初二数学上册一次函数与几何练习题及答案[1]

合集下载

初二上册一次函数练习题及答案

初二上册一次函数练习题及答案

初二上册一次函数练习题及答案2013-12-11字体大小T|T摘要:以下是初二上册一次函数练习题及答案,希望大家通过学习,理解一次函数和正比例函数的概念以及它们之间的关系;能根据根据具体情境所给的信息确定一次函数的表达式。

4.4 确定一次函数的表达式专题利用数形求一次函数的表达式1.如图,在△ABC中,∠ACB=90°,AC=,斜边AB在x轴上,点C在y轴的正半轴上,点A的坐标为(2,0).则直角边BC所在直线的表达式为____________.2. 如图,已知一条直线经过A(0,4)、点B(2,0),将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数表达式.3.平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m 上,且AP=OP=4.求m的值.答案:1.y=x+4 【解析】点A的坐标为(2,0),则OA=2,又AC=,OC AO,所以OC=4,即C(0,4).在△ABC中,∠ACB=90°,AC=,OC⊥AB与O,则AB=10,则OB=8,因而B的坐标是(-8,0),直线BC的表达式是y=x+4.2.解:设直线AB的表达式为y=kx+b,把A(0,4)、点B(2,0)代入得k=-2,b=4,故直线AB的表达式为y=-2x+4.将这直线向左平移与x 轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数表达式为:y=-2x-4.3.解:由已知AP=OP,点P在线段OA的垂直平分线PM上,M为垂足.∵A(4,0),∴OA=AP=OP=4,∴△AOP是等边三角形.如图,当点P在第一象限时,OM=2,OP=4.在Rt△OPM中,PM=,∴P(2,).∵点P在y=-x+m上,∴m=2+.当点P在第四象限时,根据对称性,得P′(2,﹣).∵点P′在y=-x+m上,∴m=2﹣.则m的值为2+或2-.4.5 一次函数图象的应用专题一次函数图象的应用1.(2012湖北武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123,其中正确的是()A.①②③ B. 仅有①②C.仅有①③D. 仅有②③2. 如图,点A的坐标为(4,0),点P在第一象限且在直线x+y=6上.(1)设点P坐标为(x,y),写出△OPA的面积S与x之间的关系式(其中P点横坐标在O与A点之间变化);(2)当S=10时,求点P坐标;(3)若△OPA是以OA为底边的等腰三角形,你能求出P 的坐标吗?若能,请求出坐标;若不能,请说明理由.3.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中放有一圆柱形铁块(圆柱形铁块的下底面完全落在水槽底面上),现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示槽中水的深度与注水时间之间的关系,线段DE表示槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是;(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).答案:1.A【解析】∵乙出发时甲行了2秒,相距8m,∴甲的速度为8÷2=4m/s.∵100秒后乙开始休息,∴乙的速度是500÷100=5m/ s,∵a秒后甲乙相遇,∴a=8÷(5-4)=8,即①正确;100秒后乙到达终点,甲走了,4×(100+2)=408米∴b=500-408=92米即②正确,甲走到终点一共需耗时500÷4=125(秒),∴c=125-2=123,即③正确.故选A.2.解:(1).(2)P点坐标为(1,5).(3)P点坐标为(2,4).3.解:(1)乙甲铁块的高度w(2)设线段AB、DE的解析式分别为:y1=k1x+b,y2=k2x+b,∵AB经过点(0,2,)和(4,14),DC经过(0,12)和(6,0),分别代入得b=12,k=-2,∴解析式为y=3x+2和y=﹣2x+12,令3x+2=﹣2x+12,解得x=2,∴当注水2分钟时两个水槽中的水的深度相同.(3)由图象知:当水面没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm,当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,设铁块的底面积为xcm,则3×(36﹣x)=2.5×36,解得x=6,∴铁块的体积为:6×14=84(cm3).(4)60cm2.4.3 一次函数的图象专题一根据k、b确定一次函数图象1. 如图,在同一直角坐标系内,直线l1:y=(k-2)x+k,和l2:y=kx 的位置可能是()A B C D2.下列函数图象不可能是一次函数y=ax-(a-2)图象的是()A B CD已知a、b、c为非零实数,且满足,则一次函数y=kx+(1+k)的图象一定经过第二___________象限.