2020高中数学A版新教材必修1学案导学案 第五章 5.4 5.4.2 第一课时 正弦函数、余弦函数的周期性与奇偶性
2020高中数学A版新教材必修1学案导学案 第四章 4.2 4.2.1 4.2.2 第一课时 指数函数及其图象和性质
4.2 指数函数4.2.1 指数函数的概念4.2.2 指数函数的图象和性质第一课时 指数函数及其图象和性质课标要求素养要求1.了解指数函数的实际背景,理解指数函数的概念.2.掌握指数函数的图象及简单性质.3.初步学会运用指数函数来解决问题.1.通过理解指数函数的概念和意义,发展数学抽象素养.2.通过借助计算工具画出简单指数函数的图象,发展直观想象素养.3.通过指数函数的实际应用,发展数学建模素养.教材知识探究将一张报纸连续对折,折叠次数x与对应的层数y间存在什么关系?对折后的面积S(设原面积为1)与折叠的次数有怎样的关系?提示 (1)幂的形式;(2)幂的底数是一个大于0且不等于1的常数;(3)幂的指数是一个变量.1.指数函数的概念注意其特征:系数为1,指数为x,底数a>0且a≠1y=a x(a>0,且a≠1)一般地,函数叫做指数函数,其中指数x是自变量,定义域是R.2.指数函数的图象和性质结合函数的图象熟记指数函数的性质a>10<a<1图象R(0,+∞)(0,1)01y>1 0<y<10<y<1 y>1增函数减函数3.在实际问题中,经常遇到指数增长模型,形如y=ka x(k∈R,且k≠0;a>0,且a≠1)的函数是刻画指数增长或指数衰减变化规律的非常有用的函数模型.教材拓展补遗[微判断]1.函数y =-2x 是指数函数.()提示 因为指数幂2x 的系数为-1,所以函数y =-2x 不是指数函数.2.函数y =2x +1是指数函数.( )提示 因为指数不是x ,所以函数y =2x +1不是指数函数.3.函数y =(-5)x 是指数函数.( )提示 因为底数小于0,所以函数y =(-5)x 不是指数函数.×××[微训练]1.函数y=2-x的图象是( )答案 B2.若函数f(x)是指数函数,且f(2)=2,则f(x)=________.3.指数函数y=2x的定义域是________,值域是________.解析 由指数函数y=2x的图象和性质可知定义域为R,值域为(0,+∞).答案 R (0,+∞)[微思考]1.为什么规定指数函数的底数a>0且a≠1?提示 规定y=a x中a>0,且a≠1的理由:①当a≤0时,a x可能无意义;②当a>0时,x可以取任何实数;③当a=1时,a x=1(x∈R),无研究价值.因此规定y=a x 中a>0,且a≠1.2.在直角坐标系中指数函数图象不可能出现在第几象限?提示 指数函数的图象只能出现在第一、二象限,不可能出现在第三、四象限.函数f(x)是指数函数,解析 (1)①中,3x的系数是2,故①不是指数函数;②中,y=3x+1的指数是x+1,不是自变量x,故②不是指数函数;③中,3x的系数是1,幂的指数是自变量x,且只有3x一项,故③是指数函数;④中,y=x3的底为自变量,指数为常数,故④不是指数函数.⑤中,底数-2<0,不是指数函数.答案 (1)B (2)125规律方法 1.指数函数的解析式必须具有三个特征:(1)底数a为大于0且不等于1的常数;(2)指数位置是自变量x;(3)a x的系数是1.2.求指数函数的关键是求底数a,并注意a的限制条件.【训练1】 (1)若函数y=a2(2-a)x是指数函数,则( )A.a=1或-1B.a=1C.a=-1D.a>0且a≠1(2)已知指数函数f(x)的图象过点(3,π),则函数f(x)的解析式为________.题型二 指数函数的图象和性质【例2】 (1)函数f(x)=2a x+1-3(a>0,且a≠1)的图象恒过的定点是________.(2)若函数f(x)=2x+3,x∈[2,3],则函数f(x)的值域为________.(3)已知函数y=3x 的图象,怎样变换(1)解析 因为y=a x的图象过定点(0,1),所以令x+1=0,即x=-1,则f(x)=-1,故f(x)=2a x+1-3的图象过定点(-1,-1).答案 (-1,-1)(2)解析 由题意知函数f(x)=2x+3在R上是增函数,且x∈[2,3],所以2x∈[4,8],故f(x)的值域为[7,11].答案 [7,11]规律方法 处理函数图象问题的策略(1)抓住特殊点:指数函数的图象过定点(0,1),求指数型函数图象所过的定点时,只要令指数为0,求出对应的y的值,即可得函数图象所过的定点.(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移).(3)利用函数的性质:奇偶性与单调性.【训练2】 (1)函数y=2|x|的图象是( )(2)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( )(2)从曲线的变化趋势,可以得到函数f(x)为减函数,从而有0<a<1;从曲线位置看,是由函数y=a x(0<a<1)的图象向左平移|-b|个单位长度得到,所以-b>0,即b<0.答案 (1)B (2)D (3)m<n…规律方法 指数函数在实际问题中的应用(1)与实际生活有关的问题,求解时应准确读懂题意,从实际问题中提取出模型转化为数学问题.(2)在实际问题中,经常会遇到指数增长模型:设基数为N,平均增长率为p,则对于经过时间x后的总量y可以用y=N(1+p)x来表示,这是非常有用的函数模型.【训练3】 春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y与生长时间x的函数关系为y=2x-1,当x=20时,长满水面,所以生长19天时,荷叶布满水面一半.答案 19一、素养落地1.通过指数函数的概念和意义的学习,培养数学抽象素养.通过画指数函数的图象找出图象上的特殊点,提升直观想象素养.通过指数函数的实际应用提升数学建模素养.2.判断一个函数是不是指数函数,关键是看解析式是否符合y=a x(a>0且a≠1)这一结构形式,即a x的系数是1,指数是x且系数为1.答案 D解析 由题意,设f(x)=a x(a>0且a≠1),则由f(2)=a2=4,得a=2,所以f(x)=2x.答案 B3.指数函数y=a x与y=b x的图象如图所示,则( )A.a<0,b<0B.a<0,b>0C.0<a<1,b>1D.0<a<1,0<b<1解析 结合指数函数图象的特点可知0<a<1,b>1.答案 C答案 A5.函数f(x)=2·a x-1+1的图象恒过定点________.解析 令x-1=0,得x=1,f(1)=2×1+1=3,所以f(x)的图象恒过定点(1,3).答案 (1,3)本节内容结束。
2020高中数学A版新教材必修1学案导学案 第五章 5.2 5.2.1 第一课时 三角函数的定义
2
2
x
ห้องสมุดไป่ตู้
基础达标
一、选择题
- 3,-1 1.已知角α的终边与单位圆交于点 2 2 ,则 sin α的值为( )
A.- 3 2
B.-1 2
C. 3
D.1
2
2
解析 由定义知 r=1,∴sin α=-1,故选 B. 2
答案 B
2.已知角α的终边经过点 P(3,-4),则 sin α+ 1 =( ) cos α
∴-2<a≤3.
答案 (-2,3]
5.已知角α的终边在射线 y= 3x(x>0)上,求角α的正弦、余弦和正切值.
