北师大版七年级上册第四章:基本平面图形 单元检测
北师大版七年级上册单元测试卷第四章 基本平面图形检测卷附答案
第四章基本平面图形检测卷附答案一、选择题(共20小题;共100分)1. 谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为A. 量角器B. 直尺C. 三角板D. 圆规2. 如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际应用的数学知识是A. 两点确定一条直线B. 两点之间线段最短C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直3. 两个锐角的和不可能是A. 锐角B. 直角C. 钝角D. 平角4. 如图,则与的大小关系是A. B. C. D. 无法确定5. 如图所示,用量角器度量,可以读出的度数为A. B. C. D.6. 如图所示的网格是正方形网格,与的大小关系是A. B.C. D. 无法比较7. 已知射线在的内部,下列关系式;;;.其中,能说明为的平分线的有A. 个B. 个C. 个D. 个8. 如图所示,是线段的中点,是线段的中点,下列等式不正确的是A. B.C. D.9. 如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 经过两点有且只有一条直线D. 两点之间,线段最短10. 如图,已知,,平分,平分,则的度数是A. C. D.11. 如图所示,点,,在直线上,则下列说法正确的是A. 图中有条线段B. 图中有条射线C. 点在直线的延长线上D. ,两点之间的距离是线段12. 如图,为我国南海某人造海岛,某国商船在的位置,,下列说法正确的是A. 商船在海岛的北偏西方向B. 海岛在商船的北偏西方向C. 海岛在商船的东偏南方向D. 商船在海岛的东偏南方向13. 等腰三角形两边长分别是和,则它的周长是A. B. C. D. 或14. 下列各数中,正确的角度互化是A. B.C. D.15. 如果过一个多边形的一个顶点的对角线有条,则该多边形是A. 九边形B. 八边形C. 七边形D. 六边形16. 下列说法中正确的个数为(1)平角就是一条直线(2)有一个公共端点的两条射线组成的图形叫做角(3)连接两点的线段叫做两点的距离(4)两点之间,直线最短(5),则点是的中点A. 个B. 个C. 个D. 个17. 下列四个图中,能用,,三种方法表示同一个角的是A. B.C. D.18. 点分时,时钟的时针与分针所夹的锐角是A. B. C. D.19. 足球射门,不考虑其他因素,仅考虑射点到球门的张角大小时,张角越大,射门越好.如图的正方形网格中,点,,,,均在格点上,球员带球沿方向进攻,最好的射点在。
北师大版七年级数学上册第四章基本平面图形单元测试题含答案
北师大版七年级数学上册第四章基本平面图形单元测试题含答案一、选择题(每小题3分,共30分) 1.下面四个图形中,是多边形的是( )2.下列说法正确的是( )A.射线PA 和射线AP 是同一条射线B.射线OA 的长度是12 cmC.直线ab ,cd 相交于点MD.两点确定一条直线 3.两个锐角的和是( )A.锐角B.直角C.钝角D.以上都有可能 4.如图,C 是AB 的中点,D 是BC 的中点,则CD 的长等于( )A.CD =14AB B.CD =AD -BDC.CD =12(AB -BD )D.CD =12(AC -BD )5.如图,已知线段AB =10 cm ,点N 在AB 上,NB =2 cm ,M 是AB 的中点,那么线段MN 的长为( )A.5 cmB.4 cmC.3 cmD.2 cm6.如图,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方向角是( )A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°7.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形,则m,n的值分别为()A.4,3B.3,3C.3,4D.4,48.如图,∠AOB=30°,OB平分∠AOC,OC平分∠BOD,OD平分∠COE,则∠COE=()A.30°B.45°C.60°D.90°9.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB=7.8 cm,那么线段MN的长等于()A.5.4 cmB.5.6 cmC.5.8 cmD.6 cm10.将长方形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是()A.56°B.60°C.62°D.65°二、填空题(每小题4分,共20分)11.计算:(1)45°39′+65°41′=;(2)(雅安中考)1.45°=.12.植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是.13.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α=度.14.如图,点O是直线AD上一点,射线OC,OE分别是∠AOB,∠BOD的平分线.若∠AOC=28°,则∠COD =,∠BOE=.15.已知点A,B,C在直线l上,AB=4 cm,BC=6 cm,点E是AB中点,点F是BC的中点,16.则EF=三、解答题(共50分)16.(8分)如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.17.(8分)如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD 的度数.18.(10分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间距离是10 cm ,求AB ,CD 的长度.19.(12分)如图,B 是线段AD 上一动点,沿A →D 以2 cm/s 的速度运动,C 是线段BD 的中点,AD =10 cm ,设点B 运动时间为t 秒. (1)当t =2时:①AB =4cm ; ②求线段CD 的长度;(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.20.(12分)(焦作期末)如图,已知∠AOB=90°,以O为顶点,OB为一边画∠BOC,然后再分别画出∠AOC 与∠BOC的平分线OM,ON.(1)在图1中,射线OC在∠AOB的内部.①若锐角∠BOC=30°,则∠MON=45°;②若锐角∠BOC=n°,则∠MON=45°;(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数;(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变(如图3),求∠MON 的度数.参考答案一、选择题(每小题3分,共30分) 1.下面四个图形中,是多边形的是(D )2.下列说法正确的是(D )A.射线PA 和射线AP 是同一条射线B.射线OA 的长度是12 cmC.直线ab ,cd 相交于点MD.两点确定一条直线 3.两个锐角的和是(D )A.锐角B.直角C.钝角D.以上都有可能 4.如图,C 是AB 的中点,D 是BC 的中点,则CD 的长等于(A )A.CD =14AB B.CD =AD -BDC.CD =12(AB -BD )D.CD =12(AC -BD )5.如图,已知线段AB =10 cm ,点N 在AB 上,NB =2 cm ,M 是AB 的中点,那么线段MN 的长为(C )A.5 cmB.4 cmC.3 cmD.2 cm6.如图,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方向角是(B )A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°7.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形,则m,n的值分别为(C)A.4,3B.3,3C.3,4D.4,48.如图,∠AOB=30°,OB平分∠AOC,OC平分∠BOD,OD平分∠COE,则∠COE=(C)A.30°B.45°C.60°D.90°9.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB=7.8 cm,那么线段MN的长等于(A)A.5.4 cmB.5.6 cmC.5.8 cmD.6 cm10.将长方形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是(C)A.56°B.60°C.62°D.65°二、填空题(每小题4分,共20分)11.计算:(1)45°39′+65°41′=111°20′;(2)(雅安中考)1.45°=87′.12.植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是两点确定一条直线W.13.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α=120度.14.如图,点O 是直线AD 上一点,射线OC ,OE 分别是∠AOB ,∠BOD 的平分线.若∠AOC =28°,则∠COD =152°,∠BOE =62°.15.已知点A ,B ,C 在直线l 上,AB =4 cm ,BC =6 cm ,点E 是AB 中点,点F 是BC 的中点,则EF =5 cm 或1 cm.三、解答题(共50分)16.(8分)如图所示,直线l 是一条平直的公路,A 、B 是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C ,使A 、B 到C 的距离之和最小,请在图中找出点C 的位置,并说明理由.解:如图所示,理由:两点之间,线段最短.17.(8分)如图,已知OD 平分∠AOB ,射线OC 在∠AOD 内,∠BOC =2∠AOC ,∠AOB =114°,求∠COD 的度数.解:因为OD 平分∠AOB ,所以∠AOD =12∠AOB =12×114°=57°.因为∠BOC =2∠AOC ,∠AOB =114°,所以∠AOC =13∠AOB =13×114°=38°.所以∠COD =∠AOD -∠AOC =57°-38°=19°.18.(10分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间距离是10 cm ,求AB ,CD 的长度.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =6x -1.5x -2x =2.5x cm. 因为EF =10 cm ,所以2.5x =10,解得x =4. 所以AB =12 cm ,CD =16 cm.19.(12分)如图,B 是线段AD 上一动点,沿A →D 以2 cm/s 的速度运动,C 是线段BD 的中点,AD =10 cm ,设点B 运动时间为t 秒. (1)当t =2时:①AB =4cm ; ②求线段CD 的长度;(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.解:(1)②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)不变.理由:因为AB 中点为E ,C 是线段BD 的中点,所以EB =12AB ,BC =12BD ,所以EC =EB +BC =12(AB +BD )=12AD =12×10=5(cm ).20.(12分)(焦作期末)如图,已知∠AOB =90°,以O 为顶点,OB 为一边画∠BOC ,然后再分别画出∠AOC 与∠BOC 的平分线OM ,ON.(1)在图1中,射线OC 在∠AOB 的内部. ①若锐角∠BOC =30°,则∠MON =45°; ②若锐角∠BOC =n°,则∠MON =45°;(2)在图2中,射线OC 在∠AOB 的外部,且∠BOC 为任意锐角,求∠MON 的度数;(3)在(2)中,“∠BOC 为任意锐角”改为“∠BOC 为任意钝角”,其余条件不变(如图3),求∠MON 的度数.解:(2)因为∠AOB =90°,设∠BOC =α, 所以∠AOC =90°+α.因为OM ,ON 分别平分∠AOC ,∠BOC , 所以∠COM =12AOC ,∠CON =12BOC.所以∠MON =∠COM -∠CON =12(∠AOC -∠BOC )=12∠AOB =45°.(3)因为OM ,ON 分别平分∠AOC ,∠BOC , 所以∠COM =12AOC ,∠CON =12BOC.所以∠MON =∠COM +∠CON =12(∠AOC +∠BOC )=12(360°-90°)=135°.11。
北师大版七年级数学上册第四章:基本平面图形 单元测试卷(含答案)
4.如图,对于直线 AB ,线段 CD ,射线 EF ,其中能相交的图是( )
A.
B.
C.
D.
5.如图,下列不正确的几何语句是( )
A.直线 AB 与直线 BA 是同一条直线 B.射线 OA 与射线 OB 是同一条射线 C.射线 OA 与射线 AB 是同一条射线 D.线段 AB 与线段 BA 是同一条线段
6.如图,点 B , O , D 在同一直线上,若∠1=15°,∠2=105°,则 AOC 的度数是
( )
A.75°
B.90°
C.105°
D.125°
7.已知点 C 是线段 AB 上的一点,不能确定点 C 是 AB 中点的条件是( )
A. AC = CB
B. AC = 1 AB C. AB =2 BC 2
14. 如图,一副三角尺放在桌面上且它们的直角顶点重合在点 O 处,若 AOD =150°,则 BOD 的度数为________.
15.已知 A 、 B 、 C 三点在同一直线上,其中点 A 与点 B 的距离等于 2.4 千米,点 B 与点 C 的距离等于 3.5 千米,那么点 A 与点 C 的距离等于________千米. 16.如图所示,点 C 是线段 AB 上一点, AC < CB , M 、 N 分别是 AB 、 CB 的中点, AC =8, NB =5, 则线段 MN = .
180°的角),其
余条件不变,请借助图 3 探究 EOF 的大小,直接写出 EOF 的度数.
