七年级数学平行线的性质3

合集下载

7年级数学 平行线判定及性质

7年级数学 平行线判定及性质

D E EF1 23ACO知识精讲7 年级数学下:平行线的性质定理模块一:平行线的性质定理平行线的性质定理(1)两条平行线被第三条直线所截,同位角相等;简记为:两直线平行,同位角相等. (2)两条平行线被第三条直线所截,内错角相等;简记为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补;简记为:两直线平行,同旁内角互补.例题解析【例 1】如图,AC //DB , ∠DBC = 56 ,则∠ACB = . 【答案】124 度.【解析】因为 AC //DB (已知),所以∠DBC + ∠ACB = 180︒ (两直线平行,同旁内角互补),因为∠DBC = 56 (已知),所以∠ACB = 180︒ - 56︒ = 124︒ (等式性质)D B 【例 2】(1)如图,已知 DE //BC ,∠A = ∠C ,则与∠AED 相等的角(不包含∠AED )有 个; (2)如图,若 AB //FD ,则∠B = ,若 AC //ED ,则∠DFC = .AABC 【答案】(1)2 个;(2) ∠3 ;∠2.BD【解析】(1)因为 DE //BC (已知), 所以∠AED = ∠C (两直线平行,同位角相等),又因为∠A = ∠C (已知),所以∠A = ∠C = ∠AED (等量代换); (2)∠B = ∠3(两直线平行,同位角相等);∠DFC = ∠2.【例 3】如图,直线 a / /b ,则 x - y 的值等于( ) a A .20 B .80C .120D .180b【答案】A【解析】因为 a / /b ,所以 x = 30又因为3y + x = 180 ,解得 y = 50,故 x - y = 30 - 50 = 20︒ .【例 4】如图,直线 a / /b ,点 B 在直线b 上,且 AB ⊥ BC , ∠1 =A . 35B . 45C . 55D .125【答案】A【解析】因为 AB ⊥ BC (已知),所以∠ABC = 90︒ (垂直的意义)因为 a / /b (已知), 所以 ∠1 = ∠CBD (两直线平行,同位角相等)因为∠1 = 55 (已知), 所以∠CBD = 55 (等量代换)因为∠2 + ∠ABC + ∠CBD = 180 (平角的意义) 所以∠2 = 180︒ - 55︒ - 90︒ = 35︒ (等式性质)B【例5】如图,直线a / /b ,c ⊥d ,则下列说法中正确的个数有()(1)∠2 +∠4 = 90 ;(2)∠1 +∠4 = 90 ;(3)∠1 =∠3 ;(4)∠3 +∠4 = 90 .A.1 个B.2 个C.3 个D.4 个【答案】B【解析】(1)正确:因为a / /b ,所以∠2 与∠3 互为同位角,d又因为c ⊥d ,所以∠3 +∠4 = 90︒,所以∠2 +∠4 = 90︒;(2)错误:∠1 =∠4 (两直线平行,同位角相等);(3)错误∠1 +∠3 = 90︒;(4)正确.所以本题选B【例6】如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角()A.相等或互补B.互补C.相等D.相等且互余【答案】A【解析】分为同侧相等和异侧互补两种情况,故选A.【例7】如图,已知AB / /CD ,∠x 等于()A.75 B.80 C.85 D.95 【答案】C【解析】如图可过的顶点作平行线,那么被分为上下两部分.上半部分与角B 互补;下半部分与角D 互为内错角;所以易知∠x = (180︒-120︒) + 25︒= 85︒.A B120°xD 25°C【例8】如图,AB / /CD,MP / / AB,MN 平分∠AMD,∠A = 40 ,∠D = 30 ,则∠NMP 等于()A.10 B.15 C.5 D.7.5 【答案】C【解析】因为AB / /MP (已知)所以∠A =∠AMP (两直线平行,内错角相等)因为AB / /CD (已知),所以MP / /CD (平行的传递性)所以∠D =∠DMP (两直线平行,内错角相等)B MCAN PD因为∠AMD =∠AMP +∠DMP (角的和差),∠A = 40 ,∠D = 30 (已知)所以∠AMD = 30 + 40 = 70 (等式性质)因为MN平分∠AMD (已知),所以∠AMN =∠NMD = 35 (角平分线的意义)所以∠NMP = 40︒- 35︒= 5︒(等式性质)E【例9】如图,AB / /CD ,∠1 = (2x + 20) ,∠2 = (8x - 40) ,求∠1 及∠2 的度数.【答案】∠1 = 40︒,∠2 = 40︒. A1 B【解析】因为AB / /CD (已知),所以∠1 =∠2 (两直线平行,同位角相等)2 即(2x + 20) = (8x - 40) C DF 解得:x = 10所以∠1 = 40︒,∠2 = 40︒(等式性质)H2G 1CFD3 12 4【例 10】如图,已知∠1 = 40 ,∠2 = 140 ,∠3 = 40 ,能推断出 AB / /CD / / EF 吗?为什么? 【答案】能;见解析. 【解析】由题意,根据对顶角的性质,可知:∠2 + ∠1 = 180︒,∠2 + ∠3 = 180︒所以 AB //CD ,CD //EF (同旁内角互补,两直线平行)所以 AB //EF ,即 AB //CD //EF ,即证.N【例 11】已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的 2 倍少 30°,求∠A 与∠ B 的度数.【答案】∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒ .【解析】由题意可知, ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 2 倍少 30°,所以∠A = 2∠B - 30︒ ,即∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒ 【总结】本题考查平行线的性质及两个角的两边平行时的两种情况的讨论.【例 12】已知:如图, ∠1 = ∠2 ,∠3 = ∠B ,AC / / DE ,且 B 、C 、D 在一条直线上.试说明 AE / / BD .A E【答案】见解析.【解析】因为 AC / / DE (已知),所以∠2 = ∠4 (两直线平行,内错角相等) 因为∠1 = ∠2 (已知),所以∠1 = ∠(4 等量代换)所以 AB / /CE (内错角相等,两直线平行)所以∠B = ∠ECD (两直线平行,同位角相等)B因为∠3 = ∠B (已知),所以∠3 = ∠ECD (等量代换) 所以 AE / / BD (内错角相等,两直线平行)【例 13】已知:如图,E 、F 分别是 AB 和 CD 上的点,DE 、AF 分别交 BC 于 G 、H ,∠ A = ∠ D , ∠ 1= ∠ 2,试说明: ∠ B = ∠ C . E 【答案】见解析 A B 【解析】因为∠1 = ∠(2 已知),∠1 = ∠AHB (对顶角相等)所以∠2 = ∠AHB (等量代换), 所以 AF / / E D (同位角相等,两直线平行)所以∠D = ∠AFC (两直线平行,同位角相等)因为∠A = ∠D (已知), 所以∠A = ∠AFC (等量代换)所以 AB / /CD (内错角相等,两直线平行) 所以∠B = ∠C (两直线平行,内错角相等)【例 14】如图,直线 GC 截两条直线 AB 、CD ,AE 是∠GAB 的平分线,CF 是∠ACD 的平 分线,且 AE / /CF ,那么 AB ∥CD 吗?为什么?【答案】见解析【解析】因为 AE 是∠GAB 的平分线,CF 是∠ACD 的平分线(已知)所以∠GAE = ∠EAB ,∠ACF = ∠FCD (角平分线的性质)因为 AE / /CF (已知),所以∠GAE = ∠ACF (两直线平行, 3A1 E2 D同位角相等)所以∠EAB =∠FCD(等量代换)所以AB / /CD ( 同位角相等,两直线平行)【例15】如图∠1 =∠2 ,DC / /OA ,AB / /OD ,那么∠C =∠B【答案】见解析【解析】因为DC / /OA (已知),所以∠COA =∠C(两直线平行,内错角相等),即∠COB +∠1 =∠C因为AB / /OD (已知),所以∠DOB =∠B即∠2 +∠COB =∠B ,又因为∠1 =∠2 (已知),所以∠B =∠C (等量代换)【总结】本题考查平行线的判定及性质的综合运用.【例16】如图,已知AD 平分∠BAC ,∠1 =∠2 ,试说明∠1 =∠F 的理由.【答案】见解析F【解析】因为AD 平分∠BAC (已知),所以∠2 =∠BAD (角平分线的意义)因为∠1 =∠2 (已知),所以∠1 =∠BAD (等量代换)所以EF / / AD (同位角相等,两直线平行)所以∠F =∠2 (两直线平行,同位角相等) B C 所以∠1 =∠F (等量代换)【总结】本题考查平行线的判定及性质的运用.【例17】已知:如图,∠AGH =∠B,∠CGH =∠BEF ,EF⊥AB 于F,试说明CG⊥AB.【答案】见解析【解析】因为∠AGH =∠B (已知)C所以HG / /CB (同位角相等,两直线平行)所以∠CGH =∠BCG (两直线平行,内错角相等)E 因为∠CGH =∠BEF (已知),H所以∠BEF =∠BCG (等量代换)A B所以EF / /CG (同位角相等,两直线平行)G F因为EF⊥AB(已知),所以CG⊥AB.【例18】已知,正方形ABCD 的边长为4 cm ,求三角形EBC 的面积.D【答案】8 平方厘米. A E 【解析】由题意可知:三角形EBC 与正方形同底BC,且其高即是正方形的边DC,故三角形面积为正方形面积的一半:4 ⨯ 4 ÷ 2 = 8cm2C【例19】如图,AD//BC,BC =5AD ,求三角形ABC 与三角形ACD 的面积之比.2A D【答案】5: 2 .4B CBD EA G D【解析】因为 AD / /BC (已知)所以三角形 ABC 与三角形 ACD 的高相等 (平行线间的距离处处相等)所以 S ∆ABC : S ∆ACD = BC : AD = 5:2 (两三角形高相等,面积比等于底之比)【例 20】如图, AB / /GE , CD / / FG ,BE =EF =FC ,三角形 AEG 的面积等于 7,求四边形AEFD 的面积.【答案】21【解析】联结 BG 、CG . 因为 AB / /GE(已知)所以 S∆BEGB= S ∆AEG (同底等高的两个三角形面积相等)E FC因为 BE =EF (已知), 所以 S ∆BEG = S ∆GEF (等底等高的两个三角形面积相等)所以 S ∆AEG = S ∆GEF =7(等量代换), 同理 S ∆GEF = S ∆DFG = 7 . 所以 S 四边形AEFD = S ∆AEG + S ∆GEF + S ∆DFG = 7 + 7 + 7 = 21.【例 21】已知 E 是平行四边形 ABCD 边 BC 上一点,DE 延长线交 AB 延长线于 F ,试说明CS ∆ABE 与S ∆CEF 相等的理由.【答案】见解析1A1F【解析】因为 S △ADE = S △DCF = 2 S 四边形ABCD ,所以 S △CEF = S ∆DCF - S ∆DCE = 2S 四边形ABCD - S ∆DCE ,所以 S = S - S - S = S- 1 S - S = 1 S - S ∆ABE 四边形ABCD ∆ADE ∆DCE 四边形ABCD 2 四边形ABCD ∆DCE 2四边形ABCD∆DCE所以 S ∆ABE = S ∆CEF模块二:辅助线的添加例题解析【例 1】如图,已知 AB ∥ED ,试说明:∠B +∠D =∠C . 【答案】见解析【解析】过点 C 作 AB 的平行线 CF ,因为 AB ∥ED (已知)所以 AB / /CF / / ED (平行的传递性)所以∠B = ∠BCF ,∠D = ∠DCF 所以∠B + ∠D = ∠BCF + ∠DCF = ∠BCD (等式性质) E【例 2】如图所示,已知, ∠A +∠B +∠C = 360︒ ,试说明 AE ∥CD .5FE 【答案】见解析 A E 【解析】过点 B 向右作 BF //AE ,所以∠A + ∠ABF = 180(︒ 两直线平行,同旁内角互补)因为∠A +∠B +∠C = 360︒ (已知) B F 所以∠FBC + ∠C = 180︒ (等式性质) C D所以 BF / /CD (同旁内角互补,两直线平行) 所以 AE / /CD (平行的传递性)【例 3】如图,已知:AB //CD ,试说明: ∠ B + ∠ D + ∠ BED = 360︒ (至少用三种方法).【答案】见解析 A【解析】方法一:连接 BD则∠EBD +∠EDB +∠E =180°(三角形内角和等于 180因为 AB //CD (已知),所以∠ABD +∠BDC =180°(两直线平行,同旁内角互补)C所以∠ABD +∠EBD +∠EDB +∠BDC +∠E =360°,即∠B +∠D +∠BED =360° 方法二:过点 E 作 EF //CD ,因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠B +∠BEF =180°,∠D +∠DEF =180°(两直线平行,同旁内角互补) 所以∠B +∠BEF +∠D +∠DEF =360°(等式性质)即∠B +∠D +∠BED =360°; 方法三:过点 E 作 EF / / BA 因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠ABE + ∠BEF = 180︒ ,∠FED + ∠EDC = 180︒ (两直线平行,同旁内角互补) 所以∠ B + ∠ D + ∠ BED = 360︒ (等式性质);方法四:过点 E 作 EF ⊥CD 的延长线与 F ,EG 垂直于 AB 的延长线于 G , 则有:∠B =∠BGE +∠GEB ,∠D =∠EDF +∠DFE ,所以∠B +∠D +∠BED =∠BGE +∠DFE +∠GED =180+180=360°.【例4】如图所示,在六边形 ABCDEF 中,AF ∥CD ,∠A =∠D ,∠B=∠E ,试说明 BC ∥EF 的理由.【答案】见解析 A F【解析】连接 AD 、BE B因为 AF ∥CD (已知)E所以∠FAD = ∠ADC (两直线平行,内错角相等)C D 因为∠BAF = ∠CDE (已知), 所以∠BAD = ∠ADE (等式性质)所以 AB ∥DE (内错角相等,两直线平行)所以∠ABE = ∠BED (两直线平行,内错角相等)因为∠ABC = ∠FED (已知), 所以∠EBC = ∠BEF (等式性质)所以 BC ∥EF (内错角相等,两直线平行)【例 5】如图已知,AB //CD ,∠ABF = 2 ∠ABE ,∠CDF = 2∠CDE ,求∠E 和∠F 的关系.3 3【答案】∠E : ∠F = 3:2 .C【解析】过点 E 、点 F 分别作 AB 的平行线 EG 、FH .6ABD21因为 EG / / AB ,FH / / AB所以 AB / / EG / FH / /CD (等量代换)所以∠ABF = ∠BFH (两直线平行,内错角相等)所以∠CDF = ∠DFH (两直线平行,内错角相等)所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF (等量代换)同理: ∠BED = ∠DEG + ∠BEG = ∠ABE + ∠CDE (等量代换)因为∠ABF = 2 ∠ABE ,∠CDF = 2∠CDE3 3所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF = 2 (∠ABE + ∠CDE ) = 2∠BED3 3所以∠E : ∠F = 3:2【例 6】如图,已知:AC //BD ,联结 AB ,则 AC 、BD 及线段 AB 把平面分成①②③④四个部分,规定:线上各点不属于任何一个部分,当点 P 落在某个部分时,联结 PA 、PB ,构成 ∠ PAC 、∠ APB 、∠ PBD 三个角(提示:有公共角断点的两条重合的射线所组成的角是 0 °角)(1) 当点 P 落在第①部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB ; (2) 当点 P 落在第②部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB 是否成立?(3)当点 P 落在第③部分时,全面探究∠ PAC 、 ∠ APB 、 ∠ PBD 之间的关系是 ,并写出动点 P 的具体位置和相应的结论,选择其中一种加以证明.A 3A 3CCCA 3C21 B4DB 4DB4B4D【解析】(1)过点 P 作 PE // AC .因为 AC / / BD ,所以 AC / / PE / / BD (平行的传递性)所以∠PAC = ∠APE ,∠BPE = ∠PBD (两直线平行,内错角相等) 因为∠APB = ∠APE + ∠BPE (角的和差)所以∠APB = ∠PAC + ∠PBD (等量代换)(2)不成立,过点 P 作 AC 的平行线即可证明. (3)分类讨论如下:①当动点 P 在射线 BA 的右侧时,结论是∠PBD = ∠PAC + ∠APB ; ②当动点 P 在射线 BA 上时,结论是∠PBD = ∠PAC + ∠APB 或∠PAC = ∠PBD + ∠APB 或∠APB = 0︒,∠PAC = ∠PBD (任写一个即可) ③当动点 P 在射线 BA 的左侧时,结论是∠PBD = ∠PAC + ∠APB .2P 1 A 321随堂练习【习题1】 填空:(1) 如图(1),AB //CD ,CE 平分∠ACD , ∠A = 120 ,则∠ECD ; (2) 如图(2),已知 AB //CD , ∠B = 100 ,EF 平分∠BEC , EG ⊥ EF ,则∠DEG = .【难度】★GB A FC【答案】(1)30°; (2)50°.E图(2)C【解析】(1)因为 AB ∥CD (已知),所以∠A + ∠ACD = 180 (两直线平行,同旁内角互补)因为∠A = 120 (已知), 所以∠ACD = 180 -120 = 60 (等式性质) 又因为 CE 平分∠ACD (已知), 所以∠ECD =30°(角平分线的意义)(2)因为 AB ∥CD (已知), 所以∠B + ∠BEC = 180 (两直线平行,同旁内角互补)因为∠B = 100 (已知), 所以∠BEC = 180 -100 = 80 (等式性质) 又因为 EF 平分∠BEC (已知), 所以∠BEF =40°(角平分线的意义)因为 EG ⊥EF (已知), 所以∠GEF = 90 (垂直的意义)因为∠DEG + ∠GEF + ∠CEF = 180 (平角的意义) 所以∠DEG = 180 - 90 - 40 = 50 (等式性质) 【总结】本题考查平行线的性质的运用.【习题2】 填空:(1)如图,直线 a / /b ,三角形 ABC 的面积是 42 cm 2 ,AB =6 cm ,则 a 、b 间的距离为 ;(2)如图,在三角形 ABC 中,点 D 是 AB 的中点,则三角形 ACD 和三角形 ABC 的面 积之比为 .【难度】★【答案】(1)14 厘米 ;(2) 1. 2 A D【解析】(1)三角形 ABC 的高为: 42 ⨯ 2 ÷离B 为 14 厘米;C(2)因为三角形 ACD 和三角形 ABC 高相等, 所以面积之比等于底之比,即 S ∆ACD = S ∆ABC AD = 1 AB 2【总结】本题考查平行线间距离及同高等底的三角形面积的之比.A B E图(1) DD.【习题3】 如图,已知 FC //AB //DE , ∠α : ∠D : ∠B = 2 : 3 : 4 ,则∠α 、∠D 、∠B 的度数分别为 .【难度】★ 【答案】∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ .【解析】因为 FC //AB //DE (已知),A 所以∠B + ∠CFB = 180(∠D = ∠CFD (两直线平行,内错角相等)设∠α = 2x ,∠D = 3x ,∠B = 4x ,则可列方程:180 - 4x + 2x = 3x ,解得: x = 36︒ 则∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ . 【习题4】 如果两个角的两边分别平行,其中一个角比另一个角的 3 倍多 12°,则这两个角是( ). A .42°和 138° B .都是 10°C .42°和 138°或都是 10°D .以上都不对【难度】★★ 【答案】A【解析】由题意假设这两个角分别为 A 、B ,则有: ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 3 倍多 12°,则有: ∠A = 3∠B + 12︒ , 即180︒- ∠B = 3∠B + 12︒,解得:∠B = 42︒,∠A = 138︒ . 【总结】本题考查两角位置关系的可能性,注意两种情况的讨论.【习题5】 如图,已知 QR 平分∠PQN ,NR 平分∠QNM ,∠1+∠2=90°,那么直线 PQ 、MN的位置关系. P Q 【难度】★★ 【答案】见解析.1【解析】因为 QR 平分∠PQN ,NR 平分∠QNM (已知)R所以∠PQN = 2∠1 , ∠MNQ = 2∠2 (角平分线的意义) 因为∠1+∠2=90°(因为),所以∠PQN +∠MNQ =180°(等式性质)2所以 PQ ∥MN (同旁内角互补,两直线平行) M N【总结】本题考查平行线的判定及角平分线意义的综合运用.【习题6】 如图,已知:AB ∥CD ,EF 和 AB 、CD 相交于 G 、H 两点,MG 平分∠BGH ,NH平分∠DHF ,试说明:GM ∥NH .【难度】★★【答案】略.【解析】 AB / /CD (已知)∴∠BGH = ∠DHF (两直线平行,同位角相等)又 MG 平分∠BGH ,NH 平分∠DHF∴∠1 = 1 ∠BGH , ∠2 = 1∠DHF2 2 ∴∠1 = ∠(2 等量代换)∴GM / / H N (同位角相等,两直线平行) 【总结】本题考查平行线的判定A B 1 2 O CBCM 1【习题7】 如图所示,在直角三角形 ABC 中,∠C =90°,AC =3,BC =4,AB =5,三角形内一点 O 到各边的距离相等,求这个距离是多少. 【难度】★★ 【答案】1.【解析】设这个距离是 x ,则有:S ∆ABC = 6 = 1( AC + BC + AB ) ⨯ x = 6x , 解得: x = 1 .2【总结】本题可以用面积法求解比较简单.【习题8】 如图,已知 AB ,CD 分别垂直 EF 于 B ,D ,且∠DCF =60°,∠1=30°.试说明: BM / / AF . A【难度】★★【答案】见解析.【解析】因为 CD ⊥EF , 所以∠CDF = 90 (垂直的意义)因为∠DCF =60°(已知), 所以∠F =30°(三角形的内角F 和等于 1D 80°) BE因为∠1=30°(已知), 所以∠1=∠F (等量代换)所以 BM ∥AF (同位角相等,两直线平行) 【总结】本题考查平行线的判定及垂直的意义的综合运用.【习题9】 如图,已知直线l 1 / /l 2 ;(1)若∠1 = (x + 2 y ) , ∠2 = x , ∠4 = ( y + 30) 求∠1 , ∠2 , ∠4 的度数; (2)若∠2 = x, ∠3 = y, ∠4 = [2(2x - y )],求 x 、 y 的值.1 2 3l【难度】★★【答案】见解析4 l 2【解析】(1)因为∠1+∠2=180°(平角的意义),所以 x + 2 y + x 180︒ ,即 x +y =90°因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = y +30, 解得:x =60°,y =30°,所以∠1=120°,∠2=60°,∠4=60°; (2)因为∠3+∠2=180°(平角的意义), 所以 x +y =180°,因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等) 即 x = 4x - 2 y , 解得:x =72°,y =108°.【总结】本题考查平行线的性质及角度的简单计算. 【习题10】 如图, ∠ ADC =∠ABC , ∠ 1+ ∠ FDB =180°,AD 是∠FDB 的平分线,试说明 BC 为∠DBE 的平分线. 【难度】★★★ E【答案】见解析.【解析】因为∠ 1+ ∠ FDB =180°(已知),又因为∠1 = ∠ABD (对顶角相等)所以∠ABD + ∠BDF = 180 (等量代换)所以 AB / / F D (同旁内角互补,两直线平行)F D CA EC 所以∠ABD = ∠2 (两直线平行,内错角相等)因为∠ADC = ∠ABC (已知), 所以∠ADB = ∠CBD (等式性质) 因为 AE / / FC (已证), 所以∠EBD = ∠FDB (两直线平行,内错角相等)即∠ADB + ∠ADF = ∠CBD + ∠CBE (角的和差)因为 AD 是∠FDB 平分线, 所以∠ADB = ∠ADF = ∠CBD = ∠EBC (角平分线的意义) 即 BC 为∠DBE 的平分线【总结】本题综合性较强,主要考查平行线的判定定理及性质定理以及角平分线的综合运用.【习题11】 如图,已知∠ABC =∠ACB ,AE 是∠CAD 的平分线,问:△ABC 与△EBC 的面积是否相等?为什么? D 【难度】★★★【答案】相等,证明见解析. F 【解析】因为∠DAE + ∠EAC + ∠BAC = 180 (平角的意义)又∠ABC + ∠ACB + ∠BAC = 180 (三角形内角和等于 180°)所以∠DAE + ∠EAC = ∠ABC + ∠ACB (等式性质)B 因为∠ABC =∠ACB ,AE 是∠CAD 的平分线(已知) 所以∠ABC = ∠ACB = ∠DAE = ∠CAE 所以 AE / / B C (内错角相等,两直线平行)所以 AE 与 BC 间的距离相等(夹在平行线间的距离处处相等) 所以△ABC 与△EBC 的面积相等(同底等高的两个三角形面积相等).【总结】本题综合性较强,主要考查平行线的判定定理及性质定理的综合运用,同时还考查了三角形的面积问题.课后作业【作业1】 如图,AB //CD ,直线l 分别交 AB 、CD 于 E 、F ,EG 平分∠BEF ,若∠EFG = 40 ,则∠EGF 的度数是( )A . 60B . 70C . 80D . 90【难度】★【答案】B【解析】因为 AB //CD (已知),所以∠BEF + ∠EFG = 180因为∠EFG = 40 (已知), 所以∠BEF =140°(等式性质)因为 EG 平分∠BEF (已知),所以∠BEG = 1 ∠BEF = 70(角平分线的意义)2因为 AB //CD (已知), 所以∠BEG = ∠EGF (两直线平行,内错角相等)所以∠EGF =70°(等量代换) 【总结】本题考查平行线的性质及角平分线的意义的运用.【作业2】 如图,AB //CD ,下列等式中正确的是( )A . ∠1 + ∠2 + ∠3 = 180B . ∠1 + ∠2 - ∠3 = 90C . ∠2 + ∠3 - ∠1 = 180D . ∠2 + ∠3 - ∠1 = 90【难度】★ 【答案】CA11B3CD21D 12 E 3【解析】由题意可得: (180︒- ∠3) + (180︒- ∠2) + ∠1 = 180︒ ,解得: ∠2 + ∠3 - ∠1 = 180︒ 【总结】本题考查平行线的性质.【作业3】 若两直线被第三条直线所截,则下列说法中正确的个数有( )(1)一对同位角的角平分线互相平行,(2)一对内错角的角平分线互相平行, (3)一对同旁内角的角平分线互相平行,(4)一对同旁内角的角平分线互相垂直 A .3 个 B .2 个 C .1 个 D .0 个 【难度】★ 【答案】D【解析】(1)同位角不一定相等,×;(2)内错角不一定相等,×;(3)×; (4)只有当这对同旁内角互补时才成立,× 【总结】本题考查三线八角的基本运用.【作业4】 直线 a ∥c ,且直线 a 到直线c 的距离是 3;直线b / /c ,直线b 到直线c 的距离为5,则直线 a 到直线b 的距离为( ) A .2 B .3 C .8 D .2 或 8 【难度】★★ 【答案】D【解析】当直线 a 和直线 b 在直线 c 的两侧时,距离为 8;当直线 a 和直线 b 在直线 c 的同一侧时,距离为 2. 【总结】本题考查平行线的性质,注意分类讨论.【作业5】 已知:如图 5,∠1=∠2=∠B ,EF ∥AB .试说明∠3=∠C . A 【难度】★★ 【答案】略.【解析】因为∠1 = ∠B (已知)所以 DE / / B C (同位角相等,两直线平行)所以∠2 = ∠C (两直线平行,同位角相等)又因为 EF / / AB (已知), 所以∠3 = ∠B 所以∠3 = ∠C (等量代换) BFC(两直线平行,同位角相等) 【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业6】 已知:∠1=60o ,∠2=60o , AB //CD .试说明:CD //EF . 【难度】★★l 【答案】略.【解析】设∠2 的对顶角为∠3,因为∠1=∠2 = 60o (已知),所以∠1=∠3(等量代换) 所以 AB ∥EF (同位角相等,两直线平行)A 1BCD又因为 AB ∥CD (已知) 所以 CD ∥EF (平行的传递性) E2F【总结】本题主要考查平行线的判定.D ′ C′F【作业7】 如图,已知∠4=∠B ,∠1=∠3,试说明:AC 平分∠BAD . 【难度】★★ 【答案】略. 【解析】因为∠4=∠B (已知)所以 CD ∥AB (同位角相等,两直线平行)所以∠3=∠2(两直线平行,内错角相等) 又因为∠1=∠3(已知), 所以∠1=∠2(等量代换),A B所以 AC 平分∠BAD (角平分线的意义)【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业8】 如图, AD / / BC ,BD 平分∠ABC ,且∠A : ∠ABC = 2 :1 ,求∠DBC 的度数.【难度】★★AD【答案】30°.【解析】因为 AD ∥BC (已知)所以∠A +∠ABC =180°(两直线平行,同旁内角互补)BC又因为∠A :∠ABC =2:1(已知), 所以∠A =120°,∠ABC =60°(等式性质) 又因为 BD 平分∠ABC (已知), 所以∠DBC =30°(角平分线的意义) 【总结】本题考查平行线的性质及角平分线的综合运用【作业9】 如图,把一个长方形纸片沿 EF 折叠后,点 D 、C 分别落在 D ′、C ′的位置.若∠AED ′=65°,则∠C 'FB 的度数为 . A E D【难度】★★【答案】65°【解析】因为翻折, 所以∠D 'EF = ∠DEF (翻折的性质) B 因为∠AED ' + ∠D 'EF + ∠DEF = 180 (平角的意义) 又∠AED ′=65°(已知), 所以∠D 'EF = ∠DEF =180 - ∠AED '= 57.5 (等式性质)2因为 AD / / BC (已知), 所以∠DEF + ∠EFC = 180 (两直线平行,同旁内角互补) ∠EFB = ∠DEF (两直线平行,内错角相等)所以∠EFB = 57.5 , ∠EFC = 180 - 57.5 = 122.5 (等式性质)因为∠EFC ' = ∠EFC (翻折的性质) 所以∠C 'FB = ∠EFC ' - ∠EFB = 65︒ . 【总结】本题主要考查平行线的性质及翻折的性质的综合运用.【作业10】 如图,已知 AD //BC ,AB //EF ,DC //EG ,EH 平分∠FEG , ∠A = ∠D = 110 ,试说明线段 EH 的长是 AD 、BC 间的距离. A E D 【难度】★★ 【答案】见解析.【解析】因为 AD //BC (已知)所以∠A + ∠B = 180 , ∠C + ∠D = 180 (两直线平行,同旁内角互补)因为∠A = ∠D = 110 (已知), 所以∠B =∠C =70°(等式性质)B F H G因为 AB //EF ,DC //EG (已知),D 43 C12所以∠EFG=∠B,∠EGF=∠C(两直线平行,内错角相等)所以∠EFG = ∠EGF = 70°(等量代换),所以∠FEG=40°因为EH 平分∠FEG (已知),所以∠FEH=1∠FEG=20 (角平分线的意义)2所以∠FHE = 180 -∠FEH =∠EFH = 90 (三角形内角和等于180°)即EH 的长是AD、BC 间的距离.【总结】本题综合性较强,主要考查平行线的性质及三角形的内角和以及平行线间的距离.【作业11】如图,AB ⊥l ,CD ⊥l (点B、D 是垂足),直线EF 分别交AB、CD 于点G、H.如果∠EGB =m ,∠FGB =n ,且∠EHD = (3m -n ) ,试求出∠EGB 、∠BGF 、∠EHD的度数.【难度】★★★【答案】∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【解析】因为AB ⊥l ,CD ⊥l (已知)所以AB / /CD (垂直于同一直线的两直线平行)所以∠FGB +∠EHD =180 (两直线平行,同旁内角互补)∠EGB =∠EHD (两直线平行,同位角相等)即n + 3m -n = 180 ,m = 3m -n ,解得:m = 60︒,n = 120︒.所以∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【总结】本题主要考查平行线的性质的运用.【作业12】如图,已知AB / /CD ,EG、FH 分别平分∠AEF 、∠DFN ,那么∠GEF +∠DFH = 90 ,试说明理由.【难度】★★【答案】见解析.【解析】因为AB / /CD (已知)所以∠AEF =∠CFN (两直线平行,同位角相等)因为∠CFN +∠DFN = 180︒(平角的性质)又因为EG、FH 分别平分∠AEF 、∠DFN (已知)所以∠AEG +∠GEF +∠DFH +∠NFH = 180︒(角的和差)即2∠GEF +∠DFH = 180︒,所以∠GEF +∠DFH = 90 .【总结】本题考查平行线的性质及角平分线性质的综合应用.【作业13】如图,已知AB∥EF,∠B=45°,∠C=x°,∠D=y°,∠E=z°,试说明x、y、z 之间的关系.【难度】★★★【答案】见解析.【解析】由题意,过C、D 两点分别作AB 的平行线CM、DN 因为AB∥EF(已知)所以AB / /CM / / DN / / EF (平行的传递性)N所以∠B =∠BCM ,∠MCD =∠CDN ,∠EDN =∠E (两直线平行,内错角相等)因为∠B=45°,∠C=x°,∠D=y°,∠E=z°(已知)所以x - 45 =y -z (等式性质)即x -y +z = 45 .【总结】本题综合性较强,主要考查平行线的性质以及辅助线的添加,注意观察角度间的关系.。

