2020七年级数学上册数轴、相反数、绝对值习题(新版)新人教版

合集下载

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。

人教版七年级数学上册第一章 专题训练(一) 数轴、相反数与绝对值的应用

人教版七年级数学上册第一章 专题训练(一) 数轴、相反数与绝对值的应用

8.如图所示,一个单位长度表示2,观察图形,回答问题: (1)若B与D所表示的数互为相反数,则点D所表示的数为多少? (2)若A与D所表示的数互为相反数,则点D所表示的数为多少? (3)若B与F所表示的数互为相反数,则点D所表示的数的相反数为多少?
解:(1)因为B与D所表示的数互为相反数,且B与D之间有4个单位长度, 每个为2,所以可得点D所表示的数为4 (2)同理A与D所表示的数互为相反数,且它们之间距离为10, 所以点D表示的数为5 (3)B与F所表示的数互为相反数,B,F两点间距离为12, 可得C,D中间的点为原点,则D表示的数为2,它的相反数为-2
15.(1)式子|m-3|+6的值随m的变化而变化, 当m为何值时,|m-3|+6有最小值?最小值是多少? (2)当a为何值时,式子8-|2a-3|有最大值?最大值是多少? 解:(1)当m-3=0,即m=3时,|m-3|+6有最小值,最小值为6
(2)当 2a-3=0,即 a=32 时,8-|2a-3|有最大值,最大值为 8
解:(1)因为|a|=5,|b|=2,所以a=5或-5,b=2或-2, 由数轴可知,a<b<0,所以a=-5,b=-2 (2)表示a,b两数的点之间的距离为3
(3)①当点 C 在点 B 右侧时,根据题意,可知点 C 到点 B 距离为32 , 则点 C 表示的数为-12 ; ②当点 C 在点 B 左侧时,根据题意,可知点 C 到点 B 距离为34 , 则点 C 表示的数为-141 . 综上所述,点 C 表示的数为-12 或-141
用“<”把各数连接起来为-2.5<-|-2|<0<12 <2<-(-3)
3.有理数a,b,c在数轴上的对应点如图所示:
(1)在横线上填入“>”或“<”; a__<__0,b_>___0,c_<___0,|c|__<__|a|; (2)试在数轴上找出表示-a,-b,-c的点; (3)试用“<”号将a,-a,b,-b,c,-c,0连接起来. 解:(2)略 (3)a<-b<c<0<-c<b<-a

人教版七年级数学上册练习题

人教版七年级数学上册练习题

人教版七年级数学上册练习题数轴、相反数、绝对值巩固练习一、填空题:1.若上升5 m 记作+5 m,则-8 m 表示 ;如果-10元表示支出10元,那么+50元表示 ;如果零上5℃记作+5℃,那么零下2℃记作 ;太平洋中的马里亚纳海沟深达11 034 m,可记作海拔-11 034 m (即低于海平面11 034 m ),则比海平面高50 m 的地方,它的高度记作海拔 ,比海平面低30 m 的地方,它的高度记作海拔 .2.(实验月考)在数轴上大于-4.12的负整数有 .3.(阳光月考)到原点的距离等于3的数是 .4.(外中月考)数轴上表示-2和+10的两个点分别为A,B,则A,B 两点间的距离是 .5. (二中月考 )在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N,则点N 表示的数是 .6.(三中月考)已知数轴上点A 与原点的距离为2,则点A 对应的有理数是 ,点B 与点A 之间的距离为3,则点B 对应的有理数是 .7.填空:5.3-= ; 21+= ; 5--= ; 若x<0,则x = ,x -= ; 若m<n,则m n -=. 8.(育才月考)若3a =,则a= ;若3a -=,则a= ; 若2a -=,a<0,则a= ;若a b =,b=7,则a= ; 若a b =,b=7,a ≠b,则a= . 9.填空:(1)311--= -311 ;(2)2.42.4--= - = ; (3)53++-= + = ; (4)22--+=| - |= ; (5)3 6.2-⨯= × = ; (6)21433-÷-= = = . 10.把下列各数填入它所在的集合里: 2,7,32-,0,2 018,0.618,3.14,-1.732,-5,+3①正数集合:{ } ②负数集合:{ } ③整数集合:{ } ④非正数集合:{ } ⑤非负整数集合:{ } ⑥有理数集合:{ } 二、选择题:11.(外中月考)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B-3 C .+3 D .+412.(实验月考)某超市出售的三种品牌的洗衣液袋上分别标有净重为(800±2) g,(800±3) g,(800±5) g 的字样,从中任意拿出两袋,它们的质量最多相差( ) A .10 g B .8 g C .7 g D .5 g13.(市直期末)a,b 为有理数,在数轴上的位置如图所示,则下列关于a,b,0三者之间的大小关系,正确的是( )aA .0<a<bB .a<0<bC .b<0<aD .a<b<014.(三中月考)文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A .玩具店 B .文具店 C .文具店西边40米 D .玩具店东边60米15.(育才月考)下列各组数中,互为相反数的是( ) A .0.4与-0.41 B .3.8与-2.9 C .)8(--与8- D .)3(+-与(3)+- 16.(实验月考)下列化简不正确的是( ) A .( 4.9) 4.9--=+ B .( 4.9) 4.9-+=- C .[]( 4.9) 4.9-+-=+ D .[]( 4.9) 4.9+-+=+ 17.(外中月考)下列各数中,属于正数的是( ) A .)2(-+ B .3的相反数 C .)(a -- D .-3的相反数 18.(三中月考)有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数 19.(阳光月考)下列说法正确的是( ) A .一个数的绝对值一定大于它本身 B .只有正数的绝对值等于它本身 C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 20.(市直期末)若x x =-,则x 的取值范围是( ) A .1x =- B .0x = C .x ≥0 D .x ≤0 三、解答题:21.(市直期中22.请判断下列说法的正误.(对的打“√”,错的打“×”)(1)所有的有理数都能用数轴上的点表示。

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。

2023-2024学年七年级数学上册同步学与练(人教版)第04讲绝对值(含答案与解析)

2023-2024学年七年级数学上册同步学与练(人教版)第04讲绝对值(含答案与解析)

i.-2的绝对值是()5-4c-f D.且2【即学即练2】2.数轴上有力、B、C、。

四个点,其中绝对值等于2的点是(),4B C-J_I A二18・•]]L A-4-3-2-1012•345A.点力B.点BC.点。

D.点D【即学即练3】3.已矢口u—-2,b=l,则同+|-句的值为()A.3B.1C.0D.-1知识点02绝对值的性质1.绝对值的非负性:由定义可知,绝对值表示到原点的距离,所以不能为O所以绝对值是一个,所以绝对值具有。

即若|。

|0o几个非负数的和等于o,这几个非负数一定分别等于0o即:若\a\+\b\+...+I m|=0,则一定有o题型考点:根据绝对值的非负性求值。

【即学即练1】4.已知|x-2|+加T|=0,则x-y的相反数为()A.-1B.1C.3D.-3【即学即练2】5.若向+例=0,则口与力的大小关系是()A.a=b=0B.口与力互为倒数C.Q与b异号D.口与力不相等知识点03绝对值与数轴1.绝对值与数轴:在数轴上,一个数离原点越近,绝对值就,一个数离原点越远,绝对值,题型考点:根据绝对值与数轴进行求解判断。

6.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越・【即学即练2】7.如图,四个有理数m n,p,q在数轴上对应的点分别为N,P,0若乃+0=0,则秫,n,p,q四个有理数中,绝对值最小的一个是()M OA.p知识点04绝对值与相反数1.绝对值与相反数:①数轴上互为相反数的两个数在原点的两侧,且到原点的距离相等,所以互为相反数的两个数他们的绝对值_________o即若。