专题二一次函数图象的综合应用4.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开展海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,以下说法正确的是()运输工具运输费(元/吨•千米)冷藏费(元/吨•小时)过路费(元)装卸及管理费(元)汽车 2 5 200 0火车 1.8 5 0 1600 A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C.当运输货物重量小于50吨,选择火车D.当运输货物重量大于50吨,选择火车5.(2012四川绵阳) 某种子商店销售”黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的种子价格打7折.(1)请分别求出方案一和方案二中购买的种子数量(千克)和付款金额(元)之间的函数关系式;(2)若你去购买一定量的种子,你会怎样选择方案?说明理由.6.(2012新疆)库尔勒某乡A、B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这批香梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨40元和45元,从B村运往C、D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A、B两村运往两仓库的香梨运输费用分别为yA和yB元.(1)请填写下表,并求出y A、y B与x之间的函数关系式;C D 总计运地收地A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村运费之和最小?求出最小值.答案:1.B【解析】由题意知,分三种情况:(1)当k>2时,y=(k-2)x+k的图象经过第一、二、三象限,y=kx 的图象y随x的增大而增大,并且l2比l1倾斜程度大,故C选项错误;(2)当0<k<2时,y=(k-2)x+k的图象经过第一、二、四象限,y=kx的图象y随x的增大而增大,B选项正确;(3)当k<0时,y=(k-2)x+k的图象经过第二、三、四象限,y=kx 的图象y随x的增大而减小,但l1比l2倾斜程度大,故A、D选项错误.故选B.2.B【解析】根据图象知:A.a>0,-(a-2)>0.解得0<a<2,所以有可能;B.a<0,-(a-2)<0.两不等式的解没有公共部分,所以不可能;C.a<0,-(a-2)>0.解得a<0,所以有可能;D.a>0,-(a-2)<0.解得a>2,所以有可能.故选B.3.二【解析】由,化简得.分两种情况讨论:当a+b+c≠0时,得k=2,此时直线是y=2x+3,过第一、二、三象限;当a+b+c=0时,即a+b=-c,则k=-1,此时直线是y=-x,过第二、四象限.综上所述,该直线必经过第二象限.4.D【解析】设运输x吨货物,根据题意,汽车运费:y=2x×120+5x×+200=250x+200,火车运费:y=1.8x×120+5x×+1600=222x+1600,①250x+200=222x+1600,解得x=50,∴运输货物为50吨时,选择汽车与火车一样;②250x+200<222x+1600,解得x<50,∴运输货物小于50吨时,选择汽车运输;③250x+200>222x+1600,解得x>50,∴运输货物大于50吨时,选择火车运输.综上所述,D选项符合.故选D.5.解:(1)方案一:y=4x;方案二:当0≤x≤3时,y=5x ;当x>3时,y=3×5+(x-3)×5×70%=3.5x+4.5.(2)设购买x千克的种子时,两种方案所付金额一样,则4x=3.5x+4.5,解这个方程得x=9,∴当购买9千克种子时,两种方案所付金额相同;当购买种子0<x <3时,方案一所付金额少,选择方案一;当购买种子3≤x<9时,方案一所付金额少,选择方案一;当购买种子质量超过9千克时,方案二所付金额少,应选择方案二.6.解:(1)填写表格如下:C D 总计运地收地A x吨(200-x)吨 200吨B (240-x)吨(60+x)吨300吨总计240吨260吨500吨由题意得y A=40x+45(200-x)=-5x+9000 (0≤x≤200),y B=25(240-x)+32(60+x)=7x+7920 (0≤x≤200),(2)若y A<y B</y,则-5x+9000<7x+7920,x>90.∴当90<x< span="">≤200时, yA<yB,</y即A村的运费较少.</x<>(3)设两村运费之和为y,则y=yA+yB,∴y=-5x+9000+7x+7920,即y=2x+16920.又∵0≤x≤200时,y随x的增大而增大.∴当x=0时,y有最小值,y最小值=16920(元).因此,由A村调往C仓库的香梨为0吨,调往D仓库为200吨,B村调往C仓库为240吨,调往D仓库60吨时,两村的运费之和最小,最小费用为16920元.。

