北师大版七年级数学第四章平面图形及其位置关系试题及答案
七年级数学上册第四章知识点及练习题
七年级数学上册第四章知识点及练习题第四章:平面图形及其位置关系知识梳理一、线段、射线、直线1、线段、射线、直线的定义线段是有两个端点的崩直线,可以量出长度。
将线段向一个方向无限延伸就形成了射线,射线有一个端点,无法量出长度。
将线段向两个方向无限延伸就形成了直线,直线没有端点,也无法量出长度。
结论:射线是直线的一部分,线段是射线和直线的一部分。
2、线段、射线、直线的表示方法线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理过两点有且只有一条直线,简称两点确定一条直线。
4、线段的比较线段的比较有叠合比较法和度量比较法。
5、线段公理连接两点的线段是最短的,叫做这两点的距离。
6、线段的中点如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C是线段AB的中点,则AC=BC=1/2 AB或AB=2AC=2BC。
例题:1、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()解:无法确定A、B、C三点位置是否共线,无法确定答案,选D。
2、已知线段AB=20㎝,C为AB中点,D为CB上一点,E为DB的中点,且EB=3㎝,则CD= ________cm.解:BC=0.5AB=10cm,DB=2EB=6cm,CD=BC-DB=10-6=4cm。
3、平面上有三个点,可以确定直线的条数是()解:由直线公理,过两点有且只有一条直线,所以三个点可以确定三条直线,选C。
二、角1、角的概念角是由两条有共同端点的射线组成的图形,两条射线叫角的边,共同的端点叫角的顶点。
角还可以看成是一条射线绕着他的端点旋转所成的图形。
2、角的表示方法角用“∠”符号表示,分别用两条边上的两个点和顶点来表示(顶点必须在中间),或在角的内部写上阿拉伯数字或小写的希腊字母来表示。
北师大版七年级上册数学基本平面图形知识点典型例题练习
第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种:①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
北师大版七年级上册数学各章节知识点总结及经典练习题.
北师大版七年级上册数学各章节知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体、五棱柱、……(按名称分锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
练习1.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是(2.下列各个平面图形中,属于圆锥的表面展开图的是((A(B(C(D3.如图是由一些相同的小正方体构成的立体图形的三种视图:构成这个立体图形的小正方体的个数是(.A.5B. 6C.7D.84.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是(A BCD5.某同学的茶杯是圆柱形,如图是茶杯的立体图,左边下方有一只蚂蚁,从A 处爬行到对面的中点B 处,如果蚂蚁爬行路线最短,请画出这条最短路线图.解:如图,将圆柱的侧面展开成一个长方形,如图示,则A 、B 分别位于如图所示的位置,连接AB ,即是这条最短路线图.B BA A问题:某正方体盒子,如图左边下方A 处有一只蚂蚁,从A 处爬行到侧棱GF 上的中点M 点处,如果蚂蚁爬行路线最短,请画出这条最短路线图.(6分第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可。
初一数学几何部分练习题
第四章平面图形及其位置关系试题一、选择题(共13 小题,每题 4分,满分 52 分)1、如图,以 O 为端点的射线有()条.A、 3 B 、 4C、5 D 、 62、以下说法错误的选项是()A、不订交的两条直线叫做平行线 B 、直线外一点与直线上各点连结的全部线段中,垂线段最短C、平行于同一条直线的两条直线平行 D 、平面内,过一点有且只有一条直线与已知直线垂直3、一个钝角与一个锐角的差是()A、锐角 B 、钝角C、直角 D 、不可以确立4、以下说法正确的选项是()A、角的边越长,角越大B、在∠ ABC 一边的延伸线上取一点 DC、∠ B= ∠ ABC+ ∠ DBCD、以上都不对5、以下说法中正确的选项是()A、角是由两条射线构成的图形 B 、一条射线就是一个周角C、两条直线订交,只有一个交点D、假如线段 AB=BC ,那么 B 叫做线段 AB 的中点6、同一平面内互不重合的三条直线的交点的个数是()A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0 个,1个,2个或 3个D、可能是 1 个可 3 个7、以下说法中,正确的有()①过两点有且只有一条直线;②连结两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC ,则点 B 是线段 AC 的中点.A、1 个B、2 个C、3 个D、4 个8、钟表上12 时 15 分钟时,时针与分针的夹角为()A、90°B、°C、°D、 60°9、按以下线段长度,能够确立点 A 、 B 、 C 不在同一条直线上的是()A、 AB=8cm , BC=19cm , AC=27cm B 、 AB=10cm , BC=9cm , AC=18cmC、 AB=11cm , BC=21cm , AC=10cm D 、 AB=30cm , BC=12cm , AC=18cm10、以下说法中,正确的个数有()①两条不订交的直线叫做平行线;②两条直线订交所成的四个角相等,则这两条直线相互垂直;③经过一点有且只有一条直线与已知直线平行;④假如直线a∥ b, a∥ c,则 b∥ c.A、1 个B、2 个C、3 个D、4 个11、以下图中表示∠A BC 的图是()A、B、C、D、12、以下说法中正确的个数为()①不订交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线相互平行④在同一平面内,两条直线不是平行就是订交A、1 个B、2 个C、3 个D、4 个13、∠ 1 和∠ 2 为锐角,则∠1+∠ 2 知足()A、 0°<∠ 1+∠ 2< 90°B、 0°<∠ 1+∠2< 180°C、∠ 1+∠ 2< 90° D 、 90°<∠ 1+∠ 2< 180°二、填空题(共 5 小题,每题 5 分,满分25 分)14、如图,点 A 、B 、 C、 D 在直线 l 上.( 1)AC=﹣CD; AB++CD=AD ;( 2)如图共有条线段,共有条射线,以点 C 为端点的射线是.15、用三种方法表示如图的角:.16、将一张正方形的纸片,按以下图对折两次,相邻两条折痕(虚线)间的夹角为度.17、如图, OB , OC 是∠ AOD 的随意两条射线,OM 均分∠ AOB , ON 均分∠ COD ,若∠ MON=α,∠ BOC=β,则表示∠ AOD 的代数式是∠ AOD=.18、如图,∠ AOD= ∠ AOC+=∠ DOB+.三、解答题(共 3 小题,满分23 分)19、如图, M 是线段AC 的中点, N 是线段 BC 的中点.(1)假如 AC=8cm , BC=6cm ,求 MN 的长.(2)假如 AM=5cm , CN=2cm ,求线段 AB 的长.20、如图,污水办理厂要把办理过的水引入排水渠PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明原因.21、如图,直线AB 、 CD、 EF 都经过点O,且 AB ⊥ CD ,∠ COE=35°,求∠ DOF 、∠ BOF 的度数.北师大版七年级下册第二章订交线、平行线单元测试题一、填空(每题 4 分,共 40 分)1、一个角的余角是30o,则这个角的大小是..2、一个角与它的补角之差是20o,则这个角的大小是3、如图①,假如∠= ∠,那么依据可得 AD ∥BC(写出一个正确的就能够).4、如图②,∠ 1 = 82o,∠ 2 = 98o,∠ 3 = 80o,则∠ 4 =度.5、如图③,直线AB , CD,EF 订交于点 O,AB ⊥CD,OG 均分∠ AOE,∠ FOD = 28o,则∠ BOE =度,∠ AOG =度.6、时钟指向 3 时 30 分时,这不时针与分针所成的锐角是.7、如图④, AB ∥ CD,∠ BAE = 120o,∠DCE = 30o,则∠ AEC =度.8、把一张长方形纸条按图⑤中,那样折叠后,若获得∠ AOB ′= 70o,则∠ B′OG =.9、如图⑥中∠ DAB 和∠ B 是直线 DE 和 BC 被直线称它们为角.10、如图⑦,正方形ABCD 边长为 8,M 在 DC 上,且则 DN + MN 的最小值为.二、选择题(每题 3 分,共 18 分)11、以下正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A. 1,B.2,C.3,D.412、如图⑧,在△ ABC 中, AB = AC ,∠ A = 36o,BD均分∠ ABC , DE∥ BC,那么在图中与△ ABC 相像的三角形的个数是()A.0,B.1,C.2,D.3所截而成的,DM=2,N是AC上一动点,13、以下图中∠ 1 和∠ 2 是同位角的是()A. ⑴、⑵、⑶,B.⑵、⑶、⑷,C. ⑶、⑷、⑸,D.⑴、⑵、⑸14、以下说法正确的选项是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D. 在平面内过一点有且只有一条直线垂直于已知直线.15、一束光芒垂直照耀在水平川面,在地面上放一个平面镜,欲使这束光芒经过平面镜反射后成水平光芒,则平面镜与地面所成锐角的度数为()A.45o,B.60o,C.75o,D.80o16、如图⑨, DH∥EG∥ BF,且 DC∥EF,那么图中和∠ 1 相等的角的个数是()A.2,B.4,C. 5,D.6三、解答题:117、按要求作图(不写作法,但要保存作图印迹)( 3 分)已知点 P、 Q 分别在∠ AOB 的边 OA , OB 上(如图) .①作直线 PQ,2②过点 P 作 OB 的垂线,③过点 Q 作 OA 的平行线 .18、已知线段 AB,延伸 AB 到 C,使 BC∶AB=1 ∶3,D 为 AC 中点,若 DC = 2cm,求 AB 的长 . (7 分)19、如图,,已知AB∥ CD,∠ 1 =∠ 2.求证.:∠ E=∠ F(6分)20、如图所示,在△ AFD 和△ BEC 中,点 A、 E、F、C 在同向来线上,有下边四个判断:⑴AD=CB⑵AE=FC⑶ ∠B= ∠D⑷ AD∥BC请用此中三个作为已知条件,余下一个作为结论,编一道数学识题,并写出解答过程.(8分)21、如图,ABCD是一块釉面砖,居室装饰时需要一块梯形APCD 的釉面砖,且使∠ APC=120o. 请在长方形 AB边上找一点 P,使∠ APC= 120o. 而后把剩余部切割下来,试着表达如何选用 P 点及其选用 P 点的原因 . ( 8 分)22、如图,已知AB ∥CD,∠ ABE和∠ CDE的均分线订交于F,∠ E = 140o,求∠ BFD 的度数 .(10 分)北师大版七年级下册第三章三角形单元测试题(一):一、选择题1.一个三角形的两边长为 2 和 6,第三边为偶数.则这个三角形的周长为()A.10 B .12C. 142.在△ ABC中, AB= 4a,BC=14,AC=3a.则 a 的取值范围是()A. a> 2B.2<a< 14 C .7<a< 14 D . a<143.一个三角形的三个内角中,锐角的个数最少为()A.0 B. 1 C .2D.34.下边说法错误的选项是()A.三角形的三条角均分线交于一点 B .三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点5.能将一个三角形分红面积相等的两个三角形的一条线段是()A.中线B.角均分线C.高线 D .三角形的角均分线6.如图—∠°⊥AB,垂足是 D,则图中与∠A 相等5 12,已知ACB=90 , CD的角是()A.∠1B.∠2 C .∠B D.∠1、∠ 2和∠B7.点 P 是△ ABC内随意一点,则∠ APC与∠ B 的大小关系是() A.∠ APC>∠ B B.∠ APC=∠ B C.∠APC<∠B D.不可以确立8.已知:a、b、c是△ABC三边长,且 M= (a + b+c)(a +b- c)(a - b-c) ,那么()A.M>0B. M=0 C.M<0 D.不可以确立9.周长为P 的三角形中,最长边m的取值范围是()A.Pm P B.P m P C .Pm P D.Pm P32323232()10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有A.5 个B.4个 C .3个D.2 个二、填空题1.五条线段的长分别为 1,2, 3,4, 5,以此中随意三条线段为边长能够________个三角形.2.在△ ABC中, AB= 6,AC= 10,那么 BC边的取值范围是 ________,周长的取值范围是 ___________ 3.一个三角形的三个内角的度数的比是2:2: 1,这个三角形是 _________三角形.4.一个等腰三角形两边的长分别是15cm 和 7cm则它的周长是 __________.5.