2023年浙教版七下数学第一章平行线章节复习(教师版)

2023年浙教版七下数学第一章平行线章节复习(教师版)

2023年浙教版七下数学第一章平行线章节复习(教师版)一、知识梳理知识点1:平行线的定义1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a ∥b.注意:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.知识点2:同位角、内错角和同旁内角两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。

(1)同位角:可以发现∠1与∠5都处于直线l的同一侧,直线a、b的同一方,这样位置的一对角就是同位角。

图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。

(2)内错角:可以发现∠3与∠5都处于直线l的两旁,直线a、b的两方,这样位置的一对角就是内错角。

图中的内错角还有∠4与∠6。

(3)同旁内角:可以发现∠4与∠5都处于直线l的同一侧,直线a、b的两方,这样位置的一对角就是同旁内角。

图中的同旁内角还有∠3与∠6。

知识点3:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点4:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。

几何语言:∵∠1=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。

苏教版七年级数学下册 7.2 探索平行线的性质 知识点

苏教版七年级数学下册 7.2 探索平行线的性质 知识点

7.2 探索平行线的性质知识点知识点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.PS:只有当两直线平行时,才会有同位角相等、内错角相等以及同旁内角互补.例:如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E.若∠CBD=35°,则∠ADE的度数为()A.15°B.20°C.25°D.30°【分析】根据折叠的性质和平行线的性质,可以得到∠ADB和∠EDB的度数,然后即可得到∠ADE的度数.【解答】解:由折叠的性质可得,∠CDB=∠EDB,∵AD∥BC,∠CBD=35°,∴∠CBD=∠ADB=35°,∵∠C=90°,∴∠CDB=55°,∴∠EDB=55°,∴∠ADE=∠EDB﹣∠ADB=55°﹣35°=20°,故选:B.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.知识点二、平行线的判定与性质的区别条件结论作用判定同位角相等两直线平行由角的数量关系确定直线的位置关系内错角相等两直线平行同旁内角互补两直线平行从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质. 例:下列说法中:①过一点有且只有一条直线与已知直线平行;②同旁内角互补,两直线平行;③直线外一点到这条直线的垂线段就是这个点到这条直线的距离;④同一平面内两条不相交的直线一定平行.其中正确的有()A.1个B.2个C.3个D.4个【分析】依据平行公理,平行线的判定,点到直线的距离的定义判定即可.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故本选项错误;②同旁内角互补,两直线平行,故本选项正确;③直线外一点到这条直线的垂线段的长度就是点到直线的距离,故本选项错误;④同一平面内两条不相交的直线一定平行,故本选项正确,综上所述,说法正确的有②④共2个.故选:B.【点评】本题考查了平行线的性质与判定,过直线外一点有且只有一条直线与已知直线平行等,熟记各性质是解题的关键.巩固练习一.选择题(共12小题)1.如图,将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,若∠AFE=68°,则∠C′EF等于()A.68°B.80°C.40°D.55°2.将一张长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形(△ABC),BC为折痕,若∠1=42°,则∠2的度数为()A.48°B.58°C.60°D.69°3.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=60°,则∠2的度数为()A.60°B.40°C.30°D.20°4.如图,AB∥CD,∠EGB=50°,∠CHF=()A.25°B.30°C.50°D.130°5.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为()A.25°B.20°C.15°D.10°6.如图,已知直线AB∥CD,直线EF分别与AB、CD交于点M、N,点H在直线CD上,HG⊥EF于点G,过点作GP∥AB.则下列结论:①∠AMF与∠DNF是同旁内角;②∠PGM=∠DNF;③∠BMN+∠GHN=90°;④∠AMG+∠CHG=270°.其中正确结论的个数是()A.1个B.2 个C.3个D.4个7.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=120°,∠AOF的度数是()A.20°B.30°C.40°D.60°8.如图,l1∥l2,则∠1、∠2、∠3关系是()A.∠2>∠1+∠3 B.无法确定C.∠3=∠1﹣∠2 D.∠2=∠1+∠39.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AB∥CE且∠ADC=∠B;④AB∥CE且∠BCD=∠BAD;其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④10.如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=()A.116°B.122°C.128°D.142°11.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于()A.30°B.25°C.35°D.40°12.如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB 上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°二.填空题(共12小题)13.如图,已知a∥b,∠2=95°,∠3=140°,则∠1的度数为.14.一副三角板按如图所示放置,AB∥DC,则∠CAE的度数为.15.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.16.如图,直线AB∥CD,∠A=60°,∠D=40°,则∠E=.17.如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=.18.将一把直尺和一块含30°角的三角板ABC接如图所标的位置放置,如果∠CDE=42°,那么∠BAF的度数为.19.如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=90°,则∠BFD=.20.如图,如果∠1=∠3,∠2=64°,那么∠4的度数为.21.如图,AB∥CD,∠A=50°,则∠1=.22.如图,已知AM∥CN,点B为平面内一点,AB⊥BC于B,过点B作BD⊥AM于点D,点E、F在DM 上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC的度数为.23.如图,已知AB∥DE,∠ABC=76°,∠CDE=150°,则∠BCD的度数为°.24.如图,已如长方形纸片ABCD,O是BC边上一点,P为CD中点,沿AO折叠使得顶点B落在CD边上的点P处,则∠OAB的度数是.三.解答题(共6小题)25.几何说理填空:如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.证明:连接EF∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°().∴∥().∴∠3=∠().又∵∠1=∠2,∴∠1+∠3=∠2+∠4.即∠DEF=∠EFC∴DE∥BC().26.如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=72°,求∠BAD的度数.27.如图,∠ABC=∠ADC,BF平分∠ABC,DE平分∠ADC,∠1=∠2.问AB与CD,AD与BC平行吗?请说明理由.28.如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.29.如图,直线AB∥CD,CD∥EF,且∠B=30°,∠C=125°,求∠CGB的度数.30.已知EM∥BN.(1)如图1,求∠E+∠A+∠B的大小,并说明理由.(2)如图2,∠AEM与∠ABN的角平分线相交于点F.①若∠A=120°,∠AEM=140°,则∠EFD=.②试探究∠EFD与∠A的数量关系,并说明你的理由.(3)如图3,∠AEM与∠ABN的角平分线相交于点F,过点F作FG⊥BD交BN于点G,若4∠A=3∠EFG,求∠EFB的度数.一.选择题(共12小题)1.如图,将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,若∠AFE=68°,则∠C′EF等于()A.68°B.80°C.40°D.55°【分析】根据平行线的性质,可以得到∠CEF的度数,然后根据折叠的性质,即可得到∠C′EF的度数,本题得以解决.【解答】解:∵∠AFE=68°,AD∥BC,∴∠AFE=∠CEF=68°,由折叠的性质可得,∠CEF=∠C′EF,∴∠C′EF=68°,故选:A.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.2.将一张长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形(△ABC),BC为折痕,若∠1=42°,则∠2的度数为()A.48°B.58°C.60°D.69°【分析】根据平行线的性质,可以得到∠1=∠4,∠4=∠5,再根据∠1=42°和折叠的性质,即可得到∠2的度数,本题得以解决.【解答】解:如右图所示,∵长方形的两条长边平行,∠1=42°,∴∠1=∠4=42°,∠4=∠5,∴∠5=42°,由折叠的性质可知,∠2=∠3,∵∠2+∠3+∠5=180°,∴∠2=69°,故选:D.【点评】本题考查平行线的性质、折叠的性质,解答本题的关键是明确题意,利用数形结合的思想解答.3.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=60°,则∠2的度数为()A.60°B.40°C.30°D.20°【分析】根据平行线的性质可得∠1+∠2+90°=180°,由∠1=60°可求解∠2的度数.【解答】解:∵a∥b,∴∠1+∠2+∠BAC=180°,∵∠ABC=90°,∠1=60°,∴∠2=30°,故选:C.【点评】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.4.如图,AB∥CD,∠EGB=50°,∠CHF=()A.25°B.30°C.50°D.130°【分析】根据平行线的性质可得∠EHD=∠EGB=50°,再利用对顶角的性质可求解.【解答】解:∵AB∥CD,∠EGB=50°,∴∠EHD=∠EGB=50°,∴∠CHF=∠EHD=50°.故选:C.【点评】本题主要考查平行线的性质,对顶角的性质,属于基础题.5.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为()A.25°B.20°C.15°D.10°【分析】根据矩形的性质可得CD∥AB,∠1+∠CBD=90°,可求解∠CBD的度数,由平行线的性质可求解∠ABD的度数,结合折叠的性质可得∠2+∠ABD=∠CBD,进而可求解.【解答】解:在矩形ABCD中,∠C=90°,AB∥CD,∴∠1+∠CBD=90°,CD∥AB,∵∠1=40°,∴∠CBD=50°,∠ABD=∠1=40°,由折叠可知:∠2+∠ABD=∠CBD,∴∠2+∠ABD=50°,∴∠2=10°.故选:D.【点评】本题主要考查矩形的性质,平行线的性质,折叠与对称的性质,由折叠得∠2+∠ABD=∠CBD 是解题的关键.6.如图,已知直线AB∥CD,直线EF分别与AB、CD交于点M、N,点H在直线CD上,HG⊥EF于点G,过点作GP∥AB.则下列结论:①∠AMF与∠DNF是同旁内角;②∠PGM=∠DNF;③∠BMN+∠GHN=90°;④∠AMG+∠CHG=270°.其中正确结论的个数是()A.1个B.2 个C.3个D.4个【分析】由平行公理的推论可求AB∥CD∥GP,利用平行线的性质和三角形的外角性质依次判断可求解.【解答】解:∵∠AMF与∠DNF不是同旁内角,∴①错误;∵AB∥CD,GP∥AB,∴AB∥CD∥GP,∴∠PGM=∠CNM=∠DNF,∠BMN=∠HNG,∠AMN+∠HNG=180°,故②正确;∵HG⊥MN,∴∠HNG+∠GHN=90°,∴∠BMN+∠GHN=90°,故③正确;∵∠CHG=∠MNH+∠HGN,∴∠MNH=∠CHG﹣90°,∴∠AMN+∠HNG=∠AMN+∠CHG﹣90°=180°,∴∠AMG+∠CHG=270°,故④正确,故选:C.【点评】本题考查了平行线的性质,垂线的性质,同位角,内错角,同旁内角的定义,掌握平行公理的推论是本题的关键.7.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=120°,∠AOF的度数是()A.20°B.30°C.40°D.60°【分析】根据平行线的性质可得∠AOD=60°,易得∠DOB=120°,利用角平分线的性质可得∠DOE=60°,由角的和差易得结果.【解答】解:∵CD∥AB,∠D=120°,∴∠AOD+∠D=180°,∴∠AOD=60°,∠DOB=120°,∵OE平分∠BOD,∴∠DOE=60°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°﹣60°=30°,∴∠AOF=∠AOD﹣∠DOF=60°﹣30°=30°.故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.8.如图,l1∥l2,则∠1、∠2、∠3关系是()A.∠2>∠1+∠3 B.无法确定C.∠3=∠1﹣∠2 D.∠2=∠1+∠3【分析】过∠2的顶点,作射线l,使l∥l1,利用平行线的性质得到∠1、∠2与∠α、∠β的关系,从而得出∠1、∠2、∠3关系.【解答】解:过∠2的顶点,作如图所示的射线l,使l∥l1,∵l1∥l2,l∥l1,∴l1∥l2∥l.∴∠1=∠α,∠2=∠β.∵∠α+∠β=∠2,∴∠1+∠3=∠2.故选:D.【点评】本题考查了平行线的性质,作l与l1平行并利用平行线的性质是解决本题的关键.9.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AB∥CE且∠ADC=∠B;④AB∥CE且∠BCD=∠BAD;其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④【分析】根据平行线的判定条件,逐一判断,排除错误答案.【解答】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点评】此题主要考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=()A.116°B.122°C.128°D.142°【分析】根据邻补角定义可得∠3+∠4的度数,再根据角平分线定义可得∠4的度数,根据两直线平行同旁内角互补即可求出∠2的度数.【解答】解:∵∠1=64°,∴∠3+∠4=180°﹣64°=116°,∵AE平分∠BAC,∴∠3=∠4=116°÷2=58°,∵AC∥BD,∴∠2+∠4=180°,∴∠2=180°﹣58°=122°.故选:B.【点评】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.11.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于()A.30°B.25°C.35°D.40°【分析】先根据平行线的性质求出∠GAB的度数,再根据邻补角的定义求出∠BAE的度数,最后根据∠1=∠2求出∠2即可.【解答】解:∵AB∥CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°﹣∠GAB=180°﹣130°=50°,∵∠1=∠2,∴∠2∠BAE50°=25°.故选:B.【点评】本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同位角相等.12.如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB 上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF中,100°+2α+180°﹣2β=180°,故β﹣α=40°,即可求解.【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠F AE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.【点评】本题考查的是平行线的性质,涉及到角平行线、外角定理,本题关键是落脚于△AEF内角和为180°,即100°+2α+180°﹣2β=180°,题目难度较大.二.填空题(共12小题)13.如图,已知a∥b,∠2=95°,∠3=140°,则∠1的度数为125°.【分析】根据三角形的内角和外角的关系,可以求得∠5的度数,再根据平行线的性质,即可得到∠1的度数,本题得以解决.【解答】解:∵∠3=140°,∠3+∠4=180°,∴∠4=40°,∵∠2=95°,∠2=∠5+∠4,∴∠5=55°,∵a∥b,∴∠1+∠5=180°,∴∠1=125°,故答案为:125°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.14.一副三角板按如图所示放置,AB∥DC,则∠CAE的度数为15°.【分析】根据题意和图形,利用平行线的性质,可以得到∠BAE的度数,再根据∠2=30°,即可得到∠CAE的度数.【解答】解:由图可知,∠1=45°,∠2=30°,∵AB∥DC,∴∠BAE=∠1=45°,∴∠CAE=∠BAE﹣∠2=45°﹣30°=15°,故答案为:15°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=20°.【分析】根据平行线的性质和角平分线的性质,可以得到∠AFE的度数.【解答】解:∵AP平分∠BAC,∴∠BAP=∠CAP,∵EF∥AC,∴∠EF A=∠CAP,∴∠BAP=∠EF A,∵∠BEF=40°,∠BEF=∠BAP+∠EF A,∴∠BAP=∠EF A=20°,即∠AFE=20°,故答案为:20.【点评】本题考查平行线的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.如图,直线AB∥CD,∠A=60°,∠D=40°,则∠E=20°.【分析】根据平行线的性质,可以得到∠1的度数,再根据∠1=∠E+∠D,即可得到∠E的度数.【解答】解:∵AB∥CD,∠A=60°,∴∠A=∠1=60°,∵∠1=∠E+∠D,∠D=40°,∴∠E=∠1﹣∠D=60°﹣40°=20°,故答案为:20°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.17.如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=50°.【分析】由平行线的性质可得∠1=∠2=∠A,由外角的性质可求解.【解答】解:∵DE∥AF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠2=∠A,∵∠DCF=∠A+∠1=2∠A=100°,∴∠A=50°,故答案为:50°.【点评】本题考查了平行线的性质,掌握平行线的性质是本题的关键.18.将一把直尺和一块含30°角的三角板ABC接如图所标的位置放置,如果∠CDE=42°,那么∠BAF的度数为12°.【分析】由DE∥AF得∠AFD=∠CDE=42°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE∥AF,∠CDE=42°,∴∠AFD=∠CDE=42°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=42°﹣30°=12°,故答案为:12°.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.19.如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=90°,则∠BFD=45°.【分析】根据平行线的性质和角平分线的性质,可以求得∠BFD的度数,本题得以解决.【解答】解:∵AB∥CD,∴∠ABE=∠4,∠1=∠2,∵∠BED=90°,∠BED=∠4+∠EDC,∴∠ABE+∠EDC=90°,∵BF平分∠ABE,DF平分∠CDE,∴∠1+∠3=45°,∵∠5=∠2+∠3,∴∠5=∠1+∠3=45°,即∠BFD=45°,故答案为:45°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.20.如图,如果∠1=∠3,∠2=64°,那么∠4的度数为116°.【分析】根据∠1=∠3,可以得到AB∥CD,从而可以得到∠2=∠5,再根据∠5+∠4=180°,即可得到∠4的度数.【解答】解:∵∠1=∠3,∴AB∥CD,∴∠2=∠5,∵∠2=64°,∴∠5=64°,∵∠5+∠4=180°,∴∠4=116°,故答案为:116°.【点评】本题考查平行线的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.21.如图,AB∥CD,∠A=50°,则∠1=130°.【分析】由平行线的性质可得出∠2,根据对顶角相得出∠1.【解答】解:如图:∵AB∥CD,∴∠A+∠2=180°,∵∠A=50°,∴∠1=∠2=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】本题考查了平行线的性质,解题的关键是能够根据两直线平行,同旁内角互补和对顶角相等进行分析解答.22.如图,已知AM∥CN,点B为平面内一点,AB⊥BC于B,过点B作BD⊥AM于点D,点E、F在DM 上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC的度数为105°.【分析】先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【解答】解:过点B作BG∥DM,如图:∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.23.如图,已知AB∥DE,∠ABC=76°,∠CDE=150°,则∠BCD的度数为46°.【分析】根据平行线的性质,可以求得∠BCF和∠DCF的度数,从而可以得到∠BCD的度数.【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCE,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.24.如图,已如长方形纸片ABCD,O是BC边上一点,P为CD中点,沿AO折叠使得顶点B落在CD边上的点P处,则∠OAB的度数是30°.【分析】根据折叠,得出相等的线段和相等的角,根据中点得出DP AP,进而得出∠DAP=30°,再根据折叠对称,得出答案.【解答】解:由折叠得,∠BAO=∠OAP,AB=AP,∵长方形纸片ABCD,∴AB=CD,∠D=∠DAB=∠B=90°,∵P为CD中点,∴PC=PD CD AP,在Rt△ADP中,∠DAP=30°,∴∠OAB=∠OAP(90°﹣30°)=30°,故答案为:30°.【点评】考查矩形的性质,直角三角形的边角关系,折叠轴对称的性质等知识,根据折叠对称相等的角和线段,是解决问题的关键.三.解答题(共6小题)25.几何说理填空:如图,F是BC上一点,FG⊥AC于点G,H是AB上一点,HE⊥AC于点E,∠1=∠2,求证:DE∥BC.证明:连接EF∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°(垂直的性质).∴FG∥HE(同位角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).又∵∠1=∠2,∴∠1+∠3=∠2+∠4.即∠DEF=∠EFC∴DE∥BC(内错角相等,两直线平行).【分析】要证明DE∥FC,可证明∠DEF=∠EFC,由于∠1=∠2,可证明∠3=∠4,需证明EH∥FG,可通过垂直的性质得到.【解答】证明:连接EF∵FG⊥AC,HE⊥AC,∴∠FGC=∠HEC=90°(垂线的性质).∴FG∥HE(同位角相等,两直线平行).∴∠3=∠4(两直线平行,内错角相等).又∵∠1=∠2,∴∠1+∠3=∠2+∠4.即∠DEF=∠EFC∴DE∥BC(内错角相等,两直线平行).故答案为:垂线的性质;FG,HE,同位角相等,两直线平行;4,两直线平行,内错角相等;内错角相等,两直线平行.【点评】本题考查了平行线的性质和判定,掌握平行线的性质和判定并学会分析是解决本题的关键.26.如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=72°,求∠BAD的度数.【分析】(1)由∠1=∠BCE,可得到直线AD与EC平行,可得到∠2与∠4间关系,再由∠2+∠3=180°判断AC与EF的位置关系;(2)由(1)的结论及垂直可得到∠BAC的度数,再由平行线及角平分线的性质得到∠2的度数,利用角的和差关系可得结论.【解答】解:(1)AC∥EF.理由:∵∠1=∠BCE,∴AD∥CE.∴∠2=∠4.∵∠2+∠3=180°,∴∠4+∠3=180°.∴EF∥AC.(2)∵AD∥EC,CA平分∠BCE,∴∠ACD=∠4=∠2.∵∠1=72°,∴∠2=36°.∵EF∥AC,EF⊥AB于F,∴∠BAC=∠E=90°.∴∠BAD=∠BAC﹣∠2=54°.【点评】本题考查了平行线的性质和判定、角平分线的性质及垂直的性质等知识点,综合性较强,掌握平行线的性质和判定是解决本题的关键.27.如图,∠ABC=∠ADC,BF平分∠ABC,DE平分∠ADC,∠1=∠2.问AB与CD,AD与BC平行吗?请说明理由.【分析】先根据角平分线的定义得到∠2∠ABC,∠CDE∠ADC,由于∠ABC=∠ADC,则∠2=∠CDE,根据∠1=∠2,可得∠1=∠CDE,然后根据同旁内角互补,两直线平行得到AB∥CD,再根据平行线的性质由AB∥CD得到∠ADC+∠A=180°,由于∠ABC=∠ADC,则∠ABC+∠A=180°,再根据同旁内角互补,两直线平行可判断AD∥BC.【解答】解:AB与CD,AD与BC平行.理由如下:∵BF平分∠ABC,DE平分∠ADC,∴∠2∠ABC,∠CDE∠ADC,∵∠ABC=∠ADC,∴∠2=∠CDE,∵DE∥BF,∴∠1=∠2,∴∠1=∠2=∠CDE,∴AB∥CD,∴∠ADC+∠A=180°,∵∠ABC=∠ADC,∴∠ABC+∠A=180°,∴AD∥BC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,同旁内角互补.28.如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.【分析】(1)要证明EF∥BH,可通过∠E与∠EBH互补求得,利用平行线的性质说明∠EBH=∠CHB 可得结论.(2)要求∠CHO的度数,可通过平角和∠FHC求得,利用(1)的结论及角平分线的性质求出∠FHB 及∠BHC的度数即可.【解答】证明:(1)∵∠HCO=∠EBC,∴EB∥HC.∴∠EBH=∠CHB.∵∠BHC+∠BEF=180°,∴∠EBH+∠BEF=180°.∴EF∥BH.(2)∵∠HCO=∠EBC,∴∠HCO=∠EBC=64°,∵BH平分∠EBO,∴∠EBH=∠CHB∠EBC=32°.∵EF⊥AO于F,EF∥BH,∴∠BHA=90°.∴∠FHC=∠BHA+∠CHB=122°.∵∠CHO=180°﹣∠FHC=180°﹣122°=58°.【点评】本题考查了平行线的性质和判定、角平分线的性质等知识点,理解题意学会分析是解决此类问题的关键.29.如图,直线AB∥CD,CD∥EF,且∠B=30°,∠C=125°,求∠CGB的度数.【分析】根据平行公理的推论可得直线AB∥CD∥EF,根据平行线的性质得出∠BGF=∠B=30°,∠C+∠CGF=180°,求出∠CGF=55°,即可得出答案.【解答】解:∵AB∥CD,CD∥EF,∴AB∥CD∥EF,∵∠B=30°,∠C=125°,∴∠BGF=∠B=30°,∠C+∠CGF=180°,∴∠CGF=55°,∴∠CGB=∠CGF﹣∠BGF=25°,【点评】本题主要考查了平行线的性质以及平行公理的推论,牢记“两直线平行,内错角相等”等平行线的性质是解题的关键.30.已知EM∥BN.(1)如图1,求∠E+∠A+∠B的大小,并说明理由.(2)如图2,∠AEM与∠ABN的角平分线相交于点F.①若∠A=120°,∠AEM=140°,则∠EFD=60°.②试探究∠EFD与∠A的数量关系,并说明你的理由.(3)如图3,∠AEM与∠ABN的角平分线相交于点F,过点F作FG⊥BD交BN于点G,若4∠A=3∠EFG,求∠EFB的度数.【分析】(1)过A作AQ∥EM,判定AQ∥BN,根据平行线的性质可求解;(2)①由(1)的结论可求解∠ABN=100°,利用角平分线的定义可求∠DEF=70°,∠FBC=50°,再结合平行线段的性质可求解;②可采用①的解题方法换算求解;(3)设∠EFD=x,则∠A=2x,根据4∠A=3∠EFG列方程,解方程即可求解.【解答】解:(1)过A作AQ∥EM,∴∠E+∠EAQ=180°,∵EM∥BN,∴AQ∥BN,∴∠QAB+∠B=180°,∵∠EAB=∠EAQ+∠QAB,∴∠E+∠EAB+∠B=360°;(2)①由(1)知∠AEM+∠A+∠ABN=360°,∵∠A=120°,∠AEM=140°,∴∠ABN=100°,∵∠AEM与∠ABN的角平分线相交于点F,∴∠DEF=70°,∠FBC=50°,∵EM∥BN,∴∠EDF=∠FBC=50°,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°﹣70°﹣50°=60°,故答案为60°;②由(1)知∠AEM+∠A+∠ABN=360°,∴∠ABN=360°﹣∠AEM﹣∠A,∵∠AEM与∠ABN的角平分线相交于点F,∴∠DEF∠AEM,∠FBC∠ABN,∵EM∥BN,∴∠EDF=∠FBC∠ABN,∴∠EFD=180°﹣∠DEF﹣∠EDF=180°∠AEM∠ABN=180°(360°﹣∠A)∠A,即∠A=2∠EFD;(3)设∠EFD=x,则∠A=2x,由题意得4•2x=3(90+x),解得x=54°,答:∠EFB的度数为54°.【点评】本题主要考查平行线的性质与判定,角平分线的定义,三角形的内角和定理,注意方程思想的应用.。