(完整版)八年级上册数学一次函数测试题及答案

(完整版)八年级上册数学一次函数测试题及答案

一次函数 测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

2、若函数y= -2x m+2是正比例函数,则m 的值是 。

3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。

6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

7、已知点A(-21,a), B(3,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。

8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。

10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。

(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。

二、选择题11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x 中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个12、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1) 13、直线y=kx+b 在坐标系中的位置如图,则( ) (第13题图)(A )1,12k b =-=- (B )1,12k b =-= (C )1,12k b ==- (D )1,12k b == 14、下列一次函数中,随着增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y15、已知一次函数y=kx+b 的图象如图所示,则k ,b的符号是( )(A) k>0,b>0 (B) k>0,b<0O x y 1 2(C) k<0,b>0 (D) k<0,b<0(第15题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是( )(A)34m<(B)314m-<<(C)1m<-(D)1m>-17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )(A) (B) (C)(D)18、下图中表示一次函数y=mx+n与正比例函数y=m nx(m ,n是常数,且mn<0)图像的是( ).三、计算题19、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x 轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;20、已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a的值21、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。

一次函数与几何图形综合专题练习(附答案)

一次函数与几何图形综合专题练习(附答案)

一次函数与几何图形综合专题练习1.如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。

(1)当OA=OB 时,试确定直线L 的解析式;(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。

(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。

问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。

2、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。

在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。

第2题图第2题图② 第2题图③CB A l 2l 10x yC BA0x y Q M PCBA 0xy3.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足.(1)求直线AB的解析式;(2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值;(3)过A点的直线交y轴于负半轴于P,N点的横坐标为-1,过N点的直线交AP于点M,试证明的值为定值.4.如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案《一次函数》练习题及参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y(元)与产品数x(个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y(元)与产品数量x(个)的函数关系式;③完成250个以上产品得到的报酬y(元)与产品数量x(个)的函数关系式.答案:① (0② (150③ (x250)第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t(小时)的关系.答案: (0t30)第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t(分)的关系答案: (t0)第5题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y (cm),底边长为x(cm),则y 与x的函数关系式为______.答案:第7题. 若函数y=(m-3)xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为 .答案:. y=3n+1(n为1、2、3、4、…….)第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1km加收1元,则路程x2km时,车费y(元)与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量y(L),与工作时间x(h)之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%…………某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y(元)与其工资x(元)之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1 km加收1元,则路程x2 km时,车费y(元)与路程x(km)之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为y(cm),y与x之间的函数关系式是什么?答案:138cm,y=30x-3(x-1)=27x+3.第16题. 已知y+a与x-b成正比例(其中a、b都是常数),试说明:y是x 的一次函数答案:设y+a=k(x-b)(x0)y=kx-(a+bk)第17题. 已知y+a与x-b成正比例(其中a、b都是常数)(1)试说明y是x的一次函数;(2)如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:(1)因为y+a与x-b成正比例,所以y+a=k(x-b)(k0),即y=kx-(bk+a)因为k不等于0,a、b为常数,所以y是x的一次函数;(2)代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程S(km)与行驶时间t(h)之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x 之间的函数关系式为 .答案:y=x+39.18%x(x0)第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次第23题. 点 (填:“在”或“不在”)直线上答案:在。

初二数学一次函数练习题(附答案)

初二数学一次函数练习题(附答案)

初二数学一次函数练习题(附答案)查字典数学网小编为大家整理了初二数学一次函数练习题(附答案),希望能对大家的学习带来帮助!一次函数的图象和性质选择题1.已知一次函数 ,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) (B) (C) = (D)以上均有可能4.若函数 ( 为常数)的图象如图所示,那么当时,的取值范围是A、 B、 C、 D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若ADE=C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,DEF=90,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为 .下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m0)和反比例函数y= (n0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则|a―1|+ =。

(典型题)初中数学八年级数学上册第四单元《一次函数》检测(答案解析)(1)

(典型题)初中数学八年级数学上册第四单元《一次函数》检测(答案解析)(1)

一、选择题1.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .72.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法比较3.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(1,1)A ,(3,1)B ,(2,2)C ,当直线3y kx =+与ABC ∆有交点时,k 的取值范围是( )A .2132k -≤≤- B .223k -≤≤- C .223k -<<-D .122k -≤≤-4.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小5.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 6.弹簧大家了解吗?弹簧挂上物体后会伸长。