在 △ABC 中,三边长分别为正整数≥ ≥a 、b 、c ,且 c b a > 0,假如 b =4,则这样的三角形共有 _________个.6.直角三角形中,两个锐角的差为 40 ° _________.,则这两个锐角的度数分别为7.在 △ ABC 中, ∠ A - ∠ ° ∠ C = 4 ∠ B ,则 ∠ C = ________.B = 30 、8.如图 — △ ⊥ ⊥ ⊥ ⊥5 13,在 ABC 中,AD BC ,GC BC ,CF AB ,BE AC ,垂足分别为 D 、C 、F 、E ,则 _______是 △ ABC 中 BC 边上的高, _________是 △ ABC 中 AB 边上的高, _________是 △ ABC 中 AC边上的高, CF 是△ ABC 的高,也是 △ _______、 △ _______、 △ _______、 △ _________的高.— △ ABC 的两个外角的均分线订交 于点 D ,假如 ∠ ° ∠ D =_____.9.如图 5 14, A = 50 ,那么— △ ABC 中, ∠A =60 ° ∠ ABC 、 ∠ ACB 的均分线 BD 、 CD 交于点D ,则 ∠ BDC =_____ 10.如图 5 15, , — ∠ A + ∠ B + ∠ C + ∠ D + ∠E = ________度.11.如图 5 16,该五角星中,12.等腰三角形的周长为 24cm ,腰长为 xcm ,则 x 的取值范围是 ________. 三、解答题1.如图 —A 、B 、C 、D 、E 五点可确立多少个三角形 ?说明原因.5 17,点 B 、 C 、D 、E 共线,试问图中 2.如图 — ∠ BAD = ∠ CAD ,则 AD 是 △ ABC 的角均分线,对 吗 ?说明理5 18, 由.3.一个飞机部件的形状如图 — 所示,按规定 ∠ °∠ B , ∠ D 5 19 A 应等于 90 ,应分别是 20 ° ° ∠ BCD =143 °部件不合 和 30 ,康师傅量得 ,就能判定这个格,你能说出此中的道理吗 ?— △ ABC 中,AD 是 BC 边上的中线, △ ADC 的周长比 △ ABD 的 4.如图 5 20,在周长多 5cm ,AB 与 AC 的和为 11cm ,求 AC 的长.5.如图 — △ ABC 中, ∠ B = 34 ° ∠ ACB = 104° ∠ BAC 的均分线,求5 21, , , AD 是 BC 边上的高, AE是 ∠ DAE 的度数.6.如图 5—22,在 △ ABC 中, ∠ ACB = 90°, CD 是 AB 边上的高, AB = 13cm ,BC = 12cm ,AC =5cm ,求:(1) △ ABC 的面积; (2)CD 的长.7.已知:如图 5 — △ ABC 内任一点,求证: ∠ BPC > ∠A .23,P 是 8. △ ABC 中,三个内角的度数均为整数,且 ∠ A <∠ B <∠ C ,4∠ C =7∠ A ,求 ∠ A 的度数.9.已知:如图 5 — △ABC 内任一点,求证: AB + AC > BP + PC . 24,P 是—A 、B 、C 、D .此刻要建筑一个水塔 P .请回答水塔 P 应建在何地点,10.如图 5 25,豫东有四个乡村 才能使它到 4 村的距离之和最小,说明最节俭资料的方法和原因.11.已知△ ABC 的周长为 48cm ,最大边与最小边之差为 14cm ,另一边与最小边之和为 25cm ,求△ ABC 各边的长.北师大版七年级下册 第三章三角形 单元测试题(二):1.必定在△ ABC 内部的线段是( )A .锐角三角形的三条高、三条角均分线、三条中线B .钝角三角形的三条高、三条中线、一条角均分线C .随意三角形的一条中线、二条角均分线、三条高D .直角三角形的三条高、三条角均分线、三条中线 2.以下说法中,正确的选项是( )A .一个钝角三角形必定不是等腰三角形,也不是等边三角形B .一个等腰三角形必定是锐角三角形,或直角三角形C .一个直角三角形必定不是等腰三角形,也不是等边三角形D .一个等边三角形必定不是钝角三角形,也不是直角三角形3.如图,在△ ABC中, D、 E 分别为 BC上两点,且 BD= DE=EC,则图中面积相等的三角形有(A.4对B.5对C.6对D.7对)(注意考虑完整,不要遗漏某些状况)4.假如一个三角形的三条高的交点正是三角形的一个极点,那么这个三角形是(A.锐角三角形 B .钝角三角形 C .直角三角形 D .没法确立5.以下各题中给出的三条线段不可以构成三角形的是()A. a+ 1,a+ 2, a+ 3(a> 0)B.三条线段的比为4∶ 6∶ 10C. 3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18B.15C.18或15D.没法确立)7.两根木棒分别为5cm和 7cm,要选择第三根木棒,将它们钉成一个三角形,假如第三根木棒长为偶数,那么第三根木棒的取值状况有()种A.3B.4C.5D.68.△ ABC的三边 a、 b、c 都是正整数,且知足a≤b≤ c,假如 b= 4,那么这样的三角形共有(个A.4B.6C.8D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个B.2个C.3个D.4个)10.三角形全部外角的和是(A. 180°B.360°)C. 720°D. 540°11.锐角三角形中,最大角α的取值范围是()A. 0°<α< 90°; B .60°<α< 180°; C . 60°<α< 90°; D . 60°≤α< 90°12.假如三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B .钝角或锐角三角形;C .直角三角形 ; D .钝角或直角三角形13.已知△ ABC中,∠ ABC与∠ ACB的均分线交于点O,则∠ BOC必定()A.小于直角 ; B.等于直角;C.大于直角;D.大于或等于直角14.如图 : ( 1) AD⊥ BC,垂足为 D,则 AD是 ________的高,∠________=∠ ________= 90°;(2)AE 均分∠ BAC,交 BC于点 E,则 AE叫 ________,∠________=∠ ________=1∠ ________,AH叫 ________;2(3)若 AF= FC,则△ ABC的中线是 ________;(4)若 BG= GH= HF,则 AG是 ________的中线, AH是 ________的中线.15.如图,∠ ABC=∠ ADC=∠ FEC=90°.(1)在△ ABC中, BC边上的高是 ________;(2)在△ AEC中, AE边上的高是 ________;(3)在△ FEC中, EC边上的高是 ________;(4 )若 AB= CD= 3, AE= 5 ,则△ AEC 的面积为________.16.在等腰△ ABC中,假如两边长分别为 6cm、10cm,则这个等腰三角形的周长为 ________.17.五段线段长分别为 1cm、 2cm、 3cm、 4cm、 5cm,以此中三条线段为边长共能够构成________个三角形.18.已知三角形的两边长分别为 3 和 10,周长恰巧是 6 的倍数,那么第三边长为________.19.一个等腰三角形的周长为5cm,假如它的三边长都是整数,那么它的腰长为________cm.20.在△ ABC中,若∠ A∶∠ B∶∠ C= 5∶ 2∶ 3,则∠ A= ______;∠ B= ______;∠ C=______.21.如图,△ ABC中,∠ ABC、∠ ACB的均分线订交于点 I .(1)若∠ ABC= 70°,∠ ACB= 50°,则∠ BIC= ________;(2)若∠ ABC+∠ ACB=120°,则∠ BIC=________;( 3)若∠ A =60°,则∠ BIC = ________; ( 4)若∠ A =100°,则∠ BIC =________;( 5)若∠ A =n °,则∠ BIC = ________. 22.如图,在△ ABC 中,∠ BAC 是钝角.画出:( 1)∠ ABC 的均分线;( 2)边 AC 上的中线;( 3)边 AC 上的高.23.△ ABC 的周长为 16cm , AB =AC ,BC 边上的中线 AD 把△ ABC 分红周长相等的两个三角形.若BD =3cm ,求 AB 的长.24.如图, AB ∥ CD , BC ⊥ AB ,若 AB =4cm , S ABC 12cm 2,求△ ABD 中 AB 边上的高.25 .学校有一块菜地,以以下图.现计划从点 D 表示的地点( BD ∶DC = 2∶ 1)开始挖一条小水渠,希望小水渠两边的菜地面积相等.有人说:假如D 是 BC 的中点的话,由此点 D 笔挺地挖至点 A 就 能够了.此刻 D 不是 BC 的中点,问题就没法解决了. 但有人以为假如仔细研究的话必定能办到. 你以为上边两种建议哪一种正确,为何?23 题24 题26 .在直角△ ABC 中,∠ BAC = 90°,以以下图所示.作BC 边上的高,图中出现三个直角三角形( 3= 2×1+1);又作△ ABD 中 AB 边上的高DD 1,这时图中便出现五个不一样的直角三角形( 5=2×2+ 1);依据相同的方法作 D 1D 2、D 2 D 3、 、D k 1D k.看作出D k 1D k时,图中共有多少个不同的直角三角形 ? 25 题 26 题27.一块三角形优秀品种试验田,现引进四个良种进行对照实验,需将这块土地分红面积相等的四块.请你制定出两种以上的区分方案.28.一个三角形的周长为 36cm ,三边之比为 a ∶ b ∶ c =2∶3∶ 4,求 a 、b 、 c . 29.已知三角形三边的长分别为:5、 10、a -2,求 a 的取值范围.30.已知等腰三角形中, AB = AC ,一腰上的中线 BD 把这个三角形的周长分红 15cm 和 6cm 两部分,求这个等腰三角形的底边的长. 31.如图,已知△ ABC 中, AB =AC ,D 在 AC 的延伸线上.求证: BD - BC < AD - AB .32.如图,△ ABC 中, D 是 AB 上一点.求证:( 1) AB + BC + CA > 2CD ;(2) AB + 2CD >AC +BC .33.如图, AB ∥ CD ,∠ BMN 与∠ DNM 的均分线订交于点 G , ( 1)达成下边的证明:31 题∵ MG 均分∠ BMN ( ),∴ ∠ GMN = 1∠ BMN (),32 题2同理∠ GNM = 1∠ DNM .2∵ AB ∥CD ( ),∴ ∠ BMN +∠ DNM = ________( ).∴ ∠ GMN +∠ GNM = ________.∵∠ GMN +∠ GNM +∠ G = ________(),∴∠ G= ________ .∴ MG 与 NG的地点关系是 ________.( 2)把上边的题设和结论,用文字语言归纳为一个命题:_______________________________________________________________.34.已知,如图D是△ ABC中 BC边延伸线上一点,DF⊥ AB交 AB 于 F,交 AC于 E,∠ A= 46°,∠ D = 50°.求∠ ACB的度数.35.已知,如图△ ABC中,三条高AD、 BE、 CF订交于点 O.若∠ BAC= 60°,求∠ BOC的度数.36.已知,如图△ ABC中,∠ B=65°,∠ C= 45°, AD是 BC边上的高, AE 是∠ BAC的均分线.求∠ DAE的度数.37.已知,如图CE是△ ABC的外角∠ ACD的均分线, BE 是∠ ABC内任一射线,交CE 于 E.求证:∠EBC<∠ ACE.38.画出图形,并达成证明:35 题34 题已知: AD是△ ABC的外角∠ EAC的均分线,且A D∥BC.求证:∠ B=∠ C.北师大版七年级下册第三章三角形单元测试题(三):一、选择题 (每题 3 分,共 30 分)1.有以下长度的三条线段,能构成三角形的是()A2,3,4B1,4,2 C 1,2, 3D6,2, 32.在以下各组图形中,是全等的图形是()3.以下条件中,能判断两个直角三角形全等的是()A 、一个锐角对应相等B 、两个锐角对应相等C、一条边对应相等 D 、两条边对应相等4.已知:如图, CD ⊥ AB , BE⊥ AC ,垂足分别为D、 E,BE、CD 订交于 O 点,∠ 1=∠ 2.图中全等的三角形共有()A.4 对B..3对C2 对D.1 对5.如图所示,某同学把一块三角形玻璃打坏成了三块,此刻要到玻店去配一块完整相同的玻璃,那么最省事的方法是()①②③A. 带①去B. 带②去C. 带③去D. 带①和②去 5 题A6.右图中三角形的个数是() A.6B.7C. 8 D . 97.假如两个三角形全等,那么以下结论不正确的选项是()B FA .这两个三角形的对应边相等B .这两个三角形都是锐角三角形D C.这两个三角形的面积相等 D .这两个三角形的周长相等E C 6 题8.在以下四组条件中,能判断△ABC ≌△ A /B/C/的是()=A /B/, BC= B /C/,∠ A= ∠ A / B.∠A= ∠ A/,∠ C=∠C/,AC= B /C/C.∠ A= ∠ B/,∠ B=∠ C/, AB= B/C/=A /B/, BC= B /C/,△ ABC 的周长等于△ A /B /C/的周长9.以下图中,与左图中的图案完整一致的是()10.以下判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中起码有两个锐角,③有两个内角为500和 200的三角形必定是钝角三角形,④直角三角形中两锐角的和为900,此中判断正确的有()个个个个二、填空题:(每题4分共 24分)11、为了使一扇旧木门不变形,木匠师傅在木门的反面A B C。