与5互为相反数,贝」|q|\b\o②绝对值等于某个正数的数一定有,它们o即若|x|=q(q>0),则③绝对值相等的两个数要么,要么o即若|。

|=|们,则有或o题型考点:根据相反数的绝对值进行求解。

【即学即练1】8.若|x|=5,贝0x—.【即学即练2】9.已知□=-5,同=|句,则人的值为()A.±5B.-5C.+5D.0【即学即练3】10.绝对值等于5的数是,它们互为.知识点05求式子的绝对值1.求式子的绝对值:先判断式子与的大小关系,再对式子进行求绝对值。

七年级数学上册《数轴、相反数、绝对值》专题练习(含答案)

七年级数学上册《数轴、相反数、绝对值》专题练习(含答案)

七年级数学上册《数轴、相反数、绝对值》专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.-5的绝对值为( )A.-5 B.5 C.-15D.152.-18的相反数是( )A.-8 B.18C.0.8 D.83.在下面所画的数轴中,你认为正确的数轴是( )4.下列说法正确的是( )A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为( )A.-3 B.5 C.6 D.7 6.若a=7,b=5,则a-b的值为( )A.2 B.12C.2或12 D.2或12或-12或-2 7.实数a,b在数轴上的位置如图所示,以下说法正确的是()A . a +b =0B . b <aC . a b >0D . |b |<|a |8.下列式子不正确的是 ( )A .44-=B .1122=C .00=D . 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a -b +c 2-d 的值是 ( )A .-2B .-1C .0D .110.如果abcd<0,a +b =0,cd>0,那么这四个数中的负因数至少有 ( )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数. 13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A ,B 表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x 的值,使1x -=x -1成立,你写出的x 的值是______.17.若x ,y 是两个负数,且x<y ,那么x _______y .18.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,若a >b >c ,则该数轴的原点O 的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6.3),+(-32),12,312.20.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-132,4 ,2.5,0,1,-(-7),-5,-112.21.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x-=1,这样的数x可以是0或2.1x-=2的几何意义可仿上解释为:在数轴上____________________________,(1)等式2其中x 的值可以是______________.(2)等式3x +=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(3)在数轴上,表示数x 的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x 的相反数是_______,m +12n 的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=12(2+6),那么到点100和到点999距离相等的点表示的数是_______;到点m 和点-n 距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m 和点n 之间的距离是_______.25.(6分)设0a b c ++=,0abc >,求b c c a a b a b c+++++的值。

2022-2023人教版七年级数学上册第一单元 数轴、相反数与绝对值 常考易错习题检测 (带答案)

2022-2023人教版七年级数学上册第一单元 数轴、相反数与绝对值 常考易错习题检测 (带答案)

2022-2023人教版七年级数学上册第一单元数轴、相反数与绝对值常考易错习题检测(带答案)一.选择题(共10小题)1.在数轴上表示下列四个数中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.62.如图,在数轴上,点A、B分别表示数a、b,且a+b=0,若AB=8,则点A表示的数为()A.﹣4B.0C.4D.83.如图,在数轴上,若点A,B表示的数分别是﹣2和10,点M到点A,B距离相等,则M表示的数为()A.10B.8C.6D.44.﹣2022的相反数是()A.2022B.﹣2022C.D.5.在3、0、﹣4、﹣2四个数中最小的数是()A.3B.0C.﹣4D.26.﹣的绝对值是()A.﹣B.﹣C.D.7.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最低的液体是()A.液态氧B.液态氢C.液态氮D.液态氦8.若a为有理数且|a﹣1|=4,则a的取值是()A.5B.±5C.5或﹣3D.±39.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<010.有理数a在数轴上的位置如图所示,下列各数中,在0到1之间的是()①﹣a﹣1,②|a+1|,③2﹣|a|,④|a|.A.②③④B.①③④C.①②③D.①②③④二.填空题(共7小题)11.如图所示,直径为单位1的圆从表示﹣1的点沿着数轴无滑动的向右滚动一周到达A点,则A点表示的数是.12.点A、B在数轴上对应的数分别为﹣3和2,则线段AB的长度为.13.如图,已知A,B两点在数轴上,点A表示的数为﹣10,点B表示的数为30,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N 同时出发,经过秒,点M、点N分别到原点O的距离相等.14.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是.15.绝对值不大于3的所有整数有个,它们的和是.16.若|a|=2,|b|=4,且|a﹣b|=b﹣a,则a+b=.17.请你将32,(﹣2)3,0,|﹣|,﹣这五个数按从大到小排列:.三.解答题(共6小题)18.画出数轴,并解答下列问题:(1)在数轴上表示下列各数:5,3.5,﹣2,﹣1;(2)在数轴上标出表示﹣1的点A,写出将点A沿数轴平移4个单位长度后得到的数.19.如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A到点B的距离为3,点B到点C的距离为8,设点A、B、C所对应的数的和是m.(1)若以A为原点,则数轴上点B所表示的数是;若以B为原点,则m=;(2)若原点O在图中数轴上,且点B到原点O的距离为4,求m的值.20.化简下列各数:①+(﹣3);②﹣(+5);③﹣(﹣3.4);④﹣[+(﹣8)];⑤﹣[﹣(﹣9)].21.先画数轴并在数轴上表示﹣3、﹣|﹣2|、﹣(﹣1)、0、+4、|﹣3|各数的点,再用“<”把这些数连接起来.22.若|x+3|与|y+2|互为相反数,求x+y的值.23.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,b﹣a0,c﹣a0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵|﹣2|=2,|1.3|=1.3,|﹣0.4|=0.4,|0.6|=0.6,又∵2>1.3>0.6>0.4,∴离原点最近的是﹣0.4,故选:C.2.【解答】解:∵a+b=0,∴b=﹣a,又∵AB=8,∴b﹣a=8.∴﹣a﹣a=8.∴a=﹣4,即点A表示的数为﹣4.故选:A.3.【解答】解:由题意得:AB=10﹣(﹣2)=10+2=12,∵点M到点A,B距离相等∴MB=12÷2=6,∴10﹣6=4,∴点M表示的数是:4,故选:D.4.【解答】解:﹣2022的相反数是2022,故选:A.5.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣2<0<3,∴在﹣、0、﹣4、﹣2四个数中,最小的数为﹣4.故选:C.6.【解答】解:根据绝对值的定义,得=.故选:C.7.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最低的液体是液态氦.故选:D.8.【解答】解:∵|a﹣1|=4,∴a﹣1=4或a﹣1=﹣4,解得:a=5或a=﹣3.故选:C.9.【解答】解:由数轴可知,a<0<b,|a|<|b|,∴0<﹣a<b,故选:A.10.【解答】解:①根据数轴可以知道:﹣2<a<﹣1,∴1<﹣a<2,∴0<﹣a﹣1<1,符合题意;②∵﹣2<a<﹣1,∴﹣1<a+1<0,∴0<|a+1|<1,符合题意;③∵﹣2<a<﹣1,∴1<|a|<2,∴﹣2<﹣|a|<﹣1,∴0<2﹣|a|<1,符合题意;④∵1<|a|<2,∴<|a|<1,符合题意.故选:D.二.填空题(共7小题)11.【解答】解:由直径为单位1的圆从数轴上表示﹣1的点沿着数轴无滑动的向右滚动一周到达A点,得:A点与﹣1之间的距离是π.由两点间的距离是大数减小数,得:A点表示的数是π﹣1,故答案为:π﹣1.12.【解答】解:∵点A、B在数轴上对应的数分别为﹣3和2,∴AB=2﹣(3)=5.故答案为:5.13.【解答】解:设经过t秒,点M、点N分别到原点O的距离相等,则点M所表示的数为(﹣10+3t),点N所表示的数为2t,①当点O是MN的中点时,有2t=0﹣(﹣10+3t),解得,t=2,②当点M与点N重合时,有2t=﹣10+3t,解得,t=10,因此,t=2或t=10,故答案为:2或10.14.【解答】解:∵点B到点A的距离是2,∴点B表示的数为﹣1或﹣5,∵B、C两点表示的数互为相反数,∴点C表示的数应该是1或5.故答案为1或5.15.【解答】解:绝对值不大于3的所有整数有±3±2±10,共7个,和为:(+3)+(﹣3)+(+2)+(﹣2)+(+1)+(﹣1)+0=0,故答案为:7,0.16.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,∴或,∴a+b=6或2,故答案为:6或2.17.【解答】解:如图所示,故32>|﹣|>0>﹣>(﹣2)3.故答案为:32>|﹣|>0>﹣>(﹣2)3.三.解答题(共6小题)18.【解答】解:(1)如图所示,(2)如图所示:将点A平移4个单位长度后得到的数是3或﹣5.19.【解答】解:(1)∵点A到点B的距离为3,A为原点,∴数轴上点B所表示的数是3,B为原点,∴数轴上点B所表示的数是0,点A表示的数是﹣3,点C表示的数是8,∴m=﹣3+0+8=5,故答案为:3,5;(2)∵点A到点B的距离为3,点B到点C的距离为8,点B到原点O的距离为4,∴当O在B的左边时,A、B、C三点在数轴上所对应的数分别为1、4、12,∴m=1+4+12=17,当O在B的右边时,A、B、C三点在数轴上所对应的数分别为﹣7、﹣4、4,∴m=﹣7﹣4+4=﹣7,综上所述:m的值为﹣7或17.20.【解答】解:①+(﹣3)=﹣3;②﹣(+5)=﹣5;③﹣(﹣3.4)=3.4;④﹣[+(﹣8)]=﹣(﹣8)=8;⑤﹣[﹣(﹣9)]=﹣(+9)=﹣9.21.【解答】解:﹣|﹣2|=﹣2,﹣(﹣1)=1,+4=4,|﹣3|=3,在数轴上表示各数,如图:排列为:﹣3<﹣|﹣2|<0<﹣(﹣1)<|﹣3|<+4.22.【解答】解:∵|x+3|与|y+2|互为相反数,∴|x+3|+|y+2|=0,∴|x+3|=0,|y+2|=0,即x+3=0,y+2=0,∴x=﹣3,y=﹣2.∴x+y=﹣3+(﹣2)=﹣5,即x+y的值是﹣5.23.【解答】解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0。

