第三章结晶动力学与结晶热力学
金属材料第三章结晶
第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。
§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。
结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。
结构起伏是金属结晶的结构条件。
二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。
单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。
由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn低于理论结晶温度Tm的现象称为过冷。
液态金属过冷是结晶的必要条件。
过冷度:△T=Tm-Tn, 其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。
四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。
热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。
利用最小自由焓原理分析结晶过程。
两相自由焓差是相变的驱动力。
金属结晶的热力学条件:固相自由焓必须低于液相自由焓。
热力学条件与过冷条件的一致性。
§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。
一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。
《材料科学基础》复习大纲(08级)
《材料科学基础》总结及重点第一章 材料的结构与键合1、金属键、离子键、共价键、分子键(范德华力)、氢键的特点,并解释材料的一些性能特点。
2、原子间的结合键对材料性能的影响。
用金属键的特征解释金属材料的性能—①良好的延展性;②良好的导电、导热性;③具有金属光泽。
3、比较金属材料、陶瓷材料、高分子材料、复合材料在结合键上的差别。
本章重要知识点: 1. 金属键、离子键、共价键、分子键、氢键的特点。
第二章 固体结构1、晶体与非晶体(在原子排列上的区别)2、空间点阵、晶格、晶胞及选取晶胞的的原则、七大晶系及各自的特点,布拉菲点阵(14种) 、晶格常数、晶胞原子数。
3、晶面指数、晶面族、晶向指数、晶向族、晶带和晶带定理、晶面间距、配位数、致密度、八面体间隙、四面体间隙。
各向同性与各向异性、实际晶体的伪各向异性、同素异构转变(重结晶、多晶型性转变) 。
(1)指数相同的晶向.和晶面必然垂直。
如[111]⊥(111)(2)当一晶向[uvw]位于或平行某一晶面(hkl )时,则必然满足晶带定理:h ·w+k ·v+l ·w =04、能绘出三维的体心、面心立方和密排六方晶胞,根据原子半径计算出金属的体心和面心立方晶胞的晶胞常数。
三种典型晶体结构的特征(包括:晶胞形状、晶格常数、晶胞原子数、原子半径、配位数、致密度、各类间隙尺寸与个数,最密排面(滑移面)和最密排方向的指数与个数,滑移系数目等);即:bcc 、fcc 、hcp 的晶格特征及变形能力(结合塑性变形一章的内容你必须知道常用金属材料的滑移面与滑移系的指数)。
给画出晶胞指出滑移面和滑移方向。
能标注和会求上述三种晶胞的晶向和晶面指数。
晶向和晶面指数的一些规律。
求晶面间距d (hkl )、晶面夹角。
5、晶面间距:d (hkl ) 的求法:(1)立方晶系:222)(l k h ad hkl ++= (2)正交晶系:222)(1⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=c l b k a h d hkl (3)六方晶系:2222)()(341⎪⎭⎫ ⎝⎛+++=c l a k hk h d hkl (4)四方晶系:2222)()/(/)(1c l a k h d hkl ++=以上公式仅适用于简单晶胞,复杂晶胞要考虑其晶面层数的增加。
第三章 晶体生长
A
B
图3-11 共晶系相图
LE ⇄(C + D)
第二节 相图及其在晶体生长中的应用
• 共晶反应过程
具有共晶成分的合金溶液,温度降到E点 时,开始同时从液体中开始析出成分为C的α 相和成分为D的β相,两相的相对含量可以用 杠杆定律求出
A
B
继续降温,最终形成α相和β相的机械混合物 ,但是晶体的总体成分仍是共晶成分。 形成的两相混合物具有显微组织特征。