测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系: x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B.物体质量每增加1kg,弹簧长度y增加0.5cmC.y与x的关系表达式是y=0.5xD.所挂物体质量为7kg时,弹簧长度为13.5cm7.如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DEx的函数的是()8.下列各图象中,y不是..A.B.C.D.9.如图,△ABC的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A .4B .8C .82D .1610.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④12.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分 1 2 3 4 … 水池中水量/3m48464442…A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m二、填空题13.为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的1l 和2l 分别表示去年和今年的水费y (元)和用水量x (3m )之间的函数关系图像.如果小明家今年和去年都是用水1503m ,要比去年多交水费________元.14.把一根长为20cm 的蜡烛,每分钟燃烧2cm ,蜡烛剩余长度y(cm)与燃烧时间t(分)之间的关系为_______(不需要写出自变量的取值范围).15.一列火车以100km /h 的速度匀速前进.则它的行驶路程s (单位:km )关于行驶时间t (单位:h )的函数解析式为_____. 16.已知()111,P y ,()222,P y 在正比例函数14y x =-的图象上,则1y ___________2y .(填“>”或“<”或“=”).17.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,下列结论: ①甲、乙两地相距1800千米;②点B 的实际意义是两车出发后4小时相遇; ③动车的速度是280千米/小时; ④6,900.m n ==其中正确的是_______________________.(写出所有正确结论的序号)18.某书定价40元,如果一次购买20本以上,超过20本的部分打八折.试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系____.19.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.20.某通讯公司的4G 上网套餐每月上网费用y (单位:元)与上网流量x (单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a 的值为__________.三、解答题21.如图,在平面直角坐标系中,()1,4A -,()3,3B -,()2,1C -.(1)已知111A B C △与ABC 关于x 轴对称,画出111A B C △(请用2B 铅笔将111A B C △描深);(2)在y 轴上找一点P ,使得PBC 的周长最小,试求点P 的坐标.22.甲船从A 港出发顺流匀速驶向B 港,乙船从B 港出发逆流匀速驶向A 港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A港的距离、与行驶时间之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y与行驶时间x之间的函数关系式;(4)甲船拖拽的小艇与A港的距离和经历的时间之间的函数图像如图2所示,求点C的坐标.23.甲、乙两家商场平时以同样价格出售相同的商品,元旦假期,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)小明需要购买原价为300元的商品,在元旦期间他去哪家商场购买更省钱?24.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.25.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.26.已知y 与2x -1成正比例,当x =3时,y =10. (1)求y 与x 之间的函数关系式; (2)当y =-2时,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】把2x =-代入解析式即可. 【详解】解:把2x =-代入23y x =+得, 2(2)31y =⨯-+=-,故选:A . 【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.2.A解析:A 【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较. 【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<, 所以y 随着x 的增大而减小, ∵-2<1, ∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y >; 故选:A . 【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.3.B解析:B 【分析】把A 点和B 点坐标分别代入y=kx+3中求出对应的的值,即可求得直线y=kx+3与△ABC 有交点时k 的临界值,然后再确定k 的取值范围. 【详解】解:把A (1,1)代入y=kx+3得1=k+3,解得k=-2 把B (3,1)代入y=kx+3得1=3k+3,解得:k=23-所以当直线y=kx+3与△ABC 有交点时,k 的取值范围是223k -≤≤-. 故答案为B . 【点睛】本题考查了一次函数与系数的关系,将A 、B 点坐标代入解析式确定k 的边界点是解答本题的关键.4.D解析:D 【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断. 【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确. 故选:D . 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.5.B解析:B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.6.C解析:C【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【详解】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项不符合题意;B、物体质量每增加1kg,弹簧长度y增加0.5cm,故B选项不符合题意;C、y与x的关系表达式是y=0.5x+10,故C选项符合题意;D、由C知,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D 选项不符合题意;故选:C.【点睛】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.7.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.8.B解析:B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 9.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16.故选D .10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 12.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可;【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.二、填空题13.210【分析】根据函数图象中的数据可以求得x>120时l2对应的函数解析式从而可以求得x=150时对应的函数值由l1的图象可以求得x=150时对应的函数值从而可以计算出题目中所求问题的答案【详解】解解析:210【分析】根据函数图象中的数据可以求得x>120时,l 2对应的函数解析式,从而可以求得x=150时对应的函数值,由l 1的图象可以求得x=150时对应的函数值,从而可以计算出题目中所求问题的答案.【详解】解:设当x>120时,l 2对应的函数解析式为y=kx+b ,120480160720k b k b +=⎧⎨+=⎩ 解:6240k b =⎧⎨=-⎩故x>120时,l 2的函数解析式y=6k-240,当x=150时,y=6×150-240=660,由图象可知,去年的水价是480÷160=3(元/m 3),小明去年用水量150m 3,需要缴费:150×3=450(元),660-450=210(元),所以要比去年多交水费210元,故答案为:210【点睛】本题考查的是一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.14.y=20-2t 【分析】根据题意可得燃烧的长度为2tcm 根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度根据等量关系再列出函数关系式即可【详解】由题意得:y=20−2t 故答案为y=20−2t 【解析:y=20-2t【分析】根据题意可得燃烧的长度为2tcm ,根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度,根据等量关系再列出函数关系式即可.