七年级数学试题(数轴-相反数-绝对值)

七年级数学试题(数轴-相反数-绝对值)

七年级数学试题(数轴,相反数,绝对值) 班级___________姓名____________一、填空题1.-2的相反数是 ,0。

5的相反数是 ,0的相反数是 。

2.如果a 的相反数是-3,那么a = 。

如果-a = -4,则a = 3。

―(―2)= . 与―[―(―8)]互为相反数 4。

如果 a ,b 互为相反数,那么a + b = , 5. a+5的相反数是3,那么, a = .6.如果 a 的相反数是最大的负整数,b 的相反数是最小的正整数,则 a + b = 。

7.一个数的相反数大于它本身,那么,这个数是 。

一个数的相反数等于它本身,这个数是 ,一个数的相反数小于它本身,这个数是 。

8. 数轴上表示 -3的点离开原点的距离是_______个单位长度;数轴上与原点相距3个单位长度的点有________个,它们表示的数是_________。

9. a - b 的相反数是 .10。

一个点从数轴上表示-1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是 。

11. ______7.3=-; ______0=;______3.3=--; ______75.0=+-.______31=+;______45=--;______32=-+. 12.当a a -=时,0______a ;当0>a 时,______=a13.在数轴上,绝对值为4,且在原点左边的点表示的有理数为_________ 14。

7=x ,则______=x ; 7=-x ,则______=x .15. 如果3>a ,则 ______3=-a ,______3=-a .16. 已知两个数 556 和 283-,这两个数的相反数的和是_________ 17。

已知m 是6的相反数,n 比m 的相反数小2,则 m n + 等于_________ 18.互为相反数两数和为 ,互为倒数两数积为 19.把数5-,5.2,25-,0,213用“<”号从小到大连起来:20.绝对值大于1而小于4的整数有 个,分别是________________________二、选择题1。

数学人教版(2024)版七年级初一上册 1.2.4 绝对值 课时练 含答案01

数学人教版(2024)版七年级初一上册 1.2.4 绝对值 课时练 含答案01

第一章 有理数1.2.4 绝对值一、单选题1.下列四个数在数轴上表示的点,距离原点最近的是( )A .1-B .0.5-C .1D .1.52.在下列数中,绝对值最大的数是( )A .0B .1-C .2-D .13.下列各组数中,互为相反数的是( )A .2024-和2024-B .2024和12024C .2024-和2024D .2024-和120244.0.2的相反数的绝对值为( )A .5-B .0.2C .5D .0.2-5.若a 是有理数,则|1|2a -+的最小值是( )A .0B .1C .2D .36.下列各式中结果为负数的是( )A .5-B .(5)++C .|5|--D .(5)--7.一个数x 的相反数的绝对值为3,则这个数是( )A .3B .3-C .x -D .3±8.如果||a a =,那么a 的取值范围是( )A .正数B .负数C .非负数D .非正数二、填空题9.在数轴上,一个数所对应的点与原点的 叫该数的绝对值.正数的绝对值是 ;负数的绝对值是 ; 的绝对值是0.10.比较大小:2- 4-(填“>”“<”或“=”).11.如果一个数的绝对值等于23,则这个数是 .12.在数轴上,若点P 表示0,则距P 点5个单位长度的点表示的数为 .13.如果一个数的绝对值是315,那么这个数是 .14.化简:35-= ; 1.5--= ;()2--= .15.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是 .16.如果7x =,则x = .三、解答题17.已知零件的标准直径是100mm ,超过标准直径长度的数量(单位:mm )记作正数,不足标准直径长度的数量(单位:mm )记作负数,检验员某次抽查了五件样品结果如下:序号①②③④⑤检验结果0.15-0.4+0.1+0.2+0.35-(1)在所抽查的五件样品中,最符合要求是样品______(填序号);(2)如果规定零件误差的绝对值在0.3mm 之内是正品,那么上述五件样品中哪些是正品?18.已知12502a b c -+-+-=,求a b c ,,的值.19.在活动课上,有6名学生用橡皮泥做了6个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记作负数,检查结果如下表:做乒乓球的同学李明张兵王敏余佳赵平蔡伟检测结果0.031+0.017-0.023+0.021-0.022+0.011-(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出合乎要求的乒乓球中哪个同学做的质量最好,6名同学中,哪个同学做的质量较差?20.河北某交警每天都开车在南北走向的鼓楼大街上巡逻,假定从出发点开始,向南为正,向北为负,他这天下午巡逻记录里程如下(单位:km ):15+,3-,14+,11-,10+,4+,26-.(1)这位交警在第几个路段行车里程最远?为多少千米?(2)若汽车耗油量为0.1L /km ,这天下午汽车共耗油多少升?参考答案1.B2.C3.A4.B5.C6.C7.D8.C9.距离 它本身 它的相反数 010.<11.23或23-12.5±13.315±14. 35 1.5- 215.乙16.7±17.解:(1)解:∵0.150.15-=,0.40.4+=,0.10.1+=,0.20.2+=,0.350.35-=,而0.10.150.20.350.4<<<<,∴最符合要求是样品③;(2)∵规定零件误差的绝对值在0.3mm 之内是正品,而0.40.3>,0.350.3>,∴②⑤不符合题意;∴正品是样品①③④.18.解:∵12502a b c -+-+-=,∴102a -=,20b -=,50c -=,∴12a =,2b =,5c =.19.解:(1)解:Q |0.031|0.031+=,|0.017|0.017-=,|0.023|0.023+=,|0.021|0.021-=,|0.022|0.022+=,|0.011|0.011-=,\0.0310.02>,0.0170.02<,0.0230.02>,0.0210.02>,0.0220.02>,0.0110.02<,∵直径与规定直径不超过0.02毫米的误差视为符合要求,张兵的是−0.017,蔡伟的是−0.011不超过0.02毫米的误差,∴张兵和蔡伟做的乒乓球是符合要求的;(2)解:Q |0.031||0.023||0.022||0.021||0.017||0.011|+>+>+>->->-,∴6名同学做的乒乓球质量按照最好到最差排名为:蔡伟、张兵、余佳、赵平、王芳、李明,∴蔡伟做的质量最好,李明同学做的质量最差,答:蔡伟做的质量最好;李明做的较差.20.解:(1)解:由题意得1515+=,33-=,1414+=,1111-=,1010+=,44+=,2626-=,341011141526<<<<<<Q ,\最后一个路段行车里程最远为26km .(2)解:由题意得()0.1153141110426´++-+++-+++++-0.183=´8.3=(L );答:这天下午汽车共耗油8.3升.。