解 设角α的终边与单位圆的交点为 P(x,y),
则 x2+y2=1,
又 y= 3x(x>0),
x=1, 2
解得 y=
3.
2
于是 sin α=y= 3,cos α=x=1,tan α=y= 3.
5.2 三角函数的概念
5.2.1 三角函数的概念
第一课时 三角函数的定义
课标要求
素养要求
1.借助单位圆理解任意角的三角函数定 通过对正弦函数、余弦函数、正切函数
义.
定义的理解,重点提升学生的数学抽象
2.能利用定义解决相关问题.
和直观想象素养.
教材知识探究
如图所示是光明游乐场的一个摩天轮示意图,它的中心离地面的高度为 h0,它的 直径为 2R,逆时针方向匀速运动,转动一周需要 360 秒.
B.11
4
4
C.-4
D.4
解析 cos α= m =-4,解得 m=-4(m=4 不合题意,舍去). m2+9 5
答案 C
4.点 P 从(1,0)出发,沿单位圆逆时针方向运动2π弧长到达 Q 点,则 Q 点的坐标 3
2020高一数学新教材必修1教案学案 4.2 指数函数解析版
4.2指数函数运用一 指数函数判断【例1】(1)函数f (x )=(m 2−m −1)a x 是指数函数,则实数m =( ) A .2 B .1 C .3 D .2或−1(2)函数y=(a 2–5a+5)a x 是指数函数,则有( ) A .a=1或a=4 B .a=1 C .a=4 D .a>0,且a≠1 【答案】(1)D (2)C【解析】(1)由指数函数的定义,得m 2−m −1=1,解得m =2或−1,故选D. (2)∵函数y=(a 2–5a+5)a x 是指数函数,∴{a 2−5a +5=1a >0a ≠1,解得a=4.故选C . 【触类旁通】1.下列函数是指数函数的是( )A .y =πxB .y =x 2C .y =−2xD .y =21x 【答案】A【解析】根据指数函数的定义:形如y =a x (a >1且a ≠1)的函数叫做指数函数,A 中y =πx 符合指数函数的定义,是指数函数;B 中,y =x 2符合指数函数的定义,不是指数函数;C 中,y =−2x 不符合指数函数的定义,系数为-1,不是指数函数;D 中,y =21x 不符合指数函数的定义,不是指数函数.故选A . 2.若函数f (x )=(a 2−2a −2)⋅a x 是指数函数,则a 的值是( ) A .−1 B .3 C .3或−1 D .2 【答案】B【解析】根据指数函数的定义:形如y =a x (a >1且a ≠1)的函数叫做指数函数,根据这一定义得到函数【思路总结】f (x )=(a 2−2a −2)⋅a x 是指数函数,∴{a 2−2a −2=1a >0a ≠1,解得a =3.故选B . 运用二 定义域值域【例2】(1)函数y =√a x −1的定义域是(-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1 (2)若2x 2+1≤(14)x−2,则函数y =2x 的值域是( )A.[18,2) B.[18,2] C.(−∞,18]D.[2,+∞)(3)设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________. 【答案】(1)C (2)B (3)13或3 【解析】(1)要使函数y =√a x −1(a >0且a ≠1)有意义, 则a x −1≥0 ,即 a x ≥1=a 0, 当a >1时,x ≥0; 当0<a <1时,x ≤0,因为y =√a x −1的定义域为(−∞,0]所以可得0<a <1符合题意, ∴a 的取值范围为0<a <1,故选C. (2)将2x2+1≤(14)x−2化为x 2+1≤−2(x −2),即x 2+2x −3≤0,解得x ∈[−3,1],所以2−3≤2x ≤21,所以函数y =2x 的值域是[18,2].故选C. (3)令t =a x (a >0,且a ≠1),则原函数化为y =f (t )=(t +1)2-2(t >0). ①当0<a <1,x ∈[-1,1]时,t =a x ∈1[,]a a, 此时f (t )在1[,]a a上为增函数.所以f (t )max =f 1a ⎛⎫ ⎪⎝⎭=211a ⎛⎫+ ⎪⎝⎭-2=14.所以211a ⎛⎫+ ⎪⎝⎭=16,解得a =-15 (舍去)或a =13. ②当a >1时,x ∈[-1,1],t =a x ∈1[]a a,,此时f (t )在1[]a a,上是增函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3或a =-5(舍去).综上得a =1或3. 【触类旁通】1.(2019·浙江期中)已知函数y =R ,则实数a 的取值范围是__________.【答案】0a ≤ 【解析】函数的定义域为R ,则20x a -≥恒成立,即2x a ≤恒成立,20>,x 0a ∴≤,故答案为:0a ≤ 2.(2018·浙江学军中学高一期中)已知f (x )的定义域为R ,则实数a 的取值范围是______. 【答案】[-1,0] 【解析】∵f (x )=R ,∴22131x ax +--≥0对任意x ∈R 恒成立,即220313xax a+-≥=恒成立,即x 2+2ax ﹣a ≥0对任意x ∈R 恒成立,∴△=4a 2+4a ≤0,则﹣1≤a ≤0.故答案为:[﹣1,0].3.(2019·贵州高一期末)若函数y =A ,则函数142()x x y x A +=-∈的值域为__________. 【答案】[1,48]-【解析】由260x x +-,得260x x --,(3)(2)0x x -+,∴23x -,∴1284x. 令2x t =,则222(1)1y t t t =-=--,∴当1t =时,min 1y =-;当8t =时,max 48y =.故答案为:[1,48]-4.(2019·石嘴山市第三中学月考)函数2212x xy -⎛⎫=⎪⎝⎭的值域为________.【答案】(0,2]【解析】由题意,设222(1)11t x x x =-=--≥-, 又由指数函数1()2ty =为单调递减函数,当t 1≥-时,02y <≤,即函数221()2x xy -=的值域为(0,2].运用三 单调性判断及运用【例3】(1)若f (x )=(2a–1)x 是增函数,那么a 的取值范围为 A .a<12B .12<a<1 C .a>1 D .a≥1(2)已知a =0.771.2,b =1.20.77,c =π0,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .a <c <bD .c <a <b (3)不等式(12)x 2+ax<(12)2x+a−2恒成立,则a 的取值范围是________.【答案】(1)C (2)C (3)(-2,2)【解析】(1)由题意2a −1>1⇒a >1,应选答案C 。
2020高中数学A版新教材必修1学案导学案 第五章 5.4.3 正切函数的性质与图象
5.4.3 正切函数的性质与图象课标要求素养要求1.了解正切函数图象的画法,理解并掌握正切函数的性质.2.能利用正切函数的图象与性质解决有关问题.通过利用正切函数的图象,发现数学规律,重点提升学生的数学抽象、逻辑推理素养.教材知识探究学习了y=sin x,y=cos x的图象与性质后,明确了y=sin x,y=cos x的图象是“波浪”型,连续不断的,且都是周期函数,都有最大(小)值.问题 类比y=sin x,y=cos x的图象与性质.(1)y=tan x是周期函数吗?有最大(小)值吗?(2)正切函数的图象是连续的吗?提示 (1)y=tan x是周期函数,且T=π,无最大,最小值.(2)正切函数的图象在定义域上不是连续的.函数y=tan x的图象和性质图象与性质是函数的灵魂解析式y=tan x图象定义域_____________________________________________________________R π奇函数教材拓展补遗[微判断]1.函数y =tan x 在其定义域上是增函数.( )2.函数y =tan 2x 的周期为π.( )3.正切函数y =tan x 无单调递减区间.( )××√√答案 D2.函数y=2tan (-x)是( )A.奇函数B.偶函数C.既是奇函数,又是偶函数D.非奇非偶函数解析 y=2tan (-x)=-2tan x,为奇函数.答案 A答案 D[微思考]正切曲线是中心对称图形吗?若是对称中心是什么?是轴对称图形吗?∵二次函数y=u2-2u=(u-1)2-1图象开口向上,对称轴方程为u=1,∴当u=1时,y min=-1,规律方法 (1)求定义域时,要注意正切函数自身的限制条件,另外解不等式时,要充分利用三角函数的图象或三角函数线.(2)处理正切函数值域时,应注意正切函数自身值域为R,将问题转化为某种函数的值域求解.方向2 比较大小把角转化到同一单调区间内规律方法 运用正切函数单调性比较大小的方法(1)运用函数的周期性或诱导公式将角化到同一单调区间内.(2)运用单调性比较大小关系.在一个周期内的简图.【训练3】 画出f(x)=tan|x|的图象,并根据其图象判断其单调区间、周期性、奇偶性.解 f(x)=tan|x|化为根据y=tan x的图象,作出f(x)=tan|x|的图象,如图所示,答案 D答案 C答案 B答案 >5.求函数y=tan 2x的定义域、值域和周期,并作出它在区间[-π,π]内的图象.本节内容结束。