①两种组分中金属原子或离子的半径必须接近,其半径差要小于15% ,否则,不同大小的原子或离子产生的晶格畸变将很大,以致影响 固溶度; ②两种组分必须具有相同的晶体结构,否则固体中将出现不同结构 的相,或固溶度仅限于一定范围; ③金属原子必须具有相同的价电子数,否则价电子数之差有可能导 致形成化合物而不形成固溶体; ④金属原子必须具有几乎相同的电负性,如果两种金属具有显著地 电负性差,则将倾向于形成金属间化合物。
L L+ L+
相图分析
相和相区与共晶相似 包晶线PDC:该线成分对应的合金在该 温度下发生包晶反应。该反应是液相L 包着固相, 新相β在L与α的界面 上形核,并向L和两个方向长大。
+
图3-12 包晶系相图
第二节 相图及其在晶体生长中的应用
• 包晶反应过程
第二节 相图及其在晶体生长中的应用
下面以凝固结晶为例说明形核过程: 短程有序(Short range order):由于液态金属中有序原子集团的尺 寸很小,所以把液态金属结构的特点概括为短程有序(长程无序), 通常用团簇结构cluster来表征。 晶胚(Embryo):温度降低至熔点以下时,这些近程有序的原子集 团就成为均匀形核的晶胚,尺寸会增大。晶胚内部原子呈晶态有序 排列,而外层原子与液体中不规则排列的原子相接触构成界面。 晶核(Nucleus):当具备结晶条件时,大于一定尺寸的晶胚就会成 为晶核。
金属材料第三章结晶
第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。
§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。
结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。
结构起伏是金属结晶的结构条件。
二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。
单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。
由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn 低于理论结晶温度Tm 的现象称为过冷。
液态金属过冷是结晶的必要条件。
过冷度:△ T=Tm -Tn ,其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。
四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。
热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。
利用最小自由焓原理分析结晶过程。
两相自由焓差是相变的驱动力。
金属结晶的热力学条件:固相自由焓必须低于液相自由焓。
热力学条件与过冷条件的一致性。
§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。
一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。
热力学与动力学
•临界形核半径 •临界形核功
r* 2 CL 2 T CL m
Gv L T
G*
1 3
A* CL
临界形核功等于表面能的1/3。 由液态金属中的能量起伏提供
式中A*为形成临界晶核的表面积。可见,临界晶核生成功相当于临界晶核表 面所引起的能量障碍的1/3,这也是生核时要求有较大过冷的原因。
液态金属在一定的过冷度下,临界核心由相起伏和结构起伏提供,临界生核功 由能量起伏提供。
虽然实际生产中几乎不存在均质形核,但其原理仍是液态金属( 合金)凝固过程中形核理论的基础。其他的形核理论也是在它的基 础上发展起来的。因此必须学习和掌握它。
§3-2 异质形核
• 非均质形核(异质形核 )--形核依赖于液相中的固相质 点表面发生
• 液相中的原子集团依赖于已有的异质固相表面并在界 面张力的作用下,形成球冠
3、均质形核速率
形核率为单位时间、单位体积生成固相核心的数目.临界尺寸r*的晶核处于介 稳定状态。当r>r*时才能成为稳定核心,即在r*的原子集团上附加一个或一个 以上的原子即成为稳定核心。其成核率I为:
I
θ1 >θ2
ΔT*均≈0.2T0
ΔT*非′
ΔT*非″ I 非′ I 非″
(a)
I e I
I
k1
