(全国通用)2020版高考数学二轮复习第二层提升篇专题四统计与概率第1讲统计、统计案例讲义
热点攻关 “概率与统计”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)
例5 (2022年北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到 以上(含 )的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位: ): 甲: , , , , , , , , , . 乙: , , , , , . 丙: , , , . 假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(3)已知该地区这种疾病的患病率为 ,该地区的年龄位于区间 的人口占该地区总人口的 .从该地区中任选一人,若此人的年龄位于区间 ,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到 )
[解析] (1)平均年龄 (岁).(2)设 ,则 .(3)设 ,则由条件概率公式,得 .
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计 的数学期望 ;
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
[解析] (1) 由频率估计概率可得,甲获得优秀奖的概率为0.4.(2)设“甲获得优秀奖”为事件 ,“乙获得优秀奖”为事件 ,“丙获得优秀奖”为事件 ,由题意知 ,又 ,则 , ,
树苗高度(单位: )
树苗售价(单位:元/株)
4
6
8
(1)现从120株树苗中,按售价分层抽样抽取8株,再从中任选3株,求售价之和高于20元的概率;
(2)以样本中树苗高度的频率作为育苗基地中树苗高度的概率.若从该育苗基地银杏树树苗中任选4株,记树苗高度超过 的株数为 ,求随机变量 的分布列和期望.
[解析] (1)由题意得, ,令 ,设 关于 的线性回归方程为 ,则有 ,则 ,所以 ,又 ,所以 关于 的回归方程为 .
2020高考数学二轮复习概率与统计.docx
2020 高考数学二轮复习 概率与统计概率内容的新概念 多,相近概念容易混淆,本 就学生易犯 作如下 :型一 “非等可能 ”与 “等可能 ”混同 例 1 两枚骰子,求所得的点数之和 6 的概率.解两枚骰子出 的点数之和2, 3, 4, ⋯ ,12 共 11 种基本事件,所以概率P=111剖析以上 11 种基本事件不是等可能的,如点数和 2 只有 (1, 1),而点数之和6 有 (1, 5)、(2, 4)、 (3, 3)、 (4,2)、 (5, 1)共 5 种.事 上, 两枚骰子共有 36 种基本事件,且是等可能的,所以“所得点数之和6”的概率 P= 5.36型二 “互斥 ”与 “ 立 ”混同例 2把 、黑、白、4 牌随机地分 甲、乙、丙、丁4 个人,每个人分得1 ,事件“甲分得 牌”与“乙分得 牌”是()A . 立事件B .不可能事件C .互斥但不 立事件D .以上均不解A剖析 本 的原因在于把 “互斥 ”与 “ 立”混同,二者的 系与区 主要体 在 :(1)两事件 立,必定互斥,但互斥未必 立; (2) 互斥概念适用于多个事件,但 立概念只适用于两个事件; (3) 两个事件互斥只表明 两个事件不能同 生,即至多只能 生其中一个,但可以都不 生;而两事件 立 表示它 有且 有一个 生.事件 “甲分得 牌 ”与 “乙分得 牌 ”是不能同 生的两个事件,两个事件可能恰有一个 生,一个不 生,可能两个都不 生,所以 C .型三 例 3解“互斥 ”与 “独立 ”混同甲投 命中率 O .8,乙投 命中率 0.7,每人投 3 次,两人恰好都命中 2 次的概率是多少 ?“甲恰好投中两次” 事件 A , “乙恰好投中两次” 事件B , 两人都恰好投中两次事件A+B , P(A+B)=P(A)+P(B): c 32 0.820.2 c 32 0.720.3 0.825剖析本 的原因是把相互独立同 生的事件当成互斥事件来考 , 将两人都恰好投中2 次理解 “甲恰好投中两次”与 “乙恰好投中两次 ”的和.互斥事件是指两个事件不可能同 生;两事件相互独立是指一个事件的 生与否 另一个事件 生与否没有影响,它 然都描 了两个事件 的关系,但所描 的关系是根本不同.解:“甲恰好投中两次 ” 事件 A ,“乙恰好投中两次” 事件 B ,且 A , B 相互独立,两人都恰好投中两次 事件A ·B ,于是 P(A ·B)=P(A) ×P(B)= 0.169类型四例 4错解“条件概率 P(B / A)”与“积事件的概率P(A·B)”混同袋中有 6 个黄色、 4 个白色的乒乓球,作不放回抽样,每次任取一球,取 2 次,求第二次才取到黄色球的概率.记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件62C,所以 P(C)=P(B/A)=.93剖析本题错误在于 P(A B)与 P(B/A) 的含义没有弄清 , P(A B) 表示在样本空间S 中 ,A 与 B 同时发生的概率;而P( B/A )表示在缩减的样本空间S A中,作为条件的 A 已经发生的条件下事件 B 发生的概率。
统计与概率(原卷版)--备战中考数学抢分秘籍(全国通用)
统计与概率--备战中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①数据的整理、描述和分析。
②概率问题。
统计与概率是全国中考的必考内容!但总有一部分学生,因为粗心,因为混淆概念等的小错误就丢了分数。
1.从考点频率看,统计与概率是高频考点,通常考查条形统计图、扇形统计图和树状图。
2.从题型角度看,选择题、填空题较多,同时考查多个考点的综合性题目以解答题为主,分值9分左右!中考数学关于统计与概率的知识点考察分析考点知识点分析考察频率数据的整理和描述 1.极差:一组数据中最大数据和最小数据的差.2.频数、频率:数据分组后落在各小组内的数据叫做频数;每一个小组的频数与样本容量的比值叫做这个小组的频率.3.统计表:利用表格处理数据,可以帮助我们找到数据分布的规律.4.统计图:条形图、扇形图、折线图、直方图.★★★★★数据的分析 1.平均数2.中位数:几个数据按从小到大的顺序排列时,处于最中间的一个数据(或是中间两个数据的平均数)是这组数据的中位数.3.众数:一组数据中出现次数最多的那个数据.4.方差★★★★☆典例1.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康,某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭进行一次简单随机抽样调查.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调查发现,接受调查的家庭都有过期药品.现将有关数据呈现如图:①m =,n =;②补全条形统计图;③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.典例2.某中学为了解学生每学期诵读经典的情况,在全校范围内随机抽查了部分学生上一学期阅读量,学校将阅读量分成优秀、良好、较好、一般四个等级,绘制如下统计表:等级一般较好良好优秀阅读量/本3456频数12a144频率0.240.40b c请根据统计表中提供的信息,解答下列问题:(1)本次调查一共随机抽取了__________名学生;表中=a_________,b=_________,c=_________.(2)求所抽查学生阅读量的众数和平均数.(3)样本数据中优秀等级学生有4人,其中仅有1名男生.现从中任选派2名学生去参加读书分享会,请用树状图法或列表法求所选2名同学中有男生的概率典例3.为扎实推进“五育并举”工作,某校利用课外活动时间开设了舞蹈、篮球、围棋和足球四个社团活动,每个学生只选择一项活动参加.为了解活动开展情况,学校随机抽取部分学生进行调查,将调查结果绘成如下表格和扇形统计图.参加四个社团活动人数统计表社团活动舞蹈篮球围棋足球人数503080参加四个社团活动人数扇形统计图请根据以上信息,回答下列问题:(1)抽取的学生共有人,其中参加围棋社的有人;(2)若该校有3200人,估计全校参加篮球社的学生有多少人?(3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.中考统计与概率是基础题。
高三数学二轮复习教学计划和目标精选
高三数学二轮复习教学计划和目标精选高三数学二轮复习教学计划和目标精选篇1本学期我所任教的是高三2个班的数学课和高一2个班级的数学课,另外任数学教研组组长工作。
牢记我校总体思想:立足生存,办出特色,谋求发展。
兼顾“两条腿走路”原则。
继续加强学校的师德要求:爱岗敬业,为人师表,转变观念,树立服务意识,以面对职业教育和学校当前所面临的转型过渡时期。
进行自我提高,虚心学习,认真总结经验。
按照学校要求针对高三教学制定计划如下:本学期的对口升学工作的形势非常严峻,也会非常残酷。
通过张校长的分析,使得我更加清楚地认识到了这一点,同时教务处也做出了周密的安排,我们应紧紧围绕这个主题而努力。
通过侧面了解及半年来的了解,这些同学的成绩参差不齐,而且缺少拔尖人才,学生学习习惯不好,上进心不是很强,基础较差。
面对这样的学生,如何提高他们的学习兴趣和促使他们鉴定信念,是一件非常重要的工作。
为了提高效率,应该对他们采取强化手段,进行强化训练,压缩了第一轮复习时间,分阶段复习训练已经开始。
本学期将在完成分阶段复习之后,并进行备考冲刺训练,靠近高考提醒并适当提高一点难度,进行查缺补漏,不断提高。
时间非常紧张,要面对现状,要客服一切困难,加大力度,提高效率,为今年的高考工作做好比较充分的准备。
分阶段强化训练主要是教材和高考复习资料中的重点题型,整理成试题篇的形式,共9套,课后由学生自行完成,课上精讲,强调高考中常见问题,加以分析,积累解题经验,形成比较完整的知识能力体系。
全程大约需要20课时,根据学生具体接受情况适当调整,尽量压缩,以给后面复习让出时间。
模拟冲刺阶段主要借助于高考原题和积累整理的10套模拟题进行综合训练和模拟冲刺,同时观察学生存在的问题对学生进行必要的辅导,尽可能促进学生综合能力的提高。
在进行实施的过程中,除学校及市里组织的模拟考试外,进行必要的验收考试,以给学生造成一定的压力,进而刺激他们的学习动力。
同时还要进行一些心理方面的辅导和应试技巧,能够端正心态,面向高考,努力进取。
高三数学的复习计划范文(2篇)
高三数学的复习计划范文一、二轮复习指导思想:高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
而第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高。
二、二轮复习形式内容:以专题的形式,分类进行。
具体而言有以下几大专题。
(1)集合、函数与导数。
此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
每年高考中导数所占的比重都非常大,一般情况在客观题中考查的导数的几何意义和导数的计算属于容易题;二在解答题中的考查却有很高的综合性,并且与思想方法紧密结合,主要考查用导数研究函数的性质,用函数的单调性证明不等式等。
(预计5课时)(2)三角函数、平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点,我们可以关注。
平面向量具有几何与代数形式的“双重性”,是一个重要的只是交汇点,它与三角函数、解析几何都可以整合。
(预计2课时)(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
例如,主要是数列与方程、函数、不等式的结合,概率、向量、解析几何为点缀。
数列与不等式的综合问题是近年来的热门问题,而数列与不等式相关的大多是数列的前n项和问题。
(预计2课时)(4)立体几何。
此专题注重几何体的三视图、空间点线面的关系,用空间向量解决点线面的问题是重点(理科)。
(预计3课时)(5)解析几何。
此专题中解析几何是重点,以基本性质、基本运算为目标。
直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。
《统计与概率》教案14篇
《统计与概率》教案14篇《统计与概率》教案篇1设计说明根据本课时的复习内容和特点,依托教材提供的练习题,从以下两个层次进行复习。
1.引导学生按照指定的标准分类。
这一层次的复习,首先让学生按照颜色分类,采用小组讨论的方式,找出自己分类的数据,然后将数据填入统计表中,初步体会到整理数据的全过程。
在按照颜色分类的基础上,让学生自主完成按照形状进行分类,以巩固整理数据的方法。
2.引导学生按照自选的标准进行分类。
这一层次的复习过程能让学生体验到分类结果的多样性。
通过以上的复习设计,使学生会用简单的统计表、象形统计图来呈现整理的结果,并培养学生从多角度、多层次、多方位地看待事物的意识。
课前准备教师准备 PPT课件学生准备不同形状的平面图形若干教学过程⊙导入新课(课件出示不同形状的平面图形)师:同学们,这些图形都是我们学过的平面图形,谁能告诉大家它们的名称?(教师指名汇报)师:同学们的记忆力真好,今天我们就利用这些平面图形来复习有关分类与整理的知识。
设计意图:通过辨认平面图形,为复习课的展开奠定基础。
⊙复习梳理1.复习按照指定的标准分类。
(课件出示教材94页3题)师:这么多不同颜色、不同形状的卡片混在一起,你们能分别按照它们的颜色和形状把它们分一分吗?(1)按照颜色分类。
师:请同学们小组合作解决,要知道每种颜色的卡片分别有多少张,应该怎么办呢?(学生小组讨论)汇报讨论结果。
方法一:先分一分,再数一数。
先按照红、绿、蓝、黄、粉五种颜色把卡片分成五类,然后数出每一类的张数。
方法二:边数边画。
学生展示画的结果:方法三:用文字方式呈现分类的结果。
红色绿色蓝色黄色粉色5张 3张 6张 2张 4张师:请根据你们用不同方法分类整理的结果,把教材94页3题(1)中的表格填写完整。
(学生自主填写表格)师:根据表格中的数据,请你提出数学问题,并自主解答。
(学生之间根据数据互相提出问题,并解答)(2)按照形状分类。
师:根据按照颜色分类的方法,请同学们按照形状对这些卡片进行分类,并自主填写教材94页3题(2)中的表格。