2020高中数学A版新教材必修1学案导学案 第五章 5.2.2 同角三角函数的基本关系
5.2.2 同角三角函数的基本关系课标要求素养要求1.理解同角三角函数的基本关系式.2.会用同角三角函数的基本关系式进行三角函数式的求值、化简和证明.通过同角三角函数式的应用,重点提升学生的数学抽象、逻辑推理、数学运算素养.教材知识探究气象学家洛伦兹1963年提出一种观点:南美洲亚马逊河流域热带雨林中的一只蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国德克萨斯的一场龙卷风.这就是理论界闻名的“蝴蝶效应”,此效应本意是说事物初始条件的微弱变化可能会引起结果的巨大变化.蝴蝶扇翅膀成为龙卷风的导火索.从中我们还可以看出,南美洲亚马逊河流域热带雨林中的一只蝴蝶与北美德克萨斯的龙卷风看来是毫不相干的两种事物,却会有这样的联系,这也正验证了哲学理论中事物是普遍联系的观点.蝴蝶效应问题 既然感觉毫不相干的事物都是相互联系的,那么“同一个角”的三角函数一定会有非常密切的关系!到底是什么关系呢?1.同角三角函数的基本关系注意角的范围sin2α+cos2α=12.同角三角函数基本关系式的变形公式的熟练程度决定解题的速度1-cos2α1-sin2αcos αtan α教材拓展补遗[微判断]1.sin 2α+cos 2β=1.()提示 在同角三角函数的基本关系式中要注意是“同角”才成立,即sin 2α+cos 2α=1.×√××解析 根据同角三角函数的基本关系进行验证,因为当α=π时,sin α=0且cos α=-1,故B成立,而A,C,D都不成立.答案 B答案 2[微思考]同角三角函数的基本关系式对任意角都成立吗?∴α是第二或第三象限角,(1)当α是第二象限角时,则(2)当α是第三象限角时,则规律方法 (1)已知sin θ(或cos θ)求tan θ常用以下方式求解(2)若没有给出角α是第几象限角,则应分类讨论,先由已知三角函数的值推出α的终边可能在的象限,再分类求解.又sin2α+cos2α=1,②又α是第三象限角,规律方法 三角函数式的化简技巧(1)化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化繁为简的目的.(2)对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2α+cos2α=1,以降低函数次数,达到化简的目的.解 (1)法一 (代入法)∵tan α=2,法二 (弦化切)∵tan α=2.由上知,θ为第二象限的角,方向2 sin α±cos α型求值问题 注意判断符号规律方法 已知sin α±cos α,sin αcos α求值问题,一般利用三角恒等式,采用整体代入的方法求解.涉及的三角恒等式有:(1)(sin θ+cos θ)2=1+2sin θcos θ;(2)(sin θ-cos θ)2=1-2sin θcos θ;(3)(sin θ+cos θ)2+(sin θ-cos θ)2=2;(4)(sin θ-cos θ)2=(sin θ+cos θ)2-4sin θcos θ.上述三角恒等式告诉我们,已知sin θ+cos θ,sin θ-cos θ,sin θcos θ中的任何一个,则另两个式子的值均可求出.(2)由题中等式易知cos α≠0,整理得9tan2α+30tan α-11=0,即(3tan α-1)(3tan α+11)=0,所以等式成立.所以等式成立.方向2 条件恒等式的证明【例4-2】 已知tan2α=2tan2β+1,求证:sin2β=2sin2α-1.证明 因为tan2α=2tan2β+1,所以tan2α+1=2tan2β+2.即cos2β=2cos2α,所以1-sin2β=2(1-sin2α),即sin2β=2sin2α-1.规律方法 含有条件的三角恒等式证明的常用方法(1)直推法:从条件直推到结论;(2)代入法:将条件代入到结论中,转化为三角恒等式的证明;(3)换元法:把条件和要证明的式子的三角函数问题转换为代数问题,利用代数即可完成证明.∴原等式成立.(2)设sin2A=m(0<m<1),sin2B=n(0<n<1),则cos2A=1-m,cos2B=1-n.即(m-n)2=0.∴m=n,答案 B答案 A答案 B答案 B41本节内容结束。
[人教A版]高中数学必修一(全册)导学案及答案汇总
§1.1.1 集合的含义与表示(1)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.23讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体. 集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.二、新课导学※ 探索新知探究1:考察几组对象:① 1~20以内所有的质数;② 到定点的距离等于定长的所有点;③ 所有的锐角三角形;④ 2x , 32x +, 35y x -, 22x y +;⑤ 东升高中高一级全体学生;⑥ 方程230x x +=的所有实数根;⑦ 隆成日用品厂2008年8月生产的所有童车;⑧ 2008年8月,广东所有出生婴儿.试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).试试1:探究1中①~⑧都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征. 确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合.试试2:分析下列对象,能否构成集合,并指出元素:①不等式30x->的解;②3的倍数;③方程2210-+=的解;x x④a,b,c,x,y,z;⑤最小的整数;⑥周长为10 cm的三角形;⑦中国古代四大发明;⑧全班每个学生的年龄;⑨地球上的四大洋;⑩地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示.如果a是集合A的元素,就说a属于(belong to)集合A,记作:a∈A;如果a不是集合A的元素,就说a不属于(not belong to)集合A,记作:a∉A.试试3:设B表示“5以内的自然数”组成的集合,则5 B,0.5 B,0 B,-1 B.探究4:常见的数集有哪些,又如何表示呢?新知4:常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N;正整数集:所有正整数的集合,记作N*或N+;整数集:全体整数的集合,记作Z;有理数集:全体有理数的集合,记作Q;实数集:全体实数的集合,记作R.试试4:填∈或∉:0 N,0 R,3.7 N,3.7 Z,. 探究5:探究1中①~⑧分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a与{a}不同.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示.※典型例题例1 用列举法表示下列集合:① 15以内质数的集合;② 方程2(1)0x x -=的所有实数根组成的集合;③ 一次函数y x =与21y x =-的图象的交点组成的集合.变式:用列举法表示“一次函数y x =的图象与二次函数2y x =的图象的交点”组成的集合.三、总结提升※ 学习小结①概念:集合与元素;属于与不属于;②集合中元素三特征;③常见数集及表示;④列举法.※ 知识拓展集合论是德国著名数学家康托尔于19世纪末创立的. 1874年康托尔提出“集合”的概念:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素. 人们把康托尔于1873年12月7日给戴德金的信中.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列说法正确的是( ).A .某个村子里的高个子组成一个集合B .所有小正数组成一个集合C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .1361,0.5,,,224 2. 给出下列关系:① 12R =;② Q ;③3N +-∉;④.Q 其中正确的个数为( ).A .1个B .2个C .3个D .4个3. 直线21y x =+与y 轴的交点所组成的集合为( ).A. {0,1}B. {(0,1)}C. 1{,0}2-D. 1{(,0)}2-4. 设A表示“中国所有省会城市”组成的集合,则:深圳A;广州A. (填∈或∉)5. “方程230-=的所有实数根”组成的集合用列举法表示为____________.x x1. 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程2100-=的所有实数根组成的集合.x x2. 设x∈R,集合2=-.A x x x{3,,2}(1)求元素x所应满足的条件;(2)若2A-∈,求实数x.§1.1.1 集合的含义与表示(2)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.45复习1:一般地,指定的某些对象的全体称为.