工业条件下因冷却速度可达103℃/s。液态合金凝固时,固一 液界面两侧大范围内溶质的扩散是不均匀的,但在紧邻固一液 界面的局部范围内,溶质的扩散是充分的,满足平衡凝固条件 ,称近平衡凝固。溶质再分配系数称为近平衡分配系数ke。
(三)非平衡溶质分配系数ka
冷却速度可提高到106℃/s以上,如快速凝固、激光重熔等, 使凝固速度显著提高。不仅大范围的溶质扩散不充分,即使固 一液界面附近溶质原子也不能充分扩散,凝固界面上溶质的迁 移远离平衡状态,凝固将在完全非平衡条件下进行,非平衡溶 质分配系数,用ka表示。
第三章结晶动力学和热力学ppt课件
小分子晶体和高聚物晶体熔融过程 本质一样,过程不一样!
现象:结晶高聚物在熔限范围内,边熔融边升温
理论解释:聚合物分子链结构具有多分散性,其次 结晶过程分子链的重排形式极其复杂,另外,降温 过程不是足够的慢,重排不充分,使得结晶中的晶 粒停留在不同的阶段。
结晶高聚物中含有完 善程度不同的晶体,
0
121℃ 123℃ 124℃ 125℃
200
400
600
800
1000
1200
Crystallization Time (s)
G R t
20
三、 Avrami方程
结晶过程
成核
增长
(1) 聚合物的等温结晶动力学
Avrami Equation
Vt -V = exp(-Kt n ) Avrami指数
R (m)
50
结晶速率
40
Tc=180C
190C
30
159.2C 200.5C
球晶半径随时 间线性增长
20
150.3C
112C
10
141C
00
1
2
3
4
时间(h)
结晶速度
单峰型
Tg
Tmax
Tm 结晶温度
29
(1)结晶温度Tc ≥ Tm,分子热运动能量太高,不能 形成稳定的晶核;
(2)结晶生长过程是链段的重排过程, 即Tc >Tg
聚三氟氯乙烯: 自由基聚合产物,具有不对称碳原子且无 规, 但由于氯原子与氟原子体积相差不大,仍具有较强的 结晶能力,结晶度可达90%。
6
(B)全顺式、全反式、双烯类1,4加成聚合物, 链结构规整,也可以结晶,但因为链柔性太大, Tm很低,结晶速度很小。 聚1,4—丁二烯
第三章液态金属结晶的基本原理 上
Δ T ≈ 0.2T m
有效形核 温度
平衡状态下
(G V ) TTm L m Tm Sm 0 Sm
Lm Tm L T T L m T 所以: G V L m TSm m m Tm Tm
式中 T 为过冷度。对于给定金属,熔化潜热Lm和熔点Tm均为 定值,故GV仅与 T 有关。因此液态金属(合金)凝固的驱动力 是由过冷度提供的。
2 LC Vs Tm r* L T
16 3 VS Tm G LC 3 LT
4 3 GV G r 4r 2 SL 3 VS
2
3.2.1 均匀形核
能量起伏:系统中微小区域的能量偏离平均能量水平而高 低不一的现象。(是结晶的必要条件之三)。 高能原子附上低能晶胚,释放能量,提供形核功。 另一方面,液体中存在“结构起 r 伏”的原子集团,其统计平均尺寸 r°随温度降低(ΔT 增大)而增大, r°与 r* 相交,交点的过冷度即为 均质形核的临界过冷度ΔT*(约为 0.18-0.20Tm)。 形 成 临 界 晶 核 ( r* ) 时 的 过 冷 度 (△T*). △T≥△T*是结晶的必要条件。
dGV d PdV VdP TdS SdT
(3.4)
而
d q A
式中q-系统从外界吸收的热量;A-系统对外界所作的功。 在恒温下 q TdS 在只有膨胀功时 A PdV
所以 代入(3.4)得: 在恒压条件下dP=0 所以
d q A TdS PdV
3.2.1 均匀(自发)形核
下面我们从以下 均质生核的基础理论 : 1)过冷液相中的相起伏提供固相晶核的晶胚; 四个方面进行分析:
2)晶胚在过冷的均匀熔体中一出现本身就包含
结晶动力学与结晶热力学
只有满足 t 的r/条v 件所产生的
水波才能通过P点。
dr r P
因此:
dE I (t r )2rdr
v
对上式积分:
E
vt
I (t
r )2rdr
Iv2t 3
0
v
3
代入式 1 Vc P(0) eE
1 Vc
exp( 1 Iv2t 3 )
此外还有小角激光散射法、动态X射线衍射法、 光学解偏振法等。
DSC方法
随结晶程度增加,放热量增多,随结晶速率 增加,放热速率增大。通过测量结晶放热速率随 时间的变化可以了解结晶过程的情况。
结 晶
开始结晶
放
t=0
热
速
率
结晶结束 t=t∞
基线
mW
t
聚合物等温结晶的DSC曲线
t /min
ΔH∞——结晶开始到结晶完成的放热量;
ΔHt ——从结晶开始到某时刻的放热量;
t dH dt
X (t ) H t H
o
dt dH
dt
o dt