压轴题07 统计与概率压轴题压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-理)
压轴题07统计与概率压轴题题型/考向一:计数原理与概率题型/考向二:随机变量及其分布列题型/考向三:统计与成对数据的统计分析一、计数原理与概率热点一排列与组合解决排列、组合问题的一般步骤(1)认真审题弄清楚要做什么事情;(2)要做的事情是分步还是分类,还是分步分类同时进行,确定分多少步及多少类;(3)确定每一步或每一类是排列(有序)问题还是组合(无序)问题,元素总数是多少及取出多少元素.热点二二项式定理1.求(a+b)n的展开式中的特定项一般要应用通项公式T k+1=C k n a n-k b k(k=0,1,2,…,n).2.求两个因式积的特定项,一般对某个因式用通项公式,再结合因式相乘,分类讨论求解.3.求三项展开式的特定项,一般转化为二项式求解或用定义法.4.求解系数和问题应用赋值法.热点三概率1.古典概型的概率公式P (A )=事件A 中包含的样本点数试验的样本点总数.2.条件概率公式设A ,B 为随机事件,且P (A )>0,则P (B |A )=P (AB )P (A ).3.全概率公式设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑ni =1P (A i )P (B |A i ).○热○点○题○型一计数原理与概率一、单选题1.现将甲乙丙丁四个人全部安排到A 市、B 市、C 市三个地区工作,要求每个地区都有人去,则甲乙两个人至少有一人到A 市工作的安排种数为()A .12B .14C .18D .222.世界数学三大猜想:“费马猜想”、“四色猜想”、“哥德巴赫猜想”,其中“四色猜想”和“费马猜想”已经分别在1976年和1994年荣升为“四色定理”和“费马大定理”.281年过去了,哥德巴赫猜想仍未解决,目前最好的成果“1+2”由我国数学家陈景润在1966年取得.哥德巴赫猜想描述为:任何不小于4的偶数,都可以写成两个质数之和.在不超过17的质数中,随机选取两个不同的数,其和为奇数的概率为()A .14B .27C .13D .253.在()62x x y -+的展开式中,项7x y 的系数为()A .60B .30C .20D .60-4.在)7311⎛⋅ ⎝的展开式中,含1x 的项的系数为()A .21B .35C .48D .565.甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有,,A B C 三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A .193243B .100243C .23D .596.一袋中有大小相同的3个白球和4个红球,现从中任意取出3个球,记事件:A “3个球中至少有一个白球”,事件:B “3个球中至少有一个红球”,事件:C “3个球中有红球也有白球”,下列结论不正确的是()A .事件A 与事件B 不为互斥事件B .事件A 与事件C 不是相互独立事件C .()3031P C A =D .()()P AC P AB >7.某学校为了搞好课后服务工作,教务科组建了一批社团,学生们都能积极选择自己喜欢的社团.目前话剧社团、书法社团、摄影社团、街舞社团分别还可以再接收1名学生,恰好含甲、乙的4名同学前来教务科申请加入,按学校规定每人只能加入一个社团,则甲进街舞社团,乙进书法社团或摄影社团的概率为()A .14B .15C .16D .188.第十四届“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”分别于2023年3月5日和3月4日胜利召开,为实现新时代新征程的目标任务汇聚智慧和力量.某市计划开展“学两会,争当新时代先锋”知识竞赛活动.某单位初步推选出3名党员和5名民主党派人士,并从中随机选取4人组成代表队参赛.在代表队中既有党员又有民主党派人士的条件下,则党员甲被选中的概率为()A .12B .1115C .713D .27二、多选题9.在9x⎛+ ⎝的展开式中,下列结论正确的是()A .第6项和第7项的二项式系数相等B .奇数项的二项式系数和为256C .常数项为84D .有理项有2项10.已知()()()()()923901239252222x a a x a x a x a x -=+-+-+-++- ,则下列结论成立的是()A .20911a a a a ++++=LB .3672a =C .9012393a a a a a -+-+-= D .123912398=++++ a a a a 11.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以1A ,2A ,3A 表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是()A .()25P B =B .()1511P B A =C .事件B 与事件1A 相互独立D .1A 、2A 、3A 两两互斥12.爆竹声声辞旧岁,银花朵朵贺新春.除夕夜里小光用3D 投影为家人进行虚拟现实表演,表演分为“燃爆竹、放烟花、辞旧岁、迎新春”4个环节.小光按照以上4个环节的先后顺序进行表演,每个环节表演一次.假设各环节是否表演成功互不影响,若每个环节表演成功的概率均为34,则()A .事件“成功表演燃爆竹环节”与事件“成功表演辞旧岁环节”互斥B .“放烟花”、“迎新春”环节均表演成功的概率为916C .表演成功的环节个数的期望为3D .在表演成功的环节恰为3个的条件下“迎新春”环节表演成功的概率为34二、随机变量及其分布列热点一分布列的性质及应用离散型随机变量X 的分布列为X x 1x 2…x i …x n Pp 1p 2…p i…p n则(1)p i ≥0,i =1,2,…,n .(2)p 1+p 2+…+p n =1.(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n .(4)D (X )=∑ni =1[x i -E (X )]2p i .(5)若Y =aX +b ,则E (Y )=aE (X )+b ,D (Y )=a 2D (X ).热点二随机变量的分布列1.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .E (X )=np ,D (X )=np (1-p ).2.超几何分布一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -k N -M C n N,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M },E (X )=n ·M N .热点三正态分布解决正态分布问题的三个关键点(1)对称轴x =μ.(2)样本标准差σ.(3)分布区间:利用3σ原则求概率时,要注意利用μ,σ分布区间的特征把所求的范围转化为3σ的特殊区间.○热○点○题○型二随机变量及其分布列一、单选题1.某班级有50名学生,期末考试数学成绩服从正态分布()2120,N σ,已(140)0.2P X >=,则[100,140]X ∈的学生人数为()A .5B .10C .20D .302.在某个独立重复实验中,事件A ,B 相互独立,且在一次实验中,事件A 发生的概率为p ,事件B 发生的概率为1p -,其中()0,1p ∈.若进行n 次实验,记事件A 发生的次数为X ,事件B 发生的次数为Y ,事件AB 发生的次数为Z ,则下列说法正确的是()A .()()()1pE X p E Y =-B .()()()1p D X pD Y -=C .()()E Z D Y =D .()()()2D Z D X D Y=⋅⎡⎤⎣⎦3.新能源汽车具有零排放、噪声小、能源利用率高等特点,近年来备受青睐.某新能源汽车制造企业为调查其旗下A 型号新能源汽车的耗电量(单位:kW·h/100km )情况,随机调查得到了1200个样本,据统计该型号新能源汽车的耗电量2(13,)N ξσ ,若()12140.7P ξ<<=,则样本中耗电量不小于14kW h /100km ⋅的汽车大约有()A .180辆B .360辆C .600辆D .840辆4.设()()221122~,~X N Y N μσμσ,这两个正态分布密度曲线如图所示.下列结论中正确的是()A .对任意实数t ,()()P X t P Y t ≥≥≥B .对任意实数t ,()()P X t P Y t ≤≥≤C .()()21P Y P Y μμ≥≥≥D .()()21P X P X σσ≤≤≤5.下列命题错误..的是()A .两个随机变量的线性相关性越强,相关系数的绝对值越接近于1B .设()21N ξσ~,,且(0)0.2P ξ<=,则(12)0.2P ξ<<=C .线性回归直线ˆˆˆybx a =+一定经过样本点的中心(),x y D .随机变量()B n p ξ~,,若()()3020E D ξξ==,,则90n =6.某地区有20000名考生参加了高三第二次调研考试.经过数据分析,数学成绩X 近似服从正态分布()272,8N ,则数学成绩位于[80,88]的人数约为()参考数据:()0.6827P X μσμσ-≤≤+≈,()220.9545P X μσμσ-≤≤+≈,()330.9973P X μσμσ-≤≤+≈.A .455B .2718C .6346D .95457.某种品牌手机的电池使用寿命X (单位:年)服从正态分布()()24,0N σσ>,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为()A .0.9B .0.7C .0.3D .0.18.法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是1000g ,上下浮动不超过50g .这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布.假设面包师的说法是真实的,记随机购买一个面包的质量为X ,若()2~,X N μσ,则买一个面包的质量大于900g 的概率为()(附:①随机变量η服从正态分布()2,N μσ,则()0.6827μσημσ-≤≤+=,(22)0.9545P μσημσ-≤≤+=,(33)0.9973P μσημσ-≤≤+=;)A .0.84135B .0.97225C .0.97725D .0.99865二、多选题9.已知随机变量X 服从二项分布29,3B ⎛⎫ ⎪⎝⎭,随机变量21Y X =+,则下列说法正确的是()A .随机变量X 的数学期望()6E X =B .512(2)93P X ⎛⎫==⨯ ⎪⎝⎭C .随机变量X 的方差()2D X =D .随机变量Y 的方差()4D Y =10.随机变量()2,X N μσ 且()20.5P X ≤=,随机变量()3,Y B p ,若()()E Y E X =,则()A .2μ=B .()22D x σ=C .23p =D .()36D Y =11.李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,则()A .P (X >32)>P (Y >32)B .P (X ≤36)=P (Y ≤36)C .李明计划7:34前到校,应选择坐公交车D .李明计划7:40前到校,应选择骑自行车12.假设某厂有两条包装食盐的生产线甲、乙,生产线甲正常情况下生产出来的包装食盐质量服从正态分布()2500,5N (单位:g ),生产线乙正常情况下生产出来包装食盐质量为x g ,随机变量x 服从正态密度函数()2200(1000)x x ϕ--=,其中x ∈R ,则()附:随机变量2(,)N ξμσ-,则()0.683P μσξμσ-<<+=,()220.954P μσξμσ-<<+=,()330.997P μσξμσ-<<+=.A .正常情况下,从生产线甲任意抽取一包食盐,质量小于485g 的概率为0.15%B .生产线乙的食盐质量()2~1000,100x N C .生产线乙产出的包装食盐一定比生产线甲产出的包装食盐质量重D .生产线甲上的检测员某天随机抽取两包食盐,称得其质量均大于515g ,于是判断出该生产线出现异常是合理的三、解答题13.学校要从12名候选人中选4名同学组成学生会,已知有4名候选人来自甲班,假设每名候选人都有相同的机会被选到.(1)求恰有1名甲班的候选人被选中的概率;(2)用X 表示选中的候选人中来自甲班的人数,求()3P X ≥;(3)求(2)中X 的分布列及数学期望.14.网购生鲜蔬菜成为很多家庭日常消费的新选择.某小区物业对本小区三月份参与网购生鲜蔬菜的家庭的网购次数进行调查,从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取10户,分别记为A 组和B 组,这20户家庭三月份网购生鲜蔬菜的次数如下图:假设用频率估计概率,且各户网购生鲜蔬菜的情况互不影响·(1)从一单元参与网购生鲜蔬菜的家庭中随机抽取1户,估计该户三月份网购生鲜蔬菜次数大于20的概率;(2)从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取1户,记这两户中三月份网购生鲜蔬菜次数大于20的户数为X ,估计X 的数学期望()E X ;(3)从A 组和B 组中分别随机抽取2户家庭,记1ξ为A 组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,2ξ为B 组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,比较方差()1D ξ与()2D ξ的大小.(结论不要求证明)15.2022世界机器人大会在北京召开,来自各个领域的参展机器人给参观者带来了不同的高科技体验.现有A ,B 两种型号的小型家庭生活废品处理机器人,其工作程序依次分为三个步骤:分捡,归类,处理,每个步骤完成后进入下一步骤.若分捡步骤完成并且效能达到95%及以上,则该步骤得分为20分,若归类步骤完成并且效能达到95%及以上,则该步骤得分为30分,若处理步骤完成并且效能达到95%及以上,则该步骤得分为50分.若各步骤完成但效能没有达到95%,则该步骤得分为0分,在第三个步骤完成后,机器人停止工作.现已知A 款机器人完成各步骤且效能达到95%及以上的概率依次为45,35,13,B 款机器人完成各步骤且效能达到95%及以上的概率均为12,每款机器人完成每个步骤且效能是否达到95%及以上都相互独立.