其中的每个对象叫作.集合中的元素具备、、特征.集合与元素的关系有、.复习2:集合2=++的元素是,若1∈A,则x= .A x x{21}复习3:集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个集合有何关系?二、新课导学※ 学习探究思考:① 你能用自然语言描述集合{2,4,6,8}吗?② 你能用列举法表示不等式13x -<的解集吗?探究:比较如下表示法① {方程210x -=的根};② {1,1}-;③ 2{|10}x R x ∈-=.新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为{|}x A P ∈,其中x 代表元素,P 是确定条件.试试:方程230x -=的所有实数根组成的集合,用描述法表示为 . ※ 典型例题例1 试分别用列举法和描述法表示下列集合:(1)方程2(1)0x x -=的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程340x x +=的所有实数根组成的集合;(2)所有奇数组成的集合.小结:用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如{|21,}x x k k Z =-∈,{|0}x x >.例2 试分别用列举法和描述法表示下列集合:(1)抛物线21y x =-上的所有点组成的集合;(2)方程组3222327x y x y +=⎧⎨+=⎩解集.变式:以下三个集合有什么区别.(1)2{(,)|1}x y y x =-;(2)2{|1}y y x =-;(3)2{|1}x y x =-.反思与小结:① 描述法表示集合时,应特别注意集合的代表元素,如2{(,)|1}x y y x =-与2{|1}y y x =-不同.② 只要不引起误解,集合的代表元素也可省略,例如{|1}x x >,{|3,}x x k k Z =∈.③ 集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z ,所以不必写{全体整数}.下列写法{实数集},{R }也是错误的.④ 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.※ 动手试试练1. 用适当的方法表示集合:大于0的所有奇数.练2. 已知集合{|33,}A x x x Z =-<<∈,集合2{(,)|1,}B x y y x x A ==+∈. 试用列举法分别表示集合A 、B .三、总结提升※ 学习小结1. 集合的三种表示方法(自然语言、列举法、描述法);2. 会用适当的方法表示集合;※ 知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:{|}x x 是直角三角形,也可以写成:{直角三角形};(2)集合2{(,)|1}x y y x =+与集合2{|1}y y x =+是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn 图.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{|16}A x N x =∈≤<,则下列正确的是( ).A. 6A ∈B. 0A ∈C. 3A ∉D. 3.5A ∉2. 下列说法正确的是( ).A.不等式253x -<的解集表示为{4}x <B.所有偶数的集合表示为{|2}x x k =C.全体自然数的集合可表示为{自然数}D. 方程240x -=实数根的集合表示为{(2,2)}-3. 一次函数3y x =-与2y x =-的图象的交点组成的集合是( ).A. {1,2}-B. {1,2}x y ==-C. {(2,1)}-D. 3{(,)|}2y x x y y x =-⎧⎨=-⎩4. 用列举法表示集合{|510}A x Z x =∈≤<为.5.集合A ={x |x =2n 且n ∈N }, 2{|650}B x x x =-+=,用∈或∉填空:4 A ,4 B ,5 A ,5 B .1. (1)设集合{(,)|6,,}A x y x y x N y N =+=∈∈ ,试用列举法表示集合A .(2)设A ={x |x =2n ,n ∈N ,且n <10},B ={3的倍数},求属于A 且属于B 的元素所组成的集合.2. 若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,求实数a 、b .§1.1.2 集合间的基本关系1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义.67复习1:集合的表示方法有 、 、. 请用适当的方法表示下列集合.(1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N ; -1.5 R .(2)设集合2{|(1)(3)0}A x x x =--=,{}B b =,则1 A ;b B ;{1,3} A .思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?二、新课导学※ 学习探究探究:比较下面几个例子,试发现两个集合之间的关系:{3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且;{}C =东升高中学生与{}D =东升高中高一学生;{|(1)(2)0}E x x x x =--=与{0,1,2}F =.新知:子集、相等、真子集、空集的概念.① 如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset ),记作:()A B B A ⊆⊇或,读作:A 包含于(is contained in )B ,或B 包含(contains)A .当集合A 不包含于集合B 时,记作A B .② 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为V enn 图. 用Venn 图表示两个集合间的“包含”关系为:()A B B A ⊆⊇或.③ 集合相等:若A B B A ⊆⊆且A B =.④ 真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset ),记作:A B (或B A ),读作:A 真包含于B (或B 真包含A ).⑤ 空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.试试:用适当的符号填空.(1){,}a b {,,}a b c ,a {,,}a b c ;(2)∅ 2{|30}x x +=,∅ R ;(3)N {0,1},Q N ;(4){0} 2{|0}x x x -=.反思:思考下列问题.(1)符号“a A ∈”与“{}a A ⊆”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论?① 若,,a b b a a b ≥≥=且则;② 若,,a b b c a c ≥≥≥且则.B A※ 典型例题例1 写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.变式:写出集合{0,1,2}的所有真子集组成的集合.例2 判断下列集合间的关系:(1){|32}A x x =->与{|250}B x x =-≥;(2)设集合A ={0,1},集合{|}B x x A =⊆,则A 与B 的关系如何?变式:若集合{|}A x x a =>,{|250}B x x =-≥,且满足A B ⊆,求实数a 的取值范围.※ 动手试试练1. 已知集合2{|320}A x x x =-+=,B ={1,2},{|8,}C x x x N =<∈,用适当符号填空:A B ,A C ,{2} C ,2 C .练 2. 已知集合{|5}A x a x =<<,{|2}B x x =≥,且满足A B ⊆,则实数a 的取值范围为 .三、总结提升※ 学习小结1. 子集、真子集、空集、相等的概念及符号;Venn 图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法.※ 知识拓展 n 个元素,那么它的子集有2n 个,真子集有21n -个.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列结论正确的是( ). A. ∅A B. {0}∅∈ C. {1,2}Z ⊆ D. {0}{0,1}∈2. 设{}{}1,A x x B x x a =>=>,且A B ⊆,则实数a 的取值范围为( ). A. 1a < B. 1a ≤ C. 1a > D. 1a ≥3. 若2{1,2}{|0}x x bx c =++=,则( ). A. 3,2b c =-= B. 3,2b c ==- C. 2,3b c =-= D. 2,3b c ==-4. 满足},,,{},{d c b a A b a ⊂⊆的集合A 有 个.5. 设集合{},{},{}A B C ===四边形平行四边形矩形,{}D =正方形,则它们之间的关系是 ,并用Venn 图表示.