初一数学:平行线(含解析)

初一数学:平行线(含解析)

平行线知识互联网板块一 平行线的定义、性质及判定知识导航【例1】 ⑴ 如下左图,AB CD ∥,AD AC ⊥,32ADC ∠=°,则CAB ∠的度数是________. ⑵ 如下中图,直线l 与直线a ,b 相交.若a b ∥,170∠=°,则2∠的度数是________. ⑶ 如下右图,已知a b ∥,170∠=°,240∠=°,则3∠=________. 图DCBA21ba lb a321CBA 【解析】⑴ 122°;⑵ 110°;⑶ 70°【例2】 ⑴ 根据图在()内填注理由:① ∵B CEF ∠ =∠(已知)∴AB CD ∥( )② ∵B BED ∠= ∠(已知)∴AB CD ∥( ) ③ ∵180B CEB ∠+∠=°(已知) ∴AB CD ∥( )⑵ 下列说法中,不正确的是( )A .如果两条直线都和第三条直线平行,那么这两条直线也互相平行B .过直线外一点,有且只有一条直线和已知直线相交C .同一平面内的两条不相交直线平行D .过直线外一点,有且只有一条直线与已知直线平行【解析】⑴ ① 同位角相等,两直线平行;② 内错角相等,两直线平行;③ 同旁内角互补,两直线平行.⑵ 本题主要考察两直线平行的识别.根据平行公理及其推论可知A 、D 正确;同一平面内的两条直线的位置关系只有相交和平行两种,C 正确;过直线外一点,有且只有一条直经典例题FC EB D A线与这条直线平行,而有无数条直线与这条直线相交,B 不正确.【例3】 请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明.⑴ 如图⑴,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑵ 如图⑵,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑶ 如图⑶,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF ∠,CNE ∠,相交于点O .求证:MG NH ⊥.从本题我能得到的结论是:____________________________________.(1)A B C DE FG H M N(2)NMFEDC B A GH (3)NM FEDC B A G H O 【解析】⑴ 两直线平行,同位角的角平分线平行.⑵ 证明:∵AB ∥CD ,∴BMFCNE ∠ 又∵MG ,NH 分别平分BMF从本题我能得到的结论是:两直线平行,内错角的角平分线平行.⑶ 证明:∵AB ∥CD ,∴180AMF CNE ∠+∠=又∵MG ,NH 分别平分AMF ∠,CNE ∠ ∴∴18090MON GMF HNE ∠= ,∴MG ⊥NH从本题我能得到的结论是:两直线平行,同旁内角的角平分线垂直.【例4】 证明:三角形三个内角的和等于180°.【解析】平角为180°,若能用平行线的性质,将三角形三个内角集中到同一个顶点,并得到一个平角,问题即可解决.证法1 : 如图所示,过ABC △的顶点A 作直线l BC ∥,则1BBAC所以180B BAC C ∠+∠+∠=°量代换).即三角形三个内角的和等于180°. 证法2 : 如图所示,延长BC ,过C 作CE AB ∥,则1A ∠=∠ (两直线平行,内错角相等),2B ∠= ∠ (两直线平行,同位角12180BCA ∠+∠+∠=°, 所以180BCA A B ∠+∠+∠=°,即三角形三个内角的和等于180°.【教师备案】利用平行线证明三角形内角和为180°的方法有很l21C BA 21D C EB A多,老师可以带着学生多练几个【例5】 如图,ABC △中CD AB ⊥于D ,DE BC ∥,交AC 于点E .过BC 上任意一点F ,作FG AB ⊥于G ,求证:12∠=∠.GFE 21D CBA【解析】∵FG AB CD AB ⊥⊥,, ∴GF CD ∥ ∴∠∵DE BC ∥, ∴2BCD ∠=∠, ∴12∠=∠【例6】 我们知道,光线从空气射入水中会发生折射现象.光线从水射入空气中,同样也会发生折射现象.如图,为光线从空气射入水中,再从水射入空气中的示意图.由于折射率相同,因此有14∠=∠,23∠=∠.请你用所学的知识来判断光线c 与d 是否平行?并说明理由.ba465dcba321【解析】c d ∥如图:∵25180∠+∠=°,36180∠+∠=°,23∠= ∠ ∴56∠= ∠(等角的补角相等)又∵14∠=∠∴1564∠+∠=∠+∠∴c d ∥(内错角相等,两直线平行)【例7】 (成都市初中数学竞赛)如图,已知AE 平分BAC ∠,BE AE ⊥,垂足为E ,ED AC ∥,36BAE ∠ = ° 求BED ∠ 的度数.EDCBA【解析】126°【例8】 ⑴ 如图所示AB CD ∥.求证:360B E D ∠+∠+∠=°EDCBA⑵ 已知,如图,AEC A C ∠=∠+∠,证明AB CD ∥ED CBA【解析】⑴ 如图,过E 点作EF AB ∥,则180B BEF ∠+∠=°因为AB CD ∥,所以EF CD ∥,180FED D ∠+∠=°所以360B BEF FED D ∠+∠+∠+∠=°又BEF FED BED ∠+∠=∠,∴360B BED D ∠+∠+∠=°即360B E D ∠+∠+∠=°F EDCBA ⑵ 解法一:过点E 作AEF A ∠=∠,则AB EF ∥, 又AEC A C AEF CEF ∠=∠+∠=∠+∠,∴C CEF ∠=∠,∴EF CD ∥,∴AB CD ∥. F ED CBA解法二:作180AEF A ∠+∠=°, 则AB EF ∥,∵360AEC AEF CEF ∠+∠+∠=°, ∴360A C AEF CEF ∠+∠+∠+∠=°, 经典例题板块二 平行线的构造∴180C CEF ∠+∠=°, ∴CD EF ∥, ∴AB CD ∥FE DCB A 【教师备案】这两个模型非常重要,建议各位老师分别从已知角度关系证明平行和已知平行证明角度关系两个方面讲解这两个小题,重点强调书写过程 【例9】 ⑴ 如图⑴,已知14MA NA ∥,探索1A ∠、2A ∠、3A ∠、4A ∠,1B ∠、2B ∠之间的关系.⑵ 如图⑵,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠之间的关系.⑶ 如图⑶,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠,1B ∠、2B ∠、…、1n B −∠之间的关系.MNA 4B 2A 2A 3B 1A 1MNA nA 4A 3A 2A 1B n -1B 2B 1A nA n -1A 2A 1NM图⑴ 图⑵ 图⑶【解析】⑴ 123412180A A A A B B ∠+∠+∠+∠=∠+∠+°;⑵ 123(1)180n A A A A n ∠+∠+∠++∠=−×° . ⑶ 12121n n A A A B B B −∠+∠++∠=∠+∠++∠ ;【例10】如图,已知,CD EF ∥,C F ABC +=∠∠∠,求证AB GF ∥G FDECBAQPABCEDFG【解析】如图,过点B 作PQ CD ∥交GF 的延长线于点Q 则PQ EF ∥,【拓1】 如图所示,已知CB OA ∥,100C OAB∠ =∠ ,E ,F 在CB 上,且满足FOB AOB ∠= ∠,OE 平分COF ∠.思维拓展⑴ 求EOB ∠的度数;⑵ 若平行移动AB ,那么OBC ∠:OFC ∠的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值;⑶ 在平行移动AB 的过程中,是否存在某种情况,使OECOBA ∠=∠?若存在,求出其度数;若不存在,请说明理由.ABC E FO 【解析】⑴40°;⑵1:2;⑶存在,60OECOBA ∠=【拓2】 在同一平面内有1a ,2a ,3a ,…,97a 共97条直线,如果12a a ∥,23a a ⊥,34a a ∥,45a a ⊥,56a a ∥,67a a ⊥,…,那么1a 与97a 的位置关系是________.【解析】寻找规律,12a a ∥,13a a ⊥,14a a ⊥;15a a ∥,16a a ∥,17a a ⊥,18a a ⊥…,4个一循环,974241÷= ,所以971a a ∥【拓3】 在同一平面内有7条直线,证明:必有两条直线的夹角小于26°.【解析】由平行线的性质可知,平移某条直线不影响该直线与其它直线的夹角,故可将7条直线平移使其交于同一点(如下图),A 7A 6A 5A 4A 3A 2A 1O点O 把7条直线分成14条射线,记为1OA ,2OA ,…,14OA ,相邻两射线组成14个角,记为1α,2α,…,14α,其和为一个周角:1214360ααα+++=° , 若结论不成立,则26i α°≥,()1214i = ,,,, 相加,得360这一矛盾说明,在1α,2α,…,14α中,必有一个角小于26°,即必有两条直线的夹角小于26°.【拓4】 如图,已知ABCDFED BC A FEDBC A【解析】如右图所示,分别过点E ,F 做AB 和CD 的平行线,易得:AEC EAB ECD∠=∠+∠x 90°50°30°30°ABCD E FG HMNPR Qx 90°50°30°30°AB CDE FG HMNOP【解析】过点G ,H 作AB ,CD 的平行线,那么AB OG HQ CD ∥∥∥∵AB OG ∥,HQ CD ∥∵OG HQ ∥,∴60GHQ OGH HGE EGO ∠=∠=∠−∠=° ∵在MHQ ∆中,180MHQ HMQ MQH ∠+∠+∠=°又∵180MQR MQH ∠+∠=°,∴MHQ HMQ MQR ∠+∠=∠ ,∴40GHM GHQ MHQ ∠=∠−∠=°习题1. 如图:已知12∠=∠,A C ∠= ∠,求证:①ABDC ∥证明:∵12∠=∠( )∴______∥______( ). ∴C CBE ∠= ∠( )又∵C A ∠=∠( )∴A ∠=________( ) ∴______∥______( ).EDCBA21【解析】已知:AB ,CD ;内错角相等,两直线平行;两直线平行,内错角相等;已知;CBE ∠; 等量代换;AD ,BC ;同位角相等,两直线平行. 习题2. 如图所示,复习巩固⑴ 已知:AB CD ∥,12∠=∠,求证:BE CF ∥; ⑵ 已知:AB CD ∥,BE CF ∥,求证:12∠=∠.F 21E B DA C【解析】⑴ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) ∵12∠=∠(已知),∴EBC BCF ∠= ∠(等量减等量差相等) ∴BE CF ∥(内错角相等,两直线平行)⑵ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) 又BE CF ∥(已知),∴EBCBCF ∠= ∠(两直线平行,内错角相等) ∴12∠=∠(等量减等量差相等)习题3. 如图,A B C ,,和D E F ,,分别在同一直线上,AF 分别交CE ,BD 于点G ,H .已知H BCG FE D A习题4. 如图,在折线ABCDEFG 中,已知∠1=∠2=∠3=∠4=∠5,延长AB GF 、交于点M .试探索AMG ∠与3∠的关系,并说明理由.M5G4321DCFEBA【解析】3AMG ∠= ∠.理由:∵12∠=∠,∴AB CD ∥(内错角相等,两直线平行). ∵34∠= ∠,∴CD EF ∥(内错角相等,两直线平行). ∴AB EF又53习题5. (十二届希望杯)如图所示,AB ED ∥,A E α=∠+∠,B C D β=∠+∠+∠,证明:2βα=.DCEBA21D CFEBA21DCFEBA【解析】证法l :因为AB ED ∥,所以180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥.由AB ED ∥,得CF ED ∥ (平行于同一条直线的两条直线平行) 因为CF AB ∥,有1B ∠= ∠ (两直线平行,内错角相等) 又CF ED ∥,有2D ∠= ∠,(两直线平行,内错角相等)所以12360B C D BCD β=∠+∠+∠=∠+∠+∠=° (周角定义)所以2βα=(等量代换)证法2:由AB ED ∥,得180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥(如图). 由AB ED ∥,得CF ED ∥.(平行于同一条直线的两条直线平行)因为CF AB ∥,所以1180B ∠+∠=(两直线平行,同旁内角互补), 又CF ED ∥,所以2180D ∠+∠=(两直线平行,同旁内角互补) 所以(12)(1)(2)360BCD B D B D β=∠+∠+∠=∠+∠+∠+∠=∠+∠+∠+∠=°所以2βα=(等量代换). 习题6. 如图,已知:AB CD ∥,ABFDCE ∠=∠,求证:BFE FEC ∠=∠ FEDCBA4321ABC DEF 习题7. 如图,AB DE ∥,70ABC ∠=,147CDE ∠= °,求C ∠的度数. 147°70°ED CB AF147°70°E DCBA∴CF DE∥∴18018014733DCF CDE ∴703337BCD BCF DCF ∠=∠−∠=°−°=°.练习1. (2012年第23届“希望杯”初一决赛试题)下面四个命题:① 若两个角是同旁内角,则这两个角互补② 若两个角互补,则这两个角是同旁内角③ 若两个角不是同旁内角,则这两个角不互补④ 若两个角不互补,则这两个角不是同旁内角其中错误的命题个数是( )A .1B .2C .3D .4【解析】D练习2. 如图,已知AB CD ∥,CE 平分ACD ∠,且交AB 于E ,118A ∠=°,则AEC ∠=________. E BC DA 【解析】∵AB CD练习3. 如图,∵3E ∠=∠(已知),12∠=∠(已知) 又∵∠________=∠________( )∴∠________=∠________( )∴AB CE ∥( )【解析】2;3;对顶角相等;1;E ;等量代换;内错角相等,两直线平行. 练习4. 如图,AD 是ABC △的角平分线,2BAC B ∠=∠,DE BA ∥.试探究B ∠与ADE ∠有何关系?并对你的结论加以说明.补充练习12图F 3E D AAB C D E【解析】 B ADE ∠= ∠,证明略.练习5. 已知,如图所示,AB DE ∥,116D ∠=°,93DCB ∠,求B ∠的度数. E D C B A FED C BA 【解析】过点C 作直线CF AB ∥,因为AB DE ∥,所以AB DE CF ∥∥,练习6. 如图所示,两直线AB CD 、平行,则123456∠+∠+∠+∠+∠+∠=()A .630° B .720° C .800° D .900°65HG4321DC FE BA 【解析】分别过E F G H ,,,点做AB 的平行线,再求各个角度的和.选D。

初中数学 平行线的判定定理有哪些

初中数学  平行线的判定定理有哪些

初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。

在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。

同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。

1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。

2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。

即如果l||n且m||n,则l||m。

3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。

即如果l∠n且m∠n,则l||m。

4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。

5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。

即如果l||m且m||n,则l||n。

6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。

即如果l∠n且∠A=90°,则l||m。

7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。

8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。

9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。

以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。

第3课时平行线及其性质七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第3课时平行线及其性质七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第3课时——平行线及其性质(答案卷)知识点一:平行线:1.平行线的定义:在同一平面内,的两条直线叫做平行线。

若直线a平行于直线b,则记作,读作。

注意:一定要在同一平面内。

且一定要时直线。

2.平行线的画法:过直线外一点画直线与已知直线平行的具体步骤:①将直角三角板的一条直角边与已知直线重合。

②将直尺与三角尺的另一直角边紧靠在一起。

③固定直尺不变,平移三角尺,使三角尺原来与已知直线重合的直角边与已知点重合。

④沿着三角尺该直角边画直线。

【类型一:确定平行线】1.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定2.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条3.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【类型二:作图】4.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?5.在下面的方格纸中经过点C 画与线段AB 互相平行的直线l 1,再经过点B 画一条与线段AB 垂直的直线l 2.知识点二:平行公理及其推论:1. 平行公理:经过直线外一点, 条直线与这条直线平行。

有且只有:存在且唯一。

2. 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即若c b b a ∥,∥, 则a c 。

3. 垂直于同一直线的两直线平行:若c a b a ⊥⊥,,则b c 。

【类型一:对平行公理及其推论的判断理解】6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法正确的是( )A .a 、b 、c 是直线,若a ⊥b ,b ∥c ,则a ∥cB .a 、b 、c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a 、b 、c 是直线,若a ∥b ,b ⊥c ,则a ∥cD .a 、b 、c 是直线,若a ∥b ,b ∥c ,则a ∥c8.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系9.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个B.2个C.3个D.4个10.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥dD.过直线外一点有且只有一条直线与已知直线平行知识点三:平行线的性质:1.两直线平行,同位角相等:两条平行线被第三条直线所截,同位角相等。