以ΔHt/ΔH∞对时间作图,可以得到结晶程度 与结晶时间的关系曲线。
§3-2 聚合物结晶动力学
一、等温结晶动力学
Avrami方程
1 X (t) exp(Kt n)
t——结晶时间; X(t)——t时间的结晶程度; K ——结晶速率常数; n——Avrami指数;
(1)一次性同时成核的情况——所有的雨滴同时 落入水面的情况
假定——从0到t时刻水波前进
的距离为r
dr
那么,以P点为中心,以r为半
r
径的圆面内所有的雨滴所产生
金属的结晶要点
二.金属的结晶
(一)金属结晶的一般过程
小体积的液态金属其结晶过程,见图3-2。 当液态金属的温度降到一定的过冷度之后, 在液态金属中就开始出现一些极细小的固相小晶 体,这就是晶核。晶核不断地从周围的液态金属 中吸附原子使之不断长大。在一些晶核长大的同 时,还会有新的晶核不断产生和长大,直到全部 液态金属都凝固。每一个晶核都长大成为一个晶 粒。最后便形成了有许多晶粒组成的金属多晶体。 这些晶粒有不规则的外形、晶格位向也各异。可 见,金属结晶的过程包括成核和长大两个基本过 程,而且,这两个过程同时进行。
第一节
金属结晶的基础知识
一、结晶的温度与过冷现象
液态金属的冷却过程可以用热分析法测出的冷却曲线 (温度-时间关系曲线)来表述,见图3-1。从曲线上可以 明显地见到结晶开始和结晶结束的温度。对于纯金属在 结晶过程中保持恒温。也就是说纯金属的结晶温度为某 一温度值。但是,对一个合金系来说,除个别成分的合 金同纯金属一样有一个结晶温度之外,多数合金的结晶 开始温度与结束温度是两个温度值。即结晶温度是一个 温度区间。而这个温度区间的大小与合金的化学成分比 有直接的关系。在测定冷却曲线时,人们发现,液态金 属的冷却速度会影响结晶的开始和结束温度。当冷却速 度非常慢(平衡态冷却速度)时,对于成分一定的金属都 有一个固定的结晶温度或结晶温度区间。当冷却速度时 增大时,则结晶温度或结晶温度区间通常都要下降,而 且下降的量随冷却速度加大而增加。
在图 3-1 中虚线是以平衡状态的冷却速度 (Vm) 冷 却(冷速极慢)的金属冷却曲线。实线是在某一 实际冷却速度 (V1) 冷却的金属冷却曲线。 V1〉 Vm 。图中T1 是纯金属在冷速 V1 是的实际结晶温 度。Tms、Tmf分别是合金在平衡状态下的结晶开 始温度和结晶结束温度。T1s、T1f分别是V1冷速 下合金的实际结晶开始温度和结晶结束温度。 理论结晶温度与实际结晶温度之差成为过冷度 (△T) 。对于纯金属其过冷度△ T=Tm-T1 。金属 的结晶都是在达到一定过冷度后才进行的,这 中现象称过冷现象。 金属结晶中的过冷度大小主要取决于金属液的冷 却速度和金属液中杂质的含量。冷速愈大,金 属纯度愈高,过冷度也愈大。
材料科学基础-第3章
液相的宏观流动会增加形核率; 强电场或强磁场能增加形核率。
第3章 凝固原理
§3.4晶核的长大
晶体长大条件: 1. 液相中原子不断向晶体扩散提供原子 (有足够高的温度) 2. 晶体表面能不断而牢固地接纳原子 (固液界面结构、温度分布、散热方 向等)。
§3.4.2 液-固界面的微观结构
3.3.1.1 晶胚形成时能量的变化 体积自由能△GV 降低(结晶驱动力) 表面自由能△GS 升高(结晶阻力)
设 晶胚为球形,半径为r,表面积为 S,体积为V,过冷液体中出现一个 晶胚时的总的自由能变化(△G): △ G = △ G V+ △ G S = V△Gv+σS = (4/3)πr3△Gv+4πr2σ r=rc时,△G最大; r<rc时,晶胚不稳定,难以长大,最终熔化而消失; r>rc时,晶胚成为稳定的晶核。
§3.3.1 均匀形核
3.3.1.3 形核功 临界形核功(A):形成临界晶核时需额外对形核所做的功。
rk 2 Tm 1 2 GV Lm T
A Gmax
1 16 3Tm2 1 S 2 3 3Lm T 2
由于N受N1.N2 两个因素控制, 形核率与过冷度 之间是呈抛物线 的关系。
§3.3.1 均匀形核
3.3.1.4 形核率(N)
纯金属均匀形核的有效过冷度为: △Tp=0.2Tm (绝对温度)
第3章 凝固原理
非均匀形核
第3章 凝固原理
液固界面的微观结构
光滑界面
粗糙界面 从原子尺度 观察,这种界 面是粗糙的,又称 为非小平面界面
从原子尺度观 察,这种界面是 光滑平整的。 通常为密排晶面
高分子结晶小论文综述
高分子结晶1109401009 陈泽应用化学摘要:高分子结晶是聚合物的一种状态,由于它的微观结构,可以满足很多我们对于材料亟需的特性要求,所以高分子结晶非常重要。