20.(12 分)如图, AOB =90°, AOC =30°,且 OM 平分 BOC , ON 平分 AOC ,
(1)求 MON 的度数; (2)若 AOB = 其他条件不变,求 MON 的度数; (3)若 AOC = ( 为锐角)其他条件不变,求 MON 的度数;
北师大版七上第四章基本平面图形测评
七上第四单元测评挑战卷(90分钟100分)一、选择题(每小题3分,共30分)1.(2021·重庆期中)已知平面上有三点,经过其中的任意两点画直线,最多能把这个平面分成(D)A.4部分B.5部分C.6部分D.7部分【解析】同一平面内不在同一直线上的3个点,可画三条直线.最多能把这个平面分成7部分.2.把50°40′30″化成度的形式为(C)A.50.43°B.50.65°C.50.675°D.50.765°【解析】50°40′30″=50.675°.3.如图,不是凸多边形的是(C)【解析】图形不是凸多边形的是C.4.如图,用一副三角板画角,不可能画出的角的度数是(B)A.120°B.85°C.135°D.165°【解析】A.120°=90°+30°,故本选项不符合题意;B.85°不能写成90°,60°,45°,30°的和或差,故本选项符合题意;C.135°=90°+45°,故本选项不符合题意;D.165°=90°+45°+30°,故本选项不符合题意.5.(2021·深圳期末)下列说法正确的有(A)①两点之间,线段最短;②若AB=BC,则点B是线段AC的中点;③射线AB和射线BA是同一条射线;④直线比线段长.A.1个B.2个C.3个D.4个【解析】①两点之间,线段最短,正确;②若AB=BC,则点B是线段AC的中点,不正确,只有点B在线段AC上时才成立;③射线AB和射线BA是同一条射线,不正确,端点不同;④直线比线段长,不正确,直线不能度量.共1个正确.6.如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,则从灯塔P观测A,B两处的视角∠P的度数是(A)A.30°B.32°C.35°D.40°【解析】∵∠P AB=30°,∠ABP=120°,∴∠APB=180°-∠P AB-∠ABP=30°.7.如图,OC平分∠AOB,OD是∠BOC内的一条射线,且∠COD=1 2∠BOD,则∠AOB等于∠COD的(A)A.6倍B.4倍C.2倍D.3倍【解析】∵∠COD=12∠BOD,∴∠COB=3∠COD,∵OC平分∠AOB,∴∠AOB=2∠COB,∴∠AOB=6∠COD.8.两根木条,一根长20 cm,另一根长24 cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为(C)A.2 cm B.4 cm C.2 cm或22 cm D.4 cm或44 cm 【解析】设较长的木条为AB=24 cm,较短的木条为BC=20 cm,∵M,N分别为AB,BC的中点,∴BM=12 cm,BN=10 cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22 cm;②如图2,BC在AB上时,MN=BM-BN=12-10=2 cm.综上所述,两根木条的中点间的距离是2 cm或22 cm.9.(2021·西安期末)如图,A,B,C是一条公路上的三个村庄,A,B 间的路程为50 km,A,C间的路程为30 km,现要在A,B之间建一个车站P,若要使车站到三个村庄的路程之和最小,则车站应建在何处?(A)A.点C处B.线段BC之间C.线段AB的中点D.线段AB之间【解析】设P,C间的路程为x km,由题意,得如图1,当点P在点C的左侧,车站到三个村庄的路程之和为:30-x+x+20+x=x+50(km);如图2,当点P在点C的右侧,车站到三个村庄的路程之和为:30+x+x+20-x=x+50(km).综上所述:车站到三个村庄的路程之和为(x+50)km;因为x为非负数,即x≥0,所以,当x=0时,x+50最小.即当车站建在C处时,车站到三个村庄的路程之和最小.10.如图,在长方形ABCD中,AB∶BC=2∶1,AB=12 cm,点P 沿AB边从点A开始,向点B以2 cm/s的速度移动,点Q沿DA边从点D 开始向点A 以1 cm/s 的速度移动,如果P ,Q 同时出发,用t s 表示移动时间(0<t <6).在这运动过程中,下列结论:①当t =2 s 时,AP =AQ ;②当t =3 s 时,∠BPC =45°;③当t =2 s 时,PB ∶BC =4∶3;④四边形QAPC 的面积为36 cm 2. 其中正确的结论有( D )A .1个B .2个C .3个D .4个【解析】①当t =2 s 时AP =4 cm ,AQ =AD -DQ =6-2=4 cm ,故①正确;②当t =3 s 时,BP =AB -AP =12-3×2=6 cm ,∴BC =BP , 又∵∠B =90°,∴△BPC 是等腰直角三角形,故②正确;③当t =2 s 时,PB =AB -2×2=12-4=8 cm ,∵AB ∶BC =2∶1,AB =12 cm ,∴BC =6 cm ,∴PB ∶BC =8∶6=4∶3,故③正确;④t s 时,PB =AB -2t =12-2t ,DQ =t ,∴四边形QAPC 的面积=12×6-12 (12-2t)×6-12 ×12×t =72-36+6t-6t =36 cm 2,故④正确.所以正确的是①②③④共4个.二、填空题(每小题3分,共24分)11.(2021·宿州期末)时钟的时间是2点30分,时钟盘面上的时针与分针的夹角是__105°__.【解析】2点30分时,时针指向2与3的正中间,分针指向6,表盘上两个相邻数字间夹角为30°,故此时二者的夹角是3×30°+12×30°=105°.12.数轴上点A表示数a,点B表示数b,若|a|=7,|b|=4,则AB =__3或11__.【解析】∵|a|=7,|b|=4,∴a=±7,b=±4,当a=7,b=4时,AB =7-4=3;当a=-7,b=4时,AB=|-7-4|=11;当a=7,b=-4时,AB=|7+4|=11;当a=-7,b=-4时,AB=|-7+4|=3.故AB的长为3或11.13.计算:90°-52°22′=__37°38′__.【解析】90°-52°22′=89°60′-52°22′=37°38′.14.如图,已知∠AOC=90°,∠COB=α°,OD平分∠AOB,则∠COD等于__45°-12α°__.(用含α的代数式表示)【解析】∵∠AOC=90°,∠COB=α°,∴∠AOB=∠AOC+∠COB=90°+α°.∵OD 平分∠AOB ,∴∠BOD =12 (90°+α°)=45°+12 α°,∴∠COD =∠BOD -∠COB =45°-12 α°.15.如图,点C 、点D 在线段AB 上,E ,F 分别是AC ,DB 的中点,若AB =m ,CD =n ,则线段EF 的长为__m +n 2 __(用含m ,n 的式子表示).【解析】∵AB =m ,CD =n.∴AB -CD =m -n ,∵E ,F 分别是AC ,DB 的中点,∴CE =12 AC ,DF =12 DB ,∴CE +DF =12 (m -n),∴EF =CE +DF +DC =12 (m -n)+n =m +n 2 .16.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成__11__部分;圆的十九条弦最多可将圆分成__191__部分.【解析】一条弦将圆分成1+1=2部分,二条弦将圆分成1+1+2=4部分,三条弦将圆分成1+1+2+3=7部分,四条弦将圆分成1+1+2+3+4=11部分,…n 条弦将圆分成1+1+2+3+…+n =1+n (n +1)2部分, 当n =19时,1+n (n +1)2=191部分. 17.如图,将一张长方形纸片ABCD 分别沿着BE ,BF 折叠,使边AB ,CB 均落在BD 上,得到折痕BE ,BF ,则∠ABE +∠CBF =__45°__.【解析】由折叠得,∠ABE =∠DBE ,∠CBF =∠DBF ,∵∠ABE +∠DBE +∠CBF +∠DBF =∠ABC =90°,∴∠ABE +∠CBF =12 ∠ABC =12 ×90°=45°. 18.一副三角板AOB 与COD 如图1摆放,且∠A =∠C =90°,∠AOB =60°,∠COD =45°,ON 平分∠COB ,OM 平分∠AOD.当三角板COD 绕O 点顺时针旋转(从图1到图2).设图1、图2中的∠NOM 的度数分别为α,β,α+β=__105__度.【解析】如题图1,∵ON 平分∠COB ,OM 平分∠AOD.∴∠NOB =∠CON =12 ∠BOC =12 (45°+∠BOD),∠MOD =∠MOA =12 ∠AOD =12 (60°+∠BOD),∴∠MON =α=∠NOB +∠MOD -∠BOD =12 (45°+60°),如题图2,∵ON 平分∠COB ,OM 平分∠AOD.∴∠NOB =∠CON =12 ∠BOC =12 (45°-∠BOD),∠MOD =∠MOA =12 ∠AOD =12 (60°-∠BOD),∴∠MON =β=∠NOB +∠MOD +∠BOD =12 (45°+60°),∴α+β=45°+60°=105°.三、解答题(共46分)19.(6分)如图所示,OB 平分∠AOC ,且∠2∶∠3∶∠4=2∶5∶3.求∠2,∠3,∠4的度数.【解析】设∠2=2x ,∠3=5x ,∠4=3x ,根据OB 平分∠AOC ,故∠1=∠2=2x ,∴∠1+∠2+∠3+∠4=2x +2x +5x +3x =12x =360°,解得:x =30°, ∴∠2=2x =60°,∠3=5x =150°,∠4=3x =90°.20.(6分)如图,∠1=∠2=∠3,若图中所有角的和等于180°,求∠AOB的度数.【解析】如图,设∠1=∠2=∠3=x,∵∠AOC+∠AOD+∠AOB+∠COD+∠COB+∠DOB=180°,∴x+2x+3x+x+2x+x=180°,∴x=18°,∴∠AOB=3x=54°.21.(6分)如图,线段AB=10 cm,C是AB的中点,点D在CB上,DB=3 cm.求线段CD的长.【解析】由AB=10 cm,C是AB的中点,得BC=12AB=5 cm,由线段的和差,得CD=BC-BD=5-3=2(cm).22.(6分)已知A,B,C,D是直线上顺次四点,AB,BC,CD的长度比是1∶2∶3,点E,F分别是AB,CD的中点,且EF=8 cm,求AD的长.【解析】如图所示:∵AB,BC,CD的长度比是1∶2∶3,∴设AB =x ,则BC =2x ,CD =3x ,∵点E ,F 分别是AB ,CD 的中点,且EF =8 cm ,∴EF =12 x +2x +32 x =8,解得x =2,∴AD =x +2x +3x =6x =12 cm .23. (10分)(2021·宁波质检)如图,点A ,B 和线段CD 都在数轴上,点A ,C ,D ,B 起始位置所表示的数分别为-2,0,3,12;线段CD 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)当t =0秒时,AC 的长为________,当t =2秒时,AC 的长为________.(2)用含有t 的代数式表示AC 的长为________.(3)当t =________秒时AC -BD =5,当t =________秒时AC +BD =15.【解析】(1)当t =0秒时,AC =|-2-0|=|-2|=2;当t =2秒时,移动后C 表示的数为2,∴AC =|-2-2|=4.答案:2 4(2)点A 表示的数为-2,点C 表示的数为t ;∴AC =|-2-t|=t +2.答案:t +2(3)∵t 秒后点C 运动的距离为t 个单位长度,点D 运动的距离为t 个单位长度,∴C表示的数是t,D表示的数是3+t,∴AC=t+2,BD=|12-(3+t)|,∵AC-BD=5,∴t+2-|12-(t+3)|=5.解得:t=6.∴当t=6秒时AC-BD=5;∵AC+BD=15,∴t+2+|12-(t+3)|=15,t=11;当t=11秒时AC+BD=15.答案:61124.(12分)如图,∠AOB=90°,∠BOC=20°.(1)如图1所示,分别作∠AOC,∠BOC的平分线OM,ON,求∠MON 的度数;(2)如图2所示,若将(1)中的OC绕O点向下旋转,使∠BOC=2x°,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数?若能,求出其值;若不能,试说明理由;(3)如图3所示,∠AOB=90°,若将(1)中的OC绕O点向上旋转,使OC在∠AOB的内部,且∠BOC=2y°,仍然分别作∠AOC,∠BOC的平分线OM,ON,还能否求出∠MON的度数吗?若能,求出其值;若不能,说明理由.【解析】(1)∵∠AOB=90°,∠BOC=20°,∴∠AOC=∠AOB+∠BOC=110°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×110°=55°,∠NOC=12∠BOC=12×20°=10°,∴∠MON=∠MOC-∠NOC=55°-10°=45°.(2)能求出∠MON的度数,∠MON=45°.∵∠AOB=90°,∠BOC=2x°,∴∠AOC=∠AOB+∠BOC=90°+2x°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×(90°+2x°)=45°+x°,∠NOC=12∠BOC=12×2x°=x°,∴∠MON=∠MOC-∠NOC=45°+x°-x°=45°;(3)能求出∠MON的度数,∠MON=45°.∵∠AOB=90°,∠BOC=2y°,∴∠AOC=∠AOB-∠BOC=90°-2y°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×(90°-2y°)=45°-y°,∠NOC=12∠BOC=12×2y°=y°,∴∠MON=∠MOC+∠NOC=45°-y°+y°=45°.。