第3讲 平行线的性质

第3讲  平行线的性质

全方位教学辅导教案学科:数学任课教师:授课时间: 2020 年月日(星期)【知识讲解】一、平行线的性质1、性质1:两条平行线被第三条直线所截,同位角相等。

2、性质2:两条平行线被第三条直线所截,内错角相等。

3、性质3:两条平行线被第三条直线所截,同旁内角互补。

提示:(1)只有当两条直线平行时,才会有同位角相等、内错角相等、同旁内角互补。

(2)平行线的性质和判定是直线的位置关系和角的数量关系之间的相互转换,不同的是性质以平行为条件,即由平行得到角相等或互补;判定是以平行为结论,即由角相等或互补得到两条直线平行。

二、命题1.命题的定义:判断一件事的语句叫做命题2.命题的构成:(1)命题是由题设和结论两部分组成的,题设是已知事项,结论是由已知事项退出的事项。

(2)命题通常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论。

例如,命题是“对顶角相等”,可以改写成:如果两个角使对顶角,那么这两个角相等。

题设:两个角是对顶角,结论:这个两个角相等。

3.命题分类:如果题设成立,结论一定成立,这样的命题是真命题;如果题设成立,结论不一定成立,这样的命题是假命题。

提示:(1)命题是用语句的形式对某件事作出肯定或否定的判断,这些判断包含“是”或“不是”,“具有”或“不具有”的特点。

(2)命题是一种判断,这种判断可能正确也可能错误。

(3)在找命题的题设和结论时,要分清命题的“已知事项”和“推出事项”(4)为了准确表达命题的题设和结论,有时需要对命题的语序进行调整或增减,使语句通顺、语意明确,但是不能改变原意。

总结:判断一个语句是不是命题,关键是看他是否对一件事作出了判断,命题的题设和结论不明显时,通常把语句改写成:如果……那么……的形式,“如果”后面接的是题设,“那么”后面接的是结论。

三、定理和证明1.定理:一些命题,它们的正确性是经过推理证实的,这样得到的真命题叫做定理,即所有的定理都是真命题。

[数学]-5.3 平行线的性质(原版)

[数学]-5.3 平行线的性质(原版)
(1)若∠F=30°,求∠ACB的度数;
(2)若∠F=∠G,求证:DG∥BF.
【变式3-4】(2022春•温江区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.
(1)求证:AB∥CD;(2)若∠CED=75°,求∠FHD的度数.
D.第一次向左拐53°,第二次向左拐127°
【变式4-4】(2022春•东湖区校级月考)工人师傅对一个如图所示的零件进行加工,把材料弯成了一个40°的锐角,然后准备在A处第二次加工拐弯,要保证弯过来的部分与BC保持平行,弯的角度应是.
【变式4-5】(2022•小店区校级开学)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为( )
A.120oB.80oC.60oD.75o
解题技巧提炼
平行线的判定和性质在解题中经常反复使用,见到角相等或互补就应该联想到能否判定两条直线平行,见到直线平行就应该联想到能否证明相关的角相等或互补.
【变式3-1】(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是( )
A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3
几何语言表示:
∵a∥b(已知),
∴∠2=∠4.(两直线平行,内错角相等).
性质定理3:两条平行线被地三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
简单说成:同旁内角互补,两直线平行.
几何语言表示:
∵a∥b(已知),

2022-2023学年七年级数学下册课件之平行线的性质 第三课时(人教版)

2022-2023学年七年级数学下册课件之平行线的性质 第三课时(人教版)
又b//c (已知),
∴∠1 = ∠2 (两直线平行,同位角相等). ∴ ∠2= ∠1 = 90° (等量代换).
∴a⊥c (垂直的定义).
总结
证明是从条件出发,经过一步步推理,最后推出结论的过 程.证明的每一步推理都要有根据,不能“想当然”,这些根据 可以是已知条件,也可以是定义、公理,已学过的定理.在初学 证明时要把根据写在每一步推理后面的括号里,如本例中的“已 知”“等量代换”等.
1 在下面的括号内,填上推理的根据.
如图,∠A+∠B=180°,求证∠C+∠D=180°. 证明:∵∠A+∠B=180°, ∴AD∥BC( 同旁内角互补,两直线平行 ). ∴ ∠C+∠D=180°(两直线平行,同旁内角互补) .
B
C
2 命题“同位角相等”是真命题吗?如果是,说出理由; 如果不是,请举出反例.
①两直线平行,同旁内角互补;②相等的角是对
顶角;③等角的余角相等;④对顶角相等.
A.1个
B.2个
C.3个
D.4个
5 能说明命题“对于任何实数a,|a|>-a”是假
命题的一个反例可以是( A )
A.a=-2
B.a= 1
3
C.a=1
D.a=2
把“同旁内角互补”改写为“如果……那么……”的形式. 解: 如果两个角是同旁内角,那么这两个角互补. 易错点:改写命题时,语句不通顺,命题补充不完整.
(2)命题改写的方法:先搞清命题的题设(已知事项)部 分和结论部分;再将其改写为“如果……那么……” 的形式:“如果”后面跟的是已知事项,“那么” 后面跟的是由已知事项推出的事项(即结论).
1 指出下列命题的题设和结论:
(1)如果AB⊥CD,垂足为O,那么∠AOC=90°;

人教版七年级下册数学平行线的性质第3课时命题、定理、证明 同步练习

人教版七年级下册数学平行线的性质第3课时命题、定理、证明 同步练习

5.3 平行线的性质第3课时命题、定理、证明基础训练知识点1 命题的定义及结构1.下列语句是命题的是( )A.延长线段AB到CB.用量角器画∠AOB=90°C.同位角相等,两直线平行D.任何数的平方都不小于0吗?2.下列语句:①钝角大于90°;②两点之间,线段最短;③希望明天下雨;④作AD⊥BC;⑤同旁内角不互补,两直线不平行.其中是命题的是( )A.①②③B.①②⑤C.①②④⑤D.①②④3.下列语句中,不是命题的是( )A.如果a>b,那么b<aB.同位角相等C.垂线段最短D.反向延长射线OA4.命题“平行于同一条直线的两条直线互相平行”的题设是( )A.平行B.两条直线C.同一条直线D.两条直线平行于同一条直线5.命题“如果a2=b2,那么a=b或a+b=0”的结论是( )A.a2=b2或a=bB.a2=b2C.a=b或a+b=0D.a2=b2或a+b=0知识点2 命题的分类6.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题是(填写所有真命题的序号).7.下列命题:①垂线段最短;②同位角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④内错角相等,两直线平行;⑤经过一点有且只有一条直线与这条直线平行;⑥如果|x|=2,那么x=2.其中真命题有( )A.1个B.2个C.3个D.4个8.(2016·大庆)如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A.0B.1C.2D.3知识点3 定理与证明(举反例)9.下列说法错误的是( )A.命题不一定是定理,定理一定是命题B.定理不可能是假命题C.真命题是定理D.如果真命题的正确性是经过推理证实的,这样得到的真命题就是定理10.下列命题可以作为定理的个数是( )①两直线平行,同旁内角互补;②相等的角是对顶角;③等角的余角相等;④对顶角相等.A.1个B.2个C.3个D.4个11.(2016·宁波)能说明命题“对于任何实数a,|a|>-a”是假命题的一个反例可以是( )A.a=-2B.a=错误!未找到引用源。

人教版七年级初一数学下册 平行线的性质(三)同步作业(含答案)

人教版七年级初一数学下册 平行线的性质(三)同步作业(含答案)

5.3 平行线的性质(三)◆典型例题【例1】下列语句是不是命题。

(1)画∠AOB的角平分线;(2)平面上有几个点;(3)两点之间,线段最短;(4)若a≠b,则|a|≠|b|。

【解析】 (1)是操作性的语句;(2)是问句;(3)、(4)是判定语句。

【答案】 (1)、(2)不是命题;(3)、(4)是命题。

【例2】指出下列命题的题论、结论:(1)如果两条直线相交,那么它们只有一个交点。

(2)两条直线被第三条直线所截,如果同旁内角互补,即这两条直线平行。

(3)两条平行平行线被第三条直线所截,内错角相等。

(4)若∠1=∠2,∠2=∠3,则∠1=∠3。

【解析】每个命题都是由题设、结论两部分组成,题设是知事项,结论是由已知事项推出的事项,命题常写成“如果…,那么…”的形式,具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

【答案】 (1)题设:两条直线相交;结论:它们只有—个交点;(2)题设:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行。

(3)因为这个命题可以改写成:“如果两条平行线被第三条直线所截,那么内错角相等”;也可以简写成“如果两直线平行,那么内错角相等”,所以可以简单说成,题设:两直线平行,结论:内错角相等。

(4)题设:∠1=∠2,∠2=∠3,结论:∠1=∠3。

◆课前热身1。

每个命题都由____________和____________两部分组成。

2。

命题“对顶角相等”的题设是____________,结论________________________。

◆课上作业3。

命题“同位角相等”改写成“如果…,那么…”的形式是____________________________。

4。

请用“如果…,那么…”的形式写一个命题______________5。

一个命题,如果题设成立,结论一定成立,这样的命题是_____________命题;如果题设成立,结论不成立或不一定成立,这样的命题叫_______命题(填“真”、“假”)。

湘教版数学七年级下册4.3《平行线的性质》教学设计

湘教版数学七年级下册4.3《平行线的性质》教学设计

湘教版数学七年级下册4.3《平行线的性质》教学设计一. 教材分析《平行线的性质》是湘教版数学七年级下册第4章第3节的内容。

本节课主要介绍了平行线的性质,包括同位角相等、内错角相等、同旁内角互补等。

同时,本节课还学习了如何利用这些性质进行证明和解决问题。

本节课的内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的基本概念,以及角的定义和分类。

但是,对于平行线的性质和证明方法,学生可能还没有完全理解和掌握。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索平行线的性质,提高学生的动手操作能力和思维能力。

三. 教学目标1.知识与技能:让学生掌握平行线的性质,学会运用性质进行证明和解决问题。

2.过程与方法:培养学生观察、操作、思考、交流的能力,提高学生的动手操作能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:平行线的性质及证明。

2.难点:如何灵活运用平行线的性质解决问题。

五. 教学方法1.情境教学法:通过生活实例引入平行线的概念,激发学生的学习兴趣。

2.引导发现法:引导学生观察、操作、思考,自主探索平行线的性质。

3.合作交流法:分组讨论,培养学生团队协作能力和沟通能力。

4.实践操作法:让学生动手操作,提高学生的动手能力。

六. 教学准备1.教学课件:制作课件,展示平行线的性质及证明过程。

2.教学素材:准备一些图片和实例,用于导入和解决问题。

3.学生活动材料:准备一些卡片和工具,用于学生分组讨论和操作。

七. 教学过程1.导入(5分钟)利用生活实例引入平行线的概念,如在公路上行驶的车辆、书桌上的文具等。

引导学生观察这些实例中的平行线,并提出问题:“你们能找出哪些平行线吗?它们有什么特点?”通过观察和思考,学生可以发现平行线的特点,为学习平行线的性质奠定基础。

七年级数学上册-5.3平行线的性质 解析版

七年级数学上册-5.3平行线的性质 解析版

5.3平行线的性质【考点梳理】考点一:平行线的性质考点二:根据平行线性质探究角的关系考点三:根据平行线性质求角的大小考点四:平行线性质在生活应用问题考点五:平行线之间的距离问题考点六:与命题有关的问题考点七:平行线的判定和性质的综合问题知识一:平行线的性质1:两条平行线被第三条直线所截,同位角相等.简单地说:两直线平行,同位角相等.2:两条平行线被第三条直线所截,内错角相等.简单地说:两直线平行,内错角相等.3:两条平行线被第三条直线所截,同旁内角互补.简单地说:两直线平行,同旁内角互补.注意:是先有两直线平行,才有以上的性质,前提是“线平行”。