_ 2020—2021学年七年级数学上册 2.2--2.3 数轴、相反数、绝对值 同步练习

_ 2020—2021学年七年级数学上册 2.2--2.3   数轴、相反数、绝对值  同步练习

2.2数轴、相反数、绝对值同步练习一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣12.下列数轴表示正确的是()A.B.C.D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣34.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣25.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣16.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.107.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣58.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.616.﹣3的相反数是()A.3B.C.﹣3D.﹣17.的相反数是()A.﹣2017B.2017C.D.18.若m是﹣6的相反数,则m的值是.19.﹣8的相反数是.如果﹣a=2,则a=.20.已知m﹣2的相反数是5,那么m3的值等于.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣22.|﹣2|等于()A.2B.﹣2C.D.0 23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3 24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3 26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a 27.当x<1时,化简:|x﹣1|=.28.若|x﹣2|=2,则x﹣1=.29.如果|x﹣3|=5,那么x=.30.如果b与5互为相反数,则|b+2|=.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.32.已知a是2的相反数,计算|a﹣2|的值.33.已知|a﹣1|=2,求﹣3+|1+a|值.2.2数轴、相反数、绝对值同步练习参考答案与试题解析一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣1【解答】解:由题意得:|m|=|m+2|,∴m=m+2或m=﹣(m+2),∴m=﹣1.故选:C.2.下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣3【解答】解:∵点M表示数m,将点M向右平移1个单位长度得到点P,∴平移后P表示的数是m+1,∵N表示数2,PO=NO,∴m+1与2互为相反数,即m+1=﹣2,∴m=﹣3,故选:D.4.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣2【解答】解:点P表示的数是﹣2+4=2.故选:C.5.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣1【解答】解:因为点A到原点的距离大于点B到原点的距离,且B在原点左边,故A、C错误;B选项为﹣3,大于A的绝对值,故B错误;故选:D.6.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.10【解答】解:AB=4﹣(﹣6)=10.故选:D.7.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣5【解答】解:∵点O是线段AB的中点,∴AO=BO,∵AB=20,∴AO=BO=AB=10,根据距离公式|0﹣a|=10,∴a=﹣10,故选:C.8.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是﹣2.【解答】解:设点C表示的数为x,则AC=x﹣(﹣10)=x+10,BC=4﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+10﹣(4﹣x)=2.解得:x=﹣2.故答案为:﹣2.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是6.【解答】解:表示数﹣5和表示数﹣11的两点之间的距离是:|(﹣5)﹣(﹣11)|=6,故答案为:6.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是2,﹣6.【解答】解:数轴上点A表示的数为﹣2,距离点A4个单位长度的点有两个,它们分别是﹣2+4=2,﹣2﹣4=﹣6,故答案为:2,﹣6.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为8或﹣2.【解答】解:设B点表示的数为b,则|b﹣3|=5,∴b﹣3=5或b﹣3=﹣5,∴b=8或b=﹣2.故答案为:8或﹣2.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为1或9.【解答】解:∵点A表示﹣3,AC=4,∴C表示的数是﹣3+4=1或﹣3﹣4=﹣7,即x=1或x=﹣7,∵A,B所表示的数分别是﹣3、+7,点M是AB的中点,∴M表示的数是(﹣3+7)÷2=2,∴CM=|1﹣2|=1或CM=|﹣7﹣2|=9,故答案为:1或9.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:﹣20;点B表示的数是:100.(2)A,B两点间的距离是120个单位,线段AB中点表示的数是40.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.【解答】解:(1)∵点A在原点左侧且距原点20个单位,∴点A表示的数是﹣20,∵点B在原点右侧且距原点100个单位,∴点B表示的数是100,故答案为:﹣20;100.(2)∵点A表示的数是﹣20,点B表示的数是100,∴A、B两点间的距离为100﹣(﹣20)=120,线段AB中点表示的数是100﹣120÷2=40,故答案为:120;40.(3)设两只蚂蚁经过x秒相遇,4x+6x=120,解得:x=12,﹣20+4x=28,∴点C表示的数是28.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.【解答】解:(1)点B向右移动5个单位长度后,点B表示的数为1;三个点所表示的数中最小的数是是点A,为﹣1.(2)点D到A,C两点的距离相等;故点D为AC的中点.D表示的数为:0.5.(3)当点E在A、B时,EA=2EB,从图上可以看出点E为﹣3,∴点E表示的数为﹣3;当点E在点B的左侧时,根据题意可知点B是AE的中点,∴点E表示的数是﹣7.综上:点E表示的数为﹣3或﹣7.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.6【解答】解:相反数指的是两个数符号不同但绝对值相同,所以6的相反数为﹣6.故选:C.16.﹣3的相反数是()A.3B.C.﹣3D.﹣【解答】解:∵互为相反数的两个数相加等于0,∴﹣3的相反数是3.故选:A.17.的相反数是()A.﹣2017B.2017C.D.【解答】解:﹣的相反数为,故选:D.18.若m是﹣6的相反数,则m的值是6.【解答】解:∵m是﹣6的相反数,∴m=6.故答案为:6.19.﹣8的相反数是8.如果﹣a=2,则a=﹣2.【解答】解:﹣8的相反数是8.如果﹣a=2,则a=﹣2.故答案为:8,﹣2.20.已知m﹣2的相反数是5,那么m3的值等于﹣27.【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,∴m3=(﹣3)3=﹣27.故答案为:﹣27.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣【解答】解:﹣9的绝对值是9,故选:A.22.|﹣2|等于()A.2B.﹣2C.D.0【解答】解:|﹣2|等于2,故选:A.23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3【解答】解:∵2<a<3,∴a﹣3<0,2﹣a<0,∴原式=3﹣a+a﹣2=1.故选:B.24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.【解答】解:|﹣|=,的相反数是﹣.故选:B.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵x<0,y>0,∴x=﹣5,y=2,∴x+y=﹣3.故选:D.26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a【解答】解:任何数的绝对值都是非负数,所以|a|≥0.故选:A.27.当x<1时,化简:|x﹣1|=1﹣x.【解答】解:∵x<1,∴x﹣1<0,∴原式=﹣(x﹣1)=1﹣x.28.若|x﹣2|=2,则x﹣1=3或﹣1.【解答】解:∵|x﹣2|=2,∴x﹣2=+2,或x﹣2=﹣2,∴x=4或x=0,当x=4时,x﹣1=4﹣1=3,当x=0时,x﹣1=0﹣1=﹣1.故答案为:3或﹣1.29.如果|x﹣3|=5,那么x=8或﹣2.【解答】解:∵|x﹣3|=5,∴x﹣3=±5,解得x=8或﹣2.故答案为:8或﹣2.30.如果b与5互为相反数,则|b+2|=3.【解答】解:∵b与5互为相反数,∴b=﹣5,∴|b+2|=|﹣5+2|=|﹣3|=3.故答案为:3.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.【解答】解:(1)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.(2)由题意得:﹣|﹣|﹣(﹣)=.32.已知a是2的相反数,计算|a﹣2|的值.【解答】解:∵a是2的相反数,∴a=﹣2,∴|a﹣2|=4.33.已知|a﹣1|=2,求﹣3+|1+a|值.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3。