七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)
七年级上册数学单元测试卷-第四章基本平面图形-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,如果射线OA表示在阳光下你的身影的方向,那么你的身影的方向是( )A.北偏东60°B.南偏西60°C.北偏东30°D.南偏西30°2、小明根据下列语句,分别画出了图形(a)、(b)、(c)、(d)并将图形的标号填在了相应的“语句”后面的横线上,其中正确的是()①直线l经过点A、B、C三点,并且点C在点A与B之间②点C在线段AB的反向延长线③点P是直线a外一点,过点P的直线b与直线a相交于点Q④直线l、m、n相交于点DA.①、②、③、④B.①、②、④C.①、③、④D.②、③3、如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°4、如果、、三点共线,线段,,那么、两点间的距离是()A.1B.11C.5.5D.11或15、对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A. B. C. D.6、如图,点D,E,F分别为△ABC各边的中点,下列说法正确的是( )A.DE=DFB.EF= ABC.S△ABD =S△ACDD.AD平分∠BAC7、下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴 D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴8、钟表在4点10分时,它的时针和分针所形成的锐角度数是()A.75°B.65°C.85°D.90°9、下列说法中正确的是()A.若|a|=﹣a,则 a 一定是负数B.单项式 x 3y 2z 的系数为 1,次数是6 C.若 AP=BP,则点 P 是线段 AB 的中点 D.若∠AOC= ∠AOB,则射线 OC 是∠AOB 的平分线10、下列说法:①两点之间,直线最短;②若AC=BC,且A,B,C三点共线,则点C是线段AB的中点;③经过一点有且只有一条直线与已知直线垂直;④经过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个11、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10 +5D.3512、如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πrB.2πrC.πrD.2r13、当分针指向12,时针这时恰好与分针成120°的角,此时是()A.9点钟B.8点钟C.4点钟D.8点钟或4点钟14、下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧15、如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC-DB,②CD= AB,③CD=AD-BC,④BD=2AD-AB.其中正确的等式编号是()A. B. C. D.二、填空题(共10题,共计30分)16、一列火车在A、B两站间往返行驶,之间还有4个车站,至多共有________种不同的价格的车票.17、如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:DC=1:2,则DB的长度为________.18、如图,将一副直角三角板如图放置,若,则________度.19、[知识背景]:三角形是数学中常见的基本图形,它的三个角之和为180°.等腰三角形是一种特殊的三角形,如果一个三角形有两边相等,那么这个三角形是等腰三角形,相等的两边所对的角也相等.如图1,在三角形ABC中,如果AB=AC,那么∠B=∠C.同样,如果∠B=∠C,则AB=AC,即这个三角形也是等腰三角形.[知识应用]:如图2,在三角形ABC中,∠ACB=90°,∠ABC=30°,将三角形ABC绕点C 逆时针旋转α(0°<α<60°)度(即∠ECB=α度),得到对应的三角形DEC,CE交AB于点H,连接BE,若三角形BEH为等腰三角形,则α=________°.20、如果一个多边形从一个顶点出发的对角线将这个多边形分成7个三角形,则这个多边形共有________ 条对角线.21、在灯塔处观测到轮船位于北偏西的方向,同时轮船在南偏东的方向,那么的大小为________.22、,,________23、如图:若CD=4cm,BD=7cm,B是AC的中点,则AC的长为________.24、如图,点A、B、C是直线l上的三个点,图中共有线段条数是________25、如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM(________)∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=________∠AMN,∠FNM=________∠DNM (角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF(________)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对________角的平分线互相________.三、解答题(共5题,共计25分)26、计算:(1)13°29’+78°37‘(2)62°5’-21°39‘ (3)22°16′×5 (4)42°15′÷527、如图所示,军舰A在军舰B的正东方向上,且同时发现了一艘敌舰,其中A舰发现它在北偏东15°的方向上,B舰发现它在东北方向上,(1)试画出这艘敌舰的位置(用字母C表示).(2)求∠BCA=?28、如图,已知∠AOD和∠BOC都是直角,∠AOC=38°,OE平分∠BOD,求∠COE的度数。
七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)
七年级上册数学单元测试卷-第四章基本平面图形-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,图中可以只用一个大写字母表示的角有()A.1个B.2个C.3个D.4个2、如果∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是( )A.18°B.126°C.18°或126°D.以上都不对3、如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为()A.1cmB.5cmC.1cm或5cmD.无法确定4、我们把钟表的时针、分针及两针尖所连线段所围成的图形面积叫做这个钟表的该时刻面积.如图,△AOB的面积即为该钟表8点30分的时刻面积,那么从9时到10时,钟表的时刻面积等于该钟表8点30分的时刻面积的时刻数有( )A.4个B.3个C.2个D.1个5、如图,轮船与灯塔相距120nmile,则下列说法中正确的是()A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处 D.灯塔在轮船的南偏西65°,120 n mile处6、一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条7、六边形的对角线共有()A.6条B.8条C.9条D.18条8、如图,将三角板的直角顶点放在直尺的一边上,若,则的度数为()A. B. C. D.9、如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为( )A.8B.10C.12D.1410、将一块直角三角尺ABC按如图所示的方式放置,其中点A、C分别落在直线a、b上,若a∥b,∠1=62°,则∠2的度数为()A.28°B.30°C.38°D.62°11、如图,射线表示的方向是()A.北偏东35°B.北偏西65°C.南偏东65°D.南偏西35°12、下列说法中正确的有( )(1)过两点有且只有一条直线(2)连接两点的线段叫两点的距离(3)两点之间线段最短(4)如果AB=BC,则点B是线段AC的中点A.1B.2C.3D.413、下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′14、钟表在8:25时,时针与分针的夹角度数是( )A.101.5°B.102.5°C.120°D.125°15、将一块木板钉在墙上,我们至少需要2个钉子将它固定,这是因为()A.两点确定一条直线B.两点确定一条线段C.两点之间,直线最短 D.两点之间,线段最短二、填空题(共10题,共计30分)16、在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________17、如果∠AOB=34°,∠BOC=18°,那么∠AOC的度数是________.18、如图,有一个只有短针和长针的时钟,短针OA长6cm,长针OB长8cm,△0AB随着时间的变化不停地改变形状,则△AOB的最大面积为________ cm2.19、以的顶点O为端点引射线OC,使∶=5∶4,若,则的度数是________.20、如图,射线的方向是北偏东,射线的方向是北偏西,是的反方向延长线,若是的平分线,则________.21、如图,在一次活动中,位于A处的1班准备前往相距8km的B处与2班会合,如果用方位角和距离描述位置,则1班在2班的________.22、两点之间,________ 最短;在墙上固定一根木条至少要两个钉子,这是因为________23、如图,已知.若,则________.24、如图,AB∥CD,∠1=64°,FG平分∠EFC,则∠EGF=________°.25、钟表在3点40分时,它的时针和分针所成的角是________度.三、解答题(共5题,共计25分)26、已知如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,求∠AOD的度数.27、如图,,平分,且,求度数.28、如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.29、已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=60°,∠BOC=20°,求∠AOC的度数.30、如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C 处在B处的北偏东82°方向,求∠C的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、B6、C7、C8、C9、B10、A11、C12、B13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
北师大版七年级上第四章__基本平面图形检测题
一、选择题1.如图,下列不正确的几何语句是( ) A.直线AB 与直线BA 是同一条直线B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线D.线段AB 与线段BA 是同一条线段2.如图,从A 地到B 地最短的路线是( )A.A -C -G -E -BB.A -C -E -BC.A -D -G -E -BD.A -F -E -B 3.已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间的距离是( ) A.3 cm B.4 cm C.5 cm D.不能计算4.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°; 另一个是30°,60°,90°)可以画出大于0°且小于等于150°的不同角度的角共有( )种. A.8 B.9 C.10 D.115.已知α、β都是钝角,甲、乙、丙、丁四人计算61(α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( )A.甲B.乙C.丙D.丁6.如图,B 是线段AD 的中点,C 是BD 上一点,则下列结论中错误的是( )A.BC =AB -CDB.BC =21AD -CDC.BC =21(AD +CD ) D.BC =AC -BD7.如图,观察图形,下列说法正确的个数是( )①直线BA 和直线AB 是同一条直线;②射线AC 和射线AD是同一条射线;③AB +BD >AD ;④三条直线两两相交时,一定有三个交点.A.1B.2C.3D.48.下列说法中正确的是( )A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合C.3时30分,时针与分针的夹角是90°D.3时整,时针与分针的夹角是90° 9.如图,阴影部分扇形的圆心角是( )A.15°B.23°C.30°D.36°10.如图,甲顺着大半圆从A 地到B 地,乙顺着两个小半圆从A 地到B 地,设甲、乙走过的路程分别为a 、b ,则( ) A.a=b B.a <b C.a >b D.不能确定11.已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间距离是( )A.3 cmB.4 cmC.5 cmD.不能计算12.已知线段AB ,画出它的中点C ,再画出BC 的中点D ,再画出AD 的中点E ,再画出AE 的中点F ,那么AF 等于AB 的( )A.41B.83C.81D.163 13.