本文旨在结合众多篇文献,加上自己的一些浅薄理解,对高分子结晶从结晶形态,结晶机理,结晶热力学,动力学等方面做一个简单介绍。
关键词:高分子结晶,高分子结晶机理,结晶动力学,热力学。
一、概述高分子由于自身之间的相互作用力,比如说范德华力,氢键等的影响,相互吸引,呈现聚集状态。
高分子的凝聚态结构是指高分子链之间的几何排列和堆砌结构。
聚集态可分为晶态、非晶态、取向态、液晶态等。
晶态与非晶态是高分子最重要的两种聚集态。
高分子由于其分子量巨大,所以一般不可能呈现气态。
所以可以总结高分子除了没有气态,几乎小分子所有的物态它都存在,只不过要复杂得多。
其中结晶态就是属于固态。
结晶就是物质内部的微观粒子(原子、分子、离子)在三维空间呈有规律地、周期性地排列。
但是不同于小分子,大分子由于其长链结构,所以它的空间质点是链段中的结构单元。
聚乙烯空间质点对应结构单元由于聚合物分子具有长链结构,结晶时妨碍了分子链的规整堆砌排列,所以高分子晶体内部往往含有比低分子晶体更多的晶格缺陷。
所谓晶格缺陷,指的是晶格点阵的周期性在空间的中断。
典型的高分子晶格缺陷是由端基、链扭结、链扭转所引起的局部构象错误所致。
所以高分子不能100%结晶[1]二、高分子结晶的形态和结构聚合物的基本性质主要取决于链结构,而高分子材料或制品的使用性能则很大程度上还取决于加工成型过程中形成的聚集态结构。
结晶形态主要有球晶、单晶、伸直链晶片、纤维状晶、串晶、树枝晶等。
各种结晶形态结构及形成条件以上结晶形态都是由三种基本结构单元组成,即无规线团的非晶结构、折叠链晶片和伸直链晶体。
所以结晶形态中都含有非晶部分,是因为高分子结晶都不可能达到100%结晶。
其中单晶又称折叠链片晶,是因为在结晶过程中它的长链发生了折叠,使其成亚稳态。
聚合物分子运动和转变—结晶行为和结晶动力学(高分子物理课件)
h0 ht ~ t
h
温度恒 定
测定方法:将高聚物和跟踪液(水银)装入一膨胀计中,
加热到高聚物熔点以上使高聚物全部熔融。记录膨胀计
内毛细管液面柱的高度,如以 h0、h、h t 分别表示起
始、最终和
t
时间的读数,以
ht h0
h h
(未收缩体积分
数)对 t 作图,可得 S 曲线。
h0 ht ~ t
hh
(3) 杂质
促进结晶,起晶核作用 ,称为成核剂 三种情况 可溶性添加剂,延缓结 晶 — 稀释剂
对结晶无影响
(4)溶剂
一些结晶速度很慢的结晶聚合物(PET)浸入适当的有机 溶剂中,促进聚合物的结晶:小分子容积渗入到松散堆砌的 聚合物内部,使聚合物溶胀,相当于在高分子链间加入了一 些润滑剂,从使得高分子链获得了在结晶过程中必须具备的 分子运动能力,促使聚合物发生结晶。这一过程被称为溶剂 诱发结晶。
t 1
1/ 2
,单位为
s-1,min-1,h-1。
测量方法特点:简单,重复性好。
体系充装水银,热容量大,达热平衡所需要时间长对结晶速
度较快的高聚物不适用(可使用 DSC 方法)。
(2) PLM
Diameter (μm)
55 50 45 40 35 30 25 20 15 10
5 0
0
121℃ 123℃ 124℃ 125℃
t1/2
过
温结晶过程,可以得到一组结晶
冷
速度值,然后以其对温度作图, 即可得结晶速度-温度曲线。
玻 璃
流 体
体
过
冷
流
亚
体
稳
流 体 晶粒生长
速率
结晶过程分为晶核生成和晶粒生长 两个阶段。由于两过程对温度的依 赖性不同,高聚物结晶速率与温度 的关系呈单峰形
结晶现象的原理与发生步骤
引言概述结晶现象是物质在一定条件下由液体或气体转变为固体的过程。
对于许多科学领域而言,了解结晶的原理和发生步骤是至关重要的,因为结晶现象广泛应用于化学、材料科学、地球科学等领域。
本文将深入探讨结晶现象的原理和发生步骤,希望读者能够更加理解这一现象。
正文内容一、原理1.结晶的定义和基本概念结晶是一种物质由无序状态变为有序结构的过程。
在结晶中,原子、分子或离子按照一定的规律排列,形成晶粒。
2.结晶的热力学基础结晶的发生需要克服固体与液体之间的能量差,即自由能差。
当自由能差为负时,结晶就能发生。
3.结晶的动力学过程结晶的动力学过程指的是物质从高能量状态转变为低能量状态的过程。
这个过程涉及到核化、生长和形态发生等多个步骤。
4.结晶的驱动力驱动结晶过程的因素有很多,如温度、溶剂性质、溶质浓度、杂质等。
不同的系统对这些因素的响应也大不相同。
5.结晶的种类结晶现象可分为物理结晶和化学结晶。
物理结晶是由于温度或浓度变化引起的,而化学结晶则是由于化学反应引起的。
二、发生步骤1.核化核化是结晶的第一步,指的是液体中出现起始晶核。
起始晶核的形成需要克服活化能的影响,活化能越低,核化速度越快。
