)
四、计算题(二)(本大题共3小题,每小题7分,共21分)
22.将一长为l的铁丝截成两段,并将其中一段围成正方形,另一段围成圆形,为使正方形
与圆形面积之和最小,问这两段铁丝的长应各为多少?
五、应用题(本大题9分)
六、证明题(本大题5分)。
全国2014年4月自考高等数学(工本)试题和答案
正确答案:3(2分)
7.已知函数 ,则 ______.
正确答案:1024(2分)
8.设积分区域 ,则二重积分 化为极坐标系下的二次积分为______.
正确答案: (2分)
9.微分方程 的特征方程为______.
正确答案: (2分)
10.设函数 的傅里叶级数的和函数为 ,则 ______.
一、单项选择题(本大题共5小题,每小题3分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。
1.下列曲面方程中,是旋转曲面方程的为
A. B.
C. D.
正确答案:B
2.函数 的全微分 为
A.1B.2
C. D.
正确答案:C
3.在曲线 的所有切线中,与平面 平行的切线
A.只有一条B.只有二条
C.只有三条D.不存在
正确答案:B
4.微分方程 的满足 的特解为
A. B.
C. D.正确答Leabharlann :A5.幂级数 的收敛域是
A. B.
C. D.
正确答案:C
非选择题部分
注意事项:
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共5小题,每小题2分,共10分)
正确答案:
15.计算二重积分 ,其中积分区域 是由 和 所围成.
正确答案:
16.计算三重积分 ,其中积分区域Ω: .
正确答案:
17.计算对弧长的曲线积分 ,其中L为从点 到点 的直线段.
正确答案:
18.验证曲线积分 与路径无关,并计算其值.
正确答案:
2014年专升本(高等数学一)真题试卷(题后含答案及解析)
2014年专升本(高等数学一)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.( )A.e2B.e1C.eD.e2正确答案:D2.设y=e-5x,则dy=( )A.-5e2-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx正确答案:A3.设函数f(x)=xsinx,则( )A.B.1C.D.2π正确答案:B4.设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0,若f(a).f(b)<0,则y=f’(x)在(a,b)( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点正确答案:B5.∫x2ex3dx=( )A.B.3x2ex3+CC.D.3ex3+C正确答案:C6.∫-11(3x2+sin5x)dx=( )A.-2B.-1C.1D.2正确答案:D7.∫1+∞e-xdx=( )A.-eB.-e-1C.e-1D.e正确答案:C8.设二元函数z=x2y+xsiny,则=( )A.2xy+sinyB.x2+xcosyC.2xy+xsinyD.x2y+siny正确答案:A9.设二元函数z==( ) A.1B.2C.x2+y2D.正确答案:A10.设球面方程为(x-1)2+(y+2)2+(z-3)2=4,则该球的球心坐标与半径分别为( )A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4正确答案:C填空题11.设=3,则a=________。
正确答案:12.曲线的铅直渐近线方程为________。
正确答案:13.设,则y’=________。
正确答案:14.设函数f(x)=在x=0处连续,则a=________。
正确答案:315.曲线y=xcosx在点(0,1)处的切线的斜率k=________。
正确答案:116.=________。
正确答案:17.设函数f(x)=∫0xet2,则f’(0)=________。
000201404 高等数学(一)00020 高等数学(一)自考历年真题
2014年4月高等教育自学考试《高等数学(一)》试题课程代码:00020一、单项选择题1.下列运算正确的是( )A .9ln 3ln 6ln =+B .2ln 3ln 6ln =-C .18ln )3(ln )6(ln =⋅D .2ln 3ln 6ln = 2.设函数)(x f 可导,且x x f =⎪⎭⎫ ⎝⎛1,则导数=)('x f ( ) A .x1 B .x 1- C .21x D .21x - 3.设函数y x xy y x f -=),(,则=⎪⎪⎭⎫ ⎝⎛x y f 1,1( )A .x y -1B .yx y x -C .yx -1 D .y x y x -22 4. 函数x x x f cos sin )(+=是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .既是奇函数又是偶函数5.下列各对函数中,为同一函数的是( )A .)ln(2x y =与x y ln 2=B .)2tan(x y =与x y tan 2=C .x y =与⎪⎭⎫ ⎝⎛=2x yD .1-=x y 与112+-=x x y 6.设函数22)(x x f =,x x g sin )(=,则当0→x 时( ) A .)