如图5,下列说法,正确说法的个数是( )图5①直线AB 和直线BA 是同一条直线;②射线AB 与射线BA 是同一条射线;③线段AB 和线段BA 是同一条线段;④图中有两条射线.A.0B.1C.2D.3 14.下列语句中,正确的是( )A.直线比射线长B.射线比线段长C.无数条直线不可能相交于一点D.两条直线相交,只有一个交点15.下列说法正确的是( )A.延长直线ABB.延长射线ABC.延长线段AB 到点CD.线AB 是一射线 16.如右图∠AOB 为平角,且∠AOC =21∠BOC ,则∠BOC 的度数是( )A.100°B.135°C.120°D.60°A B C D17.如图,军舰从港口沿OB 方向航行,它的方向是( ) A.东偏南30° B.南偏东60°C.南偏西30° D.北偏东30° 18.关于直线,射线,线段的描述正确的是( )A.直线最长,线段最短B.射线是直线长度的一半C.直线没有端点,射线有一个端点,线段有两个端点D.直线、射线及线段的长度都不确定19.一个人骑自行车前行时,两次拐弯后,仍按原方向前进,这两次拐弯的角度是( )A.向右拐30°,再向右拐30°B.向右拐30°,再向左拐30°C.向右拐30°,再向左拐60°D.向右拐3020.如图,射线OA 表示的方向是( )A 、西南方向B 、东南方向C 、西偏南10°D 二、填空题1、把一根木条钉牢在墙壁上需要__________个钉子,其理论依据是__________.2、画线段AB =1 cm ,延长线段AB 到C ,使BC =2 cm ,已知D 是BC 的中点,则线段AD =__________ cm.3、如图3,A 、B 、C 、D 、E 是直线l 上顺次五点,则 (1)BD =CD +______; (2)CE =______+______;(3)BE =BC +____+DE ; (4)BD =AD -______=BE -______.4、如图2,∠1=∠2,则∠BAD =____ .5、已知线段AB =10 cm ,BC =5 cm ,A 、B 、C 三点在同一条直线上, 则AC =_ _.6. 如图,OM 平分∠AOB ,ON 平分∠COD .若∠MON =50°,∠BOC =10°,则∠AOD = __________.7. 一个正多边形过一个顶点有5条对角线,则这个多边形的边数是_________. 8. 如图,线段AB =BC =CD =DE =1 cm ,那么图中所有线段的长度之和等于________cm.9. 一条直线上立有10根距离相等的标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.5 s ,则当他走到第10杆时所用时间是_________. 10、 (1)15°30′5″=_______″;(2)7 200″=_______´=________°; (3)0.75°=_______′=________″;(4)30.26°=_______°_______´______〞.11. 平面内三条直线两两相交,最多有a 个交点,最少有b 个交点,则a +b =_________. 13、 如图,点O 是直线AD 上一点,射线OC 、OE 分别是∠AOB 、∠BOD 的平分线,若∠AOC =28°,则∠COD =_________,∠BOE =__________. 14、 n 边形过每一个顶点的对角线有 条. 15、 (121)°=( ) ´=( )″; 48″=( ) ´=( ) ° 16.上午10点30分,时针与分针成___________度。
北师大版七年级上册第四章基本平面图形单元测试
北师大版七年级上册第四章基本平面图形单元测试一.选择题:〔四个选项中只要一个是正确的,选出正确选项填在标题的括号内〕1.以下各直线的表示法中,正确的选项是〔〕A.直线ab B.直线Ab C.直线A D.直线AB2.以下说法正确的选项是〔〕A.角的边越长,角越大B.在∠ABC一边的延伸线上取一点DC.∠B=∠ABC+∠DBC D.以上都不对3.如图,O是直线AB上一点,∠COB=26°,那么∠1=〔〕A.154° B.164° C.174° D.184°4.以下四个现象:①用两个钉子就可以把木条固定在墙上;②植树时,只需定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽能够沿着直线架设;④把弯曲的公路改直,就能延长路程。
其中可用〝两点之间,线段最短〞的是〔〕A.①②B.①③C.②④D.③④5.平面上有三点A,B,C,假设AB=8,AC=5,BC=3,以下说法正确的选项是〔〕A.点C在线段AB上B.点C在线段AB的延伸线上C.点C在直线AB外D.点C能够在直线AB上,也能够在直线AB外6.如图,C,D是线段AB上两点,假定CB=4cm,DB=7cm,且D是AC的中点,那么AC 的长等于〔〕A.3cm B.6cm C.11cm D.14cm7.如图,一艘轮船行驶在O处同时测得小岛A、B的方向区分为北偏东75°和西南方向,那么∠AOB等于〔〕A.100° B.120° C.150° D.135°8.如图,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,假设BD为∠A′BE的平分线,那么∠CBD=〔〕A.80° B.90° C.100° D.70°第6题图第7题图第8题图9.平面上有四点,经过其中的两点画直线,共可画〔〕A.1条直线B.6条直线C.6条或4条直线D.1条或4条或6条直线10.如图,圆的四条半径区分是OA,OB,OC,OD,其中点O,A,B在同一条直线上,假定∠AOD=90°,∠AOC=3∠BOC,那么圆被四条半径分红的四个扇形的面积的比是〔〕A .1:2:2:3B .3:2:2:3C .4:2:2:3D .1:2:2:1二.填空题:〔将正确答案填在标题的横线上〕11. 1周角=____平角=____直角=______度;12. 60.56°=______度_____分_____秒,28°28′12"=_________°;13. 8:30时针与分针所成的角度为_________;14.〔1〕如图,AB=12cm ,点C 为线段AB 上的一个动点,D 、E 区分是AC 、BC 的中点;①假定点C 恰为AB 的中点,那么DE=_______cm ;②假定AC=4cm ,那么DE=________cm ;〔2〕如图,点C 为线段AB 上的一个动点,D 、E 区分是AC 、BC 的中点;假定AB=a ,那么DE=_______;15.如图,∠AOB=120°,过角的外部任一点C 画射线OC ,假定OD 、OE 区分是∠AOC 、∠BOC 的平分线,那么∠DOE=______;第14题图 第15题图三.解答题:〔写出必要的说明进程,解答步骤〕16. 按要求作图:如图,在同一平面内有四个点A 、B 、C 、D ;〔1〕画射线CD ; 〔2〕画直线AD ;〔3〕衔接AB ;〔4〕直线BD 与直线AC 相交于点O ;〔5〕请说明AD+AB >BD 的理由.17.如图,点C 为线段AD 上一点,B 为CD 的中点,且AD=10cm ,BD=4cm ; 〔1〕图中共有多少条线段?写出这些线段;〔2〕求AC 的长;〔3〕假定点E 在直线AD 上,且AE=3cm ,求BE 的长;18.如图,将一副三角尺的直角顶点叠放在点C 处,∠D=30°,∠B=45°,求:〔1〕假定∠DCE=35°,求∠ACB 的度数;〔2〕假定∠ACB=120°,求∠DCE 的度数. 〔3〕猜想∠ACB 和∠DCE 的关系,并说明理由;19. 如图,O 是直线AB 上的一点,C 是直线AB 外的一点,OD 是∠AOC 的平分线, OE 是∠COB 的平分线.〔1〕∠1=23°,求∠2的度数;〔2〕无论点C 的位置如何改动,图中能否存在一个角,它的大小一直不变〔∠AOB 除外〕?假设存在,求出这个角的度数;假设不存在,请说明理由.20. 如图,∠AOB=90°,OM 是∠AOC 的角平分线,ON 是∠BOC 的角平分线; A D . 第17题图 . .C . B〔1〕当∠BOC=40°时,求∠MON 的大小?〔2〕当∠BOC 的大小发作变化时,∠MON 的大小能否发作改动?说明理由;七〔上〕第四章 基本平面图形 单元测试参考答案1~10 DDADA BCBDA11.2,4,360;12.60°33′36",28.47°;13.75°;14.〔1〕6,6;〔2〕2a ;; 15. 60°;16.〔1〕~〔4〕,如图,即为所求作;〔5〕AD+AB >BD 的理由是:两点之间线段最短;17. 〔1〕图中共有6条线段,区分是:线段AC ,AB ,AD ,CB ,CD ,BD ;〔2〕∵BD=4cm ,B 为CD 的中点,∴CD=2 BD=2×4=8〔cm 〕又∵AD=10 ∴ AC=AD -CD=10-8=2(cm)〔3〕点E 在直线AD 上有两种状况:①E 在线段AD 上,如图,∵ AB=AD -BD=10-4=6∴ BE= AB -AE=6-3=3(cm)②E 在线段DA 的延伸线上,如图的点E ′,由①知:AB=6∴ BE ′= AB +AE ′=6+3=9〔cm 〕综上可得: BE=3cm 或9cm ;18. 〔1〕由题意知:∠ACD=90°,又∠DCE=35° ∴∠ACE=∠ACD -∠DCE =90°-35°=55° ∴∠ACB=∠ACE +∠BCE=55°+90°=145°〔2〕假定∠ACB=120°,∴∠ACE=∠ACB -∠BCE =120°-90°=30°∴ ∠DCE=∠ACD -∠ACE =90°-30°=60°〔3〕∠ACB +∠DCE=180°;理由如下:∵∠BCE=∠ACD=90°∴∠BCD+∠DCE=90°,∠DCE+∠ACE=90°ABON MC∴∠ACB +∠DCE=∠ACE +∠DCE+BCD+∠DCE=90°+90°=180°19. 〔1〕∠2=67°;〔2〕∠DOE的大小一直不变,等于90°;20. 〔1〕∠MON=45°;〔2〕当∠BOC的大小发作变化时,∠MON的大小不发作改动;理由如下:∵OM是∠AOC的角平分线,ON是∠BOC的角平分线∴当∠BOC的大小发作变化时,∠MON=45°,大小不发作改动;。
北师大版七年级上册数学第四章基本平面图形单元测试(含答案)
七年级上册数学第四章单元测试一、选择题(每题3分,共30分)1.如图,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段(第1题)(第4题)2.已知三点A,B,C.画直线AB,画射线AC,连接BC.按照上述语句画图正确的是()3.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MNC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN4.如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD 的长为()A.6 B.4 C.2 D.55.如图,∠AOB是平角,∠AOC=40°,∠BOD=26°,OM,ON分别是∠AOC,∠BOD的平分线,则∠MON等于()A.66°B.114°C.170°D.147°(第5题)(第6题)(第8题)6.如图是某住宅小区的平面图,点B是小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路,从居民楼点A到“菜鸟驿站”点B的最短路径是()A.A-C-G-E-B B.A-C-E-BC.A-D-G-E-B D.A-F-E-B7.当时钟指向下午4:30时,时针和分针的夹角是()A.30°B.45°C.60°D.75°8.如图,OC是∠AOB的平分线,OD是∠COB的平分线,则下列各式正确的是()A.∠COD=12∠AOC B.∠AOD=23∠AOBC.∠BOD=13∠AOB D.∠BOC=23∠AOB9.如图,将一张长方形纸片ABCD沿对角线BD折叠,点C落在点E处,BE 交AD于点F,再将三角形DEF沿DF折叠,点E落在点G处,若DG刚好平分∠ADB,那么∠ADB的度数是()(第9题)A.18°B.20°C.36°D.45°10.已知点C在线段AB上,则共有三条线段:AB,AC和BC.若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”. 若AB =15,点C是线段AB的“巧点”,则AC的长为()A.5 B.7.5C.5或10 D.5或7.5或10二、填空题(每题3分,共15分)11.74°19′30″=________°.12.如图,甲从点A出发向北偏东62°方向走到点B,乙从点A出发向南偏西18°方向走到点C,则∠BAC的度数是__________.(第12题)(第13题)13.如图,小李同学在参加“几何小能手”社团活动时,制作了一副与众不同的三角尺,用它们可以画出一些特殊的角度.在①9°;②18°;③55°;④117°中,能用这副三角尺画出的角度是________(填序号).14.已知线段MN=12,点P在直线MN上,PM=3,点Q为MN的中点,则线段PQ的长为______________.15.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,则此多边形的边数为________.三、解答题(第16题10分,第17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.在如图所示的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?试着写出来.(第16题)17. 如图,已知线段a、b(a>b),用尺规作图法作一条线段,使其等于2a-b (不写作法,保留作图痕迹).