一个结论:平行线间的距离处处相等。

例如:应用于说明矩形(包括长方形、正方形)的对边相等,还有梯形的对角线把梯形分成分别以上底为底的两等面积的三角形,或以下底为底的两等面积的三角形。

(因为梯形的上底与下底平行,平行线间的高相等,所以,就有等底等高的三角形。

)知识二、命题判断一件事情的语句叫命题。

命题包括“题设”和“结论”两部分,可写成“如果……那么……”的形式。

例如:“明天可能下雨。

”这句语句______命题,而“今天很热,明天可能下雨。

”这句语句_____命题。

(填“是”或“不是”)1命题分为真命题与假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。

假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。

2逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。

注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。

题型一:平行线的性质1.(2023下·广西贺州·七年级统考期末)如图,直线a ,b 被直线c 所截,若a b ∥,∠1=70°,则∠2的度数是()A .50°B .60°C .70°D .110°【答案】C 【分析】由a b ∥,∠1=70°,可得2170,Ð=Ð=°从而可得答案.【详解】解:∵a b ∥,∠1=70°,∴2170,Ð=Ð=°故选C【点睛】本题考查的是平行线的性质,掌握“两直线平行,同位角相等”是解本题的关键.2.(2024上·河南周口·七年级河南省淮阳中学校考期末)如图,沿路线A B C D →→→行走,若AB CD ∥,122B ∠=︒,则C ∠=()A .58︒B .122︒C .128︒D .132︒【答案】B 【分析】本题考查平行线性质,根据两直线平行,内错角相等,即可解题.【详解】解: AB CD ∥,122B ∠=︒,C ∴∠=122B ∠=︒,故选:B .3.(2024上·河南周口·七年级统考期末)如图,AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,170=︒∠,则3∠的度数为()A .70︒B .80︒C .40︒D .30︒【答案】C 【分析】本题考查了角平分线的定义,平行线的性质;根据角平分线的定义求出BEF ∠,再根据平行线的性质即可求出3∠.【详解】解:∵170=︒∠,EG 平分BEF ∠,∴170BEG ∠=∠=︒,∴1140BEF BEG ∠=∠+∠=︒,∵AB CD ,∴318040BEF ∠=︒-∠=︒,故选:C .题型二:根据平行线性质探究角的关系4.(2024下·七年级课时练习)如图,直线a ,b 被c ,d 所截,且a b ∥,则下列结论中正确的是()A .14∠=∠B .23180∠+∠=︒C .3=4∠∠D .24180∠+∠=︒【答案】C 【分析】根据平行线的性质,逐项判断即可求解.【详解】解:A .由a b ,无法判断1∠和4∠的大小,故本选项错误,不符合题意;B .由a b ,无法得出23180∠+∠=︒,故本选项错误,不符合题意;C .因为a b ,所以3=4∠∠,故本选项正确,符合题意;D .由a b ,无法得出24180∠+∠=︒,故本选项错误,不符合题意;故选:C .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.(2023下·山东德州·七年级校考阶段练习)如图:,AB CD OE ∥平分,,,40BOC OF OE OP CD ABO ∠⊥⊥∠=︒,则下列结论:①OF 平分BOD ∠②POE BOF ∠=∠③70BOE ∠=︒④2POB DOF ∠=∠,其中结论正确的序号是()A .只有①②③B .只有①③④C .①②③④D .只有①④【答案】A 【分析】根据AB ∥CD 可得40BOD ABO ∠=∠=︒,利用平角得到140COB ∠=︒,再根据角平分线的定义得到70BOE ∠=︒,则③正确;利用OP CD ⊥,AB ∥CD ,40ABO ∠=︒,可得50OB ∠=︒,20BOF ∠=︒,20FOD ∠=︒,进而可得OF 平分BOD ∠,则①正确;由70EOB ∠=︒,50POB ∠=︒,20POE ∠=︒,由20BOF POF POB ∠=∠-∠=︒,进而可得POE BOF ∠=∠,则②正确;由②可知50POB ∠=︒,20FOD ∠=︒,则④不正确.【详解】③AB ∥CD ,40BOD ABO ∴∠=∠=︒,18040140COB ∴∠=︒-︒=︒,又OE 平分BOC ∠,BOE ∴∠=12COB ∠=1214070⨯︒=︒,故③正确;①OP CD ⊥ ,90POD ∴∠=︒,又AB ∥CD ,90BPO ∴∠=︒,又40ABO ∠=︒ ,904050POB ∴∠=︒-︒=︒,907020BOF EOF EOB ∴∠=∠-∠=︒-︒=︒,402020FOD ∠=︒-︒=︒,OF ∴平分BOD ∠,故①正确;②70EOB ∠=︒ ,904050POB ∠=︒-︒=︒,705020POE ∴∠=︒-︒=︒,POE BOF ∴∠=∠,故②正确;④由①可知904050POB ∠=︒-︒=︒,402020FOD ∠=︒-︒=︒,故2POB DOF ∠≠∠,故④不正确.故结论正确的是①②③,故选A .【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中角和角的关系,再进行解答.6.(2024上·四川巴中·七年级统考期末)如图,AB CD ∥,E 为AB 上一点,且EF CD ⊥垂足为F ,90CED ∠=︒,CE 平分AEG ∠,且CGE α∠=,则下列结论:①1902AEC α∠=︒-;②DE 平分GEB ∠;③CEF GED ∠=∠;④180FED BEC ∠+∠=︒;其中正确的有()A .①②B .②③④C .①②③④D .①③④【答案】C 【分析】本题考查了平行线的性质,角平分线的定义,垂线的定义,熟记“一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线”,“当两直线所组成的角为直角时,称它们互相垂直,其中一条直线叫做另一条直线的垂线”的相关概念,利用α表示各个角度.根据角平分线的性质,角平分线和垂线的定义逐个分析计算即可.【详解】解:CGE α∠= ,AB CD ∥,CGE GEB α∴∠=∠=,180AEG α∴∠=︒-,CE 平分AEG ∠,119022AEC CEG AEG α∴∠=∠=∠=︒-,故①正确;90CED ∠=︒ ,1122DEB GEB α∴∠==∠,即DE 平分GEB ∠,故②正确;EF CD ⊥ ,AB CD ∥,90AEF ∴∠=︒,90AEC CEF ∴∠+∠=︒,12CEF α∴∠=,12GED GEB DEB α∠=∠-∠= ,CEF GED ∴∠=∠,故③正确;190902FED BED α∠=︒-∠=︒- ,1180902A BEC EC α∠=∠=︒-︒+,180FED BEC ∴∠+∠=︒故④正确;综上所述,正确的有①②③④,故选:C .题型三:根据平行线性质求角的大小7.(2024下·全国·七年级专题练习)如图,直线m n ∥,含有45︒角的三角板的直角顶点O 在直线m 上,点A 在直线n 上,若120∠=︒,则2∠的度数为()A .15︒B .25︒C .35︒D .45︒【答案】B 【分析】本题考查平行线的性质,过B 作BK m ∥,推出BK n ∥,由平行线的性质得到120OBK ∠=∠=︒,2ABK ∠=∠,求出25ABK ABO OBK ∠=∠-∠=︒,即可得到225∠=︒.【详解】解:过B 作BK m ∥,∵m n ∥,∴BK n ∥,∴120OBK ∠=∠=︒,2ABK ∠=∠,∵45ABO ∠=︒,∴452025ABK ABO OBK ∠=∠-∠=︒-︒=︒,∴225ABK ∠=∠=︒.故选:B .8.(2024上·重庆沙坪坝·七年级重庆南开中学校考期末)如图,直线MN PQ ∥,点A C 、分别在直线MN PQ 、上,AD 平分BAN ∠,CD 平分110ECQ B ∠∠︒,=,若DCQ α∠=,则1∠等于()A .30α︒+B .30α︒-C .35α︒+D .35α︒-【答案】C 【分析】本题考查的是平行线的性质,熟知两直线平行,同位角相等是解题的关键.过点B 作BG PQ ∥交AD 于点G ,由CD 平分ECQ DCQ α∠∠=,可知2ECQ α∠=,故2EBG ECQ α∠=∠=,由110ABE ∠=︒可知1102ABG ABE EBG α∠=∠-∠=︒-,再由MN PQ BG PQ ∥,∥可知()1801801102BAN ABG α∠=︒-∠=︒-︒-,根据AD 平分BAN ∠可得出NAD ∠的度数,进而得出结论.【详解】解:如图,过点B 作BG PQ ∥交AD 于点G ,∵CD 平分ECQ DCQ α∠∠=,,∴2ECQ α∠=,∴2EBG ECQ α∠=∠=,∵110ABE ∠=︒,∴1102ABG ABE EBG α∠=∠-∠=︒-,∵MN PQ BG PQ ∥,∥,∴()1801801102702BAN ABG αα∠=︒-∠=︒-︒-=︒+,∵AD 平分BAN ∠,∴1352NAD BAN α∠=∠=︒+,∴135NAG α∠=∠=︒+.故选:C .9.(2024·全国·七年级竞赛)如图,82BAC ∠=︒,68CDE ∠=︒,AF 平分BAC ∠,若AF D E ⊥,则ACD ∠的度数为()A .18︒B .19︒C .20︒D .21︒【答案】B 【分析】本题主要考查平行线的性质,角平分线的性质,掌握平行线的性质,角平分线的性质,垂直的性质,合理作出平行线是解题的关键.如图所示,作DG AF 交AC 于G ,作CH AF ∥,根据平行线的性质可求出ACH ∠的度数,根据垂直的性质可求出CDG ∠的度数,最后根据ACD ACH DCH ∠=∠-∠即可求解.【详解】解:如图所示,作DG AF 交AC 于G ,作CH AF ∥,∵AF 平分BAC ∠,∴82241CAF ∠=︒÷=︒,∴41AGD ACH CAF ∠=∠=∠=︒,∵68DE AF CDE ⊥∠=︒,,∴906822DCH CDG ∠=∠=︒-︒=︒,∴412219ACD ACH DCH ∠=∠-∠=︒-︒=︒.题型四:平行线性质在生活应用问题10.(2023上·吉林长春·七年级统考期末)如图,一条街道有两个拐角ABC ∠和BCD ∠,已知AB CD ∥,若150ABC ∠=︒,则BCD ∠的度数是()A .30︒B .120︒C .130︒D .150︒【答案】D 【分析】本题考查了平行线的性质:两直线平行,内错角相等,由AB CD ,根据两直线平行,内错角相等,可得BCD ∠的度数,解题的关键是将实际问题转化为数学问题求解.【详解】∵150AB CD ABC ∠=︒,∴150BCD ABC ∠=∠=︒(两直线平行,内错角相等).故选:D .11.(2023下·江西抚州·七年级统考期中)一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是()A .先右转30︒,后左转60︒B .先左转30︒,后右转60︒C .先右转30︒,后左转150︒D .先右转30︒,后左转30︒【答案】D【分析】利用平行的性质:两直线平行,同位角相等来选择即可.【详解】解:两次拐弯后,仍在原来的方向上平行行驶,即转弯前与转弯后的道路是平行的,因而右转的角与左转的角应相等,理由是两直线平行,同位角相等.故选:D .【点睛】本题主要考查了平行线的性质,能够根据条件,找到解决问题的依据是解决本题的关键.12.(2023下·河北邢台·七年级校考期中)生活中常见一种折叠拦道闸如图1所示.若想求解某些特殊状态下的角度,需将其抽象为如图2所示的几何图形,其中BA AE ⊥,垂足为A ,CD AE ∥,则ABC BCD ∠+∠=()A .270︒B .250°C .230︒D .200︒【答案】A 【分析】过B 作BF CD ∥,然后根据平行线的性质和垂线的定义即可得解.【详解】解:如图,过B 作BF CD ∥,∵CD AE ∥,则BF AE ,∴180BCD CBF ∠+∠=︒,∵BA AE ⊥,∴90BAE ∠=︒,∴18090ABF BAE ∠=︒-∠=︒,∴270ABC BCD ABF CBF BCD ∠+∠=∠+∠+∠=︒,故选:A .【点睛】本题考查平行线的综合应用,熟练掌握平行线的性质和垂线的定义是解题关键.题型五:平行线之间的距离问题13.(2023下·湖南娄底·七年级统考期末)如图,∥MN AB ,P ,Q 为直线MN 上的任意两点,PAB 和QAB 的面积关系是()A .PAB QAB S S >△△B .PAB QABS S =△△C .PAB QAB S S <△△D .无法确定【答案】B 【分析】根据两条平行线之间的距离处处相等,可知PAB 与QAB 底边AB 边上的高相等,从而得到它们的面积相等.【详解】解:因为∥MN AB ,所以点P 与点Q 到直线AB 的距离相等,即PAB 与QAB 是同底等高的两个三角形,故PAB QAB S S =△△.故选:B .【点睛】本题考查两条平行线之间的距离处处相等,掌握这一性质是解题的关键.14.(2023下·广西桂林·七年级校联考期末)如图,AD BC ∥,5BC =,点E 在BC 上,8BE =,DCE △的面积为6,则ABE 的面积为()A .6B .12C .16D .20【答案】C 【分析】ABE 的边BE 上的高和DCE △的边CE 上的高长度相同,设高为h ,可求得ABE S 和DCE S 之间的数量关系.【详解】∵5BC =,8BE =,∴853CE BE BC =-=-=.∵AD BC ∥,∴ABE 的边BE 上的高和DCE △的边CE 上的高长度相同.设ABE 的边BE 上的高和DCE △的边CE 上的高为h .根据题意,得1322DCE S h CE h == △,142ABE S h BE h == △.∴8861633ABE DCE S S ==⨯=△△.故选:C .【点睛】本题主要考查两条平行线之间的距离(如果两条直线平行,那么其中一条直线上每个点到另一条直线的距离都相等,这个距离,叫做这两条平行线之间的距离),牢记两条平行线之间的距离的定义是解题的关键.15.(2022下·河北石家庄·七年级校考期末)如图,点P 、Q 为平面内两个定点,定直线a PQ ∥,M 是直线a 上一动点,对下列各值:①PQM 的周长;②PQM 的面积;③点M 到PQ 的距离;④PMQ ∠的大小.其中会随点M 的移动而变化的是()A .②③B .②④C .①④D .①③【答案】C 【分析】根据平行线间的距离不变即可判断③;根据三角形的周长和点M 的运动变化可判断①④;根据同底等高的三角形的面积相等可判断②;进而可得答案.【详解】解:∵直线a PQ ∥,∴点M 到直线PQ 的距离不会随点M 的移动而变化,故③正确;∵PM ,QM 的长随点M 的移动而变化,∴PQM 的周长会随点M 的移动而变化,PMQ ∠的大小会随点M 的移动而变化,故①④错误;∵点M 到直线PQ 的距离不变,PQ 的长度不变,∴PQM 的面积不会随点M 的移动而变化,故②正确;综上,不会随点M 的移动而变化的是①④.故选:C .【点睛】本题主要考查了平行线间的距离和同底等高的三角形的面积相等等知识,属于基础题型,熟练掌握平行线间的距离的概念是关键.题型六:与命题有关的问题16.(2024下·全国·七年级专题练习)下列各命题的逆命题是假命题的是()A .两直线平行,同旁内角互补B .若两个数0a b +=,则这两个数为相反数C .对顶角相等D.如果22a b=,那么a b=【答案】C【分析】本题考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,写出命题的逆命题后判断正误即可.【详解】解:A、逆命题为同旁内角互补,两直线平行,是真命题,不符合题意;a b+=,是真命题,不符合题意;B、逆命题为如果两个数互为相反数,那么0C、逆命题为相等的角为对顶角,是假命题,符合题意;D、逆命题为如果a b=,那么22a b=,是真命题,不符合题意.故选:C.17.(2023下·辽宁鞍山·七年级校考阶段练习)下列命题:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线;④从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短;⑤垂直于同一条直线的两条直线垂直,其中的假命题有()A.4个B.3个C.2个D.1个【答案】B【分析】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:①过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;②在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题;③把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,原命题是真命题;④从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短是真命题;⑤垂直于同一条直线的两条直线平行,原命题是假命题,故选:B.18.(2023下·广西玉林·七年级统考期中)下列命题;①内错角相等;②两个锐角的和是钝角;③a ,b ,c 是同一平面内的三条直线,若a b ,b c P ,则a c P ;④a ,b ,c 是同一平面内的三条直线,若a b ⊥r r ,b c ⊥,则a c P ;其中真命题的个数是()A .1个B .2个C .3个D .4个【答案】B【分析】本题考查了命题与定理的知识.利用平行线的性质及判定方法分别判断后即可确定正确的选项.【详解】解:①两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;②两个锐角的和不一定是钝角,错误,是假命题,不符合题意;③a ,b ,c 是同一平面内的三条直线,若a b ,b c P ,则a c P ;正确,是真命题,符合题意;④a ,b ,c 是同一平面内的三条直线,若a b ⊥r r ,b c ⊥,则a c P ,正确,是真命题,符合题意;真命题有2个,故选:B .题型七:平行线的判定和性质的综合问题19.(2024上·江苏南通·七年级统考期末)如图,AE BD ∥,A BDC ∠=∠,AEC ∠的平分线交CD 的延长线于点F .(1)求证:AB CD ∥;(2)探究A ∠,AEC ∠,C ∠之间的数量关系,并说明理由;(3)若140BDC ∠=︒,20F ∠=︒,求C ∠的度数.【答案】(1)见解析(2)360A AEC C ∠+∠+∠=︒,理由见解析(3)100C ∠=︒【分析】本题考查了平行线的性质、角平分线的定义,熟练掌握平行线的性质,添加适当的辅助线是解此题的关键.(1)由平行线的性质可得180A ABD ∠+∠=︒,求出ABD BDF ∠=∠,即可得证;(2)作EG AB ∥,则180A AEG ∠+∠=︒,EG CD ∥,再由平行线的性质可得180C CEG ∠+∠=︒,即可得出答案;(3)作EG AB ∥,则180A AEG ∠+∠=︒,求出40AEG =︒∠,得出EG CD ∥,由平行线的性质可得20GEF F ∠=∠=︒,从而得出60AEF GEF AEG ∠=∠+∠=︒,由角平分线的定义可得2120AEC AEF ∠=∠=︒,由(2)可得360A AEC C ∠+∠+∠=︒,由此即可得出答案.【详解】(1)证明:AE BD ∥ ,180A ABD ∴∠+∠=︒,180BDC BDF A BDC ∠+∠=︒∠=∠ ,,ABD BDF ∴∠=∠,AB CD ∴∥;(2)解:360A AEC C ∠+∠+∠=︒,理由如下:如图,作EG AB ∥,,则180A AEG ∠+∠=︒,由(1)可得AB CD ∥,EG CD ∴∥,180C CEG ∴∠+∠=︒,360A AEG C CEG ∴∠+∠+∠+∠=︒,AEG CEG AEC ∠+∠= ,360A AEC C \Ð+Ð+Ð=°;(3)解:如图,作EG AB ∥,,则180A AEG ∠+∠=︒,140BDC A BDC ∠=︒∠=∠ ,,40AEG ∴∠=︒,由(1)可得AB CD ∥,EG CD ∴∥,20GEF F ∴∠=∠=︒,204060AEF GEF AEG ∴∠=∠+∠=︒+︒=︒,AEC ∠的平分线交CD 的延长线于点F ,2120AEC AEF ∴∠=∠=︒,由(2)可得:360A AEC C ∠+∠+∠=︒,360100C A AEC ∴∠=︒-∠-∠=︒.20.