课后作业1. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A 表示合格产品的集合,B 表示质量合格的产品的集合,C 表示长度合格的产品的集合.则下列包含关系哪些成立?,,,A B B A A C C A ⊆⊆⊆⊆ 试用Venn 图表示这三个集合的关系.2. 已知2{|0}A x x px q =++=,2{|320}B x x x =-+=且A B ⊆,求实数p 、q 所满足的条件.§1.1.3 集合的基本运算(1)学习目标1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.89 复习1:用适当符号填空.0 {0}; 0 ∅;∅ {x |x 2+1=0,x ∈R }; {0} {x |x <3且x >5};{x |x >-3} {x |x >2}; {x |x >6} {x |x <-2或x >5}.复习2:已知A ={1,2,3}, S ={1,2,3,4,5},则A S , {x |x ∈S 且x ∉A }= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学 ※ 学习探究探究:设集合{4,5,6,8}A =,{3,5,7,8}B =.(1)试用Venn 图表示集合A 、B 后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.① 一般地,由所有属于集合A 且属于集合B 的元素所组成的集合,叫作A 、B 的交集(intersection set ),记作A ∩B ,读“A 交B ”,即: {|,}.A B x x A x B =∈∈且Venn 图如右表示.② 类比说出并集的定义.由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集(union set ),记作:A B ,读作:A 并B ,用描述法表示是:{|,}A B x x A x B =∈∈或.Venn 图如右表示.试试:(1)A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;(2)设A ={等腰三角形},B ={直角三角形},则A ∩B = ; (3)A ={x |x >3},B ={x |x <6},则A ∪B = ,A ∩B = . (4)分别指出A 、B 两个集合下列五种情况的交集部分、并集部分.反思:(1)A ∩B 与A 、B 、B ∩A 有什么关系?(2)A ∪B 与集合A 、B 、B ∪A 有什么关系?(3)A ∩A = ;A ∪A = . A ∩∅= ;A ∪∅= .※ 典型例题例1 设{|18}A x x =-<<,{|45}B x x x =><-或,求A ∩B 、A ∪B .变式:若A ={x |-5≤x ≤8},{|45}B x x x =><-或,则A ∩B = ;A ∪B = .小结:有关不等式解集的运算可以借助数轴来研究.例2 设{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,求A ∩B .变式:(1)若{(,)|46}A x y x y =+=,{(,)|43}B x y x y =+=,则A B = ; (2)若{(,)|46}A x y x y =+=,{(,)|8212}B x y x y =+=,则A B = .反思:例2及变式的结论说明了什么几何意义?※ 动手试试练1. 设集合{|23},{|12}A x x B x x =-<<=<<.求A ∩B 、A ∪B .A练 2. 学校里开运动会,设A ={x |x 是参加跳高的同学},B ={x |x 是参加跳远的同学},C ={x |x 是参加投掷的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释A B 与B C 的含义.三、总结提升 ※ 学习小结1. 交集与并集的概念、符号、图示、性质;2. 求交集、并集的两种方法:数轴、Venn 图.※ 知识拓展A B C A B A C =()()(), A B C A B A C =()()(), A B C A B C =()(), A B C A B C =()(), A A B A A A B A ==(),(). 你能结合V enn 图,分析出上述集合运算的性质吗?学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于( ).A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤2. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ). A. x =3, y =-1 B. (3,-1) C.{3,-1} D.{(3,-1)}3. 设{}0,1,2,3,4,5,{1,3,6,9},{3,7,8}A B C ===,则()A B C 等于( ).A. {0,1,2,6}B. {3,7,8,}C. {1,3,7,8}D. {1,3,6,7,8}4. 设{|}A x x a =>,{|03}B x x =<<,若A B =∅,求实数a 的取值范围是 .5. 设{}{}22230,560A x x x B x x x =--==-+=,则A B = .课后作业1. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系?(1)12{}L L P =点; (2)12L L =∅; (3)1212L L L L ==.2. 若关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B ,且A ∩B ={13-},求A B .§1.1.3 集合的基本运算(2)1. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;2. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.1011 复习1:集合相关概念及运算.① 如果集合A 的任意一个元素都是集合B 的元素,则称集合A 是集合B 的 ,记作 . 若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的 ,记作 . 若A B B A ⊆⊆且,则 .② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为: A B = ; A B = .复习2:已知A ={x |x +3>0},B ={x |x ≤-3},则A 、B 、R 有何关系?二、新课导学 ※ 学习探究探究:设U ={全班同学}、A ={全班参加足球队的同学}、B ={全班没有参加足球队的同学},则U 、A 、B 有何关系?新知:全集、补集.① 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U .② 补集:已知集合U , 集合A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫作A 相对于U 的补集(complementary set ),记作:U C A ,读作:“A 在U 中补集”,即{|,}U C A x x U x A =∈∉且. 补集的Venn 图表示如右:说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制. 试试:(1)U ={2,3,4},A ={4,3},B =∅,则U C A = ,U C B = ;(2)设U ={x |x <8,且x ∈N },A ={x |(x -2)(x -4)(x -5)=0},则U C A = ; (3)设集合{|38}A x x =≤<,则R A = ;(4)设U ={三角形},A ={锐角三角形},则U C A = .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集? (2)Q 的补集如何表示?意为什么?※ 典型例题例1 设U ={x |x <13,且x ∈N },A ={8的正约数},B ={12的正约数},求U C A 、U C B .例2 设U =R ,A ={x |-1<x <2},B ={x |1<x <3},求A ∩B 、A ∪B 、U C A 、U C B .变式:分别求()U C A B 、()()U U C A C B .※ 动手试试练 1. 已知全集I ={小于10的正整数},其子集A 、B 满足()(){1,9}I I C A C B =,(){4,6,8}I C A B =,{2}A B =. 求集合A 、B .练2. 分别用集合A 、B 、C 表示下图的阴影部分.(1) ; (2) ;(3) ; (4) .反思:结合Venn 图分析,如何得到性质:(1)()U A C A = ,()U A C A = ; (2)()U U C C A = .三、总结提升 ※ 学习小结1. 补集、全集的概念;补集、全集的符号.2. 集合运算的两种方法:数轴、Venn 图.