【详解】由题意得:y=20−2t ,故答案为y=20−2t.【点睛】本题考查函数关系式,解题的关键是准确获取题文信息.15.s =100t 【分析】利用路程=速度×时间用t 表示出路程s 即可【详解】解:根据题意得s =100t 故答案为s =100t 【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式也称为函数关系式注解析:s =100t【分析】利用路程=速度×时间,用t 表示出路程s 即可.【详解】解:根据题意得s =100t .故答案为s =100t .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.16.【分析】根据正比例函数的增减性解答【详解】∵<0∴y 随着x 的增大而减小∵1<2∴>故答案为:>【点睛】此题考查了正比例函数的增减性:当k>0时y 随x 的增大而增大;当k<0时y 随x 的增大而减小熟练掌握解析:>【分析】根据正比例函数的增减性解答.【详解】 ∵14k =-<0, ∴y 随着x 的增大而减小,∵1<2,∴1y >2y ,故答案为:>.【点睛】此题考查了正比例函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握正比例函数的增减性是解此题的关键.17.①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点C点表示动车先行到达终点D点表示列车达到终点进而求出动车和列车的速度再结合题中各数据逐个分析即可解答本题【详解】解:对于①:由图像解析:①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点,C点表示动车先行到达终点,D点表示列车达到终点,进而求出动车和列车的速度,再结合题中各数据逐个分析即可解答本题.【详解】解:对于①:由图像可知,甲、乙两地相距1800千米,故①说法正确;对于②:点B的实际意义是两车出发后4小时相遇,故②说法正确;对于③:C点表示动车先行到达终点,D点表示列车达到终点,普通列车的速度为:1800÷12=150(km/h),动车的速度为:(1800-150×4)÷4=300(km/h),故③说法错误;对于④:动车到达终点所需要的时间为1800÷300=6小时,故m=6,动车到达终点的6小时内,列车运行的路程为6×150=900km,此时n=1800-900=900,故④说法正确;故答案为:①②④【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,确定好B、C、D点各代表的含义,利用数形结合的思想解答.18.【分析】分类:当0≤x≤20用数量乘以单价得到付款金额y;当x>20用20的金额加上超过20本的金额得到付款金额【详解】解:当0≤x≤20y=40x;当x >20y=40×20+40×08(x-20)解析:40(020)32+160(20)x xyx x≤≤⎧=⎨>⎩【分析】分类:当0≤x≤20,用数量乘以单价得到付款金额y;当x>20,用20的金额加上超过20本的金额得到付款金额.【详解】解:当0≤x≤20,y=40x;当x>20,y=40×20+40×0.8(x-20)=32x+160;即y=() 40020 32160(20) x xx x⎧≤≤⎨+⎩>故答案为y=() 40020 32160(20)x xx x⎧≤≤⎨+⎩>.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.19.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm 其中一边长为xcm ∴另一边长为:(12-x )cm ∵长方形面积为∴y 与x 的关系式为y=解析:212x x -+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,∵长方形面积为2cm y ,∴y 与x 的关系式为y=x(12−x)=-x 2+12x .故答案为:y=-x 2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.20.59【解析】由题意得解得a=59故答案为59解析:59【解析】 由题意得,300.29600500a -=-,解得a=59. 故答案为59. 三、解答题21.(1)答案见解析;(2)(0,95). 【分析】(1)分别作出ABC 三个顶点关于x 轴的对称点,再首尾顺次连接即可;(2)作点C 关于y 轴的对称点C ',再利用待定系数法求出BC '所在直线解析式,再令x =0,求出y ,即可求出P 点坐标.【详解】(1)如图所示111A B C △即为所求.(2)如图所示P 点即为所求,由对称可知,点C 关于y 轴的对称点C '的坐标为(2,1),设BC '所在直线解析式为y kx b =+,则3312k bk b=-+⎧⎨=+⎩,解得2595kb⎧=-⎪⎪⎨⎪=⎪⎩,即BC'所在直线解析式为2955y x=-+.当0x=时,95y=,即P点坐标为(0,95).【点睛】本题考查作图-轴对称变换以及利用待定系数法求一次函数解析式,解题的关键是掌握轴对称的定义和性质.22.(1)6/km h;(2)3km;(3)19(02)5630(2)215579()222x xy x xx x⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩;(4)3(2,27)2【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:小艇脱离船中后,船顺流行驶的路程=船逆流行驶的路程+小艇漂流的路程,据此即可解答.【详解】解:(1)乙船在逆流中行驶的速度为6/km h.(2)甲船在逆流中行驶的路程为6(2.52)3()km⨯-=.(3)设甲船顺流的速度为/akm h ,由图象得23(3.5 2.5)24a a -+-=,解得9a =.当02x 时,19y x =,当2 2.5x 时,设116y x b =-+,把2x =,118y =代入,得130b =,1630y x ∴=-+,当2.5 3.5x 时,设129y x b =+,把 3.5x =,124y =代入,得27.5b =-,197.5y x ∴=-. 综上所述,19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩; (4)水流速度为(96)2 1.5(/)km h -÷=,设甲船从A 港航行x 小时小艇缆绳松了. 根据题意,得9(2) 1.5(2.5)3x x -=-+,解得 1.5x =,1.5913.5⨯=,即小艇缆绳松了时甲船到A 港的距离为13.5km . ∴点C 坐标3(2,27)2. 【点睛】 此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.23.(1)0.9y x 甲;(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙;(2)乙商场. 【分析】(1)甲是单价的0.9倍,乙的需要分大于100和小于等于100两种情形计算;(2)分别代入两种表达式中计算,比较大小后,作出判断.【详解】解:(1)由题意得,0.9y x 甲, 当0100x 时,y x =乙,当100x >时,100(100)0.80.820y x x =+-⨯=+乙,由上可得,(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙, (2)当300x =时,0.9300270,0.830020260y y =⨯==⨯+=甲乙此时,y y >甲乙所以,小明购买原价为300元的商品,在元旦期间,他去乙家商场购买更省钱.【点睛】本题考查了函数的表示方式,理解打折的意义,学会用分类思想表示是解题的关键. 24.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).【点睛】本题考查一次函数与几何图形,掌握一次函数的性质利用数形结合思想解题是关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】 (1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入,152520b k b=⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y =4x -2;(2)x =0.【分析】(1)根据正比例函数定义设设y=k(2x -1),将数值代入计算即可;(2)将y=-2代入(1)的函数解析式求解.【详解】解:(1)设y=k(2x -1),当x =3时,y =10,∴5k=10,解得k=2,∴y 与x 之间的函数关系式是y =4x -2;(2)当y=-2时4x -2=-2,解得x =0.【点睛】此题考查正比例函数的定义,求函数解析式,已知函数值求自变量,正确理解正比例函数的定义是解题的关键.。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