(2024下·全国·七年级专题练习)如图,已知:ABC 中,D 、E 、F 、G 分别在BC 、AC 和AB 上,连接DE 、BF 和FG ,AGF ABC ∠=∠,180GFB EDB ∠+∠=︒.(1)判断BF 与DE 的位置关系,并证明;(2)若BF AC ⊥,150EDB ∠=︒,求AFG ∠的度数.【答案】(1)BF DE ∥,理由见详解(2)60︒【分析】本题考查了平行线的性质和判定,平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.(1)先证明GF BC ∥,可得GFB FBD =∠∠,等量代换后可得180FBD EDB ∠+∠=︒,继而得到BF DE ∥;(2)由平行线同旁内角互补,可得18030DBF EDB ∠=︒-∠=︒,根据平行线内错角相等可得30GFB DBF ∠=∠=︒,依据90AFB ∠=︒,可计算出AFG ∠.【详解】(1)解:BF DE ∥,理由如下:∵AGF ABC ∠=∠,∴GF BC ∥,∴GFB FBD =∠∠,又∵180GFB EDB ∠+∠=︒.∴180FBD EDB ∠+∠=︒,∴BF DE ∥.(2)由(1)可知,GF BC ∥,BF DE ∥.∵150EDB ∠=︒,∴18030DBF EDB ∠=︒-∠=︒,∵GF BC ∥,∴30GFB DBF ∠=∠=︒,∵BF AC ⊥,∴90AFB ∠=︒,∴9060AFG GFB ∠=︒-∠=︒.21.(2024上·湖南衡阳·七年级衡阳市华新实验中学校考期末)问题情境1:如图1,AB CD ∥,P 是ABCD 内部一点,P 在BD 的右侧,探究B ∠,P ∠,D ∠之间的关系?(1)如图2,过P 作PE AB ,可得B ∠,P ∠,D ∠之间满足______关系.(直接写出结论)问题情境2如图3,AB CD ∥,P 是AB ,CD 内部一点,P 在BD 的左侧,(2)得B ∠,P ∠,D ∠之间满足______关系.(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB CD ∥,ABE ∠与CDE ∠两个角的角平分线相交于点F .(3)如图4,若80E ∠=︒,求BFD ∠的度数;(写证明过程)(4)如图5中,13ABM ABF ∠=∠,13CDM CDF ∠=∠,写出M ∠与E ∠之间数量关系并证明结论.【答案】(1)360B BPD D ∠+∠+∠=︒;(2)B D BPD ∠+∠=∠;(3)140︒;(4)6360E M ∠+∠=︒,证明见解析【分析】本题主要考查了平行线的性质与判定,角平分线的定义:(1)先证明PE AB CD ∥∥,再由平行线的性质得到180180B BPE D DPE +=︒+=︒∠∠,∠∠,进而可得360B BPD D ∠+∠+∠=︒;(2)如图所示,过P 作PE AB ,先证明PE AB CD ∥∥,再由平行线的性质得到B BPE D DPE ==∠∠,∠∠,进而可得B D BPD ∠+∠=∠;(3)由(1)(2)的结论可得F ABF CDF ∠=∠+∠,360E ABE CDE ++=︒∠∠∠,则可求出280ABE CDE ∠+∠=︒,再由角平分线的定义可得1114022F ABF CDF ABE CDE =+=+=︒∠∠∠∠∠;(4)由(1)(2)的结论可知M ABM CDM ∠=∠+∠,360E ABE CDE ++=︒∠∠∠,进而得到3ABF CDF M +=∠∠∠,再由角平分线的定义得到6ABE CDE M +=∠∠∠,则6360E M ∠+∠=︒.【详解】解:(1)∵AB CD ∥,PE AB ,∴PE AB CD ∥∥,∴180180B BPE D DPE +=︒+=︒∠∠,∠∠,∴360B BPE D DPE +++=︒∠∠∠∠∵BPD BPE DPE =+∠∠∠,∴360B BPD D ∠+∠+∠=︒,故答案为:360B BPD D ∠+∠+∠=︒;(2)如图所示,过P 作PE AB ,∵AB CD ∥,PE AB ,∴PE AB CD ∥∥,∴B BPE D DPE ==∠∠,∠∠,∴B D BPE DPE+=+∠∠∠∠∵BPD BPE DPE =+∠∠∠,∴B D BPD ∠+∠=∠,故答案为:B D BPD ∠+∠=∠;(3)由(1)(2)的结论可知F ABF CDF ∠=∠+∠,360E ABE CDE ++=︒∠∠∠,∵80E ∠=︒,∴360280ABE CDE E ∠+∠=︒-∠=︒,∵ABE ∠与CDE ∠两个角的角平分线相交于点F ,∴1122ABF ABE CDF CDE ==∠∠,∠∠,∴1114022F ABF CDF ABE CDE =+=+=︒∠∠∠∠∠;(4)6360E M ∠+∠=︒,证明如下:由(1)(2)的结论可知M ABM CDM ∠=∠+∠,360E ABE CDE ++=︒∠∠∠,∵13ABM ABF ∠=∠,13CDM CDF ∠=∠,∴1133M ABM CDM ABF CDF =+=+∠∠∠∠∠,∴3ABF CDF M +=∠∠∠,∵ABE ∠与CDE ∠两个角的角平分线相交于点F ,∴22ABE ABF CDE CDF ∠∠∠∠=,=,∴()2226ABE CDE ABF CDF ABF CDF M ∠+∠=∠+∠=∠+∠=∠,∴6360E M ∠+∠=︒.一:选择题22.(2024下·黑龙江绥化·七年级校考)如图,已知直线c 与直线a b ,都相交.若145a b ∠=︒,∥,则2∠=()A .145︒B .135︒C .55︒D .45︒【答案】B 【分析】本题考查邻补角互补,平行线的性质.熟练掌握平行线的性质是解题关键.根据两直线平行同位角相等即可得出3145∠=∠=︒,再根据邻补角互补求解即可.【详解】解:如图,∵a b ∥,∴3145∠=∠=︒,∴21803135∠∠︒︒=-=.故选B .23.(2024下·全国·七年级假期作业)下列语句中,是命题的个数为()①若两个角相等,则它们是对顶角;②等腰三角形两底角相等;③画线段1cm AB =;④同角的余角相等;⑤同位角相等.A .2个B .3个C .4个D .5个【答案】C 【分析】本题主要考查命题,熟练掌握命题的概念是解题的关键;因此此题可根据“一般的,在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题”进行排除选项.【详解】解:①②④⑤符合命题的定义,而③不能写出题设与结论出来,故不是命题,所以是命题的个数有4个;故选C .24.(2024上·河南南阳·七年级统考期末)如图,直线a b ∥,直线c 与直线a 、b 分别相交于A 、B 两点,AC AB ⊥于点A ,交直线b 于点C .如果138∠=︒,那么2∠的度数为()A .52︒B .48︒C .38︒D .32︒【答案】A 【分析】本题考查平行线的性质,根据两直线平行,同旁内角互补,进行求解即可.【详解】解:∵AC AB ⊥,∴90BAC ∠=︒,∵a b ∥,∴12180BAC ∠+∠+∠=︒,∴2180903852∠=︒-︒-︒=︒;故选:A .25.(2024上·江苏南通·七年级统考期末)将一直尺和一块含30︒角的三角尺按如图放置,若40CDE ∠=︒,则BFA ∠的度数为()A .40︒B .50︒C .130︒D .140︒【答案】D 【分析】本题考查了平行线的性质,邻补角的定义,根据题意知AF DE ∥,进而可得40CFA CDE ∠=∠=︒,再由邻补角定义即可求解,准确识图是解题的关键.【详解】解:由题意可知AF DE ∥,∵40CDE ∠=︒,∴40CFA CDE ∠=∠=︒,∴180140BFA CFA ∠=︒-∠=︒,故选:D .26.(2024下·全国·七年级专题练习)如图,已知:ABC 中,D 、E 、F 、G 分别在BC 、AC 和AB 上,连接DE 、BF 和FG ,AGF ABC ∠=∠,180GFB EDB ∠+∠=︒.(1)判断BF 与DE 的位置关系,并证明;(2)若BF AC ⊥,150EDB ∠=︒,求AFG ∠的度数.【答案】(1)//BF DE ,理由见解析(2)60︒【分析】本题考查了平行线的判定与性质和余角的计算,熟练掌握平行线的相关判定和性质是解题关键.(1)由AGF ABC ∠=∠,根据“同位角相等,两直线平行”得GF BC ∥,再根据“两直线平行,内错角相等”得GFB FBD =∠∠,再利用“同旁内角互补,两直线平行”,即可证得结论;(2)由GF BC ∥,根据“两直线平行,同旁内角互补”,可求出30DBF ∠=︒,再根据“两直线平行,内错角相等”得30GFB DBF ∠=∠=︒,然后根据余角定义即可求出AFG ∠的度数.【详解】(1)解:BF DE ∥,理由如下:AGF ABC ∠=∠,GF BC \∥,∴GFB FBD =∠∠,又 180GFB EDB ∠+∠=︒,∴180FBD EDB ∠+∠=︒,∴BF DE ∥.(2)解:由(1)可知,GF BC ∥,BF DE ∥,150EDB ∠=︒,∴18015030DBF ∠=︒-︒=︒,∴30GFB DBF ∠=∠=︒,BF AC ⊥,∴90AFB ∠=︒,∴9060AFG GFB ∠=︒-∠=︒.27.(2024上·浙江金华·七年级统考期末)如图,已知AB AC ⊥于点A ,90C EDC ∠+∠=︒.(1)试说明180BAE E +=︒∠∠.(填空)已知AB AC ⊥,得90BAC ∠=︒,所以C ∠+______90=︒,又已知90C EDC ∠+∠=︒,根据______,得B EDC ∠=∠,根据______,得AB DE ∥,根据______,得180BAE E +=︒∠∠.(2)若,55C EAC E ∠=∠∠=︒,求B ∠的度数.【答案】(1)见解析(2)55B ∠=︒.【分析】本题考查平行线的判定和性质,掌握平行线的判定方法和性质,是解题的关键.(1)根据互余关系,平行线的判定和性质,作答即可;(2)根据C EAC ∠=∠,得到AE BC ∥,进而得到EDC E ∠=∠,根据EDC B ∠=∠,即可得出结果.【详解】(1)解:已知AB AC ⊥,得90BAC ∠=︒,所以90C B ∠+∠=︒,又已知90C EDC ∠+∠=︒,根据同角的余角相等,得B EDC ∠=∠,根据同位角相等,两直线平行,得AB DE ∥,根据两直线平行,同旁内角互补,得180BAE E +=︒∠∠;故答案为: B ∠,同角的余角相等;同位角相等,两直线平行;两直线平行,同旁内角互补;(2)∵C EAC ∠=∠,∴AE BC ∥,∴EDC E ∠=∠,由(1)知:EDC B ∠=∠,∴55B E ∠=∠=︒.一、单选题28.(2024上·四川宜宾·七年级统考期末)如图,BD 是ABC ∠的角平分线,DE AB ∥,EF 是DEC ∠的角平分线,有下列四个结论:①BDE DBE ∠=∠;②EF BD ∥;③ABF FEC BFE ∠=∠+∠;④ABF ABED S S =△四边形.其中,正确的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】此题考查了角平分线的定义,平行线的判定及性质,平行线间的距离处处相等等相关内容,熟练掌握平行线的判定与性质是解题关键.利用DE AB ∥,BD 平分ABC ∠,EF 平分DEC ∠,可以判断出①②正确;再证明DBF BFE ∠=∠,再利用FEC DBC ABD ∠=∠=∠,可判断出③正确;根据EF BD ∥,推出BDF V 与BDE 是等底等高的三角形,最后利用等式性质可得到④正确.【详解】解:∵DE AB ∥,∴ABD BDE ∠=∠,ABC DEC ∠=∠,∵BD 平分ABC ∠,EF 平分DEC ∠,∴12ABD DBE ABC ∠=∠=∠,12DEF FEC DEC ∠=∠=∠,∴BDE DBE ∠=∠,FEC DBC ABD ∠=∠=∠,∴EF BD ∥,故①②正确;∵EF BD ∥,∴DBF BFE ∠=∠,∵ABF ABD DBF ∠=∠+∠,FEC ABD ∠=∠,∴ABF FEC BFE ∠=∠+∠,故③正确;∵EF BD ∥,∴BDF V 与BDE 是等底等高的三角形,∴BDF BDE S S =△△,∴ABF ABED S S =△四边形,故④正确,∴①②③④正确.故选:D .29.(2024上·山西长治·七年级统考期末)如图,AB CD ,130PAB ∠=︒,120PCD ∠=︒,则APC ∠的度数为()A .140︒B .130︒C .120︒D .110︒【答案】D 【分析】此题考查的是平行线的判定及性质,掌握构造平行线的方法是解决此题的关键.过P 作直线∥MN AB ,根据两直线平行,同旁内角互补即可求出APN ∠,然后根据平行于同一条直线的两直线平行可得MN CD ∥,进而可求出NPC ∠,从而求出APC ∠.【详解】解:过P 作直线∥MN AB ,如下图所示,∵∥MN AB ,130PAB ∠=︒,∴180PAB APN ∠+∠=︒(两直线平行,同旁内角互补),∴18050APN PAB ∠=︒-∠=︒,∵∥MN AB ,AB CD ,120PCD ∠=︒,∴MN CD ∥,∴180PCD NPC ∠+∠︒=,∴60NPC ∠︒=,∴6050110APC NPC APN ∠=∠+∠=︒+︒=︒,故选:D .30.(2024上·福建泉州·七年级统考期末)如图,AB CD ∥,直线l 分别交AB ,CD 于点E ,F ,且满足1BEP BEF n ∠∠=,1DFP DFE n ∠∠=,则P ∠的度数为()A .1801n + B .180n C .1801n -o D .不确定【答案】B 【分析】本题考查了平行线的性质,过P 作PG AB ∥,由平行的判定方法得PG AB CD ∥∥,由平行线的性质得1EPG BEP BEF n ∠=∠=∠,1FPG DFP DFE n ∠=∠=∠,180BEF DFE ∠+∠=︒,等量代换计算得180EPG DFP n︒∠+∠=,即可求解;掌握性质,作出辅助线求解是解题的关键.【详解】解:如图,过P 作PG AB ∥,PG AB CD ∴∥∥,1EPG BEP BEF n ∴∠=∠=∠,1FPG DFP DFE n∠=∠=∠,180BEF DFE ∠+∠=︒,BEF n EPG ∴∠=∠,DFE n DFP ∠=∠,180n EPG n DFP ∴∠+∠=︒,180EPG DFP n︒∴∠+∠=,180P n ︒∴∠=;故选:B .31.(2024上·重庆九龙坡·七年级重庆实验外国语学校校考期末)如图,,AB CD A BCD ∠=∠∥,点M 是边AD 上一点,连接BM ,延长BM 、CD 交于点P .点N 是边BC 上一点,连接MN ,使得NMC MCN ∠=∠,作NMP ∠的平分线MQ 交CP 于点Q .若CMQ α∠=,则AMP ∠的度数用含α的式子表示为()A .180α︒-B .1802α︒-C .45α︒+D .90α︒+【答案】B 【分析】本题考查三角形内角和定理,平行线的判定和性质等知识,解题的关键是理解题意,学会利用参数解决问题.证明2PMD α∠=,可得结论.【详解】解:设NMC x ∠=.∥ AB CD ,A ADP ∴∠=∠,A BCD ∠=∠ ,APD BCD ∴∠=∠,AD BC ∴∥,NM NC = ,NMC NCM x ∴∠=∠=,CMD NCM x ∴∠=∠=,MQ 平分NMP ∠,QMP QMN x α∴∠=∠=+,()2PMD PMQ QMD x x ααα∴∠=∠+∠=++-=,1801802AMP PMD α∴∠=︒-∠=︒-.故选:B .32.(2024上·重庆巴南·七年级校考期末)如图,,AB CD BF ∥平分,EBA DG ∠平分,CDE E α∠∠=,则H ∠的度数用含α的式子表示为()A .180α︒-B .12αC .1902α︒+D .1902α︒-【答案】B 【分析】本题考查平行线的判定和性质等知识,解题的关键是理解题意,正确作出辅助线.根据角平分线得出12,34,∠=∠∠=∠过H 作,HM DC ∥过E 作,EN AB ∥证出2123,513,FHG FHM α=∠-∠∠=∠-∠=∠-∠即可得结论;【详解】BF 平分,EBA DG ∠平分,CDE Ð12,34,∴∠=∠∠=∠过H 作,HM DC ∥过E 作,EN AB ∥,AB CD ∥Q ,AB CD HM EN ∴∥∥∥15,216,35,623,FHM FHG CDE α∴∠=∠=∠+∠∠=+∠∠=∠∠=∠=∠2123,513,FHG FHM α∴=∠-∠∠=∠-∠=∠-∠.2FHG α∴∠=故选:B .33.(2023下·山东济南·七年级山东省济南稼轩学校校考阶段练习)下列结论:①如图1,AB CD ∥,则180A E C ∠+∠+∠=︒;②如图2,AB CD ∥,则P A C ∠=∠-∠;③如图3,AB CD ∥,则1E A ∠=∠+∠;④如图4,直线AB CD EF ∥∥,点O 在直线EF 上,则180αβγ∠-∠+∠=︒.正确的个数有()A .1个B .2个C .3个D .4个【答案】B 【分析】本题考查的是平行线的性质及三角形外角的性质;①过点E 作直线EF ∥AB ,由平行线的性质:两直线平行,同旁内角互补,即可得出结论;②如图2,先根据三角形外角的性质得出1C P ∠=∠+∠,再根据两直线平行,内错角相等即可作出判断;③如图3,过点E 作直线EF ∥AB ,由平行线的性质可得出1180A AEC ∠+∠-∠=︒,即得1801AEC A ∠=︒+∠-∠;④如图4,根据平行线的性质得出BOF α∠=∠,180COF γ∠+∠=︒,再利用角的关系解答即可.【详解】解:①如图1,过点E 作直线EF AB ∥,AB CD ∥,∴AB CD EF ∥∥,1180A ∴∠+∠=︒,2180C ∠+∠=︒,12360A C ∴∠+∠+∠+∠=︒,360A AEC C ∴∠+∠+∠=︒,故①错误;②如图2,1∠ 是CEP 的外角,1C P ∴∠=∠+∠,AB CD ∥,1A ∴∠=∠,即P A C ∠=∠-∠,③如图3,过点E 作直线EF AB ∥,AB CD ∥,∴AB CD EF ∥∥,3180A ∴∠+∠=︒,12∠=∠,1180A AEC ∴∠+∠-∠=︒,即1801AEC A ∠=︒+∠-∠,故③错误;④如图4,AB EF ∥,BOF α∴∠=∠,CD EF ∥,180COF γ∴∠+∠=︒,BOF COF β∠=∠+∠ ,COF αβ∴∠=∠-∠,180γαβ∴∠+∠-∠=︒,故④正确;综上结论正确的个数为2,故选:B .二、填空题34.(2024下·江苏·七年级周测)如图,一辆汽车经过一段公路两次拐弯后,和原来的行驶方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角B ∠等于142︒,第二次拐的角∠C 的度数为.【答案】142︒/142度【分析】此题考查了平行线的性质,根据平行线的性质得出B C ∠=∠,解题的关键是熟练掌握平行线的性质及其应用.【详解】∵原来的行驶方向相同,也就是拐弯前后的两条路互相平行,∴142C B ∠=∠=︒(两直线平行,内错角相等).35.(2024上·山东济南·七年级统考期末)如图,将三角板与直尺贴在一起,使三角板的直角顶点A 与直尺的一边重合,若130∠=︒,则2∠的度数是°.【答案】60【分析】本题考查了平行线的性质,互余关系;由13∠∠,互余可求得3∠,再由平行线的性质即可求得结果.【详解】解:如图,∵1+3=90∠∠︒,130∠=︒,∴390160∠=︒-∠=︒;∵直尺的两边平行,∴2360∠=∠=︒,故答案为:60.36.(2024上·河南南阳·七年级统考期末)将一副三角板按如图所示重叠放置,其中45BOA ∠=︒,30DOC ∠=︒,90BAO ∠=︒,90DCO ∠=︒,30︒和45︒的两个角顶点重合在一起.若将三角板AOB 绕点O 旋转,在旋转过程中,当AB OC ∥时,BOC ∠=.【答案】45︒或135︒【分析】本题考查了平行线的性质,旋转的性质,直角三角板的角的度数的知识,熟记性质是解题的关键.根据题意画出图形,由平行线的性质可得出答案.【详解】解:如图1,当AOB 绕点O 顺时针旋转90︒时,AB OC ∥,此时45BOC ABO ∠=∠=︒.。