2.生长晶核后,它们会通过吸收周围溶液中的溶质来增大尺寸,形成晶体的过程被称为生长。
生长速度受到温度、浓度、溶液饱和度等因素的影响。
3.晶体形态发生晶体形态发生是指晶体在生长过程中的形状改变。
形态发生的原因有很多,如溶剂对溶质的影响、晶体生长速度的变化等。
4.晶体合并晶体合并是指在结晶过程中,颗粒之间发生相互迁移和接触,形成更大晶体的过程。
合并的影响因素包括温度、浓度、晶体形态等。
5.晶体分散晶体分散是指结晶过程中,固体晶体颗粒由于能量分散、扩散等原因发生分离的过程。
晶体分散会导致空心晶体、多晶晶体等形成。
结尾总结结晶现象的原理与发生步骤是一个复杂且多变的过程。
通过了解结晶的原理,我们能够更好地理解和控制结晶现象,在化学工业和材料科学等领域有更广泛的应用。
聚合物的结晶动力学
聚合物的结晶动力学本节主要内容:讨论结晶的过程和速度问题,即结晶的动力学问题。
目的:了解聚合物的结构和外界条件对结晶速度和结晶形态的影响,进而通过结晶过程去控制结晶度和结晶形态,以达到控制最终产品性能的目的。
一、高分子结构与结晶的能力聚合物结晶过程能否进行,必须具备两个条件:1、聚合物的分子链具有结晶能力,分子链需具有化学和几何结构的规整性,这是结晶的必要条件——热力学条件。
2、给予充分的条件-适宜的温度和充分的时间——动力学条件。
(一)链的对称性大分子链的化学结构对称性越好,就越易结晶。
例如:聚乙烯:主链上全部是碳原子,结构对称,故其结晶能高达95%;聚四氟乙烯:分子结构的对称性好,具有良好的结晶能力;聚氯乙烯:氯原子破坏了结构的对称性,失去了结晶能力;聚偏二氯乙烯:具有结晶能力。
主链含有杂原子的聚合物,如聚甲醛、聚酯、聚醚、聚酰胺、聚砜等,虽然对称性有所降低,但仍属对称结构,都具有不同程度的结晶能力。
(二)链的规整性主链含不对称碳原子分子链,如具有空间构型的规整性,则仍可结晶,否则就不能结晶。
如自由基聚合制得的聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯等为非晶聚合物,但由定向聚合得到的等规或间规立构聚合物则可结晶。
二烯类聚合物:全顺式或全反式结构的聚合物有结晶能力;顺式构型聚合物的结晶能力一般小于反式构型的聚合物。
反式对称性好的丁二烯最易结晶。
(三)共聚物的结晶能力无规共聚物:1、两种共聚单体的均聚物有相同类型的晶体结构,则能结晶,而晶胞参数随共聚物的组成而发生变化。
2、若两种共聚单元的均聚物有不同的晶体结构,但其中一种组分比例高很多时,仍可结晶;而两者比例相当时,则失去结晶能力,如乙丙共聚物。
嵌段共聚物:各嵌段基本上保持着相对独立性,能结晶的嵌段可形成自己的晶区。
例如,聚酯—聚丁二烯—聚酯嵌段共聚物中,聚酯段仍可结晶,起物理交联作用,而使共聚物成为良好的热塑性弹性体。
影响结晶能力的其它因素:1、分子链的柔性:聚对苯二甲酸乙二酯的结晶能力要比脂肪族聚酯低2、支化:高压聚乙烯由于支化,其结晶能力要低于低压法制得的线性聚乙烯3、交联:轻度交联聚合物尚能结晶,高度交联则完全失去结晶能力。
高聚物等温结晶过程
.
2、Keith –Padden Kinetics of Spherulitic
Crystallization球晶生长动力学
Opposing one another are the rate of molecular transport in the
melt, which increases with increasing temperature, and the rate
在尾部出现一个新的台阶。在结晶后期即二次结晶阶段,由于球晶的相
互碰撞,阻碍了球晶的进一步发展,而形成不规则形状的多面体。不再
按Avrami模型线性增长。
问题:结晶聚合物在实际生产中采用何种法提
高制品的力学性能?为什么?
通常认为高聚物的次期结晶是主期结晶完成后在一些
残留的非晶态部分和晶体结构不完整的部分继续进行结
在两个正交的偏振片之间的投射光强逐渐增大,用光电元
件记录,就可以象膨胀计法那样测定聚合物的结晶速度。
.
二、结晶动力学
高聚物的结晶过程和小分子相同包括两个阶段——晶
核的形成和晶粒的生长。
晶核的形成又分为均相成核和异相成核两类。
均相成核:是由熔体中的高分子链段靠热运动形成有序
排列的链束为晶核
异相成核:以外来的杂质、分散的固体小颗粒,未完
速因素为异相成核。
Ⅲ区:均相成核区,生成大量晶核,结晶速率很大,控速因素为均相成核,
是聚合物成型加工发生结晶的主要区域。
Ⅳ区:尽管成核速率很大,但是扩散速率慢,结晶速率随着温度的降低变的
越来越慢。
.