(1)求B 款机器人只有一个步骤的效能达到95%及以上的概率;(2)若准备在A ,B 两种型号的小型家庭生活废品处理机器人中选择一款机器人,从最后总得分的期望角度来分析,你会选择哪一种型号?三、统计与成对数据的统计分析热点一用样本估计总体1.频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.在频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数.(1)最高的小长方形底边中点的横坐标即众数.(2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.热点二回归分析求经验回归方程的步骤(1)依据成对样本数据画出散点图,确定两个变量具有线性相关关系(有时可省略).(2)计算出x -,y -,∑n i =1x 2i ,∑n i =1x i y i 的值.(3)计算a ^,b ^.(4)写出经验回归方程.热点三独立性检验独立性检验的一般步骤(1)根据样本数据列2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.χ2越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.○热○点○题○型三统计与成对数据的统计分析一、单选题1.已知一组数据1231,31,,31n x x x --- 的方差为1,则数据12,,,n x x x 的方差为()A .3B .1C .13D .192.某企业为了解员工身体健康情况,采用分层抽样的方法从该企业的营销部门和研发部门抽取部分员工体检,已知该企业营销部门和研发部门的员工人数之比是4:1且被抽到参加体检的员工中,营销部门的人数比研发部门的人数多72,则参加体检的人数是()A .90B .96C .102D .1203.某校1000名学生参加环保知识竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A .频率分布直方图中a 的值为0.004B .估计这20名学生考试成绩的第60百分位数为75C .估计这20名学生数学考试成绩的众数为80D .估计总体中成绩落在[)60,70内的学生人数为1504.如图,一组数据123910,,,,,x x x x x ⋅⋅⋅,的平均数为5,方差为21s ,去除9x ,10x 这两个数据后,平均数为x ,方差为22s ,则()A .5x >,2212s s >B .5x <,2212s s <C .5x =,2212s s <D .5x =,2212s s >5.某市质量检测部门从辖区内甲、乙两个地区的食品生产企业中分别随机抽取9家企业,根据食品安全管理考核指标对抽到的企业进行考核,并将各企业考核得分整理成如下的茎叶图.由茎叶图所给信息,可判断以下结论中正确是()A .若2a =,则甲地区考核得分的极差大于乙地区考核得分的极差B .若4a =,则甲地区考核得分的平均数小于乙地区考核得分的平均数C .若5a =,则甲地区考核得分的方差小于乙地区考核得分的方差D .若6a =,则甲地区考核得分的中位数小于乙地区考核得分的中位数6.下列关于统计概率知识的判断,正确的是()A .将总体划分为2层,通过分层随机抽样,得到两层的样本平均数和样本方差分别为12,x x 和2212,s s ,且已知12x x =,则总体方差()2221212s s s =+B .在研究成对数据的相关关系时,相关关系越强,相关系数r 越接近于1C .已知随机变量X 服从正态分布()2,N μσ,若()()151P X P X -+= ,则2μ=D .按从小到大顺序排列的两组数据:甲组:27,30,37,,40,50m ;乙组:24,,33,44,48,52n ,若这两组数据的第30百分位数、第50百分位数都分别对应相等,则67m n +=7.若数据1x ,2x ,…,10x 的平均数为2,方差为3,则下列说法错误的是()A .数据141x +,241x +,…,1041x +的平均数为9B .10120i i x ==∑C .数据13x ,23x ,…,103x 的方差为D .102170i i x ==∑8.在研究急刹车的停车距离问题时,通常假定停车距离等于反应距离(1d ,单位:m )与制动距离(2d ,单位:m )之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v (单位:km/h ).根据实验数据可以推测,下面四组函数中最适合描述1d ,2d 与v 的函数关系的是()A .1d v α=,2d =B .1d v α=,22d v β=C .1d =,2d vβ=D .1d =,22d v β=二、多选题9.下列说法正确的是()A .数据5,7,8,11,10,15,20的中位数为11B .一组数据7,8,8,9,11,13,15,17,20,22的第80百分位数为18.5C .从1,2,3,4,5中任取3个不同的数,则这3个数能构成直角三角形三边长的概率为0.1D .设随机事件A 和B ,已知0.8)PA =(,0.6|PB A =(),(|)0.1P B A =,则()0.5P B =10.为了加强学生对党的二十大精神的学习,某大学开展了形式灵活的学习活动.随后组织该校大一学生参加二十大知识测试(满分:100分),随机抽取200名学生的测试成绩,这200名学生的成绩都在区间[]60,100内,将其分成5组:[)60,68,[)68,76,[)76,84,[)84,92,[]92,100,得到如下频率分布直方图.根据此频率分布直方图,视频率为概率,同一组中的数据用该组区间的中点值为代表,则()A.该校学生测试成绩不低于76分的学生比例估计为76%B.该校学生测试成绩的中位数估计值为80C.该校学生测试成绩的平均数大于学生测试成绩的众数D.从该校学生中随机抽取2人,则这2人的成绩不低于84分的概率估计值为0.1611.随着生活水平的不断提高,旅游已经成为人们生活的一部分.某地旅游部门从2022年到该地旅游的游客中随机抽取10000位游客进行调查,得到各年龄段游客的人数和旅游方式,如图所示,则()A.估计2022年到该地旅游的游客中中年人和青年人占游客总人数的80%B.估计2022年到该地旅游的游客中选择自助游的游客占游客总人数的26.25%C.估计2022年到该地旅游且选择自助游的游客中青年人超过一半D.估计2022年到该地旅游的游客中选择自助游的青年人比到该地旅游的老年人还要多12.如图为国家统计局于2022年12月27日发布的有关数据,则()A.营业收入增速的中位数为9.1%B.营业收入增速极差为13.6%C.利润总额增速越来越小D.利润总额增速的平均数大于6%三、解答题13.为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[)[)[)[)[]0,20,20,40,40,60,60,80,80,100分组,绘制频率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立.抗体指标值合计小于60不小于60有抗体没有抗体合计(1)填写下面的2×2列联表,并根据列联表及0.05a =的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(单位:只)(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p ;(ii )以(i )中确定的概率p 作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n 个人注射2次疫苗后产生抗体的数量为随机变量X .试验后统计数据显示,当X =99时,P (X )取最大值,求参加人体接种试验的人数n .参考公式:22()()()()()n ad bc x a b c d a c b d -=++++(其中n a b c d =+++为样本容量)20()P x k ≥0.500.400.250.150.1000.0500.0250k 0.4550.7081.3232.0722.7063.8415.02414.某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910平均值根部横截面积ix 0.040.060.040.080.080.05a bc 0.070.06材积量iy 0.250.410.220.540.530.340.350.390.430.440.39其中a ,b ,c 为等差数列,并计算得:610.146i i i x y ==∑0.044≈,0.303≈.(1)求b 的值;(2)若选取前6个样本号对应数据,判断这种树木的根部横截面积与材积量是否具有很强的线性相关性,并求该林区这种树木的根部横截面积与材积量的回归直线方程(若0.250.75r ≤≤,则认为两个变量的线性相关性一般;若0.75r>,则认为两个变量的线性相关性很强);附:相关系数niix ynx yr -=∑回归直线y bx a =+$$$中,1221niii nii x ynx y b xnx==-=-∑∑ ,a y bx =-$$.(3)根据回归直线方程估计a ,c 的值(精确到0.01).。
第二层提升篇 专题四第1讲 统计、统计案例
专题四统计与概率第1讲统计、统计案例[全国卷3年考情分析](1)统计与统计案例在选择题或填空题中的命题热点主要集中在随机抽样、用样本估计总体以及变量间的相关性判断等,难度较低,常出现在2~4题的位置.(2)统计与统计案例在解答题中多出现在第17、18或19题位置,考查茎叶图、直方图、数字特征及统计案例,多以计算为主.[例1](1)某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:电视台为了了解观众的具体想法和意见,打算从中抽选100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽选的人数分别为()A.25,25,25,25B.48,72,64,16C.20,40,30,10D.24,36,32,8(2)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A.7B.9C.10D.15[解析] (1)因为抽样比为10020 000=1200,所以每类人中应抽选的人数分别为4 800×1200=24,7 200×1200=36,6 400×1200=32,1 600×1200=8.故选D.(2)由题意知应将960人分成32组,每组30人.设每组选出的人的号码为30k +9(k =0,1,…,31).由451≤30k +9≤750,解得44230≤k ≤74130,又k ∈N ,故k =15,16,…,24,共10人.[答案] (1)D (2)C[解题方略] 系统抽样和分层抽样中的计算 (1)系统抽样①总体容量为N ,样本容量为n ,则要将总体均分成n 组,每组Nn 个(有零头时要先去掉).②若第一组抽到编号为k 的个体,则以后各组中抽取的个体编号依次为k +Nn ,…,k +(n -1)N n.(2)分层抽样按比例抽样,计算的主要依据是:各层抽取的数量之比=总体中各层的数量之比.[跟踪训练]1.(2019·全国卷Ⅰ)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生解析:选C 根据题意,系统抽样是等距抽样,所以抽样间隔为1 000100=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C.2.某中学有高中生3 000人,初中生2 000人,男、女生所占的比例如图所示.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是( )A.12B.15C.20D.21解析:选A 因为抽样比为213 000×70%=1100,所以从初中生中抽取的男生人数为 2000×60%×1100=12.故选A.[例2] (2019·全国卷Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:74≈8.602.[解] (1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y =1100×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s 2=1100 i =15n i (y i -y )2 =1100×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7] =0.029 6,s =0.029 6=0.02×74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.[解题方略]1.方差的计算与含义(1)计算:计算方差首先要计算平均数,然后再按照方差的计算公式进行计算. (2)含义:方差是描述一个样本和总体的波动大小的特征数,方差大说明波动大. 2.从频率分布直方图中得出有关数据的方法[跟踪训练]1.(2019·石家庄市质量检测)甲、乙两人8次测评成绩的茎叶图如图,由茎叶图知甲的成绩的平均数和乙的成绩的中位数分别是( )A.23,22B.23,22.5C.21,22D.21,22.5解析:选D 由茎叶图可得甲的成绩的平均数为10+11+14+21+23+23+32+348=21.将乙的成绩按从小到大的顺序排列,中间的两个成绩分别是22,23,所以乙的成绩的中位数为22+232=22.5.2.为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量的数据(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a的值;(2)估计这种植物果实重量的平均数x和方差s2(同一组中的数据用该组区间的中点值作代表).解:(1)由5×(0.020+0.040+0.075+a+0.015)=1,得a=0.050.(2)各组中点值和相应的频率依次为x=30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40,s2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.