※ 知识拓展试结合Venn 图分析,探索如下等式是否成立? (1)()()()U U U C A B C A C B =; (2)()()()U U U C A B C A C B =.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 设全集U =R ,集合2{|1}A x x =≠,则U C A =( ) A. 1 B. -1,1 C. {1} D. {1,1}-2. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ). A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >3. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =( ).A .{0}B .{}3,4--C .{}1,2--D .∅4. 已知U ={x ∈N |x ≤10},A ={小于11的质数},则U C A = .5. 定义A —B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},则N —M = .1. 已知全集I =2{2,3,23}a a +-,若{,2}A b =,{5}I C A =,求实数,a b .2. 已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,试用列举法表示集合A§1.1 集合(复习)1. 掌握集合的交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2. 能使用数轴分析、Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.214复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言? A B = ; A B = ; U C A = .复习2:交、并、补有如下性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;()U A C A = ;()U A C A = ; ()U U C C A = . 你还能写出一些吗?二、新课导学 ※ 典型例题例1 设U =R ,{|55}A x x =-<<,{|07}B x x =≤<.求A ∩B 、A ∪B 、C U A 、C U B 、(C U A )∩(C U B )、(C U A )∪(C U B )、C U (A ∪B )、C U (A ∩B ).小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点; (2)由以上结果,你能得出什么结论吗?例2已知全集{1,2,3,4,5}U =,若A B U =,A B ≠∅,(){1,2}U A C B =,求集合A 、B .小结:列举法表示的数集问题用Venn 图示法、观察法. 例 3 若{}{}22430,10A x x xB x x ax a =-+==-+-=,{}210C x x mx =-+=,A B A A C C ==且,求实数a 、m 的值或取值范围.变式:设2{|8150}A x x x =-+=,{|10}B x ax =-=,若B ⊆A ,求实数a 组成的集合、.※ 动手试试练1. 设2{|60}A x x ax =-+=,2{|0}B x x x c =-+=,且A ∩B ={2},求A ∪B .练2. 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围。
2020高中数学A版新教材必修1学案导学案 第五章 5.1 5.1.1 任意角
第五章三角函数[数学文化]——了解数学文化的发展与应用早期对于三角函数的研究可以追溯到古代.古希腊三角术的奠基人是公元前2世纪的喜帕恰斯,他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同).对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的.喜帕恰斯实际上给出了最早的三角函数数值表.然而古希腊的三角学基本是球面三角学,这与古希腊人研究的主体是天文学有关.梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理.古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法.托勒密还给出了所有0度到180度的所有整数和半整数弧度对应的正弦值.喜帕恰斯[读图探新]——发现现象背后的知识伦敦眼伦敦眼(英文名:The London Eye),全称英国航空伦敦眼(The British Airways London Eye)又称千禧之轮,坐落在伦敦泰晤士河畔,是世界第四大摩天轮,是伦敦的地标之一,也是伦敦最吸引游人的观光点之一.伦敦眼于1999年年底开幕,总高度135米(443英尺).伦敦眼共有32个乘坐舱,因舱内外用钢化玻璃打造,所以设有空调系统.每个乘坐舱可载客约25名,回转速度约为每秒0.26米,即一圈需时30分钟.问题1:伦敦眼转一圈需用时30分钟,这就叫周期现象,那么周期为多少呢?问题2:当游客坐伦敦眼达到最高点时,伦敦美景尽收眼底,总高度135米对应于三角函数的哪些量?链接:(1)周期为30分钟;(2)游客达到最高点与最低点时,分别对应了三角函数的最大值与最小值.5.1任意角和弧度制5.1.1任意角课标要求素养要求1.结合实例,了解角的概念的推广及其实际意义.2.理解象限角的概念,并掌握终边相同角的含义及其表示.在角的概念推广过程中,经历由具体到抽象,重点提升学生的数学抽象、直观想象素养.教材知识探究周日早晨,小明起床后,发现自己的闹钟停在5:00这一刻,他立即更换了电池,调整到了正常时间6:30,并开始正常的学习.问题小明在调整闹钟时间时,时针与分针各转过了多少度?提示时针转了-45°,分针转了-540°.1.角的分类注意正角、负角的旋转方向类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角2.角的加法(1)若两角的旋转方向相同且旋转量相等,那么就称α=β.(2)设α、β是任意两个角,把角α的终边旋转角β,这时终边所对应的角是α+β.(3)相反角:把射线OA 绕端点O 按不同方向旋转相同的量所成的两个角叫做互为相反角,角α的相反角记为-α,α-β=α+(-β).3.象限角如果角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.4.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.教材拓展补遗[微判断]1.经过1小时,时针转过30°.(×)提示因为是顺时针旋转,所以时针转过-30°.2.终边与始边重合的角是零角.(×)提示终边与始边重合的角是k ·360°(k ∈Z ).3.第一象限角都是锐角.(×)提示390°为第一象限角,但不是锐角.4.钝角是第二象限角.(√)5.第三象限的角一定比第一象限的角大.(×)提示例如-120°为第三象限角,60°为第一象限角,故错误.[微训练]1.-378°是第________象限角.解析-378°=-360°-18°,因为-18°是第四象限角,所以-378°是第四象限角.答案四2.与-457°角的终边相同的角的集合是()A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}解析由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角的终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.答案C[微思考]1.角的概念推广后角的范围有怎样的变化?提示角的概念推广后,角度的范围不限于0°~360°,而是任意的角,包括正角、负角与零角.2.终边相同的角相等吗?相等的角终边相同吗?提示当角的始边相同时,若角相等,则终边相同,但若角终边相同,则不一定相等.题型一与任意角有关的概念辨析【例1】(1)下列说法中,正确的是________(填序号).①终边落在第一象限的角为锐角;②锐角是第一象限的角;③第二象限的角为钝角;④小于90°的角一定为锐角;⑤角α与-α的终边关于x轴对称.解析终边落在第一象限的角不一定是锐角,如400°的角是第一象限的角,但不是锐角,故①的说法是错误的;同理第二象限的角也不一定是钝角,故③的说法也是错误的;小于90°的角不一定为锐角,比如负角,故④的说法是错误的.答案②⑤(2)如图,射线OA先绕端点O逆时针方向旋转60°到OB处,再按顺时针方向旋转820°至OC处,则β=________.解析∠AOC=60°+(-820°)=-760°,β=-760°+720°=-40°.答案-40°规律方法判断角的概念问题的关键与技巧(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.(2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举出反例即可.