从分析结晶速率与T的关系我们可以得到以下的结论:
(1)从t1/2-1—T曲线上可看到T对t1/2-1的影响, Tmax=0.85Tm结晶速
氟化钙反应结晶热力学和动力学研究
氟化钙反应结晶热力学和动力学研究以氟化钙反应结晶热力学和动力学研究为题,本文将从热力学和动力学两个方面对氟化钙的结晶过程进行分析和探讨。
热力学是研究物质热平衡和热现象的科学,而动力学则是研究物质运动和变化的科学。
在氟化钙反应结晶过程中,热力学和动力学的研究对于了解反应机理和优化工艺具有重要意义。
从热力学角度来看,氟化钙的结晶过程涉及到反应物的热力学稳定性和产物的热力学稳定性。
氟化钙的结晶过程是一个放热反应,即在反应中释放热量。
根据热力学原理,反应物和产物的自由能差越大,反应越有利进行。
因此,氟化钙反应结晶的热力学稳定性会直接影响反应的进行。
从动力学角度来看,氟化钙的结晶过程涉及到反应速率和反应机理。
反应速率是指单位时间内反应物消耗或产物生成的量。
反应速率受到温度、浓度、催化剂等因素的影响。
在氟化钙反应结晶过程中,温度是一个重要的影响因素。
一般情况下,温度越高,反应速率越快。
此外,反应机理也是动力学研究的重点之一。
通过研究反应机理,可以揭示反应中各个步骤的速率和反应路径,为优化工艺提供理论依据。
研究表明,氟化钙反应结晶的过程符合一定的热力学和动力学规律。
在热力学方面,反应温度、浓度和压力等因素对反应的进行有重要影响。
一般情况下,提高反应温度和浓度可以促进反应进行,而增加压力则有利于提高产物的纯度。
在动力学方面,反应速率常被描述为反应物浓度的函数,可以用速率常数来表示。
反应速率常数与反应温度密切相关,一般情况下,随着温度的升高,反应速率常数增大,反应速率加快。
氟化钙反应结晶的过程中,溶液中的杂质和晶种的添加也会对结晶过程产生影响。
杂质的存在可以改变溶液的饱和度和过饱和度,从而影响结晶速率和产物形态。
晶种的添加可以提供一个固定的结晶模板,促进结晶核心的形成,从而加速结晶过程。
在实际应用中,了解氟化钙反应结晶的热力学和动力学特性对于优化工艺和提高产品质量具有重要意义。
通过调控反应温度、浓度和压力等条件,可以实现反应的高效进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DSC方法
随结晶程度增加,放热量增多,随结晶速率 增加,放热速率增大。通过测量结晶放热速率随 时间的变化可以了解结晶过程的情况。
结 晶
开始结晶
放t=0Biblioteka 热速率结晶结束 t=t∞
基线
mW
t
聚合物等温结晶的DSC曲线
t /min
ΔH∞——结晶开始到结晶完成的放热量;
平均值E的增量为:
dE N2rdr dr
设水波前进速度(球晶生长
速度)为v,则有:
r
r Vt
P
drVdt
d E N 2rd N r 2V 2 td t
对上式积分即可得到m的平均值E与t的关系:
E vt
t
Ed EN2rdrN2V2td tN2tv 2
0
0
0
1V cexpN(2tv2)
—— 一次性成核、晶核密度为N并且二维生长时, 结晶体系内的非晶部分与时间的关系
只有满足 t 的r/条v 件所产生的
水波才能通过P点。
dr r P
因此:
d EI(t r)2rd r
v
对上式积分:
v
E
tI(tr)2rd rIv2t3
0
v
3
代入式 1VcP(0)eE
1Vc
exp 1(Iv2t3)
3
2. 对于形成三维球晶的情况
2rd r4r2dr
(1) 对于晶核同时形成体系
v
E
tN4r2dr4Nv3t3
0
3
(2) 对于晶核不断形成体系
N——单位体积的晶 核数
EvtI(tr)4r2drIv3t4
0
v
3
I——单体时间单位 体积产生的晶核数
概括上述各种情况,可以用一个通式来表示 结晶过程中非晶部分含量与结晶时间的关系
1Vc expkn (t)
1X(t)ex pK (nt)
t——结晶时间; X(t)——t时间的结晶程度; K ——结晶速率常数; n——Avrami指数;
(1)一次性同时成核的情况——所有的雨滴同时
落入水面的情况
假定——从0到t时刻水波前进
的距离为r
dr
那么,以P点为中心,以r为半
r
径的圆面内所有的雨滴所产生
的水波都将通过P点。这个圆
P
面积称为有效面积,通过P点
的水波数就等于在这个有效面
积内落入的雨滴数。
设单位面积内的平均雨滴数为N
当时间由t增加到t+dt时,有效面积增量为2πrdr
等温结晶过程中结晶程度X(t)与时 间的关系曲线
结晶程度达到1/2时的时间——半结晶时间t1/2
三、聚合物结晶过程的研究方法
在聚合物结晶过程中,聚合物的许多物理性质 会发生相应的变化,并且伴有热效应。通过测量这 些性质随结晶时间的变化就可以对聚合物结晶过程 进行跟踪,并且研究其结晶动力学。
1)体积或密度的变化——膨胀计方法 2)光学各向异性——偏光显微镜方法 3)热效应——示差扫描量热法(DSC)
Avrami方程的推导
水波扩展模型——雨水滴落在水面上将生成一个个 圆形水波,并且等速向外扩展。
在水面上任意一个点上,在时间从0 t的范围内 通过该点的水波数为m的几率P(m)为多少?