七年级数学上册第四章基本平面图形4.1线段、射线、直线作业设计北师大版
4.1线段、射线、直线1. 如图,已知线段,延长到,使,为的中点,,那么的长为.2. 已知点在直线上,且线段的长度为,线段的长度为,、分别为线段、的中点,则线段的长度为_________.3. 小宇同学在一次手工制作活动中,先把一张长方形纸片按如图所示的方式进行折叠,使折痕的左侧部分比右侧部分短;展开后按图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长,再展开后,在纸上形成的两条折痕之间的距离是______.4. 如图,是的中点,是的中点,下列等式不正确的是()A. B. C. D.5. 如图,点、、顺次在直线上,是线段的中点,是线段的中点.若想求出的长度,则只需条件()A. B. C. D.6. 如图,有、、三户家用电路接人电表,相邻电路的电线等距排列,则三户所用电线()A. 户最长B. 户最长C. 户最长D. 三户一样长7. 已知线段,直线上有一点(l)若,求的长;(2)若是的中点,是的中点,求的长.8. (1)一条直线可以把平面分成两个部分(或区域),如图,两条直线可以把平面分成几个部分?三条直线可以把平面分成几个部分?试画图说明.(2)四条直线最多可以把平面分成几个部分?试画出示意图,并说明这四条直线的位置关系.(3)平面上有条直线,每两条直线都恰好相交,且没有三条直线交于一点,处于这种位置的条直线分一个平面所成的区域最多,记为,试研究与之间的关系.思维方法天地9. 如图,、、依次是上的三点,已知,,则图中以、、、、这个点为端点的所有线段长度的和为_______.10. 平面上不重合的两点确定一条直线,不同三点最多可确定条直线.若平面上不同的个点最多确定条直线,则的值为_______.11. 如图,一根长为、宽的长方形纸条,将它按图所示的过程折叠.为了美观,希望折叠完成后纸条端到点的距离等于端到点的距离,则最初折叠时,的长应为______.12. 某班名同学分别站在公路的、两点处,、两点相距米,处有人,处有人.要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A. 点处B. 线段的中点处C. 线段上,距点米处D. 线段上,距点米处13. 公园里准备修条直的通道,并在通道交叉路口处设一个报亭,这样的报亭最多设()A. 个B. 个C. 个D. 个14. 线段上选取种点,第种是将等分的点;第种是将等分的点;第种是将等分的点,这些点连同线段的端点可组成线段的条数是()A. B. C. D.15. 电子跳蚤游戏盘为.,,,如果电子跳蚤开始时在边上点,。
北师版七年级数学上第四章 平面图形及其位置关系1-4练习
1.线段、射线、直线习题精选一、选择题1.下列语句错误的是()A.画出3厘米长的直线B.点A在直线AB上C.两条直线相交,只有一个交点D.点A在直线l上和直线l经过点A意义一样2.经过三点中的任意两点能画直线()A.1条B.3条C.l条或3条D.无数条3.下列写法中,正确的是().A.直线ac,bd相交于点m B.直线AB,CD相交于点mC.直线ac,bd相交于点M D.直线AB,CD相交于点M4.如下图,下列四个语句中,叙述正确的是().A.点A在直线l上B.点B在直线l上C.点B在直线l内D.点D在直线l里5.平面内四点,任何三点都不在一条直线上,过每两点引一条直线共能引().A.3条B.4条C.5条D.6条6.下列说法错误的是().A.两条直线相交只一个交点B.无数条直线可经过同一点C.三条直线相交,有三个交点D.直线MN 和直线NM是同一条直线7.已知同一平面内的四点,过其中任意两点画直线,仅能画四条,则这四条的位置关系是().A.任意三点不在同一条直线上B.四点都不在同一直线上C.最多三点在一直线上D.三点在一直线上,第四点在直线外8.下图中表示正确的是().A.点a B.直线ab C.直线AB D.直线l9.下列语句中不正确的是()A.射线无法度量它的长度B.两条射线可能没有公共点C.直线没有端点D.线段AB可以向两方无限延伸10. 如图,下列两条线中能相交的是()11. 如图,共有线段()A.4条B.5条C.6条D.7条12. 如图中四个点,过这四个可画线段的条数为()A.4条B.5条C.6条D.7条13.下列说法正确的是().A.延长射线OA B.延长直线ABC.延长线段AB D.作直线AB=CD14. 下面的说法错误的是().A.直线AB与直线BA是同一条直线B.射BA与射线AB是同一条射线C.线段AB与线段BA表示同一条线段D.直线、射线、线段上都有无限多个点15. 三条直线两两相交的图形中,线段有()条.A.0 B.3 C.0或3 D.与交点个数相同二、填空题1.线段有_______个端点,直线_______端点;2.如图,直线a与b交于点_______,点A在直线_______上,又在直线_______外.图中共有_______条线段.3.木匠在木料上画线,先确定两个点的位置,就能把线画得很准,这是因为_______.4.课桌的棱长可以看做是一条_______两个车站之间的路程可以看做是一条_______。
时钟上的角度
时钟上的角度北师大版数学教材七年级上第四章《平面图形及其位置关系》中第三节内容《角的度量与表示》以及各种辅导资料上都提出了时钟上的角的问题,所以在此将此类问题进行总结。
1 基础知识时钟上,时针转一圈(即转了360°)经过了12小时,所以时针转1小时所转过的角度为360°÷12=30°。
类似的,分针转一圈(即转了360°)经过了60分钟,所以分针转1分钟所转过的角度为360°÷60=6°2解决问题(方法一)2.1 当时钟指向上午8:00时,时针和分针的夹角是多少度?分析:如图所示,8:00时,时针与分针都指向正点刻度,此时分针与时针夹角为四格(1格为一小时),所以此时时针与分针的夹角为4×30°=120°小结:当时钟指向整点位置时,此问题很简单,只需数出时针和分针中间有几个,然后乘以30即为时针与分针之间的夹角。
2.2当时钟指向上午8:30时,时针和分针的夹角时多少度?分析:如图所示,8:30时,时针与分针的夹角包含了两个整格及半格(弧AB)所以此时时针与分针的夹角为2×30°+×30°=75°。
当时钟指向上午8:45时,时针和分针的夹角时多少度?分析:如图所示,8:45时,时针与分针的夹角包含了四分之一格(即弧AB,一格代表一小时,45分钟占了一小时,也就是60分钟的四分之三,所以弧AB占了一格的四分之一),所以此时时针与分针的夹角为×30°=7.5°小结:对于时钟上简单的问题,我们一般可以采用上述方法进行画图求解。
3 探究新方法(方法二)教辅资料上出现了这样的问题:时钟上时针和分针的夹角是90°有几种情况?分析:如果采用上述方法解决此类问题,显然不可能将所有的时刻都考虑到。
所以我们必须思考新的方法。
七年级数学上册第四章单元测试题及答案
七年级数学上册第四章单元测试题及答案第四章平面图形及其位置关系检测时间:__________ 姓名:__________ 成绩:__________一、选择题(每小题4分,共32分)1、按下列线段长度,可以确定点A、B、C不在同一条直线上的是()A、AB=8㎝,BC=19㎝,AC=27㎝;B、AB=10㎝,BC=9㎝,AC=18㎝;C、AB=11㎝,BC=21㎝,AC=10㎝;D、AB=30㎝,BC=12㎝,AC=18㎝2、下列推理中,错误的是()A、在m、n、p三个量中,如果m=n,n=p,那么m=p。
B、在∠A、∠B、∠C、∠D四个角中,如果∠A=∠B,∠C=∠D,∠A=∠D,那么∠B=∠C;C、a、b、c是同一平面内的三条直线,如果a∥b,b∥c,那么a∥c;D、a、b、c是同一平面内的三条直线,如果a⊥b,b⊥c,那么a⊥c;3、垂直是指一位置特殊的()A、直线;B、直角;C、线段;D、射线4、如图,四条表示方向的射线中,表示XXX的是()5、一个人从A点出发向北偏东60°的方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC的度数是()A、75°;B、105°;C、45°;D、135°6、同一平面内互不重合的三条直线的公共点的个数是()A、可能是1个,2个,3个;B、可能是0个,2个,3个;C、可能是1个,2个,或3个;D、可能是1个或3个。
7、已知四边形ABCD中,∠A+∠B=180°,则下列结论中正确的是()A、AB∥CD;B、∠B+∠C=180°;C、∠B=∠C;D、∠C+∠D=180°8、直线a外有一定点A,A到a的距离是5㎝,P是直线a上的任意一点,则()A、AP>5㎝;B、AP≥5㎝;C、AP=5㎝;D、AP<5㎝9、下列说法中正确的是()A、8时45分,时针与分针的夹角是30°;B、6时30分,时针与分针重合;C、3时30分,时针与分针的夹角是90°;D、3时整,时针与分针的夹角是30°。
第四章 平面图形及其位置关系单元复习
平面图形及其位置关系知识总结1.线段、射线、直线(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段.线段的特点:是直的,它有两个端点.(2)射线:将线段向一方无限延伸就形成了射线.射线的特点:是直的,有一个端点,向一方无限延伸.(3)直线:将线段向两个方向无限延长就形成了直线. 直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点把一条线段分成两条相等的线段的点,叫做线段的中点. 利用线段的中点定义,可以得到下面的结论: (1)因为AM =BM =12AB ,所以M 是线段AB 的中点.(2)因为M 是线段AB 的中点,所以AM =BM =12AB 或AB =2AM =2BM .3.角由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.角也可以看成是由一条射线绕着它的端点旋转而成的.一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角. 4.角平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.平行线在同一个平面内,不相交的两条直线叫做平行线.平行的关系是相互的,如果AB ∥CD ,则CD ∥AB ,其中符号“∥”读作“平行”. 6.两条直线垂直当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,其交点叫做垂足,•如直线AB •与直线CD 垂直,记作AB ⊥CD .7.两点之间的距离两点之间的线段的长度,叫做这两点之间的距离.8.点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.1.直线的性质:经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”.2.线段的性质:两点之间的所有连线中,线段最短.3.与平行线有关的一些性质(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.4.垂线性质(1)经过一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.平面图形及其位置关系经典例题1.考查学生发现问题、解决问题的能力.【例1】(2003年黑龙江)从哈尔滨开往A市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,不同的票价有()A.4种B.6种C.10种D.12种【例2】(无锡)L1与L2是同一平面内的两条相交直线,它们有1个交点,•如果在这个平面内,再画第三条直线L3,那么这3条直线最多可有_______个交点;•如果在这个平面内再画第4条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想在同一平面内,6条直线最多可有_______个交点,n(n为大于1的整数)条直线最多可有_______个交点(用含n的代数式表示).2.线段长度的计算,线段的中点【例3】某大公司员工分别住在A,B,C三个住宅区,A区有60人,B区有30人,C区有20人,三个区在同一条直线上,位置如图所示,该公司的接送车打算只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()3.角的度量与换算【例4】(山西)时钟在3点半时,它的时针和分针所成的锐角是()A.70°B.75°C.85°D.90°4.七巧板问题在中考中主要考查图形的拼摆.【例5】(2002年济南)如图1,用一块边长为22的正方形ABCD厚纸板,•按照下面做法,做了一套七巧板:作对角线AC,分别取AB、BC中点E、F,连结EF;作DG⊥EF 于G,•交AC于H;过G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K;将正方形ABCE沿画出的线剪开.现用它拼出一座桥(如图2),这座桥的阴影部分的面积是().