题型一回归分析在实际问题中的应用[例3]某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度y(单位:cm)的情况如表1:该省某市2019年11月份AQI指数频数分布如表2:(1)设x =M100,若x 与y 之间是线性关系,试根据表1的数据求出y 关于x 的线性回归方程.(2)小李在该市开了一家洗车店,洗车店每天的平均收入与AQI 指数存在相关关系如表3:根据表3估计小李的洗车店2019年11月份每天的平均收入.附参考公式:y ^=b ^x +a ^,其中b ^=,a ^=y -b ^x .[解] (1)x =14(9+7+3+1)=5,y =14(0.5+3.5+6.5+9.5)=5, ∑4,i =1x i y i =9×0.5+7×3.5+3×6.5+1×9.5=58.∑4,i =1x 2i =92+72+32+12=140,所以b ^=58-4×5×5140-4×52=-2120,a ^=5-⎝⎛⎭⎫-2120×5=414, 所以y 关于x 的线性回归方程为y ^=-2120x +414.(2)根据表3可知,该月30天中有3天每天亏损2 000元,有6天每天亏损1 000元,有12天每天收入2 000元,有6天每天收入6 000元,有3天每天收入8 000元,估计小李洗车店2019年11月份每天的平均收入为130×(-2 000×3-1 000×6+2 000×12+6 000×6+8 000×3)=2 400(元).[解题方略] 求回归直线方程的方法(1)若所求的回归直线方程是在选择题中,常利用回归直线y ^=b ^x +a ^必经过样本点的中心(x ,y )快速选择.(2)若所求的回归直线方程是在解答题中,则求回归直线方程的一般步骤为:题型二 独立性检验在实际问题中的应用[例4] (2019·全国卷Ⅰ)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).[解] (1)由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K 2的观测值k =100×(40×20-30×10)250×50×70×30≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.[解题方略] 独立性检验的一般步骤 (1)根据样本数据制成2×2列联表;(2)根据公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d )计算出K 2的观测值;(3)比较K 2的观测值与临界值的大小,作出统计推断.[跟踪训练]1.某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:则认为“是否同意限定区域停车与家长的性别有关”的把握约为( ) A.0.1% B.0.5% C.99.5%D.99.9%附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解析:选C 因为K 2=50×(20×15-5×10)225×25×30×20≈8.333>7.879,所以约有99.5%的把握认为“是否同意限定区域停车与家长的性别有关”.2.2019年秋新学期开始,某市对全市中小学学生进行健康状况抽样调查,其中在某校调查得到了该校前五个年级近视率y 的数据如下表:根据前五个年级的数据,利用最小二乘法求出y 关于x 的线性回归方程,并根据方程预测六年级学生的近视率.附:回归直线y ^=b ^x +a ^的斜率和截距的最小二乘法估计公式分别为得b ^=2.76-2.2555-45=0.051,a ^=0.15-0.051×3=-0.003,得线性回归方程为y ^=0.051x -0.003.当x =6时,代入得y ^=0.051×6-0.003=0.303, 所以六年级学生的近视率在0.303左右.数学建模——回归分析问题的求解[典例] (2019·合肥市第二次质量检测)为了了解A 地区足球特色学校的发展状况,某调查机构统计得到如下数据:(1)根据表中数据,计算y 与x 的相关系数r ,并说明y 与x 的线性相关性强弱(已知:0.75≤|r |≤1,则认为y 与x 线性相关性很强;0.3≤|r |<0.75,则认为y 与x 线性相关性一般;|r |≤0.25,则认为y 与x 线性相关性较弱);(2)求y 关于x 的线性回归方程,并预测A 地区2019年足球特色学校的个数(精确到个).[解] (1)x =2 016,y =1,r =∑i =15(x i -x )(y i -y )∑i =15(x i -x )2∑i =15(y i -y )2=(-2)×(-0.7)+(-1)×(-0.4)+1×0.4+2×0.710× 1.3= 3.63.605 6=0.998 4>0.75, ∴y 与x 线性相关性很强.a ^=y -b ^x =1-0.36×2 016=-724.76, ∴y 关于x 的线性回归方程是y ^=0.36x -724.76. 当x =2 019时,y ^=0.36×2 019-724.76=2.08, 即A 地区2019年足球特色学校约有208个. [素养通路]本题是典型的回归分析问题,在实际问题中收集数据,画散点图,用线性回归模型拟合变量关系,再用最小二乘法求出回归方程,进而用回归模型对实际问题进行预测,考查了数学建模这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.利用系统抽样法从编号分别为1,2,3,…,80的80件不同产品中抽出一个容量为16的样本,如果抽出的产品中有一件产品的编号为13,则抽到产品的最大编号为( )A.73B.78C.77D.76解析:选B 样本的分段间隔为8016=5,所以13号在第三组,则最大的编号为13+(16-3)×5=78.故选B.2.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数B.平均数C.方差D.极差解析:选A 中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.3.(2019·广东六校第一次联考)某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y (单位:kW ·h)与气温x (单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了如下对照表:由表中数据得线性回归方程:y ^=-2x +60,则a 的值为( ) A.48 B.62 C.64D.68解析:选C 由题意,得x =17+14+10-14=10,y =24+34+38+a 4=96+a4.样本点的中心(x ,y )在回归直线y ^=-2x +60上,代入线性回归方程可得96+a 4=-20+60,解得a =64,故选C.4.如图是民航部门统计的2019年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )A.深圳的变化幅度最小,北京的平均价格最高B.深圳和厦门的春运期间往返机票价格同去年相比有所下降C.平均价格从高到低居于前三位的城市为北京、深圳、广州D.平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门解析:选D 由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,故A 正确;由图可知深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,故B 正确;由图可知条形图由高到低居于前三位的城市为北京、深圳和广州,故C 正确;由图可知平均价格的涨幅由高到低分别为天津、西安和南京,故D 错误,选D.5.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n },若a 3=8,且a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是( )A.13,12B.13,13C.12,13D.13,14解析:选B 设等差数列{a n }的公差为d (d ≠0),a 3=8,a 1a 7=a 23=64,(8-2d )(8+4d )=64,即2d -d 2=0,又d ≠0,故d =2,故样本数据为:4,6,8,10,12,14,16,18,20,22,平均数为(4+22)×510=13,中位数为12+142=13.6.(2019·成都市第二次诊断性检测)为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分,制成如图所示的茎叶图.有下列结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数; ②甲最近五场比赛得分的平均数低于乙最近五场比赛得分的平均数; ③从最近五场比赛的得分看,乙比甲更稳定; ④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为( ) A.①③ B.①④ C.②③D.②④解析:选C 对于①,甲得分的中位数为29,乙得分的中位数为30,错误; 对于②,甲得分的平均数为15×(25+28+29+31+32)=29,乙得分的平均数为15×(28+29+30+31+32)=30,正确;对于③,甲得分的方差为15×[(25-29)2+(28-29)2+(29-29)2+(31-29)2+(32-29)2]=15×(16+1+0+4+9)=6, 乙得分的方差为15×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=15×(4+1+0+1+4)=2,所以乙比甲更稳定,③正确,④错误.所以正确结论的编号为②③.二、填空题7.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.解析:x =10×0.97+20×0.98+10×0.9910+20+10=0.98.则经停该站高铁列车所有车次的平均正点率的估计值为0.98. 答案:0.988.(2019·安徽五校联盟第二次质检)数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为________.解析:设a 1,a 2,a 3,…,a n 的平均数为a ,则2a 1,2a 2,2a 3,…,2a n 的平均数为2a , σ2=(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n.则2a 1,2a 2,2a 3,…,2a n 的方差为(2a 1-2a )2+(2a 2-2a )2+(2a 3-2a )2+…+(2a n -2a )2n =4×(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n =4σ2.答案:4σ29.某新闻媒体为了了解观众对央视《开门大吉》节目的喜爱与性别是否有关系,随机调查了观看该节目的观众110名,得到如下的列联表:试根据样本估计总体的思想,估计在犯错误的概率不超过________的前提下(约有________的把握)认为“喜爱该节目与否和性别有关”.参考附表:⎝ ⎛⎭⎪⎫参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d解析:分析列联表中数据,可得K 2的观测值k =110×(40×30-20×20)260×50×60×50≈7.822>6.635,所以在犯错误的概率不超过0.01的前提下(有99%的把握)认为“喜爱该节目与否和性别有关”.答案:0.01 99% 三、解答题10.(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解:(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05, 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.某市教育学院从参加市级高中数学竞赛的考生中随机抽取60名学生,将其竞赛成绩(均为整数)分成六段:[40,50),[50,60),[60,70),…,[90,100],得到如图所示的频率分布直方图.(1)根据频率分布直方图,估计参加高中数学竞赛的考生的成绩的平均数、众数、中位数(小数点后保留一位有效数字);(2)用分层抽样的方法在各分数段的考生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?解:(1)由频率分布直方图可知,(0.010+0.015+0.015+a +0.025+0.005)×10=1,所以a =0.03. 所以参加高中数学竞赛的考生的成绩的平均数为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71, 成绩的众数为75.设参加高中数学竞赛的考生的成绩的中位数为x , 则0.1+0.15+0.15+(x -70)×0.03=0.5,解得x ≈73.3, 所以中位数为73.3.(2)因为各层人数分别为6,9,9,18,15,3,各层抽取比例为2060=13,所以各分数段抽取人数依次为2,3,3,6,5,1.12.(2019·沈阳市质量监测(一))某篮球运动员的投篮命中率为50%,他想提高自己的投篮水平,制定了一个夏季训练计划,为了了解训练效果,执行训练前,他统计了10场比赛的得分,计算出得分的中位数为15,平均得分为15,得分的方差为46.3.执行训练后也统计了10场比赛的得分,茎叶图如图所示:(1)请计算该篮球运动员执行训练后统计的10场比赛得分的中位数、平均得分与方差. (2)如果仅从执行训练前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?解:(1)训练后得分的中位数为14+152=14.5;平均得分为8+9+12+14+14+15+16+18+21+2310=15;方差为110[(8-15)2+(9-15)2+(12-15)2+(14-15)2+(14-15)2+(15-15)2+(16-15)2+(18-15)2+(21-15)2+(23-15)2]=20.6.