(完整版)一次函数练习题及答案

(完整版)一次函数练习题及答案

八年级一次函数练习题1、直线y=kx+2过点(—1,0),则k 的值是 ( ) A .2 B .—2 C .—1 D .12. 直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y 3、直线y=kx+2过点(1,—2),则k 的值是( ) A .4 B .-4 C .—8 D .84、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )5.点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是_______.6.若1)7(0=-x ,则x 的取值范围为__________________.7.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、四象限.8、0(1)π- = . 9、在函数2-=x y 中,自变量x 的取值范围是______.10、把直线y =错误!x +1向上平移3个单位所得到的解析式为______________. 11、已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______. 12、在平面直角坐标系中.点P (-2,3)关于x 轴的对称点13.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点. 求这个一次函数的解析式;(2)若点(a ,2)在这个函数图象上,求a 的值.14.如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . 当△COD 和△AOB 全等时,求C 、D 两点的坐标;15、已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.16、如图,直线1l 与2l 相交于点P ,1l 的函数表达式y=2x+3,点P 的横坐标为-1,且2l 交y 轴于点A (0,-1).求直线2l 的函数表达式.xyOAB3y kx =- yxOM11 2-17、已知如图,一次函数y=ax+b 图象经过点(1,2)、点(-1,6)。

(完整word)八年级上册数学一次函数测试题及答案,推荐文档

(完整word)八年级上册数学一次函数测试题及答案,推荐文档

一次函数测试题、填空1、已知一个正比例函数的图象经过点(-2, 4),则这个正比例函数的表达式是________ 。

2、若函数y - 2x m+2是正比例函数,贝U m的值是____________ 。

3、已知一次函数y=kx+5的图象经过点(-1, 2),则k= _____________ 。

4、已知y与x成正比例,且当x = 1时,y = 2,则当x=3时,y= ____________ 。

5、点P (a, b)在第二象限,则直线y=ax+b不经过第 __________ 象限。

6已知一次函数y=kx-k+4的图象与y轴的交点坐标是(0,-2),那么这个一次函数的表达式是_______________________ 。

17、已知点A(- - , a), B(3 , b)在函数y=-3x+4的象上,则a与b的大小关系是2O8、地面气温是20r,如果每升高100m气温下降6C ,则气温t ( C)与高度h (m)的函数关系式是___________ 。

9、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:_______________ 。

(1) y随着x的增大而减小, (2) 图象经过点(1, -3)10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。

选择题1 111、下列函数(1) y= n x(2)y=2x-1 (3)y= - (4) y=2 -3xx函数的有( )(A) 4 个(B) 3 个(C) 2 个(D) 1 个12、下面哪个点不在函数y 2x 3的图像上( )13、直线y=kx+b在坐标系中的位置如图,则()(第13题图)(第15题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是()17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与18、下图中表示一次函数y = mx+n 与正比例函数y = mnx (m ,门是常数,且mn<0)1 11(A) k-,b 1 (B ) k -,b 1(C) k -,b 12 2 2(D) k -,b 1214、下列一次函数中,随着增大而减小而的是( )(A ) y 3x(B ) y 3x 2(C ) y 3 2x15、已知一次函数y=kx+b 的图象如图所示,则 的符号是()(A ) k>0,b>0(B ) k>0,b<0(C) k<0,b>0 (D) k<0,b<03(A ) m 343(B ) 1 m -4(C ) m 1(D ) m 1h (輕米)(D)(D ) y 3x 2 20 0二、计算题19、已知一个正比例函数和一个一次函数的图象相交于点A(1 , 4),且一次函数的图象与x轴交于点B(3,0)(1) 求这两个函数的解析式;(2) 画出它们的图象;20、已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式⑵若点(a,2)在这个函数图象上,求a的值1 21、已知一次函数y=kx+b的图象经过点(-1,- 5),且与正比例函数y= x的图象相交于点(2,a),求(1) a的值(2) k,b的值(3) 这两个函数图象与x轴所围成的三角形的面积。

八年级上册数学一次函数测试题及答案

八年级上册数学一次函数测试题及答案

八年级上册数学一次函数测试题及答案一次函数测试题1.已知一个正比例函数的图像经过点(-2,4),则这个正比例函数的表达式是什么?2.若函数y=-2xm+2是正比例函数,则m的值是多少?3.已知一次函数y=kx+5的图像经过点(-1,2),则k的值是多少?4.已知y与x成正比例,且当x=1时,y=2,则当x=3时,y等于多少?5.点P(a,b)在第二象限,则直线y=ax+b不经过第一象限。

6.已知一次函数y=kx-k+4的图像与y轴的交点坐标是(0,-2),那么这个一次函数的表达式是什么?7.已知点A(-1,a)。

B(3,b)在函数y=-3x+4的图像上,则a与b的大小关系是什么?8.地面气温是20℃,如果每升高100m,气温下降6℃,则气温t(℃)与高度h(m)的函数关系式是什么?9.一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为什么?10.写出同时具备下列两个条件的一次函数表达式(写出一个即可):(1)y随着x的增大而减小,(2)图像经过点(1,-3)。