(第17题)18.如图,已知∠AOB=130°,过∠AOB的内部任意一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,求∠DOE的大小.(第18题)19.如图,把一个圆分成四个扇形,请分别求出这四个扇形的圆心角的度数.若该圆的半径为2 cm,请分别求出它们的面积.(第19题)20.已知一条直线上有A,B,C,共3个点,那么这条直线上总共有多少条线段?小亮的思路是这样的:以A为端点的线段有AB,AC,共2条,同样以B为端点,以C为端点的线段也各有2条,这样共有3×2=6(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有3×22=3(条)线段.那么,如果一条直线上有6个点,则这条直线上共有________条线段.如果在一条直线上有n个点,那么这条直线上共有________条线段.(1)请你帮小亮计算,并填空;(2)你能用上面的思路来解决“10名同学参加班上组织的乒乓球比赛,比赛采用单循环制(即每两名同学之间都要进行一场比赛),那么一共要进行多少场比赛”这个问题吗?21.阅读材料并回答问题:数学课上,老师给出了如下问题:如图①,∠AOB=90°,OC平分∠AOB.若∠COD=65°,请你补全图形,并求∠BOD的度数.同学一:以下是我的解答过程(部分空缺).解:如图②.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=________.因为∠COD=65°,所以∠BOD=∠BOC+________=________.同学二:“符合题目要求的图形还有一种情况.”请你完成以下问题:(1)将同学一的解答过程空缺部分补充完整,能正确求出图②中∠BOD的度数.(2)判断同学二的说法是否正确,若不正确,请说明理由;若正确,请你在图①中画出另一种情况对应的图形,并求∠BOD的度数.(第21题)22.如图,P是线段AB上一点,AB=12 cm,M,N两点分别从P,B出发以1 cm/s、3 cm/s的速度同时沿直线AB向左运动(M在线段AP上,N在线段BP上),运动时间为t s.(1)当M,N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.(第22题)23.阅读材料:如图①,将一副三角尺的直角顶点C叠放在一起,若∠DCE=35°,则∠ACB =________;若∠ACB=150°,则∠DCE=________.由此你能得到什么结论?解:因为∠ACD=90°,∠DCE=35°,所以∠ACE=90°-35°=55°,因为∠BCE=90°,所以∠ACB=∠ACE+∠BCE=55°+90°=145°;因为∠BCE=90°,∠ACB=150°,所以∠ACE=150°-90°=60°,因为∠ACD=90°,所以∠DCE=∠ACD-∠ACE=90°-60°=30°,所以能得到结论∠ACB+∠DCE =180°.故答案为:145°;30°∠ACB+∠DCE=180°.解决问题:(1)当图①变为图②时,∠ACB与∠DCE之间的数量关系还存在吗?为什么?(2)如图③,若将两个同样的三角尺的60°角的顶点A重合在一起,请你猜想∠BAD与∠CAE有何关系,请说明理由;(3)如图④,如果把任意两个锐角∠AOB,∠COD的顶点O重合在一起,设∠AOB=α,∠COD=β(α,β都是锐角),请你直接写出∠AOD与∠BOC的关系.(第23题)答案一、1.B 2.A 3.C 4.C5.D6.D7.B8.A9.C10.D二、11.74.32512. 136°13. ①②④14.3或915.6三、16.解:线段:线段AB、线段AC、线段BD、线段BE、线段CD、线段CF、线段DE、线段DF、线段EF.射线:射线AB、射线AC、射线BA、射线CA.直线:直线AB、直线AC.17.解:如图所示,线段OC即为所求.(第17题)18.解:因为OD,OE分别平分∠AOC和∠BOC,所以∠DOC=12∠AOC, ∠COE=12∠BOC,所以∠DOE=∠DOC+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB.又因为∠AOB=130°,所以∠DOE=12×130°=65°.19.解:扇形AOB的圆心角为360°×35%=126°.扇形BOC的圆心角为360°×10%=36°.扇形COD的圆心角为360°×25%=90°.扇形AOD的圆心角为360°×30%=108°.圆的面积为π×22=4π(cm2).所以扇形AOB的面积为4π×35%=1.4π(cm2).扇形BOC的面积为4π×10%=0.4π(cm2).扇形COD的面积为4π×25%=π(cm2).扇形AOD的面积为4π×30%=1.2π(cm2).20.解:(1)15;n(n-1)2.(2)把10名同学看成直线上的10个点,每两名同学之间的一场比赛看成一条线段,直线上10个点所构成的线段条数就等于比赛的场数,因此一共要进行10×(10-1)2=45(场)比赛.21.解:(1)45°;∠COD;110°.(第21题)(2)正确.如图.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=45°.因为∠COD=65°,所以∠BOD=∠COD-∠BOC=20°.22.解:(1)当M,N运动1 s时,PM=1 cm,BN=3 cm.因为AB=12 cm,所以AM+PN=12-1-3=8(cm).因为PN=3AM,所以4AM=8 cm,所以AM=2 cm.所以AP=AM+PM=3 cm.(2)AP的长度不会变化.根据题意可知PM=t cm,BN=3t cm.因为AB=12 cm,所以AM+PN=(12-4t)cm.因为PN=3AM,所以4AM=(12-4t)cm,所以AM=(3-t)cm.所以AP=AM+PM=3-t+t= 3 cm.(3)由已知条件可知,点Q在线段BA的延长线上或在线段AP上时不符合题意,所以当点Q在线段PB上时,由(2)可知AP=3 cm,则BP=9 cm.所以AQ=PQ+BQ=BP=9 cm.因为AQ=AP+PQ,所以PQ=AQ-AP=6 cm.当点Q在线段AB的延长线上时,AQ=AB+BQ.因为AQ=PQ+BQ,所以PQ=AB=12 cm.综上所述,PQ=6 cm或12 cm.23.解:(1)存在.理由:因为∠ACD=90°,∠BCE=90°,所以∠ACD+∠BCE=180°.所以∠ACB+∠DCE=360°-(∠ACD+∠BCE)=360°-180°=180°. (2)∠BAD-∠CAE=120°.理由:因为∠CAD=60°,∠BAE=60°,所以∠BAD-∠CAE=∠CAD+∠CAE+∠BAE-∠CAE=∠CAD+∠BAE =60°+60°=120°.(3)∠AOD+∠BOC=α+β.11。
2022-2023学年北师大版七年级上册数学第4章 基本平面图形 单元测试卷含答案
2022-2023学年七年级上册数学第4章基本平面图形单元测试卷一.选择题(共12小题,满分36分)1.如图,B是线段AC的中点,P是BC上一点,若PA=m,PC=n,则线段PB的长是()A.m﹣n B.C.2m﹣3n D.2.如图,AC>BD,比较线段AB与线段CD的大小()A.AB=CD B.AB>CD C.AB<CD D.无法比较3.如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则下列结论中正确的个数有()①∠AOE=∠EOC②∠EOC=∠COB③∠AOD=∠AOE④∠DOB=2∠AODA.1个B.2个C.3个D.4个4.如图,已知A、B、C三点,过点A可画直线BC的平行线的条数是()A.0条B.1条C.2条D.无数条5.如图,用尺规作∠AOB的平分线可以按如下步骤进行:①以点O为圆心,线段m为半径画弧,交OA于点M,交OB于点N;②分别以点M,N为圆心,线段n为半径画弧,两弧在∠AOB的内部相交于点C;③画射线OC.射线OC即为所求.以下关于线段m,n的长说法正确的是()A.m>0,n>0B.m>0,n<MN C.m>0,n>MN D.以上都不对6.如图,在正方形网格中有∠α和∠β,则∠α和∠β的大小关系是()A.∠α>∠βB.∠α<∠βC.∠α=∠βD.无法确定7.在平面内与点P的距离为1cm的点的个数为()A.无数个B.3个C.2个D.1个8.如图各图中所给的射线、直线能相交的是()A.B.C.D.9.下列换算中,错误的是()A.47.28°=47°16′48″B.83.5°=83°50′C.16°5′24″=16.09°D.0.25°=900″10.在学习“平行四边形”一章时,小王的书上有一图因不小心被滴上了墨水,如图所示,看不清所印的字,请问被墨迹遮盖了的文字应是()A.等边三角形B.四边形C.多边形D.正方形11.现实生活中有人乱穿马路,却不愿从天桥或斑马线通过.请用数学知识解释这一现象,其原因为()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.两点之间线段的长度,叫做这两点之间的距高12.如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D.二.填空题(共12小题,满分36分)13.木工师傅用刨子可将木板刨平,如图,经过刨平的木板上的两个点,而且只能弹出一条墨线,其数学原理为.14.如图,将一张宽度相等的纸条折叠,折叠后的一边与原边的夹角是140°,则∠α的度数是.15.一个n边形过一个顶点有5条对角线,则n=.16.若平面内有4个点,过其中任意两点画射线,最多可以画条.17.如图,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹判断以下结论正确的是.①∠DBC=∠BDC②AE=BE③④∠BAE=∠ACD18.若∠1=30.45°,∠2=30°28',则∠1 ∠2(用“>”“=”“<”填空).19.已知点B在直线AC上,AB=6cm,BC=10cm,P、Q分别是AB、BC中点,则线段PQ=cm.20.小亮研究钟面角(时针与分针组成的角),2:15的钟面角为度.21.一个人从A地出发沿北偏东50°的方向走到B地,再从B地出发沿南偏西30°方向走到C地,那么∠ABC=.22.运动场上的环形跑道的跑道宽都是相同的,若一条跑道的两个边缘所在的环形周长的差等于π米,则跑道的宽度为米.23.只能使用和这两种工具去作几何图形的方法称为尺规作图.24.如图,正方形ABCD的边长为6,四条弧分别以相应顶点为圆心、正方形ABCD边长为半径,则图中阴影部分的面积为(结果保留π).三.解答题(共7小题,满分78分)25.请按要求完成下列问题.如图:A、B、C、D四点在同一直线上,若AB=CD.(1)比较线段的大小:AC BD(填“>”、“=”或“<”);(2)若,且AC=12cm,则AD的长.26.如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.27.如图,O为直线AB上一点,∠AOC=48°,OE平分∠AOC,∠DOE=90°(1)求∠BOE的度数.(2)试判断OD是否平分∠BOC?试说明理由.28.请仔细观察图形和表格,并回答下列问题:45678……n 多边形的顶点数/个12345……①从一个顶点出发的对角线的条数/条2591420……②多边形对角线的总条数/条(1)观察探究:请自己观察图形和表格,并用含的代数式将上面的表格填写完整.(2)实际应用:数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?29.如图,点A是∠OBC的边BO上一点,请完成以下问题.(1)以A为顶点,射线AO为一边在∠OBC的内部用尺规再作一个角∠OAD,使其等于∠ABC;(2)判断AD与BC的位置关系,并说出理由.30.如图,一扇形纸扇完全打开后,AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽BD为18cm,求纸扇上贴纸部分的面积.31.如图,数轴上点A,B分别表示数﹣6,12,C为AB中点.(1)求点C表示的数.(2)若点P为线段AB上一点,PC=2,求点P表示的数.(3)若点D为线段AB上一点,在线段AB上有两个动点M,N,分别同时从点A,D 出发,沿数轴正方向运动,点M的速度为4个单位每秒,点N的速度为3个单位每秒,当MN=1,NC=2时,求点D表示的数.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:∵B是线段AC的中点,∴BC=AC=(m+n),∴PB=BC﹣PC=(m+n)﹣n=(m﹣n).故选:B.2.解:∵AB=AC+BC,CD=BD+BC,AC>BD,∴AB>CD.故选:B.3.解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,∴∠AOE=∠COE,∠COE=∠BOC,∴∠AOE=∠COE=∠BOC,∵∠AOE+∠COE+∠BOC=180°,∴∠AOE=∠COE=∠BOC=60°,∴∠AOD=∠BOC=60°,∴∠BOD=120°,∴①②③④都正确.故选:D.4.解:如图,故选:B.5.解:根据作法得m>0,n>MN.故选:C.6.解:使∠α和∠β顶点和一边重合,,由图直观可得∠α>∠β,故选:A.7.解:在平面内与点P的距离为1cm的点的个数为为:所有到定点P的距离等于1cm的点的集合,故选:A.8.解:A选项中,直线AB与射线EF无交点,不合题意;B选项中,直线AB与射线EF有交点,符合题意;C选项中,直线AB与射线EF无交点,不合题意;D选项中,直线AB与射线EF无交点,不合题意;故选:B.9.