(x f 是比)(x g 高阶的无穷小量 B .)(x f 是比)(x g 低阶的无穷小量 C .)(x f 与)(x g 是同阶但非等价的无穷小量 D .)(x f 与)(x g 是等价无穷小量7.设函数⎪⎩⎪⎨⎧>+=<+-=2,22,243)(2x x x b x a x x x f 在2=x 处连续,则( ) A .1=a ,4=b B .0=a ,4=bC .1=a ,5=bD .0=a ,5=b8.设)(x y y =是由方程设函数13-=y xy 所确定的隐函数,则导数==0'x y ( )A .-1B .0C .1D .29.已知函数x x a y 2cos 21cos +=(其中a 为常数)在2π=x 处取得极值,则=a ( ) A .0 B .1 C .2 D .3 10.设函数x x x f ln )(=,则下列结论正确的是( ) A .)(x f 在),0(+∞内单调减少 B .)(x f 在),0(e 内单调减少 C .)(x f 在),0(+∞内单调增加 D .)(x f 在),0(e 内单调增加二、简单计算题11.求极限1523lim 323+++∞→x x x x 。
全国2012年04月自学考试00020《高等数学(一)》历年真题与答案
全国2012年4月自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数y=f(x)的图形如图所示,则它的值域为( ) A.[1,4) B.[1,4] C.[1,5) D.[1,5]2.当x →0时,下列变量为无穷小量的是( ) A.21sin x xB.1sin x xC.xe -3.设函数f(x)可导,且0(1)(1)lim1x f f x x→--=-,则曲线y=f(x)在点(1,f(1))处的切线斜率为( )A.1B.0C.-1D.-24.曲线21(1)y x =-的渐近线的条数为 ( )A.1B.2C.3D.45.下列积分中可直接用牛顿-莱布尼茨公式计算的是( ) A.111dx x -⎰B.111d x x -⎰2(2+1)C.1211d x x-⎰D.1x -⎰二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数2,||1(),1,||1x f x x ≤⎧=⎨⎩>则f [f(1)]=______.7.已知33lim 1nkn e n -→∞⎛⎫+= ⎪⎝⎭,则k=______.8.若级数1n n u ∞→∑的前n 项和1121n S n =-+,则该级数的和S=______. 9.设函数f(x)可微,则微分d[e f(x)]=______. 10.曲线y=3x 5-5x 4+4x-1的拐点是______.11.函数()arctan f x x x =-在闭区间[-1,1]上的最大值是______.12.导数20d sin 2d d xu u x ⎰=______.13.微分方程2()20x y xy y '''-+=的阶数是______. 14.设22{(,)|4}D x y x y =+≤,则二重积分d d Dx y =⎰⎰______.15.设函数(,)ln()2y f x y x =+,则偏导数(0,1)y f ='______. 三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设函数21()cos x f x e x-=,求导数()f x '. 17.求极限0tan limsin x x xx x→--.18.求函数3212()2333f x x x x =-++的极值.19.计算无穷限反常积分231=d 610I x x x +∞-++⎰.20.计算二重积分=(32)d d DI x y x y +⎰⎰,其中D 是由直线x+y=1及两个坐标轴围成的区域,如图所示.四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.确定常数a,b 的值,使函数3sin ,0()ln(1)0x x f x a x b x <⎧=⎨++≥⎩在点x=0处可导.22.设某商品的需求函数为Q(P)=12-0.5P (其中P 为价格). (1)求需求价格弹性函数. (2)求最大收益.23.计算定积分2=I x .五、应用题(本题9分) 24.设曲线1y x=与直线y=4x,x=2及x 轴围成的区域为D ,如图所示.(1)求D 的面积A.(2)求D 绕x 轴一周的旋转体体积V x . 六、证明题(本题5分)25.设函数z=xy+f(u),u=y 2-x 2,其中f 是可微函数. 证明:22z zyx x y x y∂∂+=+∂∂.全国2012年4月自考《高等数学(一)》试题答案详解课程代码:00020试卷总体分析:试卷详解:一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
(全新整理)4月全国自考高等数学(一)试题及答案解析