人教版2020年七年级数学上册1.2.4《绝对值》课后练习(含答案)

人教版2020年七年级数学上册1.2.4《绝对值》课后练习(含答案)

人教版2020年七年级数学上册 1.2.4《绝对值》课后练习 1.如图,数轴上点A ,B ,C ,D 所表示的数中,绝对值相等的两个点是( )A .点A 和点CB .点B 和点CC .点A 和点D D .点B 和点D2.(1)-3到原点的距离是3,所以|-3|= ; (2)0到原点的距离是0,所以|0|= .3.|2 017|的意义是 .4.在数轴上,绝对值为14,且在原点左边的点表示的数为 .5.-5的绝对值是( )A .5B .-5 C.15 D .±56.计算:|-15|=( ) A .-15 B.15 C .5 D .-57.若|a|=6,则a=( )A .6B .-6C .8D .±68.若a 与-1互为相反数,则|a +2|等于( )A .2B .-2C .3D .-19.(湛江期中)在有理数中,绝对值等于它本身的数有( )A .一个B .两个C .三个D .无数个10.计算:|-3.7|= ,-(-3.7)= ,-|-3.7|= ,-|+3.7|= .11.求下列各数的绝对值:(1)+2; (2)-7.2; (3)-17; (4)-813.12.(1)①正数:|+5|= ,|12|= ;②负数:|-7|= ,|-15|= ;③零:|0|= ;(2)根据(1)中的规律发现:不论正数、负数和零,它们的绝对值一定是 ,即|a| 0.13.因为互为相反数的两个数到原点的距离相等,所以到原点的距离为2 017的点有 个,分别是 ,即绝对值等于2 017的数是 .14.若|a|+|b|=0,则a= ,b= .15.-(-3)的绝对值是( )A .-3B.13 C .3 D .-1316.-|-2|的相反数是( )A .-12B .-2 C.12D .2 17.如图,数轴的单位长度为1,如果点A 、B 表示的数的绝对值相等,那么点A 表示的数是( )A .-4B .-2C .0D .418.下列说法中正确的是( )A .|a|一定大于0B .有理数分为正数和负数C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等19.绝对值小于6的整数有 个,它们分别是 ;绝对值大于3且小于6的整数是 .20.(1)若|x|=|-2|,则x= ;(2)若|m|=13,且m <0,则m= . 21.若|a|=a ,则a 0;若|a|=-a ,则a 0.22.写出下列各数的绝对值:-1,23,-34,0,-325,15.23.化简:(1)-|-3|; (2)-|-(-7.5)|; (3)+|-(+7)|.24.已知x=-30,y=-4,求|x|-3|y|.25.(1)已知|a|=5,|b|=3,且a>0,b>0,求a +b 的值;(2)已知|a -2|+|b -3|+|c -4|=0,求a +b +c 的值.参考答案 1.(C) 2.(1)3;(2)0.3.数轴上表示2017的点与原点的距离.4.-14.5.(A)6.(B)7.(D)8.(C)9.(D) 10.3.7,3.7,-3.7,-3.7.11.(1)解:|+2|=2.(2)解:|-7.2|=-(-7.2)=7.2.(3)解:|-17|=-(-17)=17. (4)解:|-813|=-(-813)=813. 12.(1)①5,12;②负7,15;③零0;(2)非负数,≥0.13.两,2_017和-2017,±2017.14.0,0.15.(C)16.(D)17.(B)18.(D)19.11,5,±4,±3,±2,±1,0;±5,±4.20.(1)±2;(2)=-13. 21.≥;≤.22.解:各数的绝对值分别为:1,23,34,0,325,15. 23.(1)解:原式=-3.(2)解:原式=-|7.5|=-7.5.(3)解:原式=+|-7|=7.24.解:原式=30-3×4=18.25.解:(1)因为|a|=5,|b|=3,且a>0,b>0,所以a=5,b=3.所以a +b=5+3=8.(2)因为|a -2|+|b -3|+|c -4|=0,所以a -2=0,b -3=0,c -4=0.所以a=2,b=3,c=4.所以a +b +c=2+3+4=9.。

人教初中数学七年级上册1.2.4绝对值同步训练(解析)

人教初中数学七年级上册1.2.4绝对值同步训练(解析)

新人教版数学七年级上册1.2.4绝对值同步训练一、选择题1.下列说法不正确的是( ).A. 0既不是正数,也不是负数B. 1是绝对值最小的数C. 一个有理数不是整数就是分数D. 0的绝对值是0【答案】B【考点】绝对值及有理数的绝对值,有理数及其分类【解析】【解答】(A)0既不是正数,也不是负数,正确;(B)0是绝对值最小的数,故错误;(C)一个有理数不是整数就是分数,正确;(D)0的绝对值是0,正确所以选B.【分析】根据有理数的分类和绝对值的性质判断就可以解答.本题考查的是有理数的分类和绝对值的性质,解题时应该熟练掌握有理数的分类,此题难度不大.2.下列结论中正确的是().A. 0既是正数,又是负数B. O是最小的正数C. 0是最大的负数D. 0既不是正数,也不是负数【答案】D【考点】正数和负数【解析】【解答】(A)0既不是正数,也不是负数,故错误;(B)0既不是正数,也不是负数,故错误;(C)0既不是正数,也不是负数,故错误;(D)0既不是正数,也不是负数,正确.所以选D.【分析】根据有理数的分类就可以解答.本题考查的是有理数的分类,解题时应该熟练掌握有理数的分类,此题难度不大.3.一个有理数的倒数是它本身,这个数是().A. 0B. 1C.D. 1或【答案】D【考点】有理数的倒数【解析】【解答】(A)0没有倒数,故错误;(B)如果一个数的倒数等于它本身,则这个数是±1,故错误;(C)如果一个数的倒数等于它本身,则这个数是±1,故错误;(D)如果一个数的倒数等于它本身,则这个数是±1,正确.所以选D.【分析】根据有理数的倒数的定义就可以解答.若两个数的乘积是1,我们就称就两个数互为倒数,在求熟练掌握并运用,尤其是±1这两个特殊的数字.4.- 的绝对值是().A. -2B. -C. 2D.【答案】D【考点】绝对值及有理数的绝对值【解析】【解答】- 的绝对值是.所以选D.【分析】根据绝对值的性质就可以解答.熟练掌握绝对值的性质是解题的关键,此题难度不大.5.若,则是().A. 0B. 正数C. 负数D. 负数或0【答案】D【考点】绝对值及有理数的绝对值【解析】【解答】若,则是负数和0.所以选D.【分析】根据绝对值的性质解题.数轴上一个数所对应的点与原点(点零处)的距离叫做该数绝对值。