二、选择题11.下列函数中,是一次函数的有(A)y=πx。

(B)y=2x-1.(C)y=。

(D)y=2-3x。

12.下面哪个点不在函数y=-2x+3的图像上?(A)(-5,13)(B)(0.5,2)(C)(3,-3)(D)(1,1)13.直线y=kx+b在坐标系中的位置如图,则k,b的符号是什么?(图略)14.下列一次函数中,随着增大而减小的是(A)y=3x(B)y=3x-2(C)y=3+2x(D)y=-3x-2.15.已知一次函数y=kx+b的图像如图所示,则k,b的符号是什么?(图略)16.函数y=(m+1)x-(4m-3)的图像在第一、二、四象限,那么m的取值范围是什么?17.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图像是什么?18、下图中表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn<0)图像的是( C ).三、计算题19、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)1)求这两个函数的解析式;正比例函数:y=kx一次函数:y=ax+b代入A点坐标可得:4=k*1,即k=4代入B点坐标可得:0=3a+b,即b=-3a因此一次函数的解析式为y=4x-12,正比例函数的解析式为y=4x2)画出它们的图象;略20、已知y-2与x成正比,且当x=1时,y=-61)求y与x之间的函数关系式y-2=kx,代入x=1,y=-6,可得k=-8因此函数关系式为y=-8x+22)若点(a,2)在这个函数图象上,求a的值将点(a,2)代入函数关系式可得2=-8a+2,解得a=021、已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y=x的图象相交于点(2,a),求1)a的值正比例函数y=kx,代入(2,a)可得a=2k将a=2k代入y=kx+b中,代入(-1,-5)可得-5=-k+b因此k=3,a=62)k,b的值已知k=3,代入y=kx+b中,代入(-1,-5)可得b=-2因此函数的解析式为y=3x-23)这两个函数图象与x轴所围成的三角形的面积。

(完整版)八年级上册数学一次函数测试题及答案

(完整版)八年级上册数学一次函数测试题及答案

一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。

2、若函数y= -2x m+2 是正比例函数,则m 的值是。

3、已知一次函数y=kx+5 的图象经过点(-1,2),则k= 。

4、已知y 与x 成正比例,且当x=1 时,y=2,则当x=3 时,y= 。

5、点P(a,b)在第二象限,则直线y=ax+b 不经过第象限。

6、已知一次函数y=kx-k+4 的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是。

17、已知点A(- ,a), B(3,b)在函数y=-3x+4 的象上,则a 与b 的大小关系是2。

8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t(℃)与高度h(m)的函数关系式是。

9、一次函数y=kx+b 与y=2x+1 平行,且经过点(-3,4),则表达式为:。

10、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。

(1)y 随着x 的增大而减小,(2)图象经过点(1,-3)。

二、选择题111、下列函数(1)y=πx (2)y=2x-1 (3)y=x 函数的有()(4)y=2-1-3x(A)4 个(B)3 个(C)2 个(D)1 个12、下面哪个点不在函数y =-2x +3 的图像上()(A)(-5,13)(B)(0.5,2)(C)(3,0)(D)(1,1)13、直线y=kx+b 在坐标系中的位置如图,则( ) (第13 题图)(A)k =-1, b=-12(B)k =-1, b=12(C)k =1, b =-12(D)k =1, b = 1 214、下列一次函数中,随着增大而减小而的是()(A)y = 3x (B)y = 3x - 2 (C)y = 3 + 2x (D)y =-3x - 215、已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0(第 15 题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( )(A)m <34(B)-1 <m <34(C)m <-1 (D)m >-117、一支蜡烛长20 厘米,点燃后每小时燃烧5 厘米,燃烧时剩下的高度h (厘米) 与燃烧时间t (时)的函数关系的图象是( )(A)(B) (C)(D)18、下图中表示一次函数 y=mx+n 与正比例函数 y=m nx(m ,n 是常数,且mn<0)图像的是( ).三、计算题19、已知一个正比例函数和一个一次函数的图象相交于点 A(1,4),且一次函数的图象与 x 轴交于点 B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;20、已知y -2 与x 成正比,且当x=1 时,y= -6(1)求y 与x 之间的函数关系式(2)若点(a,2)在这个函数图象上,求a 的值21、已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= 图象相交于点(2,a),求(1)a 的值(2)k,b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。

八年级上册数学一次函数测试题及答案

八年级上册数学一次函数测试题及答案

一次函数 测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

2、若函数y= -2x m+2是正比例函数,则m 的值是 。

3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。

6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

7、已知点A(-21,a), B(3,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。

8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。

10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。

(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。

二、选择题11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个12、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(113、直线y=kx+b 在坐标系中的位置如图,则13题图)(A)1,1 2k b=-=-(B)1,1 2k b=-=(C)1,1 2k b==-(D)1,1 2k b== 14、下列一次函数中,随着增大而减小而的是()(A)xy3=(B)23-=xy(C)xy23+=(D)23--=xy15、已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0(第15题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是( )(A)34m<(B)314m-<<(C)1m<-(D)1m>-17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )(A) (B) (C)(D)18、下图中表示一次函数y=mx+n与正比例函数y=m nx(m ,n是常数,且mn<0)图像的是( ).三、计算题19、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;20、已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a 的值21、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二一次函数与几何题1、平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少?2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。

3、如图,在直角坐标系中,矩形OABC 的顶点B恰好将矩形OABC 分为面积相等的两部分,试求b 的值。

4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。

5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?6、如图,已知一次函数图像交正比例函数图像于第二象限的A 点,交x 轴于点B (-6,0),△AOB 的面积为15,且AB=AO ,求正比例函数和一次函数的解析式。

7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。

8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6) 求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0),(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x 轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式12、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.求:(1)△COP 的面积(2)求点A 的坐标及m 的值;(3)若S BOP =S DOP ,求直线BD 的解析式13、一次函数y=-33x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC (1)求△ABC 的面积和点C 的坐标; (2)如果在第二象限内有一点P (a ,21),试用含a 的代数式表示四边形ABPO 的面积。