(2)尽管中位数训练后比训练前稍小,但平均得分一样,训练后方差20.6小于训练前方差46.3,说明训练后得分稳定性提高了(阐述观点合理即可),这是投篮水平提高的表现.故此训练计划对该篮球运动员的投篮水平的提高有帮助.B 组——大题专攻强化练1.(2019·武汉市调研测试)一个工厂在某年里连续10个月每月产品的总成本y (万元)与该月产量x (万件)之间有如下一组数据:(1)通过画散点图,发现可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明. (2)①建立月总成本y 与月产量x 之间的回归方程;②通过建立的y 关于x 的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:错误!i =27.31,∑i =110x 2i -10x 2≈0.850,∑i =110y 2i -10y 2≈1.042,b ^≈1.223.②参考公式:相关系数回归直线y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为:解:(1)由已知条件得,r =b ^·∑i =110x 2i -10x 2∑i =110y 2i -10y2,∴r =1.223×0.8501.042≈0.998,这说明y 与x 正相关,且相关性很强. (2)①由已知求得x =1.445,y =2.731, a ^=y -b ^x =2.731-1.223×1.445≈0.964, ∴所求回归直线方程为y ^=1.223x +0.964.②当x =1.98时,y=1.223×1.98+0.964≈3.386(万元), 此时产品的总成本约为3.386万元.2.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50 kg 的概率并估计新养殖法的箱产量的平均值; (2)填写下面的2×2列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62,所以旧养殖法的箱产量低于50 kg 的概率估计值为0.62;新养殖法的箱产量的平均值为37.5×0.004×5+42.5×0.020×5+47.5×0.044×5+52.5×0.068×5+57.5×0.046×5+62.5×0.010×5+67.5×0.008×5=52.35.(2)根据箱产量的频率分布直方图得2×2列联表如下:由表中数据得K 2=200×(62×66-34×38)2100×100×96×104≈15.705,由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.3.(2019·长沙市统一模拟考试)某互联网公司为了确定下一季度的前期广告投入计划,收集了近6个月广告投入量x (单位:万元)和收益y (单位:万元)的数据如下表:他们用两种模型①y =bx +a ,②y =a e bx 分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由. (2)残差绝对值大于2的数据被认为是异常数据,需要剔除:(ⅰ)剔除异常数据后,求出(1)中所选模型的回归方程;(ⅱ)广告投入量x =18时,(1)中所选模型收益的预报值是多少?附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为:解:(1)应该选择模型①,因为模型①的残差点比较均匀地落在水平的带状区域中,且模型①的带状区域比模型②的带状区域窄,所以模型①的拟合精度高,回归方程的预报精度高.(2)(ⅰ)剔除异常数据,即3月份的数据后,得 x =15×(7×6-6)=7.2, y =15×(30×6-31.8)=29.64.(ⅱ)把x =18代入(ⅰ)中所求回归方程得y ^=3×18+8.04=62.04,故预报值为62.04万元. 4.每年10月中上旬是小麦的最佳种植时间,但小麦的发芽会受到土壤、气候等多方面因素的影响.某科技兴趣小组为了解昼夜温差的大小与小麦发芽的多少之间的关系,在不同的温差下统计了100颗小麦种子的发芽数,得到了如下数据:(1)请根据统计的最后三组数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(2)若由(1)中的线性回归方程得到的估计值与前两组数据的实际值误差均不超过两颗,则认为线性回归方程是可靠的,试判断(1)中得到的线性回归方程是否可靠;(3)若100颗小麦种子的发芽数为n 颗,则记n %的发芽率,当发芽率为n %时,平均每亩地的收益为10n 元,某农场有土地10万亩,小麦种植期间昼夜温差大约为9 ℃,根据(1)中得到的线性回归方程估计该农场种植小麦所获得的收益.附:在线性回归方程y ^=b ^x +a ^中,b ^=解:(1)∵x =11+13+123=12,y =85+90+863=87,∴b ^=11×85+13×90+12×86-3×12×87112+132+122-3×122=52,由b ^x +a ^=y ,即52×12+a ^=87,得a ^=57,∴线性回归方程为y ^=52x +57.(2)当x =8时,y ^=52×8+57=77,与实际值79比较,误差没有超过两颗;当x =10时,y ^=52×10+57=82,与实际值81比较,误差也没有超过两颗. 所以(1)中得到的线性回归方程y ^=52x +57是可靠的. (3)由y ^=52x +57得,当x =9时,y ^=79.5,即每亩地的收益大约为795元,所以该农场种植小麦所获得的收益大约为7 950万元.。
高考全国卷中概率与统计问题的考向分析
ʏ湖南省郴州市第一中学 李 强概率是高考必考内容,着重考查同学们的阅读能力与获取信息能力,考查热点问题主要有古典概型,互斥事件,对立事件,相互独立事件的概率求法,条件概率,离散型随机变量的分布列,二项分布,超几何分布,正态分布等㊂近几年的概率与统计试题,大多以现实生活为背景,注重知识的综合应用,作为考查实践能力的重要载体,命题者要求考生会收集㊁整理㊁分析数据,能从大量数据中提取有用的信息,建立数学模型,从而利用数学原理与数学工具解决实际问题㊂考查同学们的逻辑推理㊁数据分析㊁数学运算㊁数学建模等核心素养㊂考向一㊁古典概型的概率计算与相关概念例1 (多选题)如图1所示,是一个3ˑ3九宫格,现从这9个数字中随机挑出3个图1不同的数字,记事件A 1:恰好挑出的是1,2,3;记事件A 2:恰好挑出的是1,4,7;记事件A 3:挑出的数字里含有数字1㊂下列说法正确的是( )㊂A.事件A 1,A 2是互斥事件B .事件A 1,A 2是独立事件C .P (A 1|A 3)=P (A 2|A 3)D .P (A 3)=P (A 1)+P (A 2)解析:对于选项A :挑出的是1㊁2㊁3和挑出的是1㊁4㊁7两个事件不可能同时发生,故A 正确;对于选项B :事件A 1,A 2不是独立事件,故B 错误;对于选项C :P (A 1|A 3)=P (A 1A 3)P (A 3)=1C 39P (A 3),P (A 2|A 3)=P (A 2A 3)P (A 3)=1C 39P (A 3),所以P (A 1|A 3)=P (A 2|A 3),故C 正确;对于选项D :因为P (A 3)=C 11C 28C 39,P (A 1)=1C 39,P (A 2)=1C 39,所以P (A 3)ʂP (A 1)+P (A 2),故D 错误㊂故选A C ㊂评注:本题以古典概型概率的计算,以及概率中互斥事件㊁独立事件的概念为载体,结合排列组合有关知识,解答的关键是对概念的清晰理解和条件概率公式的掌握,主要考查同学们的运算求解与推理论证能力㊂考向二㊁条件概率公式㊁全概率公式例2 (多选题)已知编号为1,2,3的三个盒子,其中1号盒内装有两个1号球,一个2号球和一个3号球;2号盒内装有两个1号球,一个3号球;3号盒内装有三个1号球,两个2号球㊂若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则下列说法正确的是( )㊂A.如果将10个相同的小球放入这三个盒子内,允许有空盒子,则不同的放法有36种B .第二次抽到3号球的概率为1148C .如果第二次抽到的是3号球,则它来自1号盒子的概率最大D .在第一次抽到3号球的条件下,第二次抽到2号球的概率为13解析:对于选项A :把10个小球和三个盒子排成一列有12个空(不含两端),再用2根棍插入其中两个空,所以不同的放法有C 212=66(种),故A 错误;对于选项B :设A 1表示第一次抽取到1号球,A 2表示第一次抽取到2号球,A 3表示第一次抽取到3号球,所以P (A 1)=12,P (A 2)=P (A 3)=14,设B 3表示第二次抽到3号球,则P (B 3)=P (A 1B 3)+P (A 2B 3)+P (A 3B 3)=P (B 3|A 1)P (A 1)+P (B 3|A 2)P (A 2)+P (B 3|A 3)P (A 3),而P (B 3|A 1)=P (B 3|A 2)=14,P (B 3|A 3)=16,所以P (B 3)=14ˑ12+14ˑ14+16ˑ14=1148,故B 正确;对于选项C :第二次抽到的是3号球来自1号盒子的概率为P (A 1|B 3)=P (B 3|A 1)P (A 1)P (B 3)=611,第二次抽到的是3号球来自2号盒子的概率为P (A 2|B 3)=P (B 3|A 2)P (A 2)P (B 3)=311,第二次抽到的是3号球来自3号盒子的概率为P (A 3|B 3)=P (B 3|A 3)P (A 3)P (B 3)=211,所以第二次抽到的是3号球来自1号盒子的概率最大,故C 正确;对于选项D :设B 2表示第二次抽到2号球,则在第一次抽到3号球的条件下,第二次抽到2号球的概率为P (B 2|A 3)=13,故D 正确㊂故选B C D ㊂评注:本题以最常见的取球游戏为出发点,重点考查条件概率的计算,结合排列组合知识进行求解,具有很强的综合性㊂解答的关键是重点理解取球的游戏规则,分情况讨论,求出对应的条件概率,主要考查同学们的逻辑推理与数学运算等核心素养㊂考向三、离散型随机变量的分布列例3 (江西省南昌市2024届高三摸底测试)迎 七一 党建知识竞赛,竞赛有两关,某学校代表队有四名队员,这四名队员若有机会参加这两关比赛,通过的概率如表1所示:表1队员第一关第二关甲3423乙3423丙2312丁2312比赛规则是:从四名队员中随机选出两名队员分别参加比赛,每个队员通过第一关可以得60分,且有资格参加第二关比赛,若没有通过,得0分且没有资格参加第二关比赛;若通过第二关可以再得40分;若没有通过,不再加分㊂两名参赛队员所得总分为该代表队的得分,代表队得分不低于160分,可以获得 党建优秀代表队 称号㊂假设两名参赛队员不相互影响㊂(1)求这次比赛中,该校获得 党建优秀代表队 称号的概率;(2)若这次比赛中,选中了甲乙两名队员参赛,记该代表队的得分为X ,求随机变量X 的分布列和期望㊂解析:(1)记选出甲乙两名队员参赛为事件A 1,选出甲乙㊁丙丁各一人参赛为事件A 2,选出丙丁两名队员参赛为事件A 3,获得 党建优秀代表队 称号为事件B ㊂所以P (A 1)=C 22C 24=16;P (A 2)=C 12C 12C 24=23;P (A 3)=C 22C 24=16㊂所以P (B )=P (A 1B +A 2B +A 3B )=16ˑ342ˑ232+2ˑ23ˑ13+23ˑ34ˑ23ˑ23ˑ12+13ˑ12+23ˑ12+16ˑ23 2ˑ12 2+2ˑ12ˑ12 =112+518+118=512㊂(2)由题意知X 的所有可能取值为0,60,100,120,160,200㊂则P (X =0)=142=116;P (X =60)=2ˑ34ˑ13ˑ14=18;P (X =100)=2ˑ34ˑ23ˑ14=14;P (X =120)=342ˑ132=116;P (X =160)=34 2ˑ2ˑ23ˑ13=14;P (X =200)=342ˑ232=14㊂所以随机变量X 的分布列为表2:表2X 060100120160200P11618141161414所以E (X )=0ˑ116+60ˑ18+100ˑ14+120ˑ116+160ˑ14+200ˑ14=130㊂评注:本题以离散型随机变量的分布列为载体,以现实生活中知识竞赛为素材,提出概率的实际应用问题,具有较强的综合性,需要同学们具有较强的逻辑推理和数学运算能力㊂本题解答的关键是合理的分类讨论,并能准确运算㊂考向四、二项分布与正态分布例4 (山东省临沂市2024届高三开学摸底联考)在 飞彩镌流年 文艺汇演中,诸位参赛者一展风采,奉上了一场舞与乐的盛宴㊂现从2000位参赛者中随机抽取40位幸运嘉宾,统计他们的年龄数据,得样本平均数μ=45.75㊂(1)若所有参赛者的年龄X 服从正态分布N (μ,15.752),请估计参赛者的年龄在30岁以上的人数㊂(2)若该文艺汇演对所有参赛者的表演作品进行评级,每位参赛者只有一个表演作品且每位参赛者的作品有a %(0<a <100)的概率被评为A 类,(1-a %)的概率被评为B 类,每位参赛者作品的评级结果相互独立㊂记上述40位幸运嘉宾的作品中恰有2份A 类作品的概率为p (a ),求p (a )的极大值点a 0㊂(3)以(2)中确定的a 0作为a 的值,记上述幸运嘉宾的作品中的A 类作品数为Y ,若对这些幸运嘉宾进行颁奖,现有两种颁奖方式:甲:A 类作品参赛者获得1000元现金,B 类作品参赛者获得100元现金;乙:A 类作品参赛者获得3000元现金,B类作品参赛者不获得现金奖励㊂根据奖金期望判断主办方选择何种颁奖方式,成本可能更低㊂附:若X ~N (μ,σ2),则P {|X -μ|<σ}=0.6827㊂解析:(1)因为X ~N (45.75,15.752),所以P (X >30)=0.5+12P (|X -μ|<σ)=0.84135㊂所以参赛者的年龄在30岁以上的人数约为2000ˑ0.84135ʈ1683(人)㊂(2)记x =a %,0<x <1,p (a )=f (x ),设a 0=100x 0,其中x 0为f (x )的极大值点㊂依题意可得f (x )=C 240x 2(1-x )38,则f '(x )=C 240[2x (1-x )38-38x 2(1-x )37]=2C 240x (1-x )37(1-20x )㊂令f '(x )=0,又0<x <1,得x 0=120㊂所以当0<x <120时,f'(x )>0;当120<x <1时,f'(x )<0㊂所以f (x )在0,120上单调递增,在120,1上单调递减㊂所以p (a )在(0,5)上单调递增,在(5,100)上单调递减㊂故p (a )的极大值点a 0=5㊂(3)由题意知Y ~B 40,120,E (Y )=40ˑ120=2㊂记Z 1㊁Z 2分别为甲㊁乙两种颁奖方式各自所发奖金总额㊂因为Z 1=1000ˑY +100ˑ(40-Y )=4000+900Y ,Z 2=3000Y ,所以E (Z 1)=4000+900E (Y )=4000+900ˑ2=5800,E (Z 2)=3000E (Y )=6000,所以E (Z 1)<E (Z 2)㊂故选择甲种颁奖方式成本更低㊂评注:本题以正态分布与二项分布为载体,综合函数与导数知识,结合生活中的具体事例,具有较强的综合性㊂第一问是已知具体的正态分布,求指定区间的概率,结合正态曲线图像,数形结合,考查同学们的直观想象能力;第二问求二项分布中概率的极大值点,关键是弄清楚概率分布类型,借助导数这一重要工具,考查同学们的逻辑推理与数学运算能力;第三问结合实例,作出决策,借助二项分布,求出两种颁奖方式的成本期望值,为后面的决策提供数据支撑与依据,考查同学们的数学运算能力㊂考向五、超几何分布例5 (湖北省武汉市华中师范大学第一附属中学2024届高三月考)统计与概率主要研究现实生活中的数据和客观世界中的随机现象,通过对数据的收集㊁整理㊁分析㊁描述及对事件发生的可能性进行刻画,来帮助人们作出合理的决策㊂(1)现有池塘甲,已知池塘甲里有50条鱼,其中A 种鱼7条,若从池塘甲中捉了2条鱼㊂用ξ表示其中A 种鱼的条数,请写出ξ的分布列,并求ξ的数学期望E (ξ)㊂(2)另有池塘乙,为估计池塘乙中的鱼数,某同学先从中捉了50条鱼,做好记号后放回池塘,再从中捉了20条鱼,发现有记号的有5条㊂①请从分层抽样的角度估计池塘乙中的鱼数㊂②统计学中有一种重要而普遍的求估计量的方法 最大似然估计,其原理是使用概率模型寻找能够以较高概率产生观察数据的系统发生树,即在什么情况下最有可能发生已知的事件㊂请从条件概率的角度,采用最大似然估计法估计池塘乙中的鱼数N (X 表示捞出的20条鱼中有记号的鱼的数目,即使得P (X =5)最大的N 的值)㊂解析:(1)由题意知ξ的所有可能取值为0,1,2㊂则P (ξ=0)=C 243C 250=129175;P (ξ=1)=C 143㊃C 17C 250=43175;P (ξ=2)=C 27C 250=3175㊂故ξ的分布列为表3:表3ξ012P129175431753175所以E (ξ)=0ˑ129175+1ˑ43175+2ˑ3175=725㊂(2)①设池塘乙中的鱼数为m ,则50m=520,解得m =200,所以可以估计池塘乙中的鱼数为200条㊂②设池塘乙中的鱼数为n ,令事件B = 再捉20条鱼,5条有记号 ,事件C = 池塘乙中的鱼数为n ,则P n =P (B |C )=C 550㊃C 15n -50C 20n㊂由最大似然估计法,即求p n 最大时n 的值,其中n ȡ65,所以p n +1p n=(n -49)(n -19)(n -64)(n +1)㊂当n =65, ,198时,p n +1p n >1;当n =199时,p n +1p n=1;当n =200,201, 时,p n +1p n<1㊂所以池塘乙中的鱼数为199或200条㊂评注:本题以超几何分布与试验观察法为载体,结合函数的性质,以科学研究统计实例为背景,体现数学的基础性㊂第一问考查具体的超几何分布,理清概率分布借助组合知识即可解决;第二问的第一小问考查分层等比例抽样,第二小问考查条件概率,巧用相邻两项概率的大小,得出函数的单调性,综合性较强㊂本题着重考查同学们的逻辑推理与数学运算等能力㊂最后,建议同学们在复习时,理清概念,结合具体案例,注意对比记忆,性质和公式需要理解性记忆,在平时的练习中重视错题,善于积累,勤于思考,不断提升数学解题能力,从而提高高考竞争力,最终实现自己的目标㊂(责任编辑 王福华)。
【高考备考】高考数学讲义及知识点讲解(复数-概率与统计)
高考数学讲义及知识点讲解(名师指导精编版)一、第一节:复数复数问题在高考中年年必有,从近几年的高考试题来看,复数的概念及其代数形式的运算成为命题的热点,常考选择题和填空题,且属于中低档题.一是复数的概念,如纯虚数,两个复数相等;复数的模的计算,例如2z ⋅=设z 为复数,则z z二是复数代数形式的加、减、乘、除四则运算.复数可以在直角坐标系中表示。
以考查复数的有关概念,包括实部与虚部、虚数与纯虚数以及复数的代数形式的运算为重点.热点提示 1.复数的有关概念和复数的几何意义是高考命题的热点之一,常以选择题的形式出现,属容易题;2.复数的代数运算是高考的另一热点,以选择题、填空题的形式的出现,属容易题. 注意:复数一般不比较大小,如果比较大小两数应该都是实数。
基础篇 (10课标 2)已知复数()2313i iz -+=,z 是z 的共轭复数,则z z =( )A .14B .12C .1D .2考点:复数的共轭和复数运算规律方法:复数的共轭复数、复数的基本运算和模的计算 解析: 2z z z = ,∴()21423132==-+=i iz ,∴41=z z答案:A (10全国I 1)复数=-+ii3223 A .iB .i -C .12-13iD .12+13i考点:复数的基本运算,规律方法:分母实数化的转化技巧.解析:()()()()i i i i i i i i i =-++=+-++=-+136496323232233223. 答案:A(10全国II 1)复数=⎪⎭⎫⎝⎛+-213i iA .i 43--B .i 43+-C .i 43-D .i 43+考点:复数的基本运算.解析:分母实数化,()()()i i i i i i 432121313222--=-=⎥⎦⎤⎢⎣⎡--=⎪⎭⎫ ⎝⎛+-. 答案:A(10北京 9)在复平面内,复数ii-12对应的点的坐标为______ 考点:复数的几何意义规律方法:分母实数化,分母、分子同乘以分母的共轭。
2020届二轮(理科数学) 等比数列及其前n项和专题卷(全国通用)
2019届二轮(理科数学) 等比数列及其前n 项和 专题卷(全国通用)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1.【安徽省合肥一中、马鞍山二中等六校教育研究会2018届高三上学期第一次联考】已知等比数列{}n a 满足213562,4a a a a ==,则3a 的值为( ) A. 1 B. 2 C. 14 D. 12【答案】A【解析】∵等比数列{}n a 满足213562,4a a a a ==,∴22464a a =,又偶数项同号,∴462a a =∴212q =,∴2311a a q =⨯= 故选:A2.已知等比数列{}n a 的前n 项和为n S 。
若321510,9S a a a =+=,则1a =( ) A .13-B .13C .19-D .19【答案】D3.【广东省佛山市南海区南海中学2018届高三考前七校联合体高考冲刺交流】已知等比数列的前项和为,且满足,则的值为A .B .C .D .【答案】C【解析】根据题意,当时,故当时,数列是等比数列则,故解得故选4. 【原创题】设等比数列{}n a 的前n 项和为n S ,满足0,1n a q >>,且3520a a +=,2664a a ⋅=,则5S =( )A .31B .36C .42D .48 【答案】A5. 【改编题】函数y =图象上存在不同的三点到原点的距离构成等比数列,则以下不可能...成为公比的数是( )A .21B C .1 D .33【答案】A【解析】函数y =2,最大值为4,故2122q ≤≤,即q ≤≤,而12< A. 6.【广西钦州市2018届高三上学期第一次质量检测】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:,)( )A. 1.3日B. 1.5日C. 2.6日D. 2.8日 【答案】C由题意可得:,化为:2n+=7,解得2n=6,2n=1(舍去).∴n==1+=≈2.6.∴估计2.6日蒲、莞长度相等,故答案为:2.6.7.【宁夏回族自治区银川一中2018届高三考前适应性训练】我国古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织布的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,该女子第3天所织布的尺数为A.B.C.D.【答案】B【解析】设这女子每天分别织布形成数列{a n}.则该数列{a n}为等比数列,公比q=2,其前5项和S5=5.∴,解得a1=.∴a3=.故答案为:B8. 【河北省衡水中学2018届高三上学期二调】设正项等比数列{}n a 的前n 项和为n S ,且11n na a +<,若3520a a +=, 3564a a =,则4S =( )A. 63或120B. 256C. 120D. 63 【答案】C9.设等比数列}{n a 的前n 项和为n S ,若15m S -=,-11m S =,121m S +=,则=m ( ) A.3 B.4C.5D. 6【答案】C【解析】由已知得,116m m m S S a --==-,1132m m m S S a ++-==,故公比2q =-,又11m m a a qS q-=-11=-,故11a =-,又1116m m a a q-=⋅=-,代入可求得5m =.10.【广西钦州市2018届高三第三次质量检测】已知数列是等比数列,若,,则()的最小值为( )A .B .C .D .【答案】C【解析】分析:利用等比数列的通项公式与求和公式即可得出.详解:由已知得数列{a n }的公比满足q 3==,解得q=,∴a 1=2,a 3=,故数列{a n a n+1}是以2为首项,公比为=的等比数列,∴a 1a 2+a 2a 3+…+a n a n+1==∈,故选:C .11.【河南省洛阳市2018届高三上学期尖子生第一次联考】在等比数列{}n a 中, 2a , 16a 是方程2620x x ++=的根,则2169a a a 的值为( )A.B.C.D.【答案】B12.【2018年衡水金卷调研卷】已知数列满足,且对任意的都有,则的取值范围为( )A .B .C .D .【答案】D 【解析】数列满足,当时,当时,,则数列为首项为,公比为的等比数列则则的取值范围为故选二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13. 【改编题】设n S 是等比数列}{n a 的前n 项和,若,13221=+a a 433a a =,则=+n n a S 2 . 【答案】114. 【改编题】已知数列1,,9a 是等比数列,数列121,,,9b b 是等差数列,则12a b b +的值为 .【答案】310. 【解析】1,,9a 成等比数列,219,3a a ∴=⨯∴=.又121,,,9b b 是等差数列,121231910,10a b b b b +=+=∴=+. 15.【广东省化州市2019届高三上学期第一次模拟考试】已知函数,数列为等比数列,,,则.【答案】【解析】∵,∴∵数列{a n }是等比数列,∴∴设S 2019=f (lna 1)+f (lna 2)+…+f (lna 2019)①, ∵S 2019=f (lna 2019)+f (lna 2018)+…+f (lna 1)②, ①+②得2S 2019=2019, ∴S 2019故答案为:.16.【湖南省长沙市长郡中学2018届高考模拟卷(二)】已知数列的首项为3,等比数列满足,且,则的值为.【答案】3.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【湖北省华中师范大学第一附属中学2018届高三5月押题考试】已知,设是单调递减的等比数列的前项和,且,,成等差数列.(1)求数列的通项公式;(2)若数列满足,数列的前项和满足,求的值.【答案】(1);(2).【解析】分析: (1)根据,,成等差数列求数列的公比,再求数列的通项公式.(2)先化简,再利用裂项相消求的值详解:(1)设数列的公比为,由,得,即,∴,∵是单调递减数列,∴,又∵,∴,∴.(2)由(1)得,∴,∴,∴或,∵,∴.18.【改编题】已知等比数列{n a }的公比为q ,且满足1n n a a +<,1a +2a +3a =913,1a 2a 3a =271.(1)求数列{n a }的通项公式;(2)记数列{n a n ⋅-)12(}的前n 项和为n T ,求.n T由1n n a a +<知,{n a }是递减数列,故q =3舍去,q =31,又由2a =31,得1a =1, 故数列{n a }的通项公式为n a =131-n (n *N ∈) ………………6分(2)由(1)知n a n ⋅-)12(=1312--n n ,所以n T =1+33+235+⋯+1312--n n ① 31n T =31+233+335+…+1332--n n +n n 312- ② ①-② 得:32n T =1+32+232+332+⋯+132-n -nn 312- =12+(31+231+331+⋯+131-n )-nn 312- =12+311)311(311--⋅-n -n n 312-=2-131-n -n n 312-,所以n T =3-131-+n n .19.【2017全国卷2】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .20.【贵州省凯里市第一中学2018届高三下学期《黄金卷》第四套模拟考试】已知正项数列满足且.(1)求证:数列为等比数列,并求数列的通项公式;(2)证明:数列的前项和.【答案】(1)见解析;(2)见解析. 【解析】分析:(1)由条件易得 =,从而说明数列为等比数列,进而得到数列的通项公式;(2),放缩后利用等比数列求和公式即可证明结果. 详解:证明:(1)由,知,,所以是以为首项,为公比的等比数列,故而,所以.(2),.21.【山东省济南省2018届高三第二次模拟考试数学(理)】已知数列的前项和为,其中为常数.(1)证明: ;(2)是否存在实数,使得数列为等比数列,若存在,求出;若不存在,说明理由.【答案】(1)见解析;(2)见解析.【解析】分析:(1),,∴,整理后即得结果;(2)由(1)可得,检验n=1也适合即可.(2),,相减得:,从第二项起成等比数列,即,得,若使是等比数列则,,(舍)或经检验得符合题意.22.设数列{}n x 的前n 项和为n S ,若存在非零常数p ,使对任意n *∈N 都有2n nS p S =成立,则称数列{}n x 为“和比数列”. (1)若数列{}n a 是首项为2,公比为4的等比数列,判断数列{}2log n a 是否为“和比数列”;(2)设数列{}n b 是首项为2,且各项互不相等的等差数列,若数列{}n b 是“和比数列”,求数列{}n b 的 通项公式.【答案】(1)是,证明见解析;(2)()24142n b n n =+-=-试题解析:(1)由已知,121242n n n a --=⋅=,则2log 21n a n =-.设数列{}2log n a 的前n 项和为n S ,则()21212n n S n n +-=⋅=,()22224n S n n ==. 所以24n nS S =,故数列{}2log n a 是“和比数列”.即()()822141n d p n d +-=+-⎡⎤⎣⎦,即()()()4240p dn p d -+--=恒成立.所以()()()40240p d p d -=⎧⎪⎨--=⎪⎩因为0d ≠,则4p =,4d = 所以数列{}n b 的通项公式是()24142n b n n =+-=-。