1全国2018年4月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( )A.[0,2]B.[0,16]C.[-16,16]D.[-2,2] 2.xx x 1lim →=( ) A.0B.1C.-1D.不存在3.设f (x )为可微函数,且n 为自然数,则⎥⎦⎤⎢⎣⎡+-∞→)n x (f )x (f 1lim n =( ) A.0B.)x (f 'C.-)x (f 'D.不存在 4.设f (x )是连续函数,且f(0)=1,则=⎰→200x lim x dt )t (tf x( ) A.0 B.21 C.1 D.25.已知某商品的产量为x 时,边际成本为)x (e x 1004-,则使成本最小的产量是( )A.23B.24C.25D.26二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.函数f (x )=ln(1-x ),x ≤0的值域是___________。
7.设()=⎪⎭⎫ ⎝⎛-+-+++=∞→n n n x n n n x lim 31231,则Λ___________。
2 8.=++∞→xx x 2sin 3553lim 2x ___________。
9.设⎪⎪⎩⎪⎪⎨⎧=≠-=-00012x ,x ,x e )x (f x ,则)(f 0'=___________。
10.设f (x )=xx 2-,则)(f 1'=___________ 11.函数y=(x-1)(x+1)3单调减小的区间是___________。
12.设某商品市场需求量D 对价格p 的函数关系为D (p )=1600p⎪⎭⎫ ⎝⎛41,则需求价格弹性是___________。
2014年度成人高考专升本高等数学一试卷及解答
2014年成人高考专升本高等数学一试卷及解答一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题参照解答:D第2题参照解答:A第3题参照解答:B第4题设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点参照解答:B第5题参照解答:C第6题参照解答:D 第7题参照解答:C 第8题参照解答:A 第9题参照解答:A第10题设球面方程为(x一1)2+(y+2)2+(z一3)2=4,则该球的球心坐标与半径分别为( )A.(一1,2,一3);2B.(一1,2,-3);4C.(1,一2,3);2D.(1,一2,3);4参照解答:C二、填空题:本大题共10小题。
每小题4分,共40分,将解答填在题中横线上。
第11题参照解答:2/3第12题第13题第14题参照解答:3第15题曲线y=x+cosx在点(0,1)处的切线的斜率k=_______.参照解答:1第16题参照解答:1/2第17题参照解答:1第18题设二元函数z=x2+2xy,则dz=_________.参照解答:2(x+y)dx-2xdy第19题过原点(0,0,0)且垂直于向量(1,1,1)的平面方程为________.参照解答:z+y+z=0第20题微分方程y’-2xy=0的通解为y=________.三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题第22题设Y=y(x)满足2y+sin(x+y)=0,求y’.第23题求函数f(x)一x3—3x的极大值.第24题第25题第26题第27题第28题求微分方程y”+3y’+2y=ex的通解.。
2014年自学考试《高等数学(一)》复习指导(精)
2014年自学考试《高等数学(一》复习指导一、函数1.知识范围(1函数的概念函数的定义函数的表示法分段函数隐函数(2函数的性质单调性奇偶性有界性周期性(3反函数反函数的定义反函数的图像(4基本初等函数幂函数指数函数对数函数三角函数反三角函数(5函数的四则运算与复合运算(6初等函数2.要求(1理解函数的概念。
会求函数的表达式、定义域及函数值。
会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2理解函数的单调性、奇偶性、有界性和周期性。
(3了解函数与其反函数之间的关系(定义域、值域、图像,会求单调函数的反函数。
(4熟练掌握函数的四则运算与复合运算。
(5掌握基本初等函数的性质及其图像。
(6了解初等函数的概念。
(7会建立简单实际问题的函数关系式。
二、极限1.知识范围(1数列极限的概念数列数列极限的定义(2数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4函数极限的性质唯一性四则运算法则夹通定理(5无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6两个重要极限2.要求(1理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2了解极限的有关性质,掌握极限的四则运算法则。
(3理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价。
会运用等价无穷小量代换求极限。
(4熟练掌握用两个重要极限求极限的方法。
三、连续1.知识范围(1函数连续的概念函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类(2函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理(4初等函数的连续性2.要求(1理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数在一点处的连续性的方法。