(3)在x 轴上是否存在点M ,使△MAB 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。

14、已知正比例函数y=k 1x 和一次函数y=k 2x+b 的图像如图,它们的交点A (-3,4),且OB=53OA 。

(1)求正比例函数和一次函数的解析式;(2)求△AOB 的面积和周长; (3)在平面直角坐标系中是否存在点P ,使P 、O 、A 、B 成为直角梯形的四个顶点?若存在,请直接写出P 点的坐标;若不存在,请说明理由。

15、如图,已知一次函数y=x+2的图像与x 轴交于点A ,与y 轴交于点C ,(1)求∠CAO 的度数;(2)若将直线y=x+2沿x 轴向左平移两个单位,试求出平移后的直线的解析式;(3)若正比例函数y=kx (k ≠0)的图像与y=x+2得图像交于点B ,且∠ABO=30°,求:AB 的长及点B 的坐标 16、一次函数y=33x+2的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第二象限内做等边△ABC (1)求C 点的坐标;(2)在第二象限内有一点M (m ,1),使S △ABM =S △ABC ,求M 点的坐标;(3)点C (23,0)在直线AB 上是否存在一点P ,使△ACP 为等腰三角形?若存在,求P 点的坐标;若不存在,说明理由。

17、已知正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),一次函数与x轴相交于B,且OB=0.6OA,求这两个函数的解析式18、已知一次函数y=x+2的图像经过点A(2,m)。

与x轴交于点c,求角AOC.19、已知函数y=kx+b的图像经过点A(4,3)且与一次函数y=x+1的图像平行,点B(2,m)在一次函数y=kx+b的图像上(1)求此一次函数的表达式和m的值?(2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小?答案3、点到线的最短距离是点向该线做垂线因为直线与x夹角45度所以ABO为等腰直角三角形AB=BO=2分之根号2倍的AO AO=1 BO=2分之根号2在B分别向xy做垂线垂线与轴交点就是B的坐标由于做完还是等腰直角三角形所以议案用上面的共识可知B点坐标是(0.5,-0.5)7、一次函数的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k2=25/2,b2=-5.所以,一次函数的解析式为y=8x+4或y=(25/2)x-58、因为正比例函数和一次函数都经过(3,-6)所以这点在两函数图像上所以,当x=3 y=-6 分别代入得k1= -2 k2=1若一次函数图像与x轴交于点A 说明A的纵坐标为0把y=0代入到y=x-9中得 x=9所以A(9,0)例4、A的横坐标=-1/2,纵坐标=00=-k/2+b,k=2bC点横坐标=4,纵坐标y=4k+b=9bB点横坐标=0,纵坐标y=bSobcd=(\9b\+\b\)*4/2=1010\b\=5\b\=1/2b=1/2,k=2b=1 y=x+1/2b=-1/2,k=-1 y=-x-1/2\b\表示b的绝对值11、?解:设这个一次函数解析式为y=kx+b∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB∴{-3k+b=4{3k+b=0∴{k=-2/3{b=2∴这个函数解析式为y=-2/3x+2?解2根据勾股定理求出OA=OB=5,所以,分为两种情况:当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5,当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5,12、做辅助线PF,垂直y轴于点F。

做辅助线PE垂直x轴于点E。

(1)求S三角形COP解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2(2)求点A的坐标及P的值解:可证明三角形CFP全等于三角形COA,于是有PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)通过(1)式和(3)式组成的方程组就解,可以得到AO = 4,FC = 1.p = FC + OC = 1 + 2 = 3.所以得到A点的坐标为(-4,0),P点坐标为(2,3), p值为3.(3)若S三角形BOP=S三角形DOP,求直线BD的解析式解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即3BE = 2FD。

又因为:FD:DO = PF:OB 即FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)因此可以得到直线BD的解析式为:y = (-3/2)x + 617、正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),所以有8K1=6 (1)8K2+b=6 ....... (2) 又OA=10 所以OB=6 即B点坐标(6,0) 所以6K2+b=0 ....... (3) 解(1)(2)(3)得K1=3/4 K2=3 b=-18OA=√(8^2+6^2)=10,OB=6,B(6,0),k1=6/8=0.75正比例函数y=0.75x,一次函数y=3x-1818、一次函数y=x+2的图像经过点a(2,m),有m=2+2=4,与x轴交于点c,当y=0时,x=-2.三角形aoc的面积是:1/2*|oc|m|=1/2*|-2|*|4|=4平方单位.19、解:两直线平行,斜率相等故k=1,即直线方程为y=x+b经过点(4,3)代入有:b=-1故一次函数的表达式为:y=x-1经过点(2,m)代入有:m=12)A(4,3),B(2,1)要使得PA+PB最小,则P,A,B在一直线上AB的直线方程为:(y-1)/(3-1)=(x-2)/(4-2)过点(x,0)代入有:(0-1)/2=(x-2)/2x=1即当点P的横坐标为1时,PA+PB的值最小.。

相关文档
最新文档