七年级数学下册4.3平行线的性质学习要点素材湘教版(new)

七年级数学下册4.3平行线的性质学习要点素材湘教版(new)
学习要点:平行线的性质
知识结构
条件结论
重点、难点分析
本节内容的重点是平行线的性质.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等"的证明过程.而且直接运用了“∵"、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.
本节内容的难点是理解平行线的性质与判定的区别,并能在推理中正确地应用它们.由于学生已学习过命题的概念和命题的组成,知道判定和性质的本质区别和联系是什么,用的时候难度会降低.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是平行线的性质.
收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.

7.2.1 探索平行线的性质-平行线的3个性质定理(课件)七年级数学下册(苏科版)

7.2.1 探索平行线的性质-平行线的3个性质定理(课件)七年级数学下册(苏科版)
∵∠1+∠2=129°,∴∠1=51°,
∵AE∥BF,∴∠1=∠FBM=51°,
∵AB∥EF,∴∠4=∠FBM=51°。
C
D
E
F
B
M
03
典例精析
例4、如图,∠HCO=∠EBC,∠BHC+∠BEF=180°。
(1)求证:EF∥BH;
(2)若BH平分∠EBO,EF⊥AO于点F,∠HCO=56°,求∠CHO的度数。
教学目标
01
掌握平行线的三个性质定理,同时区分判定与性质
02
能运用平行线的性质定理进行证明与计算
平行线的性质定理
01
复习引入
平行线的判定方法有哪些?
同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行。
【思考】反过来,若两直线平行,则同位角、内错角、同旁内角
各有怎样的数量关系呢?
(1)证明:∵∠HCO=∠EBC(已知),
∴EB∥HC(同位角相等,两直线平行),
∴∠EBH=∠BHC(两直线平行,内错角相等),
∵∠BHC+∠BEF=180°(已知),
∴∠EBH+∠BEF=180°(等量代换),
∴EF∥BH(同旁内角互补,两直线平行);
03
典例精析
例4、如图,∠HCO=∠EBC,∠BHC+∠BEF=180°。
(1)求证:EF∥BH;
(2)若BH平分∠EBO,EF⊥AO于点F,∠HCO=56°,求∠CHO的度数。
(2)解:∵∠HCO=56°,∴∠EBC=56°,∠BCH=180°-56°=124°,


∵BH平分∠EBO,∴∠CBH= ∠EBC=28°,

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定平行线是数学中最基础的概念之一,在初中数学中也占据了重要的地位。

平行线的性质和判定方法具有一定的规律性和逻辑性,掌握了这些知识,对于解题和推理都有很大的帮助。

本文将对初中数学中与平行线相关的性质和判定进行归纳和总结。

一、平行线的性质1. 平行线性质一:同位角性质同位角是指两条平行线被一条第三条线(称为横线)所切割所形成的内角和外角。

同位角性质可以概括为:当直线与两条平行线相交时,同位角相等。

例如,图1中的直线l与平行线m、n相交,角A和角B、C都是同位角。

根据同位角性质,可知∠A = ∠B = ∠C。

2. 平行线性质二:内错角性质内错角是指两条平行线被一条第三条线所切割所形成的内角。

内错角性质可以概括为:当直线与两条平行线相交时,内错角相等。

例如,图2中的直线l与平行线m、n相交,角A和角B是内错角。

根据内错角性质,可知∠A = ∠B。

3. 平行线性质三:同旁内角性质同旁内角是指两条直线与两条平行线相交所形成的内角。

同旁内角性质可以概括为:当两条直线与两条平行线相交时,同旁内角互补。

例如,图3中的直线a、b与平行线m、n相交,角A和角B、C是同旁内角。

根据同旁内角性质,可知∠A + ∠B = 180°和∠A + ∠C = 180°。

二、平行线的判定方法1. 直线平行判定法一:同位角相等法如果一条直线与另外两条直线相交时,同位角相等,则这两条直线平行。

例如,图4中的直线l与线段AB、CD相交,∠1 = ∠2,则可判定线段AB与线段CD是平行的。

2. 直线平行判定法二:内错角相等法如果一条直线与两条平行线相交时,内错角相等,则这条直线与这两条平行线平行。

例如,图5中的直线l与平行线m、n相交,∠A = ∠B,则可判定直线l与平行线m、n是平行的。

3. 直线平行判定法三:同旁内角互补法如果一条直线与两条平行线相交时,同旁内角互补,则这条直线与这两条平行线平行。

初中数学 平行线有哪些性质

初中数学  平行线有哪些性质

初中数学平行线有哪些性质平行线是初中数学中的一个重要概念,具有许多性质。

在本文中,我将为您详细介绍平行线的各种性质。

1. 平行线的定义性质:-平行线是在同一平面上永远不相交的两条直线。

这意味着它们没有共同的交点。

-平行线具有相同的斜率。

斜率是用来描述直线的倾斜程度的数值。

如果两条直线有相同的斜率,那么它们是平行线。

-平行线之间的距离是恒定的。

对于任意两条平行线,它们之间的距离在整个线段上是相等的。

2. 平行线的角度性质:-平行线之间的所有内角相等。

如果一条直线与两条平行线相交,那么所形成的内角是相等的。

-平行线之间的所有外角相等。

如果一条直线与两条平行线相交,那么所形成的外角是相等的。

-平行线之间的同位角相等。

如果两条平行线被一条直线割分,那么所形成的同位角是相等的。

3. 平行线的传递性:-平行线的传递性定理:如果直线L1与直线L2平行,直线L2与直线L3平行,那么直线L1与直线L3也平行。

-这个定理的意思是,如果有三条直线,其中任意两条平行,那么第三条直线也与这两条直线平行。

4. 平行线的副交角性质:-平行线的副交角定理:如果两条直线被一对平行线割分,那么所形成的副交角是相等的。

这意味着在两条平行线之间,对应的副交角是相等的。

5. 平行线的交角性质:-线与平行线的交角定理:如果一条直线与两条平行线相交,那么所形成的内角、外角和同位角之间的关系是具有特定的等式。

-内角和同位角之和等于180度:如果一条直线与两条平行线相交,那么所形成的内角和同位角之和等于180度。

-外角等于内角的补角:如果一条直线与两条平行线相交,那么所形成的外角等于内角的补角。

以上是平行线的一些重要性质。

这些性质可以帮助我们解决各种几何问题,如计算角度、线段长度等。

此外,平行线的概念在实际生活中也有广泛的应用,如城市规划中的道路设计、光线的传播路径等。

希望以上内容能够帮助您更好地理解平行线的性质。

人教版七年级下5.3平行线的性质教学设计(3课时)