(图1)(图2)A.8 B.6 C.4 D.5平面图形及其位置关系解题方法与技巧方法1:见比设元【例1】如图所示,B、C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=9,求线段MC的长.【分析】题中给出了线段的长度比,那么设每一分为K是常见的解法.【解】∵AB:BC:CD=2:4:3∴设AB=2K BC=4K CD=3K∴AD=3K+2K+4K=9K∵CD=9∴3K=9 ∴K=3∴AB=6 BC=12 AD=27∵M为AD中点,∴MD=12AD=12×27=13.5∴MC=MD-CD=13.5-9=4.5【规律总结】不论是有关线段还是有关角的问题,只要有比值,就设未知数.方法2:利用线段的和差判断三点共线【例2】判断以下三点A、B、C是否共线.(1)有三点A、B、C,且AB=10cm,AC=2cm,CB=8cm;(2)AB=10cm,AC=3cm,CB=9cm.【解】(1)∵AB=10cm,AC=2cm,CB=8cm,∴AB=AC+CB∴A、C、B三点在同一条直线上(2)∵AB=10cm,AC=3cm,CB=9cm,∴AB≠AC+CB∴A、C、B三点不共线方法3:寻找规律(一)数直线条数:过任三点不在同一直线上的n点一共可画(1)2n n-条直线.(二)数n个人两两握手能握(1)2n n-次.(三)数线段条数:线段上有n个点(包括线段两个端点)时,共有(1)2n n-条线段.(四)数角的个数:以0为端点引n条射线,当∠AOD<180°时,则(如图)•小于平角的角个数为(1)2n n-.(五)数交点个数:n条直线最多有(1)2n n-个交点.(六)数对顶角对数:n条直线两两相交有n(n-1)对对顶角.(七)数直线分平面的份数:平面内n条直线最多将平面分成1+(1)2n n-个部分.【例3】同一平面内有四点,每过两点画一条直线,则直线的条数是()A.1条B.4条C.6条D.1条或4条或6条【例4】一张饼上切七刀,最多可得到几块饼.【分析】从原始状态开始,当切1刀时,一张饼被分成两部分;当切2刀时,一张饼最多可被分成四部分;当切了3刀时,一张饼被最多分成七部分;……若用n•表示切的刀数,饼被最多分成S部分.则:n=1时S=2;n=2时S=4;n=3时,S=7;n=4时,S=11.【解】设一张饼被切n刀,最多分成S部分,如图2-6可知:n=1时S=1+1n=2时S=1+1+2n=3时S=1+1+2+3n=4时S=1+1+2+3+4……则S=1+1+2+3+4+…+n=1+(1)2n n-∴当n=7时,S=1+782⨯=29答:当上张饼上切7切时,最多可得到29块饼.【规律总结】许多规律性问题应回到原始状态,按照从特殊到一般的方法寻找规律,再按照从一般到特殊的方法应用规律解决问题.方法4:钟表问题【例5】钟表现在是1点15分,分针再转多少度,时针与分针首次重合.【分析】分针1分钟走(36060)°=6°,时针1分钟走(3060)°=0.5°(分针1小时走一圈,即60分钟走360°,时针1小时走一格,即60分钟走30°).因此,分针速度是时针速度的12倍,故设分针走12x°,时针走x°时时针与分针首次重合,因为从1点整到1点15°,•分针走一圈的14,此时时针走一格的14,因此1点15分时时针与分针夹角(1+34)×30°=52.5°.•列方程可求解.【解】设时针走x°时,时针与分针首次重合.依题意,得:12x-x=360-(74×30)解得:x=61522,∴12x=369011=335511答:分针再转335511度,时针与分针首次重合.方法5:最优策略问题直线上有两点(如图)A1和A2,要在直线上找一点P,使A1、A2到P的距离之和最小,则P点可放在A1、A2之间任意位置(包括A1和A2).此时P A1+P A2=A1A2.直线上有三点A1、A2、A3(如图).要找到一点P,使P A1+P A2+P A3的和最小.不妨设P在A1、A2之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A2、A3之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A1上,则P A1+P A2+P A3=A1A3+A1A2;若P在A2上,则P A1+P A2+P A3=A1A3.若P在A3上,则P A1+P A2+P A3=A1A3+A2+A3结论:当P选在A2点时P A2+P A2+P A3的和最小,其最小值为A1A3.不难发现,当直线上有四个点时,如图所示.P点选在A2A3上(包括端点).•可使P 到A1、A2、A3、A4的距离之和最小.其最小值为A1A4+A2A3.当直线上有五个点时,如图所示P点选在A3上,可使P到A1、A2、A3、A4、A5的距离之和最小,其最小值为A1A5+A2A4.【规律总结】当直线上有偶数个点时,P应选在最中间两点之间(可与这两点重合);当直线上有奇数个点时,P点与最中间的点重合,可使P到各点距离之和最小.。
第四章《平面图形及其位置关系》测试题(北师大版)
( ) 手验 证一 下你 的结 论. 果验 证 的结果 与观 察的结 果不 同 , 有何 感想 ? 2动 如 你
(
)
C
0
D
A
0
图 8
E
图9
图 1 O
1 . 图 9, 段 A日=1 c , 6如 线 2 m O是 A日上 的 任 一 点 , C是 O 的 中 点 , D是 OB的 中 点 , C 点 A 点 则 D等
于 ( )
A.c 6 m
B 8 m .c
C.0 m 1c
维普资讯
中 学 课 程 辅
第四 章《 面 图形 平
其健置关系》 试题 ,
( 师 大版 ) 北
"
4 4' -- "
◎福 建
周 奕 生
一
、
填 空题 ( 题3 , 3分 ) 每 分 共 0
— —
1要 在 墙 壁 上 固 定 一 根 横 木 条 , 少 需 要 . 至
度 ;81 一 2 .5 度
— —
分
—
—
秒.
— — .
9 如 图 5, A 上 OB, . O OC上EF, AOE= 0 , U_BO 4 。贝 / C=
1. 图6 的小 天 鹅 ( 图② ) 由七 巧板 ( 图①) 成 的 , 果 七巧 板 的面积 为 1 , 小天 0如 中 即 是 即 拼 如 6则
(
)
1 . 跳 远 比 赛 时 。 新 从 点 A起 跳 。 在 点 日处 ( 图 7) 如 果 A日等 于 2 , 小 新 这 次 跳 远 的 2在 小 落 如 , 米 则
维普资讯
学 课 程 辅 导
( A. 米 2 B. 于 2米 大 C. 于 2米 小 )
2022-2023学年北师大版七年级上册数学第4章 基本平面图形 单元测试卷含答案
2022-2023学年七年级上册数学第4章基本平面图形单元测试卷一.选择题(共12小题,满分36分)1.如图,B是线段AC的中点,P是BC上一点,若PA=m,PC=n,则线段PB的长是()A.m﹣n B.C.2m﹣3n D.2.如图,AC>BD,比较线段AB与线段CD的大小()A.AB=CD B.AB>CD C.AB<CD D.无法比较3.如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则下列结论中正确的个数有()①∠AOE=∠EOC②∠EOC=∠COB③∠AOD=∠AOE④∠DOB=2∠AODA.1个B.2个C.3个D.4个4.如图,已知A、B、C三点,过点A可画直线BC的平行线的条数是()A.0条B.1条C.2条D.无数条5.如图,用尺规作∠AOB的平分线可以按如下步骤进行:①以点O为圆心,线段m为半径画弧,交OA于点M,交OB于点N;②分别以点M,N为圆心,线段n为半径画弧,两弧在∠AOB的内部相交于点C;③画射线OC.射线OC即为所求.以下关于线段m,n的长说法正确的是()A.m>0,n>0B.m>0,n<MN C.m>0,n>MN D.以上都不对6.如图,在正方形网格中有∠α和∠β,则∠α和∠β的大小关系是()A.∠α>∠βB.∠α<∠βC.∠α=∠βD.无法确定7.在平面内与点P的距离为1cm的点的个数为()A.无数个B.3个C.2个D.1个8.如图各图中所给的射线、直线能相交的是()A.B.C.D.9.下列换算中,错误的是()A.47.28°=47°16′48″B.83.5°=83°50′C.16°5′24″=16.09°D.0.25°=900″10.在学习“平行四边形”一章时,小王的书上有一图因不小心被滴上了墨水,如图所示,看不清所印的字,请问被墨迹遮盖了的文字应是()A.等边三角形B.四边形C.多边形D.正方形11.现实生活中有人乱穿马路,却不愿从天桥或斑马线通过.请用数学知识解释这一现象,其原因为()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.两点之间线段的长度,叫做这两点之间的距高12.如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D.二.填空题(共12小题,满分36分)13.木工师傅用刨子可将木板刨平,如图,经过刨平的木板上的两个点,而且只能弹出一条墨线,其数学原理为.14.如图,将一张宽度相等的纸条折叠,折叠后的一边与原边的夹角是140°,则∠α的度数是.15.一个n边形过一个顶点有5条对角线,则n=.16.若平面内有4个点,过其中任意两点画射线,最多可以画条.17.如图,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹判断以下结论正确的是.①∠DBC=∠BDC②AE=BE③④∠BAE=∠ACD18.若∠1=30.45°,∠2=30°28',则∠1 ∠2(用“>”“=”“<”填空).19.已知点B在直线AC上,AB=6cm,BC=10cm,P、Q分别是AB、BC中点,则线段PQ=cm.20.小亮研究钟面角(时针与分针组成的角),2:15的钟面角为度.21.一个人从A地出发沿北偏东50°的方向走到B地,再从B地出发沿南偏西30°方向走到C地,那么∠ABC=.22.运动场上的环形跑道的跑道宽都是相同的,若一条跑道的两个边缘所在的环形周长的差等于π米,则跑道的宽度为米.23.只能使用和这两种工具去作几何图形的方法称为尺规作图.24.如图,正方形ABCD的边长为6,四条弧分别以相应顶点为圆心、正方形ABCD边长为半径,则图中阴影部分的面积为(结果保留π).三.解答题(共7小题,满分78分)25.请按要求完成下列问题.如图:A、B、C、D四点在同一直线上,若AB=CD.(1)比较线段的大小:AC BD(填“>”、“=”或“<”);(2)若,且AC=12cm,则AD的长.26.如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.27.如图,O为直线AB上一点,∠AOC=48°,OE平分∠AOC,∠DOE=90°(1)求∠BOE的度数.(2)试判断OD是否平分∠BOC?试说明理由.28.请仔细观察图形和表格,并回答下列问题:45678……n 多边形的顶点数/个12345……①从一个顶点出发的对角线的条数/条2591420……②多边形对角线的总条数/条(1)观察探究:请自己观察图形和表格,并用含的代数式将上面的表格填写完整.(2)实际应用:数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?29.如图,点A是∠OBC的边BO上一点,请完成以下问题.(1)以A为顶点,射线AO为一边在∠OBC的内部用尺规再作一个角∠OAD,使其等于∠ABC;(2)判断AD与BC的位置关系,并说出理由.30.如图,一扇形纸扇完全打开后,AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽BD为18cm,求纸扇上贴纸部分的面积.31.如图,数轴上点A,B分别表示数﹣6,12,C为AB中点.(1)求点C表示的数.(2)若点P为线段AB上一点,PC=2,求点P表示的数.(3)若点D为线段AB上一点,在线段AB上有两个动点M,N,分别同时从点A,D 出发,沿数轴正方向运动,点M的速度为4个单位每秒,点N的速度为3个单位每秒,当MN=1,NC=2时,求点D表示的数.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:∵B是线段AC的中点,∴BC=AC=(m+n),∴PB=BC﹣PC=(m+n)﹣n=(m﹣n).故选:B.2.解:∵AB=AC+BC,CD=BD+BC,AC>BD,∴AB>CD.故选:B.3.解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,∴∠AOE=∠COE,∠COE=∠BOC,∴∠AOE=∠COE=∠BOC,∵∠AOE+∠COE+∠BOC=180°,∴∠AOE=∠COE=∠BOC=60°,∴∠AOD=∠BOC=60°,∴∠BOD=120°,∴①②③④都正确.故选:D.4.解:如图,故选:B.5.解:根据作法得m>0,n>MN.故选:C.6.解:使∠α和∠β顶点和一边重合,,由图直观可得∠α>∠β,故选:A.7.解:在平面内与点P的距离为1cm的点的个数为为:所有到定点P的距离等于1cm的点的集合,故选:A.8.解:A选项中,直线AB与射线EF无交点,不合题意;B选项中,直线AB与射线EF有交点,符合题意;C选项中,直线AB与射线EF无交点,不合题意;D选项中,直线AB与射线EF无交点,不合题意;故选:B.9.