【训练1】写出图(1),(2)中的角α,β,γ的度数.解题干图(1)中,α=360°-30°=330°;题干图(2)中,β=-360°+60°+150°=-150°;γ=360°+60°+(-β)=360°+60°+150°=570°.题型二终边相同的角的表示及应用在终边相同的角的表示中,k·360°可以理解为按一定方向转动的圈数,k取正整数时,按逆时针转,k取负整数时,按顺时针转,k=0时,没有转动.【例2】写出终边落在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.解直线y=x与x轴的夹角是45°,在0°~360°范围内,终边在直线y=x上的角有两个:45°,225°.因此,终边在直线y=x上的角的集合:S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}={β|β=45°+2k·180°,k∈Z}∪{β|β=45°+(2k+1)·180°,k∈Z}={β|β=45°+n·180°,n∈Z}.∴S中适合-360°≤β<720°的元素是:45°-2×180°=-315°;45°-1×180°=-135°;45°+0×180°=45°;45°+1×180°=225°;45°+2×180°=405°;45°+3×180°=585°.规律方法解答本题关键是找到0°~360°范围内,终边落在直线y=x的角:45°,225°,再利用终边相同的角的关系写出符合条件的所有角的集合,如果集合能化简的还要化成最简.【训练2】写出终边落在x轴上的角的集合S.解S={α|α=k·360°,k∈Z}∪{α|α=k·360°+180°,k∈Z}={α|α=2k·180°,k∈Z}∪{α|α=(2k+1)·180°,k∈Z}={α|α=n·180°,n∈Z}.题型三象限角和区间(域)角的表示应先找到0°~360°范围内与其终边相同的角【例3】(1)-2019°是第________象限角.解析-2019°=-6×360°+141°,141°是第二象限角,所以-2019°为第二象限角.答案二(2)已知,如图所示.①分别写出终边落在OA,OB位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.包括边界用实线表示,不包括边界用虚线表示解①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于-30°到135°之间的与之终边相同的角组成的集合,故可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.【迁移1】若将例3(2)题改为如图所示的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?解在0°~360°范围内、阴影部分(包括边界)表示的范围是:150°≤α≤225°,则满足条件的角α为{α|k·360°+150°≤α≤k·360°+225°,k∈Z}.【迁移2】若将例3(2)题改为如图所示的图形,那么终边落在阴影部分(包括边界)的角的集合如何表示?解由题干图可知满足题意的角的集合为{β|k·360°+60°≤β≤k·360°+105°,k∈Z}∪{k·360°+240°≤β≤k·360°+285°,k∈Z}={β|2k·180°+60°≤β≤2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β≤(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β≤n·180°+105°,n∈Z},即所求的集合为{β|n·180°+60°≤β≤n·180°+105°,n∈Z}.规律方法表示区域角的三个步骤第一步:先按逆时针的方向找到区域的起始和终止边界.第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°.第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区域角集合.【训练3】(1)已知α是第二象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)已知α是锐角,那么2α是()A.第一象限角B.第二象限角C.小于180°的正角D.第一或第二象限角解析(1)由α是第二象限角可得,90°+k·360°<α<180°+k·360°,k∈Z.所以180°-(90°+k·360°)>180°-α>180°-(180°+k·360°),即90°-k·360°>180°-α>-k·360°(k∈Z),所以180°-α为第一象限角.(2)∵0°<α<90°,∴0°<2α<180°,∴2α是小于180°的正角.答案(1)A(2)C一、素养落地1.通过本节课的学习,学会利用图形描述建立形与数的联系,提升学生的数学抽象、直观想象素养.2.本节主要借助坐标系,加深对角的概念的理解.3.会写终边相同的角、区域角.二、素养训练1.在①160°;②480°;③-960°;④1530°这四个角中,属于第二象限角的是()A.①B.①②C.①②③D.①②③④解析②480°=120°+360°是第二象限角;③-960°=-3×360°+120°是第二象限角;④1530°=4×360°+90°不是第二象限角,故选C.答案C2.下列说法正确的是()A.三角形的内角一定是第一、二象限角B.钝角不一定是第二象限角C.相差180°整数倍的角为终边相同的角D.钟表的时针旋转而成的角是负角解析A错,如90°既不是第一象限角,也不是第二象限角;B错,钝角在90°到180°之间,是第二象限角;C错,终边相同的角之间相差360°的整数倍;D正确,钟表的时针是顺时针旋转,故是负角.答案D3.把-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为________.解析-936°=-3×360°+144°,故-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为144°+(-3)×360°.答案144°+(-3)×360°4.终边在直线y=-x上的角的集合S=________.解析由于直线y=-x是第二、四象限的角平分线,在0°~360°间所对应的两个角分别是135°和315°,从而S={α|α=k·360°+135°,k∈Z}∪{α|α=k·360°+315°,k∈Z}={α|α=2k·180°+135°,k∈Z}∪{α|α=(2k+1)·180°+135°,k∈Z}={α|α=n·180°+135°,n∈Z}.答案{α|α=n·180°+135°,n∈Z}5.已知,如图所示,(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.基础达标一、选择题1.下列说法中,正确的是()A.第二象限的角都是钝角B.第二象限角大于第一象限的角C.若角α与角β不相等,则α与β的终边不可能重合D.若角α与角β的终边在一条直线上,则α-β=k·180°(k∈Z)解析A错,495°=135°+360°是第二象限的角,但不是钝角;B错,α=135°是第二象限角,β=360°+45°是第一象限的角,但α<β;C错,α=360°,β=720°,则α≠β,但二者终边重合;D正确,α与β的终边在一条直线上,则二者的终边重合或相差180°的整数倍,故α-β=k·180°(k∈Z).答案D2.给出下列命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有()A.1个B.2个C.3个D.4个解析∵-90°<-75°<0°,∴-75°是第四象限角,①正确;∵180°<225°<270°,∴225°是第三象限角,②正确;∵360°+90°<475°<360°+180°,∴475°是第二象限角,③正确;∵-360°<-315°<-270°,∴-315°是第一象限角,④正确.故这4个命题都是正确的.答案D3.与-468°角的终边相同的角的集合是()A.{α|α=k ·360°+456°,k ∈Z }B.{α|α=k ·360°+252°,k ∈Z }C.{α|α=k ·360°+96°,k ∈Z }D.{α|α=k ·360°-252°,k ∈Z }解析因为-468°=-2×360°+252°,所以252°角与-468°角的终边相同,所以与-468°角的终边相同的角为k ·360°+252°,k ∈Z ,故选B.答案B4.角α与角β的终边关于y 轴对称,则α与β的关系为()A.α+β=k ·360°,k ∈ZB.α+β=k ·360°+180°,k ∈ZC.α-β=k ·360°+180°,k ∈ZD.α-β=k ·360°,k ∈Z解析法一(特值法):令α=30°,β=150°,则α+β=180°.法二(直接法):因为角α与角β的终边关于y 轴对称,所以β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .答案B5.已知α为第三象限角,则α2所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限解析法一如图所示,将每个象限二等分,标号Ⅲ所在的区域即为α2所在的区域,故选D.