压轴题07 统计与概率压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)
压轴题07统计与概率压轴题题型/考向一:统计与概率题型/考向二:统计案例一、统计与概率热点一用样本估计总体1.频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.在频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数.(1)最高的小长方形底边中点的横坐标即众数.(2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.热点二概率1.古典概型的概率公式P(A)=事件A中包含的样本点数试验的样本点总数.2.条件概率公式设A,B为随机事件,且P(A)>0,则P(B|A)=P(AB)P(A).3.全概率公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑ni =1P (A i )P (B |A i ).○热○点○题○型一统计与概率一、单选题1.对某校中学学生的身高进行统计,并将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),则该校学生身高数据的中位数为()A .165B .165.75C .166D .166.252.如图,一组数据123910,,,,,x x x x x ⋅⋅⋅,的平均数为5,方差为21s ,去除9x ,10x 这两个数据后,平均数为x ,方差为22s ,则()A .5x >,2212s s >B .5x <,2212s s <C .5x =,2212s s <D .5x =,2212s s >3.已知数据12,,,n x x x 是某市()*5,n n n ≥∈N 个普通职工的年收入,如果再加上世界首富的年收入1n x +,组成1n +个数据,则下列说法正确的是()A .年收入的平均数可能不变,中位数可能不变,方差可能不变B .年收入的平均数大大增加,中位数可能不变,方差变大C .年收入的平均数大大增加,中位数可能不变,方差变小D .年收入的平均数大大增加,中位数一定变大,方差可能不变4.甲、乙两名篮球运动员在8场比赛中的单场得分用茎叶图表示(图1),茎叶图中甲的得分有部分数据丢失,但甲得分的折线图(图2)完好,则()A .甲的单场平均得分比乙低B .乙的60%分位数为19C .甲、乙的极差均为11D .乙得分的中位数是16.55.某省普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为,,,,A B C D E 五个等级.某高中2022年参加“选择考”总人数是2020年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平,统计了该校2020年和2022年“选择考”成绩等级结果,得到如下统计图.针对该校“选择考”情况,2022年与2020年比较,下列说法正确的是()A .获得A 等级的人数减少了B .获得B 等级的人数增加了1.5倍C .获得D 等级的人数减少了一半D .获得E 等级的人数相同6.在“2,3,5,7,11,13,17,19”这8个素数中,任取2个不同的数,则这两个数之和仍为素数的概率是()A .328B .528C .17D .3147.2022年11月30日,神舟十五号、神舟十四号乘组在太空“胜利会师”,在中国人自己的“太空家园”里留下了一张足以载入史册的太空合影.某班级开展了关于太空知识的分享交流活动,活动中有2名男生、3名女生发言,活动后从这5人中任选2人进行采访,则这2人中至少有1名男生的概率为()A .310B .25C .35D .7108.不透明箱子中装有大小相同标号为1,2,3,4,5的5个冰墩墩(北京冬奥会吉祥物),随机抽取2个冰墩墩,则被抽到的2个冰墩墩标号相邻的概率是()A .15B .25C .35D .45二、多选题9.如图是国家统计局公布的2021年5月至2021年12月的规模以上工业日均发电量的月度走势情况,则().A .2021年7月至2021年10月,规模以上工业月度日均发电量呈现下降趋势B .2021年5月至2021年12月,规模以上工业月度日均发电量的中位数为228C .2021年11月,规模以上工业发电总量约为6758亿千瓦时D .从2021年5月至2021年12月中随机抽取2个月份,规模以上工业月度日均发电量都超过230亿千瓦时的概率为32810.树人中学2006班某科研小组,持续跟踪调查了他们班全体同学一学期中16周锻炼身体的时长,经过整理得到男生、女生各周锻炼身体的平均时长(单位:h )的数据如下:男生:6.3、7.4、7.6、8.1、8.2、8.2、8.5、8.6、8.6、8.6、8.6、9.0、9.2、9.3、9.8、10.1;女生:5.1、5.6、6.0、6.3、6.5、6.8、7.2、7.3、7.5、7.7、8.1、8.2、8.4、8.6、9.2、9.4.以下判断中正确的是()A .女生每周锻炼身体的平均时长的平均值等于8B .男生每周锻炼身体的平均时长的80%分位数是9.2C .男生每周锻炼身体的平均时长大于9h 的概率的估计值为0.3125D .与男生相比,女生每周锻炼身体的平均时长波动性比较大11.已知甲袋内有a 个红球,b 个黑球,乙袋内有b 个红球,a 个黑球(),a b *∈N ,从甲、乙两袋内各随机取出1个球,记事件A =“取出的2个球中恰有1个红球”,B =“取出的2个球都是红球”,C =“取出的2个球都是黑球”,则()A .()0.75P AB +≤B .()()P A P B >C .()()P B P C <D .()()P A B P A C +=+12.某中学为了能充分调动学生对学术科技的积极性,鼓励更多的学生参与到学术科技之中,提升学生的创新意识,该学校决定邀请知名教授于9月2日和9月9日到学校做两场专题讲座.学校有东、西两个礼堂,第一次讲座地点的安排不影响下一次讲座的安排,假设选择东、西两个礼堂作为讲座地点是等可能的,则下列叙述正确的是()A .两次讲座都在东礼堂的概率是14B .两次讲座安排在东、西礼堂各一场的概率是12C .两次讲座中至少有一次安排在东礼堂的概率是34D .若第一次讲座安排在东礼堂,下一次讲座安排在西礼堂的概率是13三、解答题13.春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为了解春节期间车辆出行的高峰情况,在某高速收费点发现大年初三上午9:20~10:40这一时间段内有600辆车通过,将其通过该收费点的时刻绘成频率分布直方图.其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[]80,100,例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取5辆,再从这5辆车中随机抽取3辆,则恰有1辆为9:20~10:00之间通过的概率是多少?14.我国某医药研究所在针对某种世界疾病难题的解决方案中提到了中医疗法,为证实此方法的效用,该研究所购进若干副某种中草药,现按照每副该中草药的重量大小(单位:克)分为4组:[)0,20,[)20,40,[)40,60,[]60,80,并绘制频率分布直方图如下所示:(1)估计每副该中草药的平均重量(同一组中的数据用该区间的中点值作代表);(2)现从每副重量在[)20,40,[]60,80内的中草药中按照分层抽样的方式一共抽取6副该中草药,再从这6副中草药中随机取出2副进行分析,求取出的2副中仅有1副重量在[]60,80中的概率.二、统计案例热点一回归分析求经验回归方程的步骤(1)依据成对样本数据画出散点图,确定两个变量具有线性相关关系(有时可省略).(2)计算出x -,y -,∑n i =1x 2i ,∑ni =1x i y i 的值.(3)计算a ^,b ^.(4)写出经验回归方程.热点二独立性检验独立性检验的一般步骤(1)根据样本数据列2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.χ2越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.○热○点○题○型二统计案例一、单选题1.以模型()e 0kxy c c =>去拟合一组数据时,设ln z y =,将其变换后得到线性回归方程21z x =-,则c =()A .12B .2e -C .1e -D .e2.下列说法正确的有()①对于分类变量X 与Y ,它们的随机变量2K 的观测值k 越大,说明“X 与Y 有关系”的把握越大;②我校高一、高二、高三共有学生4800人,其中高三有1200人.为调查需要,用分层抽样的方法从全校学生中抽取一个容量为200的样本,那么应从高三年级抽取40人;③若数据1x 、2x 、L 、n x 的方差为5,则另一组数据11x +、21x +、L 、1n x +的方差为6;④把六进制数()6210转换成十进制数为:()012621006162678⨯⨯⨯=++=.A .①④B .①②C .③④D .①③3.给出以下四个命题:①在回归分析中,可用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好;②回归模型中离差是实际值i y 与估计值ˆy的差,离差点所在的带状区域宽度越窄,说明模型拟合精度越高;③在一组样本数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅(2n ≥,12,,,n x x x ⋅⋅⋅不全相等)的散点图中,若所有样本点()(),1,2,,i i x y i n =⋅⋅⋅都在直线112y x =-+上,则这组样本数据的线性相关系数为12-;④对分类变量x 与y 的统计量2χ来说,2χ值越小,判断“x 与y 有关系”的把握程度越大.其中,真命题的个数为()A .1B .2C .3D .44.如图是近十年来全国城镇人口、乡村人口的折线图(数据来自国家统计局).根据该折线图,下列说法错误的是()A .城镇人口与年份呈现正相关B .乡村人口与年份的相关系数r 接近1C .城镇人口逐年增长率大致相同D .可预测乡村人口仍呈现下降趋势5.已知变量,x y 之间的线性回归方程为ˆ0.47.6yx =-+,且变量,x y 之间的一组相关数据如表所示,x681012y6m32则下列说法中错误的有()A .变量,x y 之间呈现负相关关系B .变量,x y 之间的相关系数0.4r =-C .m 的值为5D .该回归直线必过点(9,4)6.设两个相关变量x 和y 分别满足下表:x12345y128816若相关变量x 和y 可拟合为非线性回归方程ˆ2bx a y+=,则当6x =时,y 的估计值为()(参考公式:对于一组数据()11u v ,,()22u v ,,⋯,()n n u v ,,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii u v nu vunu β==-⋅=-∑∑,ˆˆav u β=-;51.152≈)A .33B .37C .65D .737.通过随机询问相同数量的不同性别大学生在购买食物时是否看营养说明,得知有16的男大学生“不看”,有13的女大学生“不看”,若有99%的把握认为性别与是否看营养说明之间有关,则调查的总人数可能为()A .150B .170C .240D .1758.已知一组样本数据()()()1122,,,,,,n n x y x y x y ,根据这组数据的散点图分析x 与y 之间的线性相关关系,若求得其线性回归方程为0.8587ˆ 5.yx =-,则在样本点(165,57)处的残差为()A . 2.45-B .2.45C .3.45D .54.55二、多选题9.下列关于成对数据的统计说法正确的有()A .若当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关B .样本相关系数r 的绝对值大小可以反映成对样本数据之间线性相关的程度C .通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据D .决定系数2R 越大,模型的拟合效果越差10.某服装生产商为了解青少年的身高和体重的关系,在15岁的男生中随机抽测了10人的身高和体重,数据如下表所示:编号12345678910身高/cm 165168170172173174175177179182体重/kg55896165677075757880由表中数据制作成如下所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为 11y bx a =+ ,相关系数为1r ,决定系数为21R ;经过残差分析确定()168,89为离群点(对应残差过大),把它去掉后,再用剩下的9组数据计算得到经验回归直线2l 的方程为 22y bx a =+ ,相关系数为2r ,决定系数为22R .则以下结论中正确的有()A . 12a a >B .12bb > C .12r r <D .2212R R >11.下列命题中为真命题的是()A .用最小二乘法求得的一元线性回归模型的残差和一定是0.B .一组数按照从小到大排列后为:1x ,2x ,…,n x ,计算得:25%17n ⨯=,则这组数的25%分位数是17x .C .