人教版2020七年级数学上册数轴、相反数、绝对值讲义(新版)新人教版

人教版2020七年级数学上册数轴、相反数、绝对值讲义(新版)新人教版

数轴、相反数、绝对值(讲义)➢ 课前预习1. 为了表示相反意义的量,我们可以把其中一个量规定为正的, 用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走 5 m 可记作+5 m,向西走 8 m可记作m.(2)一种袋装食品标准净重为 200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重 205 g 记为+5 g,那么食品净重 197 g 就记为g.2. 正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5 等都是负整数,而-1.5, 数.请将下列各数进行分类:1 都是负分 23 3,-2.5,3.14, ,-9,100,02其中属于整数的有:;其中属于分数的有:;其中属于正数的有:;其中属于负数的有:.3. 如图,点 A 表示小明的家,动物园在小明家西边 500 米,书店在小明家东边 500 米,车站在书店东边 200 米,小明从动物园出发向东走 1000 米,到达;动物园和书店到小明家的距离都是米;小明从家出发,走了 500 米,可以到达 ; 动 物 园 和 车 站 之间的距离为米.B 动物园ACD家书店 车站1➢ 知识点睛1.与2. 有理数的分类:统称为有理数.有理数有理数3. 非正数:非正整数:;非负数: ;非负整数:4. 数轴的定义:规定了、、叫做数轴.任何一个都可以用数轴上的一个点来表示.画数轴时注意以下几点: ①三要素; ②直线; ③数字和点的位置.. . 的一条画数轴:5. 数轴的作用:、、.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越,越往左数越,右边的总比左边的.正数0,负数0,正数负数.7. 相反数的定义:地,的两个数,互为相反数.特别 .互为相反数的两个数,和为 0.8. 绝对值的定义:在上,一个数所对应的点与原点的叫做这个数的绝对值.9. 绝对值法则:正数的绝对值是;;.字母表示: a 请尝试写出下列式子的相反数:a 的相反数是 a 的相反数是 a b 的相反数是; ; .事实上:绝对值是它本身的数是;绝对值是它的相反数的数是.2➢ 精讲精练1. 若上升 5 m 记作+5 m,则 8 m 表示表示支出 10 元,那么+50 元表示;如果 10 元 ;如果零上 5℃记作+5℃,那么零下 2℃记作;太平洋中的马里亚纳海沟深达 11 034 m,可记作海拔 11 034 m(即低于海平面 11 034m),则比海平面高 50 m 的地方,它的高度记作海拔 , 比 海 平 面 低30 m 的地方,它的高度记作海拔.2. 有四包真空小包装火腿,每包以标准克数(450 克)为基数, 超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A.+2B. 3 C.+3D.+43. 某超市出售的三种品牌的洗衣液袋上分别标有净重为(800±2) g,(800±3) g,(800±5) g 的字样,从中任意拿出两袋,它们的质量最多相差( )A.10 gB.8 gC.7 gD.5 g4. 把下列各数填入它所在的集合里:2,7, 2 ,0,2 015,0.618,3.14, 1.732, 5,+3 3①正数集合:{…}②负数集合:{…}③整数集合:{…}④非正数集合:{…}⑤非负整数集合:{…}⑥有理数集合:{…}5. 在数轴上表示下列各数:0, 3.5,11 , 1,+3, 2 2 ,并23比较它们的大小.36. a,b 为有理数,在数轴上的位置如图所示,则下列关于 a,b,0 三者之间的大小关系,正确的是()a0bA.0<a<bB.a<0<bC.b<0<aD.a<b<07. 在数轴上大于 4.12 的负整数有.8. 到原点的距离等于 3 的数是.9. 数轴上表示 2 和 101 的两个点分别为 A,B,则 A,B 两点间的距离是.10. 在数轴上,点 M 表示的数是 2,将它先向右移 4.5 个单位, 再向左移 5 个单位到达点 N,则点 N 表示的数是.11. 文具店、书店和玩具店依次坐落在一条东西走向的大街上, 文具店在书店西边 20 米处,玩具店位于书店东边 100 米处, 小明从书店沿街向东走了 40 米,接着又向东走了 60 米,此时小明的位置在()A.玩具店B.文具店C.文具店西边 40 米D.玩具店东边 60 米12. 已知数轴上点 A 与原点的距离为 2,则点 A 对应的有理数是,点 B 与点 A 之间的距离为 3,则点 B 对应的有理数是.13. 下列各组数中,互为相反数的是()A.0.4 与 0.41 C. ( 8) 与 8 14. 下列化简不正确的是(B.3.8 与 2.9D. ( 3) 与 ( 3) )A. ( 4.9)4.9B. ( 4.9)4.9C.( 4.9)4.915. 下列各数中,属于正数的是(A. ( 2)C. ( a)D. 4.9 )( 4.9)B. 3 的相反数D. 3 的相反数的相反数16. a,b 是有理数,它们在数轴上的对应点的位置如图所示,把a, a,b, b 按照从小到大的顺序排列正确的是()A. baabC. b aaba0B. baD. b bbba aa417. 有理数的绝对值一定是()A.正数B.整数C.正数或零D.非正数18. 下列说法正确的是()A.一个数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数19. 填空:3.5 =; 1= 2;5=;若 x<0,则 x,x;若 m<n,则 m n.20. 下列各数中: 2, 1 , 3 , 0 ,2 , ( 2),2,3是正数的有.21. 若 xx ,则 x 的取值范围是( )A. x 22. 若 a1B. x 0C.x≥03 ,则 a=;若 3 a ,则 a=D.x≤0 ;若 a 2 ,a<0,则 a=.23. 若 a b ,b=7, 则 a=;若 a b ,b=7,a≠b, 则 a=.24. 填空:(1)11 =;3(2) 4.2 4.2 == _;(3) 35= + = ;(4) 22 =||=;(5) 3 6.2 = × = _;2 (6)14=÷ = × =.335【参考答案】➢ 课前预习1. (1)-8.(2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14, 其中属于正数的有:3,3.14,100;3 ; 2其中属于负数的有:-2.5, 3 ,-9. 23. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数正整数 整数 0正有理数 正整数2. 有理数 负整数正分数分数负分数 正分数 有理数 0负整数 负有理数 负分数3. 负数和 0;正数和 0;负整数和 0;正整数和 0 4. 原点、单位长度、正方向、直线; 有理数.5. 表示数比较大小表示距离6. 大,小;大;大于,小于,大于7. 符号不同.0 的相反数为 0.8. 数轴,距离9. 它本身;负数的绝对值是它的相反数;0 的绝对值是 0a (a 0)a 0 (a 0) a (a 0)右侧框内答案框 2:图略框 3:-a,a,-a+b框 4:正数和 0,负数和 06➢ 精讲精练1. 下降 8 m 收入 50 元-2℃ +50 m -30 m2. A3. A4. ①7,2 015,0.618,3.14,+3; ②-2,2 ,-1.732,-5 3③-2,7,0,2 015,-5,+3; ④-2,2 ,0,-1.732,-5 3⑤7,0,2 015,+3;⑥-2,7,2 ,0,2 015,0.618,3.14,-1.732,-5,+3 35. 11223 31 0 图略; 26. B 7. -4,-3,-2,-18. ±39. 99 10. -2.511. B 12. ±2;-5,1,-1,513. C14. D15. B16. C17. C18. C19. 3.51-5-x -x2120., 3 ,-(-2)3-m +n21. D22. ±3 3-223. ±7 -724. (1) 11 ; (2)4.2 3(4)2 2 0;(5)3(6) 2 14 3323 3 144.2 0; (3)3 6.2 18.6; 1 7.5 8;7。