人教版七年级下5.3平行线的性质教学设计(3课时)

第1课时平行线的性质【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式. 活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻ab3 c124性活动4解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?BCA DB C学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB 与DE 是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC ∥EF .教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略. 问题4:如图,若AB //CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.学生活动设计:由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .所以∠B +∠D =∠BEF +∠DEF =∠DEB .即∠B +∠D =∠DEB . 变式思考:如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).四、小结与作业.FBDCEAEDCB A小结:1.平行线的三个性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点平行线的性质公理及平行线性质定理的推导.(二)难点平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤(一)明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.(二)整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.(三)教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).1.如图1,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.根据学生的回答,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手回答.【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.教师根据学生回答,给予肯定或指正的同时板书.[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵(已知),∴(两直线平行,同位角相等).∵(邻补角定义),∴(等量代换).即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):如图7,已知平行线、被直线所截:图7(1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?【教法说明】练习目的是巩固平行线的三条性质.变式训练,培养能力完成练习(出示投影片3).如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.变式练习(出示投影片4)1.如图9,已知直线经过点,,,.(1)等于多少度?为什么?(2)等于多少度?为什么?(3)、各等于多少度?2.如图10,、、、在一条直线上,.(1)时,、各等于多少度?为什么?(2)时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.(四)总结、扩展(出示投影片1第1题和投影片5)完成并比较.如图11,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().学生活动:学生回答上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.(出示投影6)学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.巩固练习(出示投影片7)1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗?为什么?图12(2)是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业(一)必做题课本第99~100页A组第11、12题.(二)选做题课本第101页B组第2、3题.作业答案A组11.(1)两直线平行,内错角相等.(2)同位角相等,两直线平行.两直线平行,同旁内角互补.(3)两直线平行,同位角相等.对顶角相等.12.(1)∵(已知),∴(内错角相等,两直线平行).(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。

七年级数学平行线的性质3

七年级数学平行线的性质3
促进脂肪肝形成的有关因素有A.碳水化合物摄入过多B.肝内形成的甘油三酯增多或氧化减少C.脂蛋白合成增多D.蛋白质摄入过多进入肝脏的脂肪酸过少 治疗疾病要求治病求本,本是指A.阴阳B.天地C.病机D.父母E.寒热 鼠疫的主要储存宿主以________和________最为重要,________是次要的储存宿主,但却是人间鼠疫的主要传染源。 虹膜A.为血管膜的最前部,位于角膜的后方B.虹膜内有两种排列方向不同的骨骼肌C.中央有一圆形的瞳孔D.瞳孔括约肌受副交感神经支配E.呈圆盘形 支配大腿后肌群的是A.坐骨神经B.臀下神经C.臀上神经D.胫神经E.腓总神经 男,5个月,因2天来咳嗽,喘憋来诊。查体:体温38℃,营养可,气促,口周发青,咽红,呼吸60次/分,两肺可闻及喘鸣音,心率180次/分,律齐有力,无杂音,腹部胀气,肝肋下2cm,剑下1.5cm,质软。入院后为明确病原体诊断,拟做什么检查A.血常规B.红细胞沉降率C.C反应蛋白D.胸片E.鼻 免疫荧光检查 安乐死的定义是A.自然死亡B.他人干预死亡C.无痛苦死亡D.脑死亡E.自己结束生命 港站经营人的范围包括A、装卸公司B、货运站C、港口经营人D、机场经营人 进行双侧唇裂整复术最适合的年龄为()A.出生后即刻B.1~2个月C.3~6个月D.6~12个月E.1~2岁 下列哪一项不是女性尿道炎发病率高于男性的原因A.女性对细菌抵抗力低于男性B.女性尿道短,直而宽,尿道括约肌薄弱C.妇科炎症可直接蔓延导致尿道炎D.尿道口与阴道口和肛门接近E.老年女性常发生尿道肉阜导致尿流不畅 职业素质医德医风考试复习指导 [多选,A4型题,A3/A4型题]患者,男性,43岁。因膝关节酸痛而口服阿司匹林2片/次,3次/日。1小时前恶心、呕吐,呕吐物为咖啡样,约500ml。柏油样便,量约700g。查体:脉搏120次/分,血压90/75mmHg,神清,贫血貌。四肢湿冷,上腹压痛。提问:有关Hp感染,下列哪种说法正确A.H 癌因子B.胃癌患者中Hp感染率最高C.Hp阳性的低度恶性MALT淋巴瘤在根除Hp后,病变可消退D.Hp阳性的功能性消化不良患者,根除Hp后症状不一定改善E.Hp能引起急性糜烂性胃炎F.Hp能引起慢性胃炎 企业意识到顾客满意是实现企业利润的唯一手段,因而成为经营管理的核心要素。A.物流B.顾客服务C.生产D.销售额 红细胞的相对密度为。A.1.030~1.060B.1.050~1.078C.1.080~1.095D.1.090~1.111E.1.025~1.030 客服中心统计分析工作主要分为运营类、及管理类。 在不动产登记中,房屋登记包括等。A.抵押权登记B.地役权登记C.典权登记D.预告登记E.所有权登记 不属细菌性阴道病诊断标准的是A.阴道分泌物匀质、稀薄B.分泌物镜检可见&gt;20u/0线索细胞C.阴道pH&gt;4.5D.病原体主要为加德纳尔菌E.氨臭味试验阴性 学校及其他教育机构通过教授普通话和规范汉字。A.汉语文课程B.语文课程C.各种课程 根据对外贸易法律制度的规定,下列关于反倾销措施的表述中,不正确的是。A.商务部对倾销以及由倾销造成的损害作出肯定的初裁决定前,不得寻求或者接受价格承诺B.商务部可以向出口经营者提出价格承诺的建议,但不得强迫出口经营者作出价格承诺C.在任何情形下,反倾销税税额不超过终裁 的倾销幅度D.反倾销税的征收期限不得超过4年 [多选,案例分析题]患者男性,30岁。左侧胸痛4个月,下肢无力2个月。神经系统查体:左下肢肌力4级,右下肢肌力5级(-)。右侧T10以下痛温觉消失,左侧减退。T4水平痛觉过敏。左侧巴氏征阳性可能选择的治疗方式是。A.手术切除病变B.放射治疗C.化学药物治疗D.介入栓塞治疗E.药物保守治 人体发育学属于A.儿童精神医学的分支领域B.儿童行为医学的分支领域C.发育科学的分支领域D.儿童心理学的分支领域E.儿童保健医学的分支领域 给定可逆反应,当温度由T1升至T2时,平衡常数K2>K1,则该反应的A、&Delta;H&gt;0B、&Delta;H&lt;0C、&Delta;H=0D、无法判断 车身上电弧钎焊焊接的板件可以用的方法分离。A.砂轮切除钎焊B.钻头切割C.氧乙炔焊枪或丙烷焊枪熔化钎焊的金属 痛痹的临床特点A.肢体关节疼痛不移B.痛有定处C.遇寒则痛甚D.得热则痛减E.肢体关节红肿热痛 雪顿节,是我国哪个民族的节日?A.维吾尔族B.藏族C.蒙古族D.回族 压力容器容积 女,31岁,持续性高血压1年.血压165/100mmHg,血钾3.0mmol/L,血肾素水平降低,尿pH7.5,血HCO35mmol/L,应考虑()A.原发性高血压B.垂体腺瘤C.醛固酮瘤D.皮质醇增多症E.嗜铬细胞瘤 《公路水路交通“十一五”发展规划》的政策措施有。A.深化交通改革B.稳定现有投融资政策C.拓展资金来源D.规范交通运输市场E.加强收费公路管理 电器火灾首选灭火器。A.泡沫B.干粉C.消防水D.二氧化碳 信贷业务授权管理办法所指的短期信用业务,不包括A.票据承兑B.银行承兑汇票贴现C.180天以上(含)远期信用证D.期限在1年以(含)的非融资性保函 关于脑电图在诊断癫痫中的价值,下列正确的是A.脑电图上有痫样放电即可以诊断癫痢B.脑电图上无痫样放电即可以排除癫痫C.正常人脑电图没有痫样放电D.脑电图是癫痫的另一个重要特征,也是诊断癫痫的主要佐证E.脑电图是诊断癫痫的唯一辅助手段 下列哪种疾病引起的发热多不伴寒战A.疟疾B.大叶性肺炎C.伤寒D.流行性感冒E.急性肾盂肾炎 变色硅胶干燥时为兰色,受潮后变粉红色,可以在℃下烘干反复使用,直至破碎不能使用为止。 目前世界上规模最大、影响力最广的综合展是。A.奥运会B.广交会C.世界博览会D.投洽会 下列哪种情况经常会出现轴突支芽因迷走而成为神经瘤A.神经失用B.轴突断伤C.神经断伤D.神经嵌压性损伤E.神经节段性脱髓鞘 秒速赛车玩家群
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拼三张棋牌 www.qv2b8wቤተ መጻሕፍቲ ባይዱ.cn
[多选]在左心室形态和功能正常的情况下,测定左心室容积参数的方法有()。A.M型超声B.单平面面积长度法C.单平面Simpson法D.双平面Simpson法E.组织多普勒成像 [单选,A2型题,A1/A2型题]下列是协调活动的重要手段和依据准则的为()A.规章制度B.行政法规C.基本法D.刑法E.民法 [问答题,简答题]如何更换限流孔板? [单选,A2型题,A1/A2型题]关于骨盆组成的描述,正确的是()A.由2块髂骨、1块坐骨和1块尾骨组成B.由2块髋骨、1块骶骨和1块尾骨组成C.由2块髂骨、1块骶骨和1块尾骨组成D.由2块髋骨、1块坐骨和1块尾骨组成E.由1块坐骨、耻骨联合和1块尾骨组成 [单选]关于朊毒体蛋白PrPsc,下列说法不正确的是()A.由宿主染色体编码B.有2种异构体C.不同重叠的株型之间基因同源性很高D.能抵抗尿酸、苯酚等变性剂E.可以自行复制 [填空题]技工学校、农业中学、职业中学组织学生参加生产劳动,接触有毒有害物质的,按照国家有关规定,提供()待遇。 [单选,A1型题]99mTc-MDP骨显像中显像剂被脏器或组织选择性聚集的机制是()A.离子交换和化学吸附B.细胞吞噬C.合成代谢D.特异性结合E.通透弥散 [单选]以下哪种行为可以称为项目?()A.开班会B.给新计算机安装操作系统及相关软件C.设计一种新型的自行车D.生产一批新型的自行车 [问答题,简答题]成功销售主管应该有几种? [填空题]中华人民共和国第一套航空邮票于1951年5月1日发行的()邮票。 [名词解释]基本社会化 [单选]作出具体行政行为的公务员,因其是以所在国家行政机关的名义进行,()。A.故成为行政诉讼的共同被告B.故成为行政诉讼的被告C.故不能成为行政诉讼的第三人D.故不能成为行政诉讼的被告 [单选,A2型题,A1/A2型题]DSA要使一直径2mm的血管及其内径1mm的狭窄与一直径4mm的血管及其内径2mm的狭窄成像一样清晰,可以()A.将碘浓度加倍B.将曝光量加倍C.将视野加倍D.将矩阵加倍E.将像素大小加倍 [单选]下列图像最可能的诊断是()A.肝脓肿B.肝囊肿C.肝血管瘤D.原发性肝癌E.肝炎肝硬化 [单选]在放射免疫分析法(RIA)检测中其结合率用B/(B+F)表示,其意义是()A.结合态的标记抗原与总的标记抗原之比B.结合态的标记抗原与游离的标记抗原之比C.总标记抗原与抗原抗体复合物之比D.结合态的抗原与总的抗原之比E.结合态的抗原与总的抗原之比 [单选]通信线路大修包括电缆和()线路大修。A.光缆B.网络C.电源 [多选]下列各项中,应计入营业外收入的有()。A.出售固定资产取得的净收益B.转让长期股权投资的净收益C.赔款收入D.盘盈存货取得的净收益 [单选]不得妨碍边防检查人员依法执行公务。()A.任何组织和个人B.部分组织和个人C.一定组织和个人D.特殊组织和个人 [单选]某建设项目的总投资为5600万元,年平均利润总额为1200万元,则该建设项目的总投资收益率为()。A.23.43%B.21.43%C.17.65%D.18.46% [问答题,简答题]药品监督管理部门违反《药品管理法》规定,为不符合GMP要求、或不符合条件发给GMP认证证书或《药品生产许可证》的,由那个部门责令收回违法发给的证书、撤销药品批准证明文件或依法给予行政处分、构成犯罪的,依法追究刑事责任? [单选]下列哪项不属于各级人民检察院管辖范围内的信访事项()。A.对人民检察院工作的建议、批评和意见B.对人民法院工作的建议、批评和意见C.对人民检察院生效决定不服的申诉D.对公安机关不予立案决定不服的申诉 [单选,A1型题]关于双探头符合线路SPECT的描述正确的是()A.是在常规SPECT上窦现正电子探测的影像设备B.需配置高能准直器C.探测器晶体改为锗酸铋制成D.可进行F、C、O、N等成像E.可逐步取代PET [判断题]储蓄机构受理挂失后,必须冻结该项储蓄存款。()A.正确B.错误 [单选,A2型题,A1/A2型题]《金匮要略》论历节病的成因是()。A.外感风寒湿之气B.肝肾亏虚,筋骨失养C.肝肾亏虚,风寒湿侵D.肝肾不足,寒伤骨髓E.阳气亏虚,血行不利 [单选,B1型题]呕吐大量隔夜宿食的是()A.幽门梗阻B.十二指肠淤积症C.小肠梗阻D.胃潴留E.胃癌 [填空题]2005版ISO9000标准提出的质量管理八原则构成了质量文化的基本内容。它们分别是()、领导作用、全员参与、过程方法、管理的系统方法、持续改进、基于事实的决策方法和与供方互利的关系。 [单选,A2型题,A1/A2型题]典型的尘肺大阴影呈()。A.边缘清楚,分散孤立的致密影B.对称的在双肺上中野中外带,呈&quot;八&quot;字形排列C.细条索影交织在肺纹理之间,多为&quot;s&quot;型D.局限型胸膜斑和弥漫性胸膜增厚、粘连E.在肺标本上大致呈圆形、椭圆形 [单选,A2型题,A1/A2型题]甲状旁腺功能减退症患者在滴注外源性PTH后,下列说法正确的是()。A.尿磷增加尿cAMP降低B.尿磷与尿cAMP无变化C.尿磷与尿cAMP降低D.尿磷降低尿cAMP增加E.尿磷与尿cAMP显著增加 [单选]下列哪种是气体激光器的工作物质()A.原子气体B.分子气体C.准分子气体D.离子气体E.以上均是 [单选]要进行胆道或胃肠疾病检查,通常要求病人禁食时间为()A.24小时B.20小时C.12小时D.8小时E.4小时 [单选]关于印刷要素的说法,错误的是()。A.印刷要素包括原稿、印版、承印物、印刷油墨和印刷机械B.以非纸张材料作为承印物的印刷称为"特种印刷"C.按版面结构特征不同,印版分为凸版、凹版和平版三种D.原稿可分为文字原稿、线条原稿和图像原稿三大类 [单选,A1型题]提出“风从外入,令人振寒,汗出头捕,身重恶寒”的医著是()。A.《黄帝内经》B.《难经》C.《金匮要略》D.《伤寒论》E.《诸病源候论》 [多选]某钢厂与某建筑企业签订了一份钢材购销合同,合同约定钢厂向某建筑企业供应钢材50吨,交货期限为2003年12月之前,某建筑企业在验货后1个月内向钢厂付款。某钢厂如约向某企业交付钢材50吨,某建筑企业在验货时发现该钢材含硫量、含碳量严重超标。如用该钢材建楼,必然发生严 [单选,A2型题,A1/A2型题]月经过多是指月经量大于()A.40mlB.50mlC.60mlD.70mlE.80ml [判断题]邮寄物入境后,由检验检疫人员实施现场检疫。()A.正确B.错误 [单选]施工项目管理规划应包括对目标的分解与研究及对()的调查与分析。A.合同B.法律C.环境D.成本 [判断题]有效接地系统的电力设备的接地电阻在预防性试验前或每3年以及必要时验算一次经接地网流入地中的短路电流,并校验设备接地引下线的热稳定。A.正确B.错误 [单选]出境快件在其运输工具离境()小时前,快件运营人应向离境口岸检验检疫机构办理报检。A.4小时B.5小时C.6小时D.8小时 [单选]A类突起路标与B类突起路标的性能区别是()。A.具备减速性能B.具备防滑性能C.具备视线诱导性能D.具备逆反射性能 [单选,A2型题,A1/A2型题]自动生化分析仪的校准方法除线性法外,还包括()A.参比法B.非线性法C.内标法D.外标法E.K因素法
相关文档
最新文档