解:A、∵1°=60′,∴0.28°=16.8′,∵1′=60″,∴0.8′=48″,∴47.28°=47°16′48″,故A不符合题意;B、∵1°=60′,∴0.5°=30′,∴83.5°=83°30′,故B符合题意;C、∵1′=60″,∴24″=0.4′,∵1°=60′,∴5.4′=0.09°,∴16°5′24″=16.09°,故C不符合题意;D、∵1°=3600″,∴0.25°=900″,故D不符合题意;故选:B.10.解:∵正方形具有矩形和菱形所有的性质,∴正方形既是矩形也是菱形.故选:D.11.解:现实生活中“为何有人乱穿马路,请用数学知识解释这一现象,其原因是两点之间,线段最短,故选:C.12.解:A.由作法知AD=AC,∴△ACD是等腰三角形,故选项A不符合题意;B.由作法知所作图形是线段BC的垂直平分线,∴不能推出△ACD和△ABD是等腰三角形,故选项B符合题意;C由作法知,所作图形是线段AB的垂直平分线,∴DA=DB,∴△ABD是等腰三角形,故选项C不符合题意;D.∠C=90°,∠B=30°,∠BAC=60°,由作法知AD是∠BAC的平分线,∴∠BAD=30°=∠B,∴DB=DA,∴△ABD是等腰三角形,故选项D不符合题意;故选B.二.填空题(共12小题,满分36分)13.解:经过刨平的木板上的两个点,而且只能弹出一条墨线,其数学原理为两点确定一条直线,故答案为:两点确定一条直线.14.解:如图,∵AB∥CD,∴∠BAD=∠ADE=140°,∴∠α=∠BAD=70°.故答案为:70°.15.解:∵一个n边形过一个顶点有5条对角线,∴n﹣3=5,解得n=8.故答案为:8.16.解:设平面内这4个点分别为A,B,C,D,过任意两点画射线则有,射线AB,射线BA,射线AC,射线CA,射线AD,射线DA,射线BC,射线CB,射线BD,射线DB,射线CD,射线DC,共12条.故答案为:12.17.解:由作图的痕迹得DE垂直平分AB,∴AD=BD,EA=EB,所以②正确;∵∠ACB=90°,∴CD=DA=DB,即CD=AB,所以③正确;∴∠DBC=∠BCB,∠BAE=∠ACD,所以①错误,④正确.故答案为:②③④.18.解:∵1°=60′,∴0.45°=27′,∴∠1=30.45°=30°+0.45°=30°27′,∵∠2=30°28′,∴∠1<∠2.故答案为:<.19.解:∵AB=6cm,BC=10cm,P、Q分别是AB、BC中点,∴BP=AB=3(cm),BQ=BC=5(cm),当点B在线段AC上时,PQ=BP+BQ=8(cm),当B点在CA的延长线上时,PQ=BQ﹣BP=2(cm),综上,线段PQ的长为8cm或2cm.故答案为:8或2.20.解:由题意得:30°﹣15×0.5°=30°﹣7.5°=22.5°,故答案为:22.5.21.解:如图:从A地出发沿北偏东50°的方向行驶到B,则∠BAC=90°﹣50°=40°,从B地出发沿南偏西30°的方向行驶到C,则∠BCD=90°﹣30°=60°,∴∠ABC=∠BCD﹣∠BAC=60°﹣40°=20°.即∠ABC是20°.22.解:设运动场上的小环半径为r米,大环半径半径为R米,根据题意得:2π(R﹣r)=π,解得:R﹣r=,即跑道的宽度为米.故答案为:.23.解:只能使用直尺和圆规这两种工具去作几何图形的方法称为尺规作图. 故答案为:直尺,圆规.24.解:由对称性可知,图中的①、②、③、④的面积相等,所以S 阴影部分=S 正方形﹣S 扇形ABD=36﹣=36﹣9π,故答案为:36﹣9π.三.解答题(共7小题,满分78分)25.解:(1)∵AB =CD ,∴AB +BC =CD +BC ,∴AC =BD .(2)∵BC =AC ,且AC =12(cm ),∴BC =12×=9(cm ),∴AB =CD =AC ﹣BC =12﹣9=3(cm ),∴AD =AC +CD =12+3=15(cm ).26.解:如图,连接AB 交直线m 于点O ,则O 点即为所求的点.理由如下:根据连接两点的所有线中,线段最短,∴OA +OB 最短.27.解:(1)∵∠AOC =48°,OE 平分∠AOC ,∴∠AOE=∠COE==24°.∴∠BOE=180°﹣∠AOE=156°.(2)是,理由如下:由(1)得,∠COE=24°.∴∠COD=∠DOE﹣∠COE=90°﹣24°=66°.∵∠BOE=156°,∴∠BOD=∠BOE﹣∠DOE=156°﹣90°=66°.∴∠COD=∠BOD.∴OD平分∠BOC.28.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n ﹣3,多边形对角线的总条数为n(n﹣3);故答案为:n﹣3,n(n﹣3);(2)∵3×6=18,×18×(18﹣3)=135(个).答:数学社团的同学们一共将拨打电话为135个.29.解:(1)如图,∠OAD即为所求;(2)结论:AD∥BC.理由:∵∠OAD=∠ABC,∴AD∥BC.30.解:∵AB=30cm,BD=18cm,∴AD=AB﹣BD=30﹣18=12(cm),∴纸扇上贴纸部分的面积S=S扇形BAC ﹣S扇形DAE=﹣=300π﹣48π=252π(cm2).31.解:(1)点C表示的数为:=3;(2)点C所表示的数为3,设点P所表示的数为p,则|p﹣3|=2,解得p=5或p=1,答:点P所表示的数为1或5;(3)设点D在数轴上所表示的数为d,运动的时间为ts,则点M所表示的数为﹣6+4t,点N所表示的数为d+3t,①当点M在点N的左侧,点N在点C的左侧,MN=d+3t﹣(﹣6+4t)=d﹣t+6=1,即d﹣t=﹣5,NC=3﹣d﹣3t=2,即d+3t=1,由可解得d=﹣;②当点M在点N的左侧,点N在点C的右侧,MN=d+3t﹣(﹣6+4t)=d﹣t+6=1,即d﹣t=﹣5,NC=d+3t﹣3=2,即d+3t=5,由可解得d=﹣;③当点M在点N的右侧,点N在点C的左侧,MN=﹣6+4t﹣(d+3t)=﹣6+t﹣d=1,即d﹣t=﹣7,NC=3﹣d﹣3t=2,即d+3t=1,由可解得d=﹣5;④当点M在点N的右侧,点N在点C的右侧,MN=﹣6+4t﹣(d+3t)=﹣6+t﹣d=1,即d﹣t=﹣7,NC=d+3t﹣3=2,即d+3t=5,由可解得d=﹣4;综上所述,点D所表示的数为﹣或﹣或﹣5或﹣4.。
第四章《平面图形及其位置关系》专项练习(含答案)
第四章《平面图形及其位置关系》专项练习在本章中,我们不仅能从测量、折纸、画图等活动中学到线段、直线、射线、角等简单的平面图形,以及两直线平行、垂直的位置关系和特征,而且还可以自己创作出新颖、有趣的七巧板拼图,用尺规设计出精美、别致的图案,这样,你自己也会成为一名小小的设计师,更会感受到美就在我们身边.考点一:直线、射线线段 1.考点分析:考查直线、射线、线段的性质以及直线与线段计数问题,线段的计算及简单的语言的认识与应用,多以填空、选择的形式出现2.典例剖析例1.在表示直线时,常常要用到直线上的两个点表示,这条直线为什么不用一个点,三个点或更多的点表示直线?答:因为过一点可作无数条直线,即一点不能确定一条直线,所以不能用一点表示一条直线,而两点确定一直线,用直线上三个点或更多的点表示太繁,一般来说也没必要,因此用两点最简单明了.例2.(1)如图1,从教室门A 到图书馆B ,总有少数同学不走边上的路而横穿草坪,这是为什么?请你用所学的数学知识来说明这个问题.(2)如图2,A 、B 是河流L 两旁的两个村庄,现在要在河边修一个引水站向两村供水,问引水站修在什么地方才能使所需要的管道最短?请在图中表示出点P 的位置,并说明你的理由.(3)你赞同以上的做法吗?你认为应用 科学知识为人民服务应注意什么?分析:利用“两点之间,线段最短”.答:(1利用的是两点之间,线段最短.(2)连接A 、B两点与L 相交,交点就是P 的位置,根据两点之间,线段最短. (3)第一种做法不对,践踏草坪不道德;第二种做法对,节省物质.例3.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,求线段AC 的长. 解:当点C 在线段AB 的延长线时,如图3, AC=AB+BC=8+3=11(cm ) 当点C 在射线BA 上时,如图4,AC=AB-BC=8-3=5(cm ) 所以线段AC 的长为11cm 或5cm .评注:这是一道读句画图计算题,只要按照题意,正确地画出图形,这里还要注意分类讨论的数学思想,否则容易漏解. 专练一: 1.一般来说,把门安装在门框上需要两个合页,这是为什么呢?2.“已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,(1)线段CB 是线段AB 的几倍?(2)线段AC 是线段CB 的几分之几?”3.如图5,平原上有A 、B 、C 、D 四个村庄,为了解决当地缺水问题,政府准备投资修建一个蓄水池.不考虑其他因素,A L图2·· · A C B 图4 ·· · B A C 图3H B · A · ·C ·D E F ┒ ≈ ≈ ≈≈ ≈ ≈图5请你画图确定蓄水池H 点的位置,使它与四个村庄的距离之和最小. 4. 如图6,在正方体两个相距最远的顶点处有一只苍蝇B 和蜘蛛A , 蜘蛛可从哪条最短的路径爬到苍蝇处?试说明你的理由.5.在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,那么8条直线把一个平面最多分成 部分, n 条直线把一个平面最多分成 部分.6.问题:在直线上有n 个不同点,则此直线上共有多少条线段?考点二:角的度量、表示与比较 1.考点分析:角的度、分、秒的转换与计算,角的计数等内容是中考的热点,多以填空题、选择题的形式出现2.典例剖析例1.下图中有几个角?是哪几个角?分析:由一点引n 条射线所组成的角的个数共有(1)1234(1)2n n n -+++++-=个,此题从O 出发有4条射线,n=4,此时(1)62n n -=.解:图中有6个角,分别为∠AOB 、∠AOC 、∠AOD 、∠BOC 、∠BOD 、∠COD . 例2.如图7,一幅三角板的两个直角顶点重合在一起,(1)比较∠EOM 和∠FON 的大小,并说明为什么?(2)∠EON 与∠FOM 的和是多少度?为什么?解:由三角板可知∠EOM+∠FOM=900,∠FOM+∠FON=900, 所以∠EOM=∠FON ,又因为∠EON=∠EOM+∠FOM+∠FON , 所以∠EON+∠FOM=∠EOM+∠FOM+∠FON+∠FOM= 900+900=1800.例3.如图8,OA 是表示北偏东300方向的一条射线,仿照这条射线,画出展示下列方向的射线:(1)南偏东250;(2)北偏西600.分析:(1)以正南方向的射线为始边,向东旋转250, 所成的角的终边OB 即为所求的射线.(2)以正北方向的射线为始边,向西旋转600, 所成的角的终边OC 即为所求的射线.解:如图8所示:B图6 O A BCD图6O 西 南 北 300 A 600O 西 南 北 250B C 图8 图9 图7O A B P QR图1专练二: 1.(2006年潍坊市)用A B C ,,分别表示学校、小明家、小红家,已知学校在小明家的南偏东25︒,小红家在小明家正东,小红家在学校北偏东35︒,则ACB ∠等于( ) A .35︒ B .55︒ C .60︒ D .65︒ 2.如图10,已知∠AOC =∠BOD =75°,∠BOC =30°,求∠A OD.3.如图11,已知O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,求∠DOE 的度数.4.如图12,∠AOB=900,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线, 求∠MON 的大小.考点三:直线与直线的位置关系1.考点分析:直线与直线的位置关系有两种:平行与垂直,有关平行线的定义的辨析题和平行线性质的应用以及垂线、垂线段的概念、性质是中考的主要考点,多以填空题、选择题为主2.典例剖析例1.已知:如图1,∠A0B 的两边 0A 、0B 均为平面反光镜, ∠A0B =40.在0B 上有一点P,从P 点射出一束光线经0A 上的Q 点反射后,反射光线QR 恰好与0B 平行,则∠QPB 的度数是( )A .60°B .100 °C . 80°D .120°分析:本题考察相交线、平行线的问题,题目非常简单. 答案为C .评注:本题把考察相交线、平行线的问题,放置在生活中的实际背景中,贴近生活,体现了数学的现实性、实用性,题目灵活,重点考察学生的数学素养.例2.按如图所示的方法将圆柱切开,所得的截面中 有没有互相平行的线段?答案:有.即:AB ∥CD AD ∥BC评注:由于圆柱的上、下底面平行,按照这样截法 阴影部分为平行四边形例3.体育课上,老师是怎样测量同学们的跳远成绩的? 你能尝试说明其中的理由吗?理由:将尺子拉直与踏板边沿所在的直线垂直,量取最近的脚印与踏板边沿之间的距离. “垂线段最短”.专练三:1.下列说法错误的是( )A.直线a ∥b ,若c 与a 相交,则b 与c 也相交BAC M N O图12 图10图12G C FMA HED BNB.直线a 与b 相交,c 与a 相交,则b ∥cC.直线a ∥b ,b ∥c ,则a ∥cD.直线AB 与CD 平行,则AB 上所有点都在CD 同侧2.如右图,过C 点作线段AB 的平行线,说法正确的是( )A.不能作B.只能作一条C.能作两条D.能作无数条 3.将一张长方形纸对折,使OA 与OB 重合,这时∠AOC 是什么角?为什么?4.如图,哪些线段是互相垂直的,请利用量角器或直尺等工具将它们找出来.5.如图,所示是楼梯台阶的一部分,与面AB-DC 垂直的棱有哪些?6.读下列语句作图(1)任意作一个∠AOB . (2)在角内部取一点P .(3)过P 分别作PQ ∥OA ,PM ∥OB .