七年级数学上册(相反数与绝对值)练习 试题

七年级数学上册(相反数与绝对值)练习 试题

乏公仓州月氏勿市运河学校相反数与绝对值〔A级〕一、选择题:(1)a的相反数是( )(A)-a (B)1a(C)-1a(D)a-1(2)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为12单位长,那么这个数是( )(A)12或-12(B)14或-14(C)12或-14(D)-12或14〔3〕a≠b,a=-5,|a|=|b|,那么b等于( )(A)+5 (B)-5 (C)0 (D)+5或-5〔4〕一个数在数轴上对应的点到原点的距离为m,那么这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m〔5〕给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>假设|m|>m,那么m<0; <4>假设|a|>|b|,那么a>b,其中正确的有( ) (A)<1><2><3>;(B)<1><2<4>; (C)<1><3><4>; (D)<2><3><4>〔6〕-103,π,-的绝对值的大小关系是( )(A)103->|π|>|-|; (B)103->|-|>|π|;(C)|π|>103->|-|; (D)103->|π|>|-|〔7〕假设|a|>-a,那么( )(A)a>0 (B)a<0 (C)a<-1 (D)1<a二、填空题(1)一个数的倒数是它本身,这个数是________;一个数的相反数是它本身,这个数是__________;(2)-5的相反数是______;(3)103的相反数是________,1132⎛⎫-⎪⎝⎭的相反数是_______,(4)在数轴上表示一个数的点,它离点的距离就是这个数的____________;(5)绝对值为同一个正数的有理数有_______________个;三、判断题:(1)符号相反的数叫相反数;〔〕 (2)数轴上原点两旁的数是相反数;〔〕(3)-a一定是负数;〔〕 (4)假设两个数之和为0,那么这两个数互为相反数;〔〕(5)假设两个数互为相反数,那么这两个数一定是一个正数一个负数。

新人教版七年级上册有理数、数轴、相反数、绝对值数学测试试卷

新人教版七年级上册有理数、数轴、相反数、绝对值数学测试试卷

新人教版七年级上册有理数、数轴、相反数、绝对值数学测试试卷一、选择题(每题3分,共45分)1、下列既不是正数又不是负数的是( )A 、-1B 、+3C 、0.12D 、02、下列说法正确的是( )A 、整数就是正整数和负整数B 、分数包括正分数、负分数C 、正有理数和负有理数组成全体有理数D 、一个数不是正数就是负数。

3、下列一定是有理数的是( )A 、πB 、aC 、a+2D 、72 4、 如图所示,点M 表示的数是( )A. 2.5B.C.D. 1.55、下列说法正确的是( )A. 有原点、正方向的直线是数轴B. 数轴上两个不同的点可以表示同一个有理数C. 有些有理数不能在数轴上表示出来D. 任何一个有理数都可以用数轴上的点表示6、数轴上原点及原点右边的点表示的数是( )A. 正数B. 负数C. 非负数D. 非正数7、 数轴上点M 到原点的距离是5,则点M 表示的数是( )A. 5B.C. 5或D. 不能确定8、 在数轴上表示的点中,在原点右边的点有( ) A. 0个 B. 1个 C. 2个 D. 3个9、下列几组数中是互为相反数的是 ( )A ―17和0.7 B 13和―0.333 C ―(―6)和6 D ―14和0.25 10、一个数在数轴上所对应的点向左移6个单位后,得到它的相反数的点,则这个数是( )A 3B - 3C 6D -611、一个数是7,另一个数比它的相反数大3.则这两个数的和是( )A -3B 3C -10D 1112、若a=-3,则-a=( )A. -3B. 3C. -3或3D. 以上答案都不对13、下列各组数中,互为相反数的是( )A. ∣-32∣与-32B. ∣-32∣与-23C. ∣-32∣与32D. ∣-32∣与23 14、下列各式中,正确的是( )A. -∣-16∣>0B. ∣0.2∣>∣0.2∣C. -74>- 75D.∣-6∣<0 15、在-0.1,-21,1,21这四个数中,最小的一个数是( ) A. -0.1 B. -21 C. 1 D. 21 二、填空(每小题3分,共36分)1、 最大的负整数是___________;小于3的非负整数有______________________。

人教版 七年级数学上册 第1章 数轴、相反数和绝对值 专题练习(含答案)

人教版 七年级数学上册 第1章 数轴、相反数和绝对值 专题练习(含答案)

人教版七年级数学上册第1章数轴、相反数和绝对值专题练习(含答案)例1:若(a-1)2 +||b-2=0,则以a、b为边长的等腰三角形的周长为_________.例2:若实数a、b满足04|2|=-++ba,则ba2= .例3:若实数、y满足|4|80x y-+-=,则以x、的值为边长的等腰三角形的周长为。

例4:已知8,2,a b a b b a==-=-,则a b+的值是()1066101010A B C D---、、、或、或题型精练1、如图5-1,数轴上点P表示的数可能是()77 3.210A B C D---、、、、2、如图5-2,数轴上的点A表示的数为a,则1a等于()A、12-B、12C、-2D、23、如图5-3,若将三个数3-,7,11表示在数轴上,其中能被如图所示的阴影覆盖的数是.4、如图5-4,在数轴上点A和点B之间表示的整数点有_________个.x y-201P-3-123图5-1图5-2-201-3-123图5-3图5-4BA2-75、如图5-5,数轴上两点A 、B 分别表示实数a 、b ,则下列四个数中最大的一个数是 ( ) A 、aB 、C 、1aD 、1b6、如图5-6,数轴上表示数3的点是_______________.7、实数a ,在数轴上对应点的位置如图5-7所示,则a (填“<”、“>”或“=”) .8、实数a 、两数在数轴上的位置如图5-8所示,下列结论正确的是 ( )0A a b B a b ->+>、、 00C a b D b a -<-<、、9、如图5-9,数轴上A B ,两点表示的数分别为1-和3,点B 关于点A 的对称点为C ,则点C 所表示的数 为( )A 、23--B 、13--C 、23-+D 、13+10、已知a 、两数在数轴上所对应的点如图5-10所示,,,M a b N a b H a b G a b =+=-+=-=--,下列各式正确的是 ( )A M N H GB H M G NC H M N GD G H M N>>>>>>>>>>>>、、、、11、如果上升3米记作+3米,那么下降2米记作 米.12、把温度计显示的零上5℃用+5℃表示,那么-2℃应表示为________. 13、如果+3吨表示运入仓库的大米吨数,那么运出5吨大 米表示为 ( ) A 、-5吨 B 、+5吨 C 、-3吨 D 、+3吨 14、如果+20%表示增加20%,那么-6%表示 ( ) A 、增加14% B 、增加6% C 、减少6% D 、减少26%15、如果向东走80 m 记为80 m ,那么向西走60 m 记为 ( ) A 、-60 mB 、︱-60︱mC 、-(-60)mD 、m 16、点A ,B ,C ,D 在数轴上的位置如图5-11所示,其中表示-2的相反数的点是___________.601-10 -3-2A BCD图5-1111-0A B5-5图0 -2 1 -3 -1 2 35-6图A B C 5-7图a b5-9图CB O A 5-10图1-a1b。