解:A、∵1°=60′,∴0.28°=16.8′,∵1′=60″,∴0.8′=48″,∴47.28°=47°16′48″,故A不符合题意;B、∵1°=60′,∴0.5°=30′,∴83.5°=83°30′,故B符合题意;C、∵1′=60″,∴24″=0.4′,∵1°=60′,∴5.4′=0.09°,∴16°5′24″=16.09°,故C不符合题意;D、∵1°=3600″,∴0.25°=900″,故D不符合题意;故选:B.10.解:∵正方形具有矩形和菱形所有的性质,∴正方形既是矩形也是菱形.故选:D.11.解:现实生活中“为何有人乱穿马路,请用数学知识解释这一现象,其原因是两点之间,线段最短,故选:C.12.解:A.由作法知AD=AC,∴△ACD是等腰三角形,故选项A不符合题意;B.由作法知所作图形是线段BC的垂直平分线,∴不能推出△ACD和△ABD是等腰三角形,故选项B符合题意;C由作法知,所作图形是线段AB的垂直平分线,∴DA=DB,∴△ABD是等腰三角形,故选项C不符合题意;D.∠C=90°,∠B=30°,∠BAC=60°,由作法知AD是∠BAC的平分线,∴∠BAD=30°=∠B,∴DB=DA,∴△ABD是等腰三角形,故选项D不符合题意;故选B.二.填空题(共12小题,满分36分)13.解:经过刨平的木板上的两个点,而且只能弹出一条墨线,其数学原理为两点确定一条直线,故答案为:两点确定一条直线.14.解:如图,∵AB∥CD,∴∠BAD=∠ADE=140°,∴∠α=∠BAD=70°.故答案为:70°.15.解:∵一个n边形过一个顶点有5条对角线,∴n﹣3=5,解得n=8.故答案为:8.16.解:设平面内这4个点分别为A,B,C,D,过任意两点画射线则有,射线AB,射线BA,射线AC,射线CA,射线AD,射线DA,射线BC,射线CB,射线BD,射线DB,射线CD,射线DC,共12条.故答案为:12.17.解:由作图的痕迹得DE垂直平分AB,∴AD=BD,EA=EB,所以②正确;∵∠ACB=90°,∴CD=DA=DB,即CD=AB,所以③正确;∴∠DBC=∠BCB,∠BAE=∠ACD,所以①错误,④正确.故答案为:②③④.18.解:∵1°=60′,∴0.45°=27′,∴∠1=30.45°=30°+0.45°=30°27′,∵∠2=30°28′,∴∠1<∠2.故答案为:<.19.解:∵AB=6cm,BC=10cm,P、Q分别是AB、BC中点,∴BP=AB=3(cm),BQ=BC=5(cm),当点B在线段AC上时,PQ=BP+BQ=8(cm),当B点在CA的延长线上时,PQ=BQ﹣BP=2(cm),综上,线段PQ的长为8cm或2cm.故答案为:8或2.20.解:由题意得:30°﹣15×0.5°=30°﹣7.5°=22.5°,故答案为:22.5.21.解:如图:从A地出发沿北偏东50°的方向行驶到B,则∠BAC=90°﹣50°=40°,从B地出发沿南偏西30°的方向行驶到C,则∠BCD=90°﹣30°=60°,∴∠ABC=∠BCD﹣∠BAC=60°﹣40°=20°.即∠ABC是20°.22.解:设运动场上的小环半径为r米,大环半径半径为R米,根据题意得:2π(R﹣r)=π,解得:R﹣r=,即跑道的宽度为米.故答案为:.23.解:只能使用直尺和圆规这两种工具去作几何图形的方法称为尺规作图. 故答案为:直尺,圆规.24.解:由对称性可知,图中的①、②、③、④的面积相等,所以S 阴影部分=S 正方形﹣S 扇形ABD=36﹣=36﹣9π,故答案为:36﹣9π.三.解答题(共7小题,满分78分)25.解:(1)∵AB =CD ,∴AB +BC =CD +BC ,∴AC =BD .(2)∵BC =AC ,且AC =12(cm ),∴BC =12×=9(cm ),∴AB =CD =AC ﹣BC =12﹣9=3(cm ),∴AD =AC +CD =12+3=15(cm ).26.解:如图,连接AB 交直线m 于点O ,则O 点即为所求的点.理由如下:根据连接两点的所有线中,线段最短,∴OA +OB 最短.27.解:(1)∵∠AOC =48°,OE 平分∠AOC ,∴∠AOE=∠COE==24°.∴∠BOE=180°﹣∠AOE=156°.(2)是,理由如下:由(1)得,∠COE=24°.∴∠COD=∠DOE﹣∠COE=90°﹣24°=66°.∵∠BOE=156°,∴∠BOD=∠BOE﹣∠DOE=156°﹣90°=66°.∴∠COD=∠BOD.∴OD平分∠BOC.28.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n ﹣3,多边形对角线的总条数为n(n﹣3);故答案为:n﹣3,n(n﹣3);(2)∵3×6=18,×18×(18﹣3)=135(个).答:数学社团的同学们一共将拨打电话为135个.29.解:(1)如图,∠OAD即为所求;(2)结论:AD∥BC.理由:∵∠OAD=∠ABC,∴AD∥BC.30.解:∵AB=30cm,BD=18cm,∴AD=AB﹣BD=30﹣18=12(cm),∴纸扇上贴纸部分的面积S=S扇形BAC ﹣S扇形DAE=﹣=300π﹣48π=252π(cm2).31.解:(1)点C表示的数为:=3;(2)点C所表示的数为3,设点P所表示的数为p,则|p﹣3|=2,解得p=5或p=1,答:点P所表示的数为1或5;(3)设点D在数轴上所表示的数为d,运动的时间为ts,则点M所表示的数为﹣6+4t,点N所表示的数为d+3t,①当点M在点N的左侧,点N在点C的左侧,MN=d+3t﹣(﹣6+4t)=d﹣t+6=1,即d﹣t=﹣5,NC=3﹣d﹣3t=2,即d+3t=1,由可解得d=﹣;②当点M在点N的左侧,点N在点C的右侧,MN=d+3t﹣(﹣6+4t)=d﹣t+6=1,即d﹣t=﹣5,NC=d+3t﹣3=2,即d+3t=5,由可解得d=﹣;③当点M在点N的右侧,点N在点C的左侧,MN=﹣6+4t﹣(d+3t)=﹣6+t﹣d=1,即d﹣t=﹣7,NC=3﹣d﹣3t=2,即d+3t=1,由可解得d=﹣5;④当点M在点N的右侧,点N在点C的右侧,MN=﹣6+4t﹣(d+3t)=﹣6+t﹣d=1,即d﹣t=﹣7,NC=d+3t﹣3=2,即d+3t=5,由可解得d=﹣4;综上所述,点D所表示的数为﹣或﹣或﹣5或﹣4.。
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。
北师大版七年级数学上册第四章基本平面图形单元测试题含解析(Word最新版)
北师大版七年级数学上册第四章基本平面图形单元测试题含解析通过整理的北师大版七年级数学上册第四章基本平面图形单元测试题含解析相关文档,渴望对大家有所扶植,感谢观看!北师大版七年级数学上册第四章基本平面图形单元测试题时间:100分钟满分:120分一、选择题(共10小题,每小题3分,共30分) 1.乘火车从北京到上海,共有25个车站(包括北京和上海在内),那么共须要打算多少种不同的车票()A.400 B.25 C.600 D.100 2.如图所示四幅图中,符合“射线PA与射线PB是同一条射线”的图为()A.B.C.D. 3.在墙壁上固定一根横放的木条,则至少须要钉子的枚数是()A.1枚B.2枚C.3枚D.随意枚 4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB 是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段 5.已知线段AB,延长AB至C,使AC=2BC,反向延长AB至D,使AD=BC,那么线段AD是线段AC的()A.B.C.D. 6.如图,AB=8cm,AD=BC=5cm,则CD等于()A.1cm B.2cm C.3cm D.4cm 7.下列说法中,正确的有()个①过两点有且只有一条直线;②连接两点的线段叫做两点间的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点;⑤射线AB和射线BA是同一条射线⑥直线有多数个端点.A.2个B.3个C.4个D.5个8.如图,从点O动身的五条射线,可以组成()个角.A. 4 B. 6 C.8 D.10 9.时钟显示为8:30时,时针与分针所夹的角是()A.90° B.120° C.75° D.84° 10.如图,∠AOB是始终角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65° B.50° C.40° D.25° 二、填空题(共8小题,每小题3分,共24分) 11.下列说法中正确的有(把正确的序号填到横线上).①延长直线AB到C;②延长射线OA到C;③延长线段OA到C;④经过两点有且只有一条线段;⑤射线是直线的一半.12.公园里打算修四条直的走廊,并且在走廊的每个交叉路口处设一个报亭,这样的报亭最多有____________个.13.一点将一长为28cm的线段分成5:2的两段,该分点与原线段中点间的距离为cm.14.数轴上A、B两点离开原点的距离分别为2和3,则AB两点间的距离为.15.钟表上4时15分钟,时针与分针的夹角的度数是.16.计算33°52′+21°54′=.17.如图,点A、O、B在一条直线上,∠AOC=140°,OD是∠BOC的平分线,则∠COD=度.18.如图,将三角形ABC纸片沿MN折叠,使点A落在点A′处,若∠A′MB=55°,则∠AMN=°.三、解答题(共7小题,每小题8分,共56分) 19.已知平面上四点A、B、C、D,如图:(1)画直线AD;(2)画射线BC,与AD相交于O;(3)连结AC、BD相交于点F.20.如图,M是线段AB的中点,点C在线段AB上,且AC=8cm,N是AC的中点,MN=6cm,求线段AB的长.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=∠AOC,∠AOB=114°.求∠COD的度数.22.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?假如有,指出结论并说明理由.25.O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图1,请写出∠AOC与∠DOE的数量关系、∠COF和∠DOE的数量关系;(2)若将∠COE绕点O旋转至图2的位置,OF仍旧平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图3的位置,射线OF仍旧平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由.答案解析 1.【答案】C 【解析】∵共有25个车站,∴线段的条数为25(25-1)=600,∴共须要打算600种不同的车票.故选C. 2.【答案】C 【解析】A.射线PA和射线PB不是同一条射线,故此选项错误;B.射线PA和射线PB不是同一条射线,故此选项错误;C.射线PA和射线PB是同一条射线,故此选项正确;D.射线PA 和射线PB不是同一条射线,故此选项错误;故选C. 3.【答案】B 【解析】∵两点确定一条直线,∴至少须要2枚钉子.故选B. 4.【答案】C 【解析】A正确,因为直线向两方无限延长;B正确,射线的端点和方向都相同;C错误,因为射线的端点不相同;D 正确.故选C. 5.【答案】D 【解析】设BC=a,则AC=2a,AD=a,则,故选D. 6.【答案】B 【解析】∵AB=8cm,AD=5cm,∴BD=AB-AD=3cm,∵BC=5cm,∴CD=CB-BD=2cm,故选B.7.【答案】A 【解析】①过两点有且只有一条直线,正确,②连接两点的线段叫做两点间的距离,不正确,应为连接两点的线段的长度叫做两点间的距离,③两点之间,线段最短,正确,④若AB=BC,则点B是线段AC的中点,不正确,只有点B在AC上时才成立,⑤射线AB和射线BA是同一条射线,不正确,端点不同,⑥直线有多数个端点.不正确,直线无端点.共2个正确,故选A.8.【答案】D 【解析】点O动身的五条射线,可以组成的角有:∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE.故选D.9.【答案】C 【解析】由于钟面被分成12大格,每格为30°,8点30分时,钟面上时针指向数字8与9的中间,分针指向数字6,所以时针与分针所成的角等于2×30°+×30°=75°.故选C.10.【答案】A 【解析】∵∠AOB是始终角,∠AOC=40°,∴∠COB=50°,∵OD平分∠BOC,∴∠COD=25°,∵∠AOD=∠AOC+∠COD,∴∠AOD=65°.故选A.11.【答案】③ 【解析】①延长直线AB到C,说法错误;②延长射线OA到C,说法错误;③延长线段OA到C,说法正确;④经过两点有且只有一条线段,说法错误;⑤射线是直线的一半,说法错误;故答案为:③.12.【答案】6 【解析】∵有4条直线,最多与前4-1=3条直线有4-1=3个交点,∴最多有4×(4-1)÷2=6个交点.故这样的报亭最多有6个.故答案为:6.13.【答案】6 【解析】如图,AB=28cm,AC:BC=5:2,点D为AB的中点,设AC=5x,则BC=2x,∵AC+BC=AB,∴5x+2x=28,解得x=4,∴AC=5x=20,∵点D为AB的中点,∴AD=AB=14,∴CD=AC-AD=20-14=6(cm),即该分点与原线段中点间的距离为6cm.故答案为6.14.【答案】5或1 【解析】∵数轴上A、B两点离开原点的距离分别为2和3可得出点A表示±2,点B表示±3,∴当点A、B在原点的同侧时,AB=|3-2|=1;当点A、B在原点的异侧时,AB=|-2-3|=5.故答案为:5或1.15.【答案】()° 【解析】4时15分,时针与分针相距1+=份,4时15分钟,时针与分针的夹角的度数30×=()°,故答案为:()°.16.【答案】55°46′ 【解析】相同单位相加,满60,向前进1即可.33°52′+21°54′=54°106′=55°46′.17.