(4)若∠AOB =30°,猜想∠MPQ 是多少度?考点四:平面图形问题1.考点分析:这部分内容主要是指:有趣的七巧板与图案设计两部分,利用七巧板的原理拼图以及用基本的图形,通过想象,设计一些个性化的图案,多以填空题、选择题为主2.典例剖析例1.如图1,用一块边长为22的正方形ABCD 厚纸板,按照下面的作法,做了一套七巧板:作对角线AC ,分别取AB 、BC 中点E 、F ,连结EF ;作DG ⊥EF 于G ,交AC 于H ;过G 作GL ∥BC ,交AC 于L ,再由E 作EK ∥DG ,交AC 于K ;将正方形ABCD 沿画出的线剪开,现用它拼出一座桥(如图2),这座桥的阴影部分的面积是( )A.8B.6C.4D.5分析:本题先将正方形割成七巧板,然后再拼成一座桥,因此不难发现阴影部分是由5个小板构成的,由于拼图前后图形的总面积以及7个小板的面积不变,所以这座桥的阴影部分的面积应是正方形面积的一半,即阴影部分的面积为4,故选C例2.(1)在七巧板中(如图1),找几组平行线或垂直的线段? (2)在七巧板中(如图),直角、锐角、钝角有哪些? 分析:根据七巧板中每个图形的特点可以得到: (1)平行线有:AB ∥DC ;EK ∥HG ;LG ∥CF 等; 垂直的线段有:EK ⊥AC ;GH ⊥AC ;EG ⊥HG 等(2)锐角12个:∠BAH ;∠FGL ;∠HGL 等,它们均为450 直角有:∠AHG ;∠HKE ;∠LHG ;∠KEG 等; 钝角有:∠CLG ;∠CFG ,它们均内为1350例3.如图3,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后得到标号为P 、Q 、M 、N 的四组图形.试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:A 、与____对应B 、与____对应C 、与____对应D 、与_____对应分析:根据剪拼前后,小块图形的大小,形状不变的特点,仔细观察每个正方形中的小块图形的特征,以此判断出:A 与M 对应;B 与P 对应;C 与Q 对应;D 与N 对应专练四:1.如图1是利用七巧拼成风的图案,在这个图案中找出二组平行线是_ __.(1)E C FM A HD BG(2)EC FA DBG(3)2.如图2是利用七巧板拼成的山峰的图案, 在这个图案中找出二组互相垂直的线段是___________________.3.如图3是利用七巧板拼成的数字3,这个图案中直角的个数是( )A.5B.9C.7D.8图3 图2 图14.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图4①整幅七巧板是由正方形ABCD 分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图4②是由七巧板拼成的一个梯形,若正方形ABCD 的边长为12 cm ,则梯形MNGH 的周长是____cm (结果保留根号).5.用你所制作的七巧板,拼成一个等腰直角三角形与一个梯形,并在纸上画出所拼的图案. 6.今有一块正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请你设计三种不同的修筑方案.(只需画简图)7种不同形状的平面图形?请你画出拼成的图形.参考答案专练一:1.答:是因为经过两点有一条直线且只有一条直线.2.若学生不会画图,很难得到其数量关系,但学生只要把图画出来,其数量关系就一目了然.3.解:如图5所示:连结AD 、BC ,交于点H ,则H 为所求蓄水池点. 4.解:分析:我们可以借助正方体的展开图找到解题的办法,由于正方体的 展开有不同的方法,因而从A 到B 可用6种不同的方法选取最短的 路径,但每条路径都通过连接正方体两个顶点的棱的中点.线段最短”就可确定最短路径(如图6). 5.分析:在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,可以猜想:8条直线把一个平面最多分成部分2882372++=部分,那么n 条直线把一个平面图5图6图6图4最多分成222n n++部分.6.1+2+3+4+…+n=2)1(-⨯nn条线段,专练二:1.1100;2.120°;3.90°4.450.专练三:1.B;2.B;3.90°4.BC⊥AB BC⊥BE BC⊥AE BC⊥CD 5.有棱DF,CE,HN,GM6.如图;30°或150°专练四:1.AB∥DC,HG∥BC;2.AG⊥AB,BC⊥CD ___3.B;4.略;5.如答图所示:(1)(2)6.答案不唯一(如图7)7.答案不唯一(如图8)图7 ①②图8。
北师大版七年级数学上册第四章基本平面图形1线段、射线、直线第1课时线段、射线、直线课件
2.同一平面内有A,B,C三点,经过任意两点画直线,共可画
(C) A.1条
B.3条
C.1条或3条
D.不能确定
解析 如图,同一平面内有A,B,C三点,经过任意两点画直线, 共可画1条或3条.故选C.
3.(2024山东菏泽成武期中)图中共有 10 段.
条不同的线
解析 题图中的线段有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE, 共10条.
知识点2 点和直线的位置关系 6.(2024河北廊坊广阳期末)如图,下列说法错误的是
(C )
A.直线AC还可以表示为直线CA或直线m B.射线AC与射线CA不是同一条射线 C.点B在直线m上 D.图中有1条直线,4条射线,1条线段 解析 易判断A,B,D项正确,C项,由题图知点B在直线m外,故 C项错误.
知识点3 直线的性质 7.王小毛同学做教室卫生时,发现座位很不整齐,他思考了一 下,将第一个座位和最后一个座位固定之后,沿着这条线就把 座位摆整齐了!他利用了数学原理: 两点确定一条直线 .
解析 王小毛利用的数学原理是两点确定一条直线.
能力提升全练
8.(2021河北中考,1,★☆☆)如图,已知四条线段a,b,c,d中的一 条与挡板另一侧的线段m在同一直线上,请借助直尺判断该 线段是 ( A )
(1)画直线AC; (2)线段AD与线段BC相交于点O; (3)射线AB与射线CD相交于点P.
解析 (1)直线AC如图所示. (2)线段AD与线段BC相交于点O,如图所示. (3)射线AB与射线CD相交于点P,如图所示.
易错警示 画“三线”的注意点:①画线段时,要确定哪两个点是端
点,不能画“出头”,还要注意延长线与反向延长线的区别; ②画射线时,要注意射线的端点和延伸的方向;③画直线时, 要注意直线没有端点,向两个方向无限延伸,要画“出头”.
第四章《平面图形及其位置关系》水平测试(含答案)
第四章《平面图形及其位置关系》水平测试(满分:120分 时间:100分钟)一、精心选一选(每题3分,共30分) 1.下列说法正确的是( )A 、两点之间,线段最短B 、射线就是直线C 、两条射线组成的图形叫做角D 、小于平角的角可分为锐角和钝角两类 2.两个锐角的和( )A.一定是锐角B.一定是直角C.一定是钝角D.可能是钝角、直角或钝角 3.如图,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若MN=a,BC=b.则线段AD 的长是( )A 、2(a -b )B 、2a -bC 、a+bD 、a -b4.已知∠AOB=30°,∠BOC=80°,∠AOC=50°,那么( ) A 、射线OB 在∠AOC 内 B 、射线OB 在∠AOC 外C 、线OB 与射线OA 重合D 、射线OB 与射线OC 重合 5.如图所示,∠1=15°,∠AOC=90°,点B 、O 、D 在同一直线上,则∠2的度数为( ) A 、75° B 、15° C 、105° D 、165°6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( ) A 、南偏西50°方向 B 、南偏西40°方向 C 、北偏东50°方向 D 、北偏东40°方向7.按下列线段长度,可以确定点A 、B 、C 不在同一条直线上的是( ) A 、AB=8㎝,BC=19㎝,AC=27㎝; B 、AB=10㎝,BC=9㎝,AC=18㎝ C 、AB=11㎝,BC=21㎝,AC=10㎝;D 、AB=30㎝,BC=12㎝,AC=18㎝8.学校、电影院、公园在平面图上的标点分别是A 、B 、C ,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB 等于( ) A 、115° B 、155° C 、25° D 、65° 9.下列说法中正确的是( )A 、在同一平面内,两条不平行的线段必相交B 、在同一平面内,不相交的两条线段是平行线C 、两条射线或线段平行是指它们所在的直线平行D 、一条直线有可能同时与两条相交直线平行 10.下列结论正确的有( )A 、如果a ⊥b,b ⊥c,那么a ⊥cB 、a ⊥b,b ∥c,那么a ∥cC 、如果a ∥b,b ⊥c, 那么a ∥cD 、如果a ⊥b,b ∥c,那么a ⊥c 二、耐心填一填(每题3分,共30分)11.要整齐地栽一行树,只要确定下两端的树坑的位置 ,就能确定这一行树坑所在的直线,这里用到的数学知识是_________________ 12.上午10点30分,时针与分针成___________度的角。
北师大版七年级数学第四章试卷11
D A D C BDC BA B C ED A O 如意湖中学七年级数学上册单元测试(11)第四章 平面图形及其位置关系姓名 学号成绩一、选择题(每空3分,共24分): 1、下列语句中,最正确的是( )A 、延长线段AB B 、延长射线ABC 、在直线AB 的延长线上取一点CD 、延长线段BA 到C ,使BC=AB 2、已知线段AB ,延长AB 到C ,使BC=2AB ,又延长BA 到D ,使DA=21AB ,则( )A 、BCDA 21=B 、ABDC 25=C 、BD :AB=4:3 D 、BCBD 43=3、现在的时间是9点20分,此时钟面上的时针与分针的夹角是( ) A 、0150 B 、0160 C 、0162 D 、01654、三条互不重合的直线的交点个数可能是( ) A 、0、1、3 B 、0、2、3 C 、0、1、2、3 D 、0、1、25、如图,射线OA 表示的方向是( ) A 、西南方向 B 、东南方向 C 、西偏南010 D 、南偏西0106、如图:由AB=CD 可得AC 与BD 的大小关系( )A .AC>BDB .AC<BDC .AC=BD D .不能确定 7、如图,已知078=∠=∠BOD AOC ,035=∠BOC ,则AOD ∠的度数是( )A 、086B 、0156C 、0121D 、01138、如图,从点O 出发的5条射线,可以组成的角的个数是( ) A 、4 B 、6 C 、8 D 、10 二、填空题(每空3分,共30分): 9、21周角=______平角=______直角=______度。
10、075.0=______分=______秒;11、如图所示,则图中有_____条线段,它们是___________________; 图中以A 为端点的的射线有______条,它们是____________; 图中有____条直线,它们是________________。
七年级上数学第四章平面图形及其位置关系 易错题
第四章平面图形及其位置关系一、立体图形与平面图形一、立体图形(一)围成图形1、下面图形经折叠后可以围成一个棱柱的有()A、1B、2C、3D、42、如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是()3、如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是()A.甲B.乙C.丙D.丁4、如图是一正方体的平面展开图,若AB =4,则该正方体A,B两点间的距离为()A.1 B.2 C.3 D.4(二)骰子类1、如图,一个正方体的每个面分别标有数字1,2,3,4,5,6,根据图中该正方体A、B、C三种状态所显示的数字,可推出6的对面和2的对面的两数字之和为________。
3、把立方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况列表如下:现将上述大小相同,颜色、花朵分别完全一样的四个立方体拼成一个水平放置的长方体,如图所示,问长方体的下底面共有多少朵花?3、如图所示,一个正方体,六个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,你能看到的面上数分别是7,10,11,求这6个整数的和。
4、如图,线段AB和CD是正方体表面两正方形的对角线,将此正方体沿部分棱剪开,展成一个平面图形后,AB和CD可能出现下列关系中的哪几种?①AB⊥CD;②AB∥CD;③A、B、C、D四点在同一直线上。
正确的结论是()A.①②B.②③C.①③D.①②③(三)立体图形的面、棱1、下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等。
其中正确的有()。
A.2个B.3个C.4个D.5个2、三棱柱的顶点有个,棱条总数是条,面有个;n棱柱的顶点有个,棱条总数是条,面有个;n棱锥的顶点有个,棱条总数是条,面有个。
北师大版七年级数学上册第四章 平面图形及其位置关系教案
第四章平面图形及其位置关系1.线段、射线、直线教学目标:知识与技能:在现实情景中了解线段、射线、直线的描述性定义和表示方法,理解直线的性质,充分感受生活中所蕴含的丰富多彩的几何图形。