人教版七年级数学(上册)相反数绝对值知识点教(学)案专项习题

人教版七年级数学(上册)相反数绝对值知识点教(学)案专项习题

知识点:1、正负数的认识:(1)、像3,2,1.8%这样大于0的数叫做正数;(2)、像-3,-2,-2.7%这样在正数前面加上负号“-”的数叫做负数.(3)、数0既不是正数,也不是负数;2、有理数的认识:(1)有理数的定义:整数和分数统称为有理数。

(2)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

有理数的分类⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎨⎧⎪⎪⎨⎪⎪⎩⎪⎪⎪⎩正整数整数负整数正分数分数负分数3、数轴:(1)定义:规定了原点、正方向和单位长度的直线,叫做数轴。

(2)意义:任意有理数都可以用数轴上的点来表示;用数轴比较有理数的大小:数轴上的两个点表示的数,右边的总比左边的大。

4、相反数:(1)相反数的概念:只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。

①互为相反数的两个数分别在原点的两旁,且到原点的距离相等。

②一般地,数a的相反数是a-,a-不一定是负数。

③在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数(2)-(-3)是(-3)的相反数,所以-(-3)=3,于是互为相反数的两个数之和是0 即如果x与y互为相反数,那么x+y=0;反之,若x+y=0, 则x与y互为相反数(3)相反数是指两个数之间的一种特殊的关系,而不是指一个种类。

如:“-3是一个相反数”这句话是不对的。

5、绝对值(1)定义:在数轴上,一个数所对应的点与原点之间的距离叫做该数的绝对值。

正数的绝对值是正数,负数的绝对值是它的相反数,0的绝对值是0。

(2)两个正数比较大小,绝对值大的数大。

两个负数比较大小,绝对值大的数反而小。

(3)绝对值的非负性:a0【练一练】正数与负数1.如果向南走5米,记作+5米,那么向北走8米应记作___________。

2.如果温度上升3℃记作+3℃,那么下降5℃记作____________。

3.海拔高度是+1356m,表示________,海拔高度是-254m,表示______。

最新人教版七年级数学上册第一章相反数和绝对值练习题

最新人教版七年级数学上册第一章相反数和绝对值练习题

人教版七年级数学上册第一章有理数相反数和绝对值一、选择题。

1.如果x 与y 2互为相反数,那么 ( )A .02=-y xB .02=+y xC .x ·2y=0D .0=x ,02=y2.下列说法正确的是 ( )A .-6是相反数B .43-与43互为相反数C .-5是5的相反数D .41-是4的相反数3. 如果一个数的相反数是负数,那么这个数一定是( )A. 正数B. 负数C. 零D. 正数、负数或零4.绝对值等于其相反数的数一定是 ( )A .负数B .正数C .负数或零D .正数或零5.绝对值不大于6.1的整数有( )A .6个B .7个C .10个D .11个二、填空题。

1.在数轴上,表示数-4,3.6,53-,0,313,322-,-2的点中,在原点左边的点有 个.2. 写出数轴上点A,B,C,D,E 所表示的数:3. 在数轴上表示下列各数,并用“<”连接起来。

3,—3,1.5,—1.5, 04. 数轴上与原点的距离是8的点有___________个,这些点表示的数是___________;与原点的距离是9的点有___________个,这些点表示的数是___________。

5. 数轴上与原点的距离是b (b >0)的点有_______个,这些点表示的数是___________.6.只有__________的两个数,叫做互为相反数.0的相反数是_______.7.+6的相反数是______;______的相反数是-11; 531-与______互为相反数.8.若x 的相反数是-10,则______=x ;若15-=a ,则________=-a .9.化简下列各数的符号:()____8=+-, ()____3.2=--, ()[]____9=-+-.10.写出下列各数的相反数,并在数轴上把这些相反数表示出来:+2,-3,0,-(-1),213-,-(+2).11.—19的相反数是_ ____;_______的相反数是-234。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数轴、相反数、绝对值(习题)➢巩固练习
1.下列图形表示数轴正确的是()
1 0 1
A.B.
2
0 1 2
2
1
C.D.
2.下列说法正确的是()
A.正数和负数统称有理数
B.正整数和负整数统称为整数C.小数 3.14
不是分数D.整数和分数统称为有理数
3.下列各组数中,互为相反数的是()
A.( 3.2) 与 3.2 B.2.3与 2.31
C.( 4.9)与4.9 D.(1) 与(1)
4.下列说法正确的是()
A.数轴是一条规定了原点、正方向和单位长度的射线
B.离原点近的点所对应的有理数较小
C.任意一个有理数都可以用数轴上的一个点来表示
D.原点在数轴的正中间
5.关于相反数的叙述,错误的是()
A.两数之和为0,则这两个数互为相反数
B.到原点距离相等的点所表示的两个数互为相反数C.符号相反的两个数,一定互为相反数 D.零的相反数是零
6.任何一个有理数的绝对值一定()
A.大于0 B.小于0 C.不大于0 D.不小于0 7.如果a a ,那么a是()
A.正数B.负数C.非正数D.非负数8.下列说法正确的是()
A.绝对值等于它本身的数是正数
B.相反数等于它本身的数是负数C.相反数等于
它本身的数是0 D.任意一个数小于它的绝对值
9.如图,若点A,B,C所对应的数为a,b,c,则下列大小关系错误的是()
A
3 2 1 0 1 2 3
A.b c a C.b c
a B. a
b
c D.a c b
10. 有如下一些数:3,3.14,20,0,6.8,0.34,1
,9 ,
2
其中是非正整数的有.
11.在数轴上点A表示1,点B表示0.5,则离原点较近的是点

12.在数轴上距离原点为2的点所对应的数为,它们互为

13.数轴上1所对应的点为A,将点A向右移4个单位再向左移6个单位,则此时点A
到原点的距离为.
14.绝对值最小的数是;绝对值越小,则该数在数轴上所对应的点离
原点越.
15. 若x 0 ,则x ;若m n ,则n m .
16. 填空:
(1) 4 3 =
(2) 2 1 =
(3) 3 2 ;
(4)
3 3
=
4 2

➢思考小结
1.在数轴上距离原点3 个单位长度的点表示的数是.
2.若字母a 表示一个有理数,则-a 一定是负数吗?我们的思考过程
是这样的:
-a 表示a 的相反数,若a 为正数,则-a 为;
-a 表示a 的相反数,若a 为0,则-a 为;
-a 表示a 的相反数,若a 为负数,则-a 为.
综上:若字母a 表示一个有理数,则-a 可能是正数、负数或
0,因此,-a(“一定”或“不一定”)是负数.
3.请判断下列说法的正误.(对的打“√”,错的打“×”)
【参考答案】
➢巩固练习
1.D
2.D
3.A
4. C
5. C
6.D
7. B
8. C
9.D
10. 3,20,0
11. B
12.±2,相反数
13. 3
14. 0,近
15. x,n+m
16. (1)4,3,1 (2)2,1,1
(3)3,2,6 (4)3

3

3

2

1
4 2 4 3 2
➢思考小结
1. ±3
2. 负数;0;正数.不一定
3. (1)√;(2)×;(3)×;(4)×;
(5)√;(6)√;(7)×;(8)×.。

相关文档
最新文档