【答案】20 【解析】∵∠AOC与∠BOC是邻补角,∴∠AOC+∠BOC=180°,∵∠AOC=140°,∴∠BOC=180°-140°=40°,∵OD平分∠BOC,∴∠COD=∠COB=20°.故答案为:20.18.【答案】62.5 【解析】∵∠A′MB=55°,∴∠AMA′=180°-∠A′MB=180°-55°=125°,由折叠的性质得,∠A′MN=∠AMN=∠AMA′=×125°=62.5°,故答案为:62.5.19.【答案】解:如图所示:【解析】(1)画直线AD,连接AD并向两方无限延长;(2)画射线BC,以B为端点向BC 方向延长交AD于点O;(3)连接各点,其交点即为点F.20.【答案】解:由AC=8cm,N是AC的中点,得AN=AC=4cm.由线段的和差,得AM=AN+MN=4+6=10cm.由M是线段AB的中点,得AB=2AM=20cm,线段AB的长是20cm.【解析】依据线段中点的性质,可得AN的长,依据线段的和差,可得AM的长,依据线段中点的性质,可得答案.21.【答案】解:∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD=∠AOB=57°.∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=∠AOB=38°.∴∠COD=∠AOD-∠AOC=57°-38°=19°.【解析】依据OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,可以求得∠AOC、∠AOD的度数,从而可以求得∠COD 的度数.22.【答案】解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.【解析】依据折叠的特点可找到相等的角,在绽开图中,利用∠EFB′+∠1+∠2+∠3+∠GFC′等于平角得出结论.23.【答案】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,依据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.【解析】(1)依据角平分线定义得到∠AOC=∠EOC=×70°=35°,然后依据对顶角相等得到∠ BOD=∠AOC=35°;(2)先设∠EOC=2x,∠EOD=3x,依据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,然后与(1)的计算方法一样.24.【答案】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON 平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°,∴∠MON=∠MOC-∠NOC=45°.(2)如图2,∠MON=α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30° ∴∠MON=∠MOC-∠NOC=(α+30°)-30°=α.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC-∠NOC=α+β-β=α+β.∴∠MON=∠MOC-∠NOC=(α+β)-β=α,即∠MON=α.【解析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可.25.【答案】解:(1)∵∠COE=90°,∠COE+∠AOC+∠DOE=180°,∴∠AOC+∠DOE=90°,∵射线OF平分∠AOE,∴∠AOF=∠EOF=∠AOE,∴∠COF=∠AOF-∠AOC=∠AOE-(90°-∠DOE)=(180°−∠DOE)−90°+∠DOE=∠DOE,即∠AOC+∠DOE=90°,∠COF=∠DOE. (2)数量关系:∠COF=∠DOE. ∵OF平分∠AOE,∴∠AOF=∠AOE,∵∠COE=90°,∴∠AOC=90°-∠AOE,∴∠COF=∠AOC+∠AOF=90°-∠AOE+∠AOE=90°-∠AOE,∵∠AOE=180°-∠DOE,∴∠COF=90°-(180°-∠DOE)=∠DOE,即∠COF=∠DOE;(3)数量关系:∠COF=180°−∠DOE.∵OF 平分∠AOE,∴∠EOF=∠A OE,∴∠COF=∠COE+∠EOF=90°+∠AOE=90°+(180°−∠DOE)=180°-∠DOE,即∠COF=180°−∠DOE 【解析】(1)依据已知条件和图形可知:∠COE=90°,∠COE+∠AOC+∠DOE=180°,从而可以得到∠AOC与∠DOE的数量关系;由射线OF平分∠AOE,∠AOC与∠DOE的数量关系,从而可以得到∠COF和∠DOE的数量关系;(2)由图2,可以得到各个角之间的关系,从而可以得到∠COF和∠DOE 之间的数量关系;(3)由图3和已知条件可以建立各个角之间的关系,从而可以得到∠COF和∠DOE之间的数量关系.。
北师大版数学七年级上册第四章《基本平面图形》综合检测卷(含答案)
北师大版数学七年级上册第四章《基本平面图形》 综合检测卷 班级 座号 姓名 成绩一、选择题(本大题8小题,每小题3分,共24分.)在每小题列出的四个选项中,只有一个是正确的.1.探照灯发射出的光线,可近似地看作( )A .线段B .射线C .直线D .折线2.如图,直线AB 和CD 相交于点O ,若∠AOC =125°,则∠AOD =( )A .50°B .55°C .60°D .65°3.下列说法,正确的是( ) A .过两点有且只有一条直线 B .连接两点的线段叫作两点的距离C .两点之间直线最短D .若AB =BC ,则B 是AC 的中点4.一个多边形从一个顶点最多能引出三条对角线,这个多边形是( )A .三角形B .四边形C .五边形D .六边形5.一个人从A 点出发向南偏东30°方向走到B 点,再从B 点出发向北偏西45°方向走到C 点,那么∠ABC 等于( )A .75°B .45°C .30°D .15°6.如图,AB =CD ,则下列结论不一定成立的是( )A .AC >BCB .AC =BDC .AB +CD =BC D .AB +BC =BD 7.已知OA ⊥OC ,∠AOB ︰∠AOC =2︰3,则∠BOC 的度数为( )A .30B .150C .30或150D .以上都不对8.如图,扇形AOB 的半径为2,圆心角为90°,连接AB ,则图中阴影部分的面积是( )A .π-2B .π-4C .4π-2D .4π-4 第2题图第6题图 第8题图二、填空题(本大题7小题,每小题4分,共28分.)请将下列各题的正确答案填在该题的横线上.9.时钟表面3点30分,时针与分针所成夹角的度数是 .10.如图,B 、C 两点在线段AD 上,BD =BC + ,AD =AC +BD - ; 如果CD =4cm ,BD =7cm ,B 是AC 的中点,则AB 的长为 cm .11.计算:176°52′÷3=_______° _______′ _______″.12.一个圆被分成A ,B ,C 三部分,其中A 部分占25%,C 部分占45%,则B 部分的圆心角的度数为__________度.13.如图,OE 是∠BOC 的平分线,OD 是∠AOC 的平分线,且∠AOB =150°,∠DOE 的度数是 .14.已知线段AB ,延长AB 到点C ,使BC =13AB ,D 为AC 的中点,若AB =9 cm ,则DC 的长为 cm .15.长方形纸条按如图所示折叠后,B 、D 两点落在B ′、D ′点处,若得∠AOB ′=70°,则∠B ′OG 的度数为 . 三、解答题(本大题4小题,16、17题每小题10分,18、19题每小题14分,共48分.)解答过程应写出文字说明、推理过程及演算步骤.16.如图,已知∠AOB =90°,∠COD =90°,OE 为∠BOD 的平分线,∠BOE =17°18′,求∠AOC 的度数.17.某摄制组从A 市到B 市有一天的路程,由于堵车,中午才赶到一个小镇,只行驶了原第13题图第10题图 第15题图计划的三分之一(原计划行驶到C地),过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C地到这里路程的二分之一就到达目的地了,问A,B两市相距多少千米?18.如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由;②∠AOC和∠BOD在数量上有何关系?说明理由;(2)若将这副三角尺按图乙所示摆放,三角尺的直角顶点重合在点O处.∠∠AOD和∠BOC相等吗?说明理由;∠∠AOC和∠BOD的以上关系还成立吗?说明理由.19.如图∠,线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC、BC的中点.(1)若点C恰好是AB中点,则DE= cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(4)知识迁移:如图∠,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.参考答案一、选择题:1.B 2.B 3.A 4.D 5.D 6.C 7.C 8.A二、填空题:9.75° 10.CD ,CB ,3 11.58 ,57 ,20 12.108 13.75° 14.6 15.55°三、解答题:16.∵OE 为∠BOD 的平分线, ∴∠BOD =2∠BOE =2×17°18′=34°36′, 又∵∠AOB =∠COD =90°,∴∠AOC =360°-∠AOB -∠COD -∠BOD =360°-90°-90°-34°36′=145°24′17.如图,设小镇为D ,傍晚汽车在E 处休息,由题意知,DE =400千米,AD =DC ,EB =CE , AD +EB =(DC +CE )=DE =×400=200千米, ∴AB =AD +EB +DE =600千米, 答:A ,B 两市相距600千米.18.(1) 相等.∵①∠AOD =90°+∠BOD ,∠BOC =90°+∠BOD , ∴∠AOD =∠BOC ; ②∵∠AOC +90°+∠BOD +90°=360°, ∴∠AOC +∠BOD =180°;(2)①∵∠AOD =90°-∠BOD ,∠BOC =90°-∠BOD , ∴∠AOD =∠BOC ; ②成立.由∠AOC =90°+90°-∠BOD , ∴∠AOC +∠BOD =180°19.(1)6;(2)∠AB =12,AC =4, ∠BC =8,∠点D 、E 分别是AC 、BC 的中点, ∠CD =2,CE =4, ∠DE =6cm ;(3)设AC =a ,∠点D 、E 分别是AC 、BC 的中点,∠DE =CD +CE =12(AC +BC )=12AB =6cm , ∠不论AC 取何值(不超过12cm ),DE 的长不变;(4)∠OD 、OE 分别平分∠AOC 和∠BOC ,∠∠DOE =∠DOC +∠COE =12(∠AOC +∠COB )=12∠AOB , ∠∠AOB =120°, ∠∠DOE =60°, ∠∠DOE 的度数与射线OC 的位置无关.1212121212。
北师大版七年级数学上册单元目标检测:第四章-基本平面图形(含答案)
数学北师版七年级上第四章基本平面图形单元检测参考完成时间:90分钟实际完成时间:______分钟总分:100分得分:______一、选择题(本题共10小题,每小题3分,共30分)1.平面上有四点,经过其中的两点画直线最多可画出( ).A.三条B.四条C.五条D.六条2.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有().A.①②B.①③C.②④D.③④3.平面上有三点A,B,C,如果AB=8,AC=5,BC=3,那么( ).A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.下列各角中,是钝角的是().A。
14周角 B.23周角 C.23平角D。
14平角5.如图,O为直线AB上一点,∠COB=26°30′,则∠1=( ).A.153°30′B.163°30′C.173°30′D.183°30′6.在下列说法中,正确的个数是().①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差一刻六点时,时针和分针形成的角是直角;⑤钟表上九点整时,时针和分针形成的角是直角.A.1 B.2 C.3 D.47.如图,C是AB的中点,D是BC的中点,下面等式不正确的是( ).A.CD=AC-DB B.CD=AD-BCC.CD=12AB-BD D.CD=13AB8.如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于( ).A.3 cm B.6 cm C.11 cm D.14 cm9.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少....的路线是().A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C 10.如图所示,云泰酒厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在金斗大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该厂的接送车打算在这个路段上只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( ).A .点AB .点BC .AB 之间D .BC 之间二、填空题(本题共4小题,每小题4分,共16分)11.如图所示,线段AB 比折线AMB __________,理由是:____________________.12.如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =10,AC =6,则CD =__________.13.现在是9点20分,此时钟面上的时针与分针的夹角是__________.14.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南—-淄博——潍坊-—青岛,那么要为这次列车制作的火车票有__________种.三、解答题(本题共4小题,共54分)15.(12分)计算:(1)将24.29°化为度、分、秒;(2)将36°40′30″化为度.16.(7分)请以给定的图形“”(两个圆,两个三角形,两条线段)构思独特而且又有意义的图形,并且写上一句贴切的解说词.17.(8分)已知线段a ,b (如图),画出线段x ,使x =a +2b .18.(8分)已知在平面内,∠AOB =70°,∠BOC =40°,求∠AOC 的度数.19.(9分)如图,已知AB 和CD 的公共部分BD =13AB =14CD 。