过程与方法:通过识图、辨析、观察、猜测验证等数学探究过程,发展几何意识、合情推理和探究意识。
(过程与方法)情感与态度:在解决问题的过程中体验比较、联想、猜想等思维能力,解决问题的积极性和主动性。
重点:了解线段、射线、直线的描述性定义和表示方法,理解直线的性质。
难点:发展几何意识、合情推理和探究意识。
教学过程设计:第一环节情境导入,适时点题(1)、老师用多媒体出示一组生活中的图片,有筷子图、手电光束、笔直铁轨、人行横道、绷紧的琴弦。
让学生观察,问:你们能在其中发现我们所熟知的几何图形吗?(2)、教师点明课题。
(板书课题:线段、射线、直线)讲明线段、射线、直线的描述性概念,并指明端点。
(3)、学生讨论交流:(a)、生活中,有哪些物体可以近似的地看作线段、射线、直线。
(b)、线段、射线、直线的区别和联系。
(教师用多媒体演示)利用生活中熟知的情境,激发兴趣,使学生感受生活中所蕴含的图形。
让学生感受从实际问题中抽象出所要了解的图形的过程,同时在解答问题中形成认知冲突,激发学生的学习热情。
第二环节对比观察,辨析理解(1)、教师借助图形,讲明线段、射线、直线的表示方法。
(2)、一组小练习,加深理解:请完成表格:(3)、请表示出下图中的线段、射线、和直线:经过师生交流,屏幕显示线段、射线、直线的表示方法,以及一组小练习,目的在于让学生了解线段、射线、直线的规范的表示方法,并加深对线段、射线、直线的本质性的理解。
练习有助于学生理解线段、射线、直线的联系和区别。
同时可以巩固对表示方法的掌握。
教师应充分调动他们的积极性,让他们广泛参与、积极主动的学习。
第三环节动手操作,探索新知:(1)、教师拿出一根木条和几颗钉子和相关工具,要求用尽可能少的钉子把木条固定在木板上,问至少要几颗?要求:先猜想,再让学生发言说出道理,并让学生到前面动手操作,教师适时鼓励学生自己描述从操作中得到的结论。
解析卷-北师大版七年级数学上册第四章基本平面图形定向攻克试题(含答案解析)
七年级数学上册第四章基本平面图形定向攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中:(1)角的两边越长,角就越大;(2)AOB∠与BOA∠表示同一个角;(3)在角一边的延长线上取一点D;(4)角可以看作由一条射线绕着它的端点旋转而形成的图形.错误的个数是()A.1个B.2个C.3个D.4个2、下面表示∠ABC的图是A.B.C.D.3、如图,如果把原来的弯曲河道改直,关于两地间河道长度的说法正确的是()A.变长了B.变短了C.无变化D.是原来的2倍4、若过六边形的一个顶点可以画n条对角线,则n的值是()A.1 B.2 C.3 D.45、已知∠AOB=100°,过点O作射线OC、OM,使∠AOC=20°,OM是∠BOC的平分线,则∠BOM的度数为()A.60°B.60°或40°C.120°或80°D.40°6、若A∠为钝角,B为锐角,则A B∠-∠是()A.钝角B.锐角C.直角D.都有可能7、如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C .D .8、如图,点C 是线段AB 上一点,点M 是AC 的中点,点N 是BC 的中点,如果MC 比NC 长2cm ,AC 比BC 长( ).A .1 cmB .2 cmC .4 cmD .6 cm9、如图,小林利用圆规在线段CE 上截取线段CD ,使CD AB =.若点D 恰好为CE 的中点,则下列结论中错误..的是( )A .CD DE =B .AB DE =C .12CE CD = D .2CE AB =10、已知点A ,B ,C 都是直线l 上的点,且5cm AB =,3cm BC =,那么点A 与点C 之间的距离是( )A .8cmB .2cmC .8cm 或2cmD .4cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.2、从某多边形的一个顶点出发,连接其余各顶点,把这个多边形分成6个三角形,则这个多边形是____.3、若两个图形有公共点,则称这两个图形相交,否则称它们不相交.如图,直线PA ,PB 和线段AB 将平面分成五个区域(不包含边界),当点Q 落在区域______时,线段PQ 与线段AB 相交(填写区域序号).4、如图,已知线段10cm AB =,2cm AD =,D 为线段AC 的中点,那么线段AC 长度与线段BC 长度的比值为______.5、如图,将两块直角三角板的直角顶点重合为如图所示的形状,若137AOD ∠=︒,则BOC ∠=________︒.三、解答题(5小题,每小题10分,共计50分)1、如图,C 为线段AD 上的一点,B 为线段CD 的中点,AD =12cm ,BD =3cm .(1)图中共有 条线段;(2)求线段AC 的长;(3)若点E 在线段AD 上,且BE =2cm ,求AE 的长.2、把两个三角尺按如图所示那样拼在一起,试确定图中B E BAD DCE ∠∠∠∠,,,的度数及其大小关系.3、点C 在线段AB 上,若BC =2AC 或AC =2BC ,则称点C 是线段AB 的“雅点”,线段AC 、BC 称作互为“雅点”伴侣线段.(1)如图①,若点C 为线段AB 的“雅点”,()6AC AC BC =<,则AB =______;(2)如图②,数轴上有一点E 表示的数为1,向右平移5个单位到达点F ;若点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G 所表示的数.(写出必要的推理步骤)4、(1)画出数轴,并表示下列有理数:-2,13,1.5;(2)在(1)的条件下,点O 表示0,点A 表示-2,点B 表示13,点C 表示1.5,点D 表示数a ,-1<a <0,下列结论:①AO >DO ;②BO >DO ;③CO >DO .其中一定正确的是 (只需填写结论序号).5、已知:如图①所示,OC 是AOB ∠内部一条射线,且OD 平分AOC ∠,OE 平分BOC ∠.(1)若80AOC ∠=︒,50BOC ∠=︒,则EOD ∠的度数是______.(2)若AOC α∠=,BOC β∠=,求EOD ∠的度数,并根据计算结果直接写出EOD ∠与AOB ∠之间的数量关系.(写出计算过程)(3)如图③所示,射线OC 在AOB ∠的外部,且OD 平分AOC ∠,OE 平分BOC ∠.试着探究EOD ∠与AOB ∠之间的数量关系.(写出详细推理过程)-参考答案-一、单选题1、B【解析】【分析】由共一个端点的两条射线组成的图形叫做角,角也可以看作由一条射线绕着它的端点旋转而形成的图形,角的大小与角的两边张开的程度有关;根据角的概念、表示及大小逐一进行判断即可.【详解】(1)角的大小与角的两边张开的程度有关,与角的两边长短无关,故说法错误;(2)AOB∠与BOA∠表示同一个角,此说法正确;(3)角的两边是两条射线,射线是向一端无限延伸的,故此说法错误;(4)此说法正确;所以错误的有2个故选:B.【考点】本题考查了角的概念、角的大小、角的表示等知识,掌握这些知识是关键.2、C【解析】【详解】分析:根据初中所学角的范围,可排除A选项;根据顶点字母必须写在中间,找出顶点字母是B的角即可.详解:A.初中阶段的角指锐角、直角、钝角,故A错误,B.角的顶点是C,故B错误,C.角的顶点是B,故C正确,D.角的顶点是A,故D错误.故选C.点睛:本题考查了角的表示方法,解题的关键是牢记角的各种表示方法. ①用三个字母,中间的字母表示顶点,其它两个字母分别表示角的两边上的点;②用一个数字表示一个角;③用一个希腊字母表示一个角.3、B【解析】【分析】根据两点之间线段最短解答.【详解】解:如果把原来的弯曲河道改直,根据两点之间线段最短可得到两地间河道长度变短了,故选:B.【考点】此题考查线段的性质:两点之间线段最短.4、C【解析】【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C.【考点】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.5、B【解析】【分析】分两种情况求解:①当OC在∠AOB内部时,②当OC在∠AOB外部时;分别求出∠BOM的度数即可.【详解】解:如图1,当OC在∠AOB内部时,∵∠AOB=100°,∠AOC=20°,∴∠BOC=80°,∵OM是∠BOC的平分线,∴∠BOM=40°;如图,当OC在∠AOB外部时,∵∠AOB=100°,∠AOC=20°,∴∠BOC=120°,∵OM是∠BOC的平分线,∴∠BOM=60°;综上所述:∠BOM的度数为40°或60°,故选:B.【考点】本题考察了角的计算,熟练掌握角平分线的性质,分两种情况画出图形是解题的关键.6、D【解析】【分析】根据题意找到范围值钝角是大于90°小于180°的角,锐角是大于0°小于90°的角,然后找到对应的差的范围值为大于0°小于180°,然后对照选项即可.【详解】解:因为A ∠为钝角,B 为锐角,所以90180A ︒<∠<︒,090B ︒<∠<︒,所以0180A B ︒<∠-∠<︒,所以锐角,直角,钝角均有可能.故选D .【考点】考查范围的求解,学生必须熟悉锐角、直角、钝角的范围,并能够求差所对应的范围值,此为解题的关键.7、C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB 为底面直径,∴将圆柱侧面沿AC “剪开”后, B 点在长方形上面那条边的中间,∵两点之间线段最短,故选: C.【考点】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.8、C【解析】【详解】∵点M是AC的中点,点N是BC的中点,∴AC=2MC,BC=2NC.∵MC-NC=2,∴AC-BC=2MC-2NC=2(MC-NC)=2×2=4(cm)故选C.点睛:本题考查了线段中点得计算,根据点M是AC的中点,点N是BC的中点,可得AC=2MC,BC=2NC,所以AC-BC=2MC-2NC=2(MC-NC),据此即可得出答案.9、C【解析】【分析】根据线段中点的性质逐项判定即可.【详解】解:由题意得:D是线段CE的中点,AB=CDCE=CD=DE,即B、D正确,C错误.∴CD=DE,即选项A正确;AB=12故答案为C.【考点】本题考查了尺规作图和线段中点的性质,其中正确理解线段中点的性质是解答本题的关键.10、C【解析】【分析】分点B 在线段AC 上和点C 在线段AB 上两种情况,计算即可.【详解】解:当点B 在线段AC 上时,AC=AB+BC=5+3=8cm ,当点C 在线段AB 上时,AC=AB-BC=5-3=2cm ,故选:C .【考点】本题考查两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.二、填空题1、201912【解析】【分析】先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=点2A 表示的数为11111222OA ==点3A 表示的数为22111242OA == 点4A 表示的数为33111282OA == 归纳类推得:点n A 表示的数为112n -(n 为正整数) 则点2020A 表示的数为2020120191122-= 故答案为:201912.【考点】 本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.2、八边形.【解析】【分析】根据n 边形从一个顶点出发可引出(n −2)个三角形解答即可.【详解】解:设这个多边形为n 边形.根据题意得:n −2=6.解得:n =6.故答案为:八边形.【考点】本题主要考查的是多边形的对角线,掌握公式是解题的关键.3、②.【分析】当点Q 落在区域②时,线段PQ 与线段AB 有公共点,即可得到线段PQ 与线段AB 相交.【详解】由图可得:当点Q 落在区域②时,线段PQ 与线段AB 有公共点.故答案为:②.【考点】本题主要考查了线段、射线和直线,点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外.4、23【解析】【分析】根据D 为线段AC 的中点,可得4cm AC AD CD =+=,即可求解.【详解】 D 为AC 的中点,2cm AD CD ∴==,224cm AC AD CD ∴=+=+=,∵10cm AB =,1046cm BC AB AC ∴=-=-=,4263AC BC ∴==, 故答案为:23.AC .本题主要考查了与线段中点有关的计算,求比值,解题的关键在于能够根据题意求出4cm 5、43【解析】【分析】由题意可得∠AOB=∠COD=90°,则可得∠AOD+∠BOC=180°,即可求得结果.【详解】解:∵∠AOB=∠COD=90°∴∠AOC+∠BOC+∠BOD+∠BOC=180°即∠AOD+∠BOC=180°∵∠AOD=137°∴∠BOC=43°,故答案为:43.【考点】本题主要考查角的和差关系,根据角的和差关系,列出算式,是解题的关键.三、解答题1、(1)6;(2)6cm;(3)11cm或7cm【解析】【分析】(1)根据线段的定义找出线段即可;(2)先根据点B为CD的中点,BD=3cm求出线段CD的长,再根据AC=AD−CD即可得出结论;(3)根据E点位置的不同分情况讨论即可求解.解:(1)图中的线段有AC 、AB 、AD 、BC 、CD 、BD ,共有6条线段.故答案为:6;(2)∵点B 为CD 的中点.∴CD =2BD .