当落下的雨滴数大于m时:
P (m )EmeE m !
(m0,1,2,3)
E——0到t时刻通过任意点P的水波数的平均值。
(2)晶核不断生成的情况——雨滴不断落入 I——单位时间单位面积上产生的晶核数(晶核生 成速率);
It——单位面积上从0到t时刻产生的晶核数(相当 于生成的水波数);
对应于时间增量dt,有效面 积增量仍为2πrdr。但是,并非有 效面积内“所有”的水波都能够
通过P点。能否通过P点与落点到 P点的距离以及落下的时间有关,
ΔHt ——从结晶开始到某时刻的放热量;
X (t )
H t H
t dH
o dt
dH
o
dt
dt dt
以ΔHt/ΔH∞对时间作图,可以得到结晶程度 与结晶时间的关系曲线。
§3-2 聚合物结晶动力学
一、等温结晶动力学
Avrami方程
1X(t)ex pK (nt)
t——结晶时间; X(t)——t时间的结晶程度; K ——结晶速率常数; n——Avrami指数;
Avrami方程的应用:
l g l1 n X ( t) n ltg lK g
1. 在薄层熔体形成二维晶体的情况
雨水滴落到水面上相当于形成晶核,而水波的扩 展相当于二维晶体的生长。 当m=0时,意味着所有的晶体生长面都不经过P点。 即P点仍处于非晶态的几率为:
P(0) eE
假设此时结晶部分所占的体积分数为Vc,非晶部 分所占的体积分数则为:
1VcP(0)eE
求0到t时刻通过任意点P的水波数的平 均值E——E是时间的函数
晶体的生长——一维生长、二维生长、三维生长
急 冷 至 玻 璃 态
玻璃态
加热至Tg以 上某个温度
等温结晶
聚合物熔体
急 冷 至 结 晶 温 度
等温结晶
以 一 定 速 度 冷 却
非等温结晶
晶态I
晶态II
晶态III
聚合物从熔体或从玻璃态结晶的示意图
结晶程度——结晶过程中某一时刻,结晶已完成部分 占应该完成部分的分数
第三章 结晶动力学与结晶热力学
§3-1 聚合物的结晶过程 §3-2 聚合物结晶动力学 §3-3 聚合物结晶热力学
§3-1 聚合物的结晶过程
一、聚合物的结晶能力
聚合物结晶的必要条件: ——链结构具有对称性或者立构规整性
聚合物结晶的充分条件: ——结晶温度位于玻璃化转变温度和结晶熔
融温度之间
自由基聚合产物——结构单元及构型的无规排列使 分子链立构规整性受到破坏,一般没有结晶能力;
配位聚合产物——分子链具有立构规整性,表现出 较强的结晶能力,通常可以结晶。其中全同立构体 结晶能力强于间同立构体,全反式聚合物结晶能力 强于全顺式聚合物,等规度高的结晶能力强于等规 度低的。
缩聚产物——不存在结构单元键接方式和立体构型 问题,但大多数缩聚物的分子链具有对称结构,可 以结晶。
影响结晶能力的因素
共聚——取决于共聚类型 链柔性——链柔性有利于晶体生长 支化——破坏分子链的规整性和对称性,不利于
结晶 交联——既破坏分子链的规整性,又限制链段的
运动,从而阻碍结晶。
二、聚合物的结晶过程
聚合物结晶过程——晶核形成与晶体生长 晶核形成的方式——均相成核与异相成核 均相成核——高分子熔体冷却过程中部分分子链依 靠热运动形成有序排列的链束而成为晶核; 异相成核——以聚合物熔体中的外来杂质或未完全 熔融的残余晶粒为中心,吸附熔体中的高分子链有 序排列形成晶核。