北师大版数学七年级上册 第四章 基本平面图形 单元测试【附解析】
北师版数学七年级上册第四章基本平面图形单元测试题【答案】一、选择题(每题3分,共12题,满分36分)1.线段具有,射线不具有的性质是()A.可以延长B.有无数个点组成C.可以度量长度D.可伸长为直线2. (2019•海淀区一模)如图1是圆规示意图,张开的两脚所形成的角大约是()A.90°B.60°C.45°D.30°3. 把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边4.(2020•德州)如图2,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米5. (2019吉林)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图3,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()A.两点之间,线段最短B.平行于同一条直线的两条直线平行C.垂线段最短D.两点确定一条直线6. (2020•凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm7. (2019•平谷区一模)如图4,正五边形ABCDE,点F是AB延长线上的一点,则∠CBF的度数是()A.60°B.72°C.108°D.120°8.(2019•通州区一模)如图5,∠AOB的角平分线是()A.射线OB B.射线OE C.射线OD D.射线OC9.(2019,山东枣庄)点O,A,B,C在数轴上的位置如图6所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1 D.a﹣110. (广东省湛江市四校2019届中考模拟二数学试题)已知∠α=140°-5m,∠β=5m-50°,∠α和∠β关系一定成立的是()A.∠α+∠β=90° B.∠α+∠β=190°C.∠α=∠βD.∠α=2∠β11. (2019·贵州贵阳)数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3 B.4.5 C.6 D.1812.(2019淄博)如图7,小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南20°方向行走至点C处,则∠ABC等于 ( ) A.130°B.120°C.110°D.100°二、填空题(每题2分,共7题,满分14分)13.如图8,建筑工人砌墙时,经常先在两端立装拉线,然后沿着线砌墙,这里面的数学道理是 .14. (2019年广东省佛山市顺德区中考数学三模试卷)计算:18°30′=__________°.15.已知线段AB=3a,CD=5a, EF=8a,MN=2a,则AB,CD,EF之间的关系为,AB,CD,MN之间的关系为 .16.(2019•浙江湖州改编)已知∠α=60°32′,则90°﹣∠α为 .17. 已知直线AB,点C是直线AB上一点,已知线段AB=10cm,线段BC=6cm.则线段AC的长为 .18.(2019•通州区一模)如图9所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.19.已知∠AOC=64°,∠BOC=34°.则∠AOB的度数为 .三、解答题(共8题,满分50分)20.(满分9分)完成下表:21.(满分4分)如图10,已知:同一平面内的三点A,B,C,按要求画图:(1)画线段AB;(2)画射线AC;(3)画直线BC.22. (满分4分)(2019年聊城)如图11,数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点1A 处,第2次从1A 点跳动到1A O 的中点2A 处,第3次从2A 点跳动到2A O 的中点3A 处,按照这样的规律继续跳动到点4A ,5A ,6A ,…, n A .(n ≥3,n 是整数)处,求线段n A A 的长(n ≥3,n 是整数).23.(满分7分)教材阅读与思考下面是人教版七年级上册p127页上一段话,请仔细阅读,完成后面的问题:如图4.2-11(1),点M 把线段AB 分成相等的两条线段AM 与MB ,点M叫做线段AB 的中点.类似地,还有线段的三等分点、四等分点等(图4.2-11(2)(3)),(1)下列四种说法:①因为AM=MB ,所以M 是AB 中点;②在线段AM 的延长线上取一点B ,如果AB=2AM ,那么M 是AB 的中点;③因为M 是AB 的中点,所以AM=MB=12AB ;④因为A 、M 、B 在同一条直线上,且AM=BM ,所以M 是AB 中点,其中正确的是 ( )A.①③④B.④C. ②③④D.③④(2)将一条线段分成相等线段的点叫线段的中点.这句话对吗?为什么?(3)下列说法正确的是 ( )A 、到线段两个端点距离相等的点叫做线段的中点B 、线段的中点到线段两个端点的距离相等C 、线段的中点可以有两个D 、线段的中点有若干个(4)将一条绳子的两个绳头重合,折痕与绳子的交点,就是绳子的 .24. (满分6分如图12,把一个圆分成三个扇形,求出这三个扇形的圆心角.25. (满分6分在一条直线上任意取一点A,截取 AB=12cm,再截取AC=38cm, 点D是AB的中点,点E是AC的中点,求:D,E之间的距离.26. (满分6分已知∠AOC=120°∠BOC=20°,OD是∠AOB的平分线, OE是∠BOC 的平分线,求∠DOE的度数.27. (满分6分(2018•高邑县一模)如图13,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?参考答案:一、选择题1.C2. B3. C4. C5. A6. C7. B8.B9.B10. A11. C12.C二、填空题13.两点确定一条直线.。
2024年北师大版七年级上册数学第四章综合检测试卷及答案
20.(10分)如图,长方形纸片 ,点 , 分别在边 , 上,连接 ,将 对折,点 落在直线 上的点 处,得折痕 ;将 对折,点 落在直线 上的点 处,得折痕 .
17.(8分)如图, , , 为直线 上的三点.
(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;
解:图中有10条线段,10条射线.能用大写字母表示的线段:线段 、线段 、线段 、线段 、线段 、线段 、线段 、线段 、线段 、线段 .能用大写字母表示的射线:射线 、射线 、射线 、射线 、射线 、射线 、射线 、射线 .
13.直线 外有 , 两点,由点 , , , 可确定的直线条数是______.
4或6
14.如图所示,点 , 把线段 三等分,点 为 的中点,且 ,则 ____ .
12
15.某学校运动场跑道的一段弯道如图所示,现需对其进行改造.经施工队测得弯道的内外边缘均为圆弧,点 是 、
(1)求 的度数;
解:根据折叠可知, , ,因为 ,所以 ,即 .
(2)若 恰好平分 ,求 的度数.
[答案] 因为 恰好平分 ,所以 ,根据折叠可知, ,所以 ,因为 ,所以 ,所以 .
21.(12分)
(1)问题:
①从四边形的一个顶点出发可以画___条对角线,四边形共有___条对角线;
所在圆的圆心,点 、 分别在 、 上,测得圆弧跑道半径 , 跑道宽 , ,则这段圆弧跑道的面积为_ _____ .(结果保留 )
三、解答题(共55分)
16.(6分)如图,已知线段 , ,用尺规作一条线段 ,使 ,并写明作法.
解:作法:(1)作射线 ;(2)在射线 上依次截取线段 ;(3)在射线 上截取 .则线段 即为所求.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级数学上册第四章基本平面图形单元测试题
时间:100分钟满分:120分
一、选择题(共10小题,每小题3分,共30分)
1.下列说法中正确的是().
A.角是由两条射线组成的图形 B.一条射线就是一个周角
C.两条直线相交,只有一个交点 D.如果线段AB=BC,那么B叫做线段AB的中点
2.下列说法中,正确的有().
①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;
③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点.
A.1个B.2个C.3个D.4个
3.如图,AC=BD,则AB与CD的大小关系是( ).
A.AB>CD B.AB<CD C.AB=CD D.不能确定
4.下列说法正确的是().
A.线段AB和线段BA表示的不是同一条线段
B.射线AB和射线BA表示的是同一条射线
C.若点P是线段AB的中点,则P A=AB
D.线段AB叫做A、B两点间的距离
5.已知线段,在直线AB上画线段,则线段BC的长为().
A.8cm B. 2 cm或8 cm C. 2 cm D. 不能确定
6.点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2cm,AC比BC长().
A. 1 cm
B. 2 cm
C. 4 cm
D. 6 cm
7.已知点M是∠AOB内一点,作射线OM,则下列不能说明OM是∠AOB的平分线的是( ).
A.∠AOM=∠BOM
B.∠AOB=2∠AOM
C.∠BOM =∠AOB
D.∠AOM+∠BOM=∠AOB
8.现在的时间是9点30分,时钟面上的时针与分针的夹角是.
A. B. C. D. 110°
9.在海上有两艘军舰A和B,测得A在B的北偏西60°方向上,则由A测得B的方向是().
A.南偏东30° B.南偏东60° C.北偏西30° D.北偏西60°
10.七年级一班同学小明在用一副三角板画角时(即30°,60°,90°的一个,45°,45°,90°的一个)画出了许多不同度数的角,但下列哪个度数他画不出来().
A.135° B.75° C.120° D.25°
二、填空题(共10小题,每小题3分,共30分)
11.射击运动员在射击时,眼睛总是对着准星和目标,运动员这么做的理由是
________________.
12.从一个多边形的一个顶点出发,连接顶点和多边形的其余各个顶点,得到了8个三
角形,则原多边形的边数是______ .
13. 0.75°=________′=________″
7 200″=________′=________°.
14.如图,AB=8 cm,AD=BC=5cm,则CD的长度为.
15.在直线AB上,,,那么AB的中点与AC的中点的距离为______.
16.如图,从点O出发的五条射线,可以组成个角.
17.如图,已知OC是∠AOB的平分线,OD是∠AOC的平分线,且∠AOD=30°,则∠
AOB的度数为_______°.
18.如图中的路面是用正六边形地砖铺成的,正六边形的一个角的度数为______°.
19.如图,点O表示学校,中午放学后,小光沿北偏东60°的方向回家,小明沿南偏西
30°的方向回家,则小光和小明回家路线的夹角为________°.
20.往返甲乙两地的火车,中途还需停靠2个站,则铁路部门对此运行区间应准备________ 种不同的火车票.
三、解答题(共6小题,共60分)
21.(6分) 已知平面上四点A、B、C、D,如图:
(1)画直线AD;
(2)画射线BC,与AD相交于O;
(3)连结AC、BD相交于点F.
22.(10分)如图,C是线段AB上一点,M是AC的中点,N是BC的中点
若,,求MN的长度.
若,求MN的长度.
23.(10分)如图,已知,,AD是的角平分线,求的度数.
24.(10分)如图,甲、乙、丙三个扇形的面积比为3:4:5,扇形丁的圆心角为120°,分别求出甲、乙、丙三个扇形的圆心角的度数.
25.(12分)如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB
上有5个点时,线段总数共有10条,
当线段AB上有6个点时,线段总数共有______ 条
当线段AB上有100个点时,线段总数共有多少条?
26.(12分)如图,已知点C在线段AB上,且AC=8 cm,BC=6 cm,点M,N分别是AC,BC的中点,要求线段MN的长度,可进行如下的计算.请填空:
解:因为M是AC的中点,所以MC=
1
2
____,因为AC=8 cm,所以MC=4 cm.因为N 是BC的中点,所以CN=
1
2
BC,因为BC=6 cm,所以CN=____,所以MN=MC+CN =____.
(2)对于(1),如果AC=a cm,BC=b cm,其他条件不变,请求出MN的长度.。