∵BD =3cm ,∴CD =6cm ,BC =3cm ,∵AC =AD −CD 且AD =12cm ,CD =6cm ,∴AC =6cm ;(3)如图,点E 在B 点的左侧,BE =2cm ,∴CE =BC -CE =1 cm ,∴AE =AC +CE =7 cm ,如图,点E 在B 点的右侧,BE =2cm ,∴AE =AC +BC +BE =6+3+2=11cm ,∴AE 的长为11cm 或7cm .【考点】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.2、30,60,120,90,B E BAD DCE B E DCE BAD ∠=︒∠=︒∠=︒∠=︒∠<∠<∠<∠.【分析】首先要知道一副三角板的各角度数,然后求出∠AEB,最后比较大小.【详解】解:∠B=30°,∠E=60°,∠BAD=ACB B∠+∠=90°+45°=135°,∠DCE=90°∴∠B<∠E<∠DCE<∠BAD.【考点】本题考查了角的比较与运算,要知道一副三角板各角的度数,比较简单.3、 (1)18(2)133或83或8.5或16.【解析】【分析】(1)由BC=2AC即可得答案;(2)点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,分种情况讨论即可.(1)∵点C为线段AB的“雅点”,AC=6(AC<BC),∴BC=2AC,∵AC=6,∴BC=12,∴AB=AC+BC=18,故答案为:18;(2)点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,分以下四种情况:①G在线段EF上,EG=2FG,如图1:∵EG=2FG,EG+FG=5,∴EG=103,∵E表示的数为1,∴G点表示的数为1+103=133,②G在线段EF上,且FG=2EG,如图2:∵FG=2EG,EG+FG=5,∴EG=53,∵E表示的数为1,∴G表示的数为1+53=83,③G在线段EF外,且EF=2FG,如图3:∵EF =2FG ,EF =5,∴FG =2.5,∴G 表示的数是1+5+2.5=8.5,④G 在EF 外,且FG =2EF ,如图4:∵FG =2EF ,EF =5,∴FG =10,∴G 表示的数为1+5+10=16,总上所述,G 表示的数为:133或83或8.5或16. 【考点】本题考查数轴相关知识,解答需要分类,解题的关键是读懂“雅点”、“雅点”伴侣线段的定义.4、(1)画图见解析;(2)①③【解析】【分析】(1)数轴上原点对应的数为0,原点左边的数为负数,右边的数为正数,再在数轴上表示-2,13,1.5即可;(2)先在数轴上对应的位置描出,,,,A B O C D ,再利用绝对值的含义分别求解,,,,AO DO BO CO 从而可得答案.【详解】解:(1)如图,在数轴上表示-2,13,1.5如下:(2)如图,,,,,A B O C D 在数轴上的位置如图所示:由22,1,AO DO a 则,AO DO 故①符合题意;由1,,01,3BO DO a a 则,BO DO 无法比较大小,故②不符合题意; 由 1.5 1.5,CO ,01,DOa a 则,CO DO 故③符合题意;所以正确的是:①③故答案为:①③【考点】 本题考查的是在数轴上表示有理数,绝对值的含义,线段的长度大小比较,掌握“利用绝对值的含义比较线段长度的大小”是解本题的关键.5、(1)65°;(2)12EOD AOB ∠=∠(或2AOB EOD ∠=∠),见解析;(3)12EOD AOB ∠=∠.见解析 【解析】【分析】(1)根据角平分线的性质计算即可;(2)根据角平分线的性质进行表示即可;(3)根据角平分线的性质分析判断即可;【详解】(1)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12EOC BOC ∠=∠,12DOC AOC ∠=∠,又∵80AOC ∠=︒,50BOC ∠=︒,∴402565EOF ∠=︒+︒=︒;故答案是:65︒.(2)方法1:∵OE 平分AOC ∠,AOC a ∠=, ∴12COE a ∠=, ∵OD 平分BOC ∠,AOC β∠=, ∴12COD β∠=, ∴1122EOD COE COD a β∠=∠+∠=+, EOD ∠与AOB ∠之间的关系为:12EOD AOB ∠=∠(或2AOB EOD ∠=∠); 方法2:∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12EOA AOC ∠=∠,12BOE BOC ∠=∠, ∴()EOD AOB DOA BOE ∠=∠-∠+∠,1122AOB AOC BOC ⎛⎫=∠-∠+∠ ⎪⎝⎭, ()12AOB AOC BOC =∠-∠+∠,12AOB AOB =∠-∠, 12AOB =∠, ∵AOC α∠=,BOC β∠=, ∴()12EOD αβ∠=+, EOD ∠与AOB ∠之间的关系为:12EOD AOB ∠=∠(或2AOB EOD ∠=∠); (3)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴111222EOD COD COE AOC BOC AOB ∠=∠-∠=∠-∠=∠. 【考点】本题主要考查了角平分线的综合应用,准确分析计算是解题的关键.。
北师版七年级上册数学书答案
精心整理[标签:标题]篇一:北师大版七年级上册数学配套练习(带答案)北师大七年级上第一章丰富的图形世界学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。
一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.;2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________;6.圆柱、圆锥、球的共同点是_____________________________;7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8.圆可以分割成_____ 个扇形,每个扇形都是由___________________;9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;11.将下列几何体分类,柱体有:,锥体有(填序号);12.长方体由_______________个面_______________条棱_______________个顶点;13.半圆面绕直径旋转一周形成__________;二.选择题114.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B CD 15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A)10个(B)9个(C)8个(D)7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:ACB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.2() () ( ) ()( )⑵. 将这些几何体分类,并写出分类的理由.一、1.平;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面;7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5;10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体;二、14.D;15.C;16.B;17.A;三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱;(2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱;按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界姓名学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形;二.填空题:1.围成球的面有个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ;3.圆锥是由_ __个面围成,其中__ _个平面,____个曲面,圆锥的侧面与底面3相交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二.选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是(()10.以下立体图形中是棱柱的有((A)①⑤(B)①②③(C)①②④⑤(D)①②⑤[ 11.下列说法中,正确的是((A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是((A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是(4)))))(A)正方体(B)长方体(C)球(D)棱柱14.()(A)(B)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A)7个(B)8个(C)9个(D)7个或8个或9个或10个三、解答题16.请写出下列几何体的名称() ( ) ( ) ( )( ) ( ) ( ) ( )17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面;6.立体;[二、5篇二:2014年练习册上册数学七年级C北师大版答案篇三:七年级上册-北师大版-数学练习册解析与答案七年级上册-北师大版-数学练习册解析与答案北师大版七年级数学上册教学建议及期末调研要求⒈本学期(春节1月29日)的教学时间虽然不太长,但除去节假日外,实际上课也在20周左右(课时数120节),相对的下学期的时间短些;而七上教材教学课时为69—108节,七下教材教学课时为66—100节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章《平面图形及其位置关系》
一、选择题 (每小题4分,共32分)
1、 按下列线段长度,可以确定点A 、B 、C 不在同一条直线上的是( )
A 、AB=8㎝,BC=19㎝,AC=27㎝;
B 、AB=10㎝,BC=9㎝,AC=18㎝
C 、AB=11㎝,BC=21㎝,AC=10㎝;
D 、AB=30㎝,BC=12㎝,AC=18㎝
2、 下列推理中,错误的是( )
A 、在m 、n 、p 三个量中,如果m=n, n=p ,那么m=p.
B. 在∠A 、∠B 、∠C 、∠D 四个角中,如果∠A=∠B ,∠C=∠D ,∠A=∠D ,那么∠B=∠C ;
C. a 、b 、c 是同一平面内的三条直线,如果a ∥b ,b ∥c ,那么a ∥c ;
D. a 、b 、c 是同一平面内的三条直线,如果a 丄b ,b 丄c ,那么a 丄c ;
3、 垂直是指一位置特殊的( )
A 、直线
B 、直角
C 、线段
D 、射线
4. 如图,四条表示方向的射线中,表示北偏东60°的是( )
5、 一个人从A 点出发向北偏东60°的方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,
那么∠ABC 的度数是( )
A 、75°
B 、105°
C 、45°
D 、135°
6、 同一平面内互不重合的三条直线的公共点的个数是( )
A 、可能是0个,1个,2个
B 、可能是0个,2个,3个
C 、可能是0个,1个,2个或3个
D 、可能是1个可3个
7、 已知四边形ABCD 中,∠A+∠B=180°,则下列结论中正确的是
( )
A、AB∥CD
B、∠B+∠C=180°
C、∠B=∠C
D、∠C+∠D=180°
二.填空题(本大题共 6小题,每小题 5分,共 30分)
12、如图1,AB的长为m,OC的长为n,MN分别是AB,BC的中点,则MN=_____
13、如图2,用“>”、“<”或“=”连接下列各式,并说明理由.
AB+BC_____AC, AC+BC_____AB, BC_____AB+AC,理由是__________
14、计算:48°39′+67°41′=_________;90°-78°19′40″=___________
21°17′×5=_______; 176°52′÷3=_________(精确到分)
15、如图3中,∠AOB=180°,∠AOC=90°,∠DOE=90°,则图中相等的角有_对,分别为
_______________;两个角的和为90°的角有_____对;两个角的和为180°的角有________对.
16、面上两条直线的位置关系只有两种,即__________和_________________
17、平面面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.
18、面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.
三、解答下列各题
20、如图,已知∠AOB,画图并回答:(9分)
⑴画∠AOB的平分线OP;
⑵在OP上任取两点C、D,过C、D分别画OA、OB的垂线,交OA于E,F,交OB于G、H,
⑶量出CE,CG,DF,DH
⑷过C作MC∥OB交OA于M
B。