在分层抽样时,如果知道各层的样本量、各层的样本均值及各层的样本方差,可以计算得出所有数据的样本均值和方差.D .从统计量中得知有97%的把握认为吸烟与患肺病有关系,是指推断有3%的可能性出现错误.12.给出下列说法,其中正确的是()A .某病8位患者的潜伏期(天)分别为3,3,8,4,2,7,10,18,则它们的第50百分位数为5.5B .已知数据12,,x x 的平均数为2,方差为3,那么数据121x +,221x +,L 的平均数和方差分别为5,13C .在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定D .样本相关系数()1,1r ∈-三、解答题13.国家发改委和住建部等六部门发布通知,提到:2025年,农村生活垃圾无害化处理水平将明显提升.现阶段我国生活垃圾有填埋、焚烧、堆肥等三种处理方式,随着我国生态文明建设的不断深入,焚烧处理已逐渐成为主要方式.根据国家统计局公布的数据,对2013-2020年全国生活垃圾焚烧无害化处理厂的个数y (单位:座)进行统计,得到如下表格:年份20132014201520162017201820192020年份代码x 12345678垃圾焚烧无害化处理厂的个数y166188220249286331389463(1)根据表格中的数据,可用一元线性回归模型刻画变量y 与变量x 之间的线性相关关系,请用相关系数加以说明(精确到0.01);(2)求出y 关于x 的经验回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用(2)所求的经验回归方程预测吗?请简要说明理由.参考公式:相关系数()()ni i x x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,n ii i ni i x x yy b a y bx x x ==--==-∑∑参考数据:88882211112292,204,730348,12041i i i i i i i i i y x y x y ========∑∑∑∑,257385.84=≈≈14.为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免,全省国有A 级旅游景区免首道门票,鼓励非国有A 级旅游景区首道门票至少半价优惠.本次门票优惠几乎涵盖了全省所有知名的重点景区,据统计,活动开展以来游客至少去过两个及以上景区的人数占比约为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的22⨯列联表:不满意满意总计50周岁及以下5550周岁以上15总计100(1)根据统计数据完成以上22⨯列联表,并根据小概率值0.001α=的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联?(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为X ,若以本次活动中至少去过两个及以上景区的人数的频率为概率.①求X 的分布列和数学期望;②求()11P X -≤.参考公式及数据:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.()2P k αχ=≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828。
(全国通用版)数学大二轮复习第二部分高考22题各个击破
1.6 逻辑推理小题专项练
-2-
1.两种合情推理的思维过程 (1)归纳推理的思维过程:试验、观察→概括、推广→猜测一般性 结论 (2)类比推理的思维过程:试验、观察→联想、类推→猜测新的结 论 2.合情推理的解题思路 (1)在进行归纳推理时,要根据已知的部分个体,把它们适当变形, 找出它们之间的联系,从而归纳出一般结论. (2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然 后通过类比,推导出类比对象的性质.
优秀一位良好,所以甲、丁的成绩也是一位优秀一位良好.又因为丁知道
甲的成绩,所以丁也知道自己的成绩,故选D.
关闭
D
解析 答案
-9-
一、选择题 二、填空题
7.(2018宁夏银川一中一模,理8)根据需要安排甲、乙、丙三人在某
月1日至12日值班,每人4天.
甲说:我在1日和3日都有值班;
乙说:我在8日和9日都有值班;
根据题意:若甲同学猜对了3—c,则乙同学猜对3—c,丁同学猜对了3—c,丙 同学猜对了4—b,这与乙同学猜对的2—b相矛盾.综上所述4号门里是a,故 选A.
关闭
A
解析 答案
-8-
一、选择题 二、填空题
6.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老
师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,
学生高考二轮复习计划及方案(10篇)
学生高考二轮复习计划及方案(10篇)学生高考二轮复习计划及方案篇1通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。
在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。
这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。
二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的`能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。
在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。
二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分;(7)选考模块。
每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。
具体说来,专题复习中应注意以下几个方面的问题:实验部分一直是高考复习的重点和难点实验的理论部分一般在第一轮中进行,我们把“走进实验室”放在第二轮。
历年来尽管在实验部分花费不少的时间和精力,但掌握的情况往往是不尽如人意,学生中高分、低分悬殊较大,原因在于很多学生思想重视不够、学习方法不对。
实验中最重要的是掌握实验目的和原理,特别是《课程标准》下,高考更加注重考查实验原理的迁移能力,即使是考查教材上的原实验,也是改容换面而推出的。
原理是为目的服务的,每个实验所选择的器材源于实验原理,电学中的控制电路与测量电路之间的关系是难以把握的地方。
高三数学教学经验总结(最新3篇)
高三数学教学经验总结(最新3篇)从高三紧张的备考气氛中走出来,学生又出现了新的替换。
回顾过去的一年,有辛苦,更有欣喜;有困惑,亦有收获。
本届高三,我担任两个文科班数学教学,是新课程新老交替的一届,高考数学成绩直接关系到考生高考的成绩,关系到学校新课程第一年高考的成败。
数学教师责任重大,需要用心付出,才能取得成效。
回顾走过的历程,我认为这一年的教学工作努力的,用心的,可以说是竭尽所能,效果也是显着的。
下面是我们的一些具体做法和体会一、各阶段的重心第一轮复习夯实基础,建立知识网络结构这个阶段是高三复习用时比较多,也是必须花费师生大力气的阶段,切不可走马观花,掉以轻心,这是整个高三复习阶段的重要时期。
这一轮复习要解决的问题是:1、对于课本上的每一定义、定理、公式都要熟透于心,理解它的本质、变化及应用。
2、对于课本的典型问题,既要掌握解答方法,又要思考它的变形、拓展,还应当注意它的应用。
3、知识网络的形成,解题小结论的的提炼,一些解题漏洞的防范,解题思考方式的总结。
这一轮复习,我们以资料为主,结合教材。
基本上每一讲用2,3课时,第一课时,知识点、考点复习,第二课时,典型例题、习题讲解。
这一阶段的训练以通法通性题为主,课外训练以选择和填空为主要训练方向,力争解决学生在选择和填空的速度与准确性不高的问题,对偏题、怪题进行大胆删减,使学生打下坚实的基础,提高学习的兴趣和信心。
第二轮复习专题过关提升重点知识综合能力在第一轮复习的基础上,有针对性地对重点章节、重点知识、常用技巧、思想方法进行性针对性地复习,更能提高数学备考的针对性和有效性。
在这一阶段,锻炼学生的综合能力与应试技巧,不重视知识结构的先后次序。
主要对“三角函数、概率统计、立体几何、解析几何、数列与不等式、导数及其应用”六大板块进行复习,尤其应重点放在“三角函数、概率统计、立体几何(向量法)、导数及其应用”。
一般来说,试题这部分考查比较平和,要求大多数考生能过关。
高考数学重难点第2讲 一元二次不等式恒成立与能成立问题5大题型(原卷及答案)(全国通用)(学生专用)
重难点第二讲一元二次不等式恒成立与能成立问题——每天30分钟7天掌握恒成立与能成立问题5大题型【命题趋势】不等式是高考数学的重要内容。
其中,“含参不等式恒成立与能成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐。
另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维灵活性、创造性都有这独到的作用。
一元二次不等式应用广泛,考察灵活,高考复习过程要注重知识与方法的灵活运用。
第1天认真研究满分技巧及思考热点题型【满分技巧】一、一元二次不等式在实数集上的恒成立1、不等式20ax bx c>++对任意实数x恒成立⇔==⎧⎨>⎩a bc或Δ<0>⎧⎨⎩a2、不等式20ax bx c<++对任意实数x恒成立⇔==⎧⎨<⎩a bc或Δ<0<⎧⎨⎩a【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若()0>f x 在集合A 中恒成立,即集合A 是不等式()0>f x 的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数()f x 的值域为[,]m n ,则()≥f x a 恒成立⇒min ()≥f x a ,即≥m a ;()≤f x a 恒成立⇒max ()≤f x a ,即≤n a . 三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲统计、统计案例
[全国卷3年考情分析]
(1)统计与统计案例在选择题或填空题中的命题热点主要集中在随机抽样、用样本估计总体以及变量间的相关性判断等,难度较低,常出现在2~4题的位置.
(2)统计与统计案例在解答题中多出现在第17、18或19题位置,考查茎叶图、直方图、数字特征及统计案例,多以计算为主.
[例1] (1)某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示:
电视台为了了解观众的具体想法和意见,打算从中抽选100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽选的人数分别为( )
A.25,25,25,25
B.48,72,64,16
C.20,40,30,10
D.24,36,32,8
(2)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,
960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )
A.7
B.9
C.10
D.15
[解析] (1)因为抽样比为10020000=1
200
,
所以每类人中应抽选的人数分别为4800×1200=24,7200×1200=36,6400×1
200=32,
1600×
1
200
=8.故选D. (2)由题意知应将960人分成32组,每组30人.设每组选出的人的号码为30k +9(k =0,1,…,31).由451≤30k +9≤750,解得44230≤k ≤741
30,又k ∈N ,故k =15,16, (24)
共10人.
[答案] (1)D (2)C
[解题方略] 系统抽样和分层抽样中的计算 (1)系统抽样
①总体容量为N ,样本容量为n ,则要将总体均分成n 组,每组N
n
个(有零头时要先去掉). ②若第一组抽到编号为k 的个体,则以后各组中抽取的个体编号依次为k +N n
,…,k +(n -1)N n
.
(2)分层抽样
按比例抽样,计算的主要依据是:各层抽取的数量之比=总体中各层的数量之比.
[跟踪训练]
1.(2019·全国卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )
A.8号学生
B.200号学生
C.616号学生
D.815号学生
解析:选C 根据题意,系统抽样是等距抽样,所以抽样间隔为1000
100=10.因为46除以
10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C.
2.某中学有高中生3000人,初中生2000人,男、女生所占的比例如图所示.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是( )
A.12
B.15
C.20
D.21
解析:选 A 因为抽样比为213000×70%=1
100
,所以从初中生中抽取的男生人数为
2000×60%×1
100
=12.故选A.
[例2] (2019·全国卷Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:74≈8.602.
[解] (1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于
40%的企业频率为
14+7100=0.21.产值负增长的企业频率为2
100
=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.
(2)y =
1
100
×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2
=1100 i =15
n i (y i -y )2
=
1100
×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402
×7]。