法二∵180°+k ·360°<α<270°+k ·360°,k ∈Z ,∴90°+k ·180°<α2<135°+k ·180°,k ∈Z ,∴α2为第二或第四象限角,故选D.答案D二、填空题6.1112°角是第________象限角.解析∵1112°=360°×3+32°,∴1112°与32°的终边相同,均为第一象限角.答案一7.终边在坐标轴上的角的集合为________.解析终边在x 轴上的角的集合为α1=k ·180°=2k ·90°,终边在y 轴上的角的集合为α2=k ·180°+90°=(2k +1)90°,所以终边在坐标轴上的角的集合为{α|α=k ·90°,k ∈Z }.答案{α|α=k ·90°,k ∈Z }8.若角θ的终边与60°角的终边相同,则在0°~360°内终边与θ3角的终边相同的角为________.解析由题意设θ=60°+k ·360°(k ∈Z ),则θ3=20°+k ·120°(k ∈Z ),则当k =0,1,2时,θ3=20°,140°,260°.答案20°,140°,260°三、解答题9.已知角θ的7倍角的终边与角θ的终边重合,且0°<θ<360°,求满足条件的角θ的集合.解由题意知,7θ=θ+k ·360°,k ∈Z ,即6θ=k·360°,k∈Z,∴θ=k·60°,k∈Z,由0°<θ<360°,得0°<k·60°<360°,k∈Z,∴0<k<6,k∈Z,即k=1,2,3,4,5,∴θ的集合为{60°,120°,180°,240°,300°}.10.已知角α=2010°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.解(1)由2010°除以360°,得商为5,余数为210°.∴取k=5,β=210°,α=5×360°+210°.又β=210°是第三象限角,∴α为第三象限角.(2)与2010°终边相同的角为k·360°+2010°(k∈Z).令-360°≤k·360°+2010°<720°(k∈Z),解得-6712≤k<-3712(k∈Z).所以k=-6,-5,-4.将k的值代入k·360°+2010°中,得角θ的值为-150°,210°,570°.能力提升11.写出如图所示阴影部分的角α的范围.解(1)因为与45°角终边相同的角可写成45°+k·360°,k∈Z的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k·360°,k∈Z的形式.所以图(1)阴影部分的角α的范围可表示为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.(2)同理可表示图(2)中角α的范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}. 12.在集合{α|α=k·90°+45°,k∈Z}中(1)有几种终边不相同的角?(2)有几个在区间(-360°,360°)内的角?(3)写出其中的第三象限角.解(1)由k=4n,4n+1,4n+2,4n+3(n∈Z),知在给定的角的集合中终边不相同的角共有四种.(2)由-360°<k·90°+45°<360°,得-92<k<72.又k∈Z,故k=-4,-3,-2,-1,0,1,2,3.所以在给定的角的集合中在区间(-360°,360°)内的角共有8个.(3)其中的第三象限角为k·360°+225°,k∈Z.。
2020年高中新教材目录
2020年高中新教材目录数学必修第一册(A版)第一章集合与常用逻辑用语1.1集合的概念 (2)1.2集合间的基本关系 (7)1.3集合的基本运算 (10)阅读与思考集合中元素的个数 (15)1.4充分条件与必要条件 (17)阅读与思考集合命题与充分条件、必要条件..241.5全称量词与存在量词 (26)小结 (33)复习参考题1 (34)第二章一元二次函数、方程和不等式2.1等式性质与不等式性质.......... 3 72.2基本不等式.................... 4 42.3二次函数与一元二次方程、不等式5 0小结............................. 5 6复习参考题2 (57)第三章函数的概念与性质阅读与思考函数概念的发展历程 (75)3.2函数的基本性质 (76)信息技术应用用计算机绘制函数图象87 3.3幂函数 (89)探究与发现探究函数y = x + 1/x的图象与性质 (92)3.4函数的应用(一) (93)文献阅读与数学写作函数的形成与发展97小结 (99)复习参考题3 (100)第四章指数函数与对数函数4.1指数 (104)4.2指数函数 (111)阅读与思考放射性物质的衰减 (115)信息技术应用探究指数函数的性质1204.3对数 (122)阅读与思考对数的发明 (128)4.4对数函数 (130)探究与发现互为反函数的两个函数图象间的关系 (135)阅读与思考中外历史上的方程求解147 文献阅读与数学写作对数概念的形成与发展 (157)小结 (158)复习参考题4 (159)数学建模建立函数模型解决实际问题 (162)第五章三角函数5.1任意角和弧度制 (168)5.2三角函数的概念 (177)阅读与思考三角学与天文学 (186)5.3诱导公式 (188)5.4三角函数的图象与性质 (196)探究与发现函数y=Asin(3x + 5)及函数y = Acos(3x +牛)的周期 (203)探究与发现利用单位圆的性质研究正弦函数、余弦函数的性质.• (208)5.5三角恒等变换 (215)信息技术应用利用信息技术制作三角函数表 (224)5.6函数丫二人$岫乂 +牛) (231)阅读与思考振幅、周期、频率、相位 (250)小结 (251)复习参考题5 (253)部分中英文词汇索引 (258)数学必修第一册(B版)第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法 (3)1.1.2集合的基本关系 (9)1.1.3集合的基本运算 (14)1.2常用逻辑用语1.2.1命题与量词 (22)1.2.2全称量词命题与存在量词命题的否定..271.2.3充分条件、必要条件 (30)本章小结 (37)第二章等式与不等式2.1等式2.1.1等式的性质与方程的解集 (43)2.1.2一元二次方程的解集及其根与系数的关系 (47)2.1.3方程组的解集 (51)2.2不等式2.2.1不等式及其性质 (58)2.2.2不等式的解集 (64)2.2.3一元二次不等式的解法 (68)2.2.4均值不等式及其应用 (72)本章小结 (79)第三章函数3.1函数的概念与性质3.1.1函数及其表示方法 (85)3.1.2函数的单调性 (95)3.1.3函数的奇偶性 (104)3.2函数与方程、不等式之间的关系 (112)3.3函数的应用(一) (121)3.4数学建模活动:决定苹果的最佳出售时间点..125本章小结 (131)本书拓展阅读目录罗素悖论与第三次数学危机 (11)数学中的猜想 (23)自主招生中的充分条件与必要条件 (33)《九章算术》中的代数成就简介 (52)函数定义的演变过程简介 (86)物理中的变化率 (99)付出与收获的关系 (101)二分法在搜索中的应用 (118)数学必修第二册(A版)第六章平面向量及其应用6.1平面向量的概念 (2)阅读与思考向量及向量符号的由来 (6)6.2平面向量的运算 (7)6.3平面向量基本定理及坐标表示 (25)6.4平面向量的应用 (38)阅读与思考海伦和秦九韶 (55)小结 (57)复习参考题6 (59)数学探究用向量法研究三角形的性质 (63)第七章复数7.1复数的概念 (68)7.2复数的四则运算 (75)阅读与思考代数基本定理 (81)7.3*复数的三角表示 (83)探究与发现1的n次方根 (91)小结 (93)复习参考题7 (94)第八章立体几何初步8.1基本立体图形 (97)8.2立体图形的直观图 (107)阅读与思考画法几何与蒙日 (112)8.3简单几何体的表面积与体积 (114)探究与发现祖暅原理与柱体、锥体的体积 (121)8.4空间点、直线、平面之间的位置关系 (124)8.5空间直线、平面的平行 (133)8.6空间直线、平面的垂直 (146)阅读与思考欧几里得《原本》与公理化方法 (165)文献阅读与数学写作*几何学的发展166小结 (167)复习参考题8 (169)第九章统计9.1随机抽样 (173)阅读与思考如何得到敏感性问题的诚实反应 (185)信息技术应用统计软件的应用 (189)9.2用样本估计总体 (192)阅读与思考统计学在军事中的应用----二战时德国坦克总量的估计问题 (208)阅读与思考大数据 (217)9.3统计案例公司员工的肥胖情况调查分析 (218)小结 (220)复习参考题9 (222)第十章概率10.1随机事件与概率 (226)10.2事件的相互独立性 (246)10.3频率与概率 (251)阅读与思考孟德尔遗传规律 (259)小结 (261)复习参考题10 (263)部分中英文词汇索引 (265)数学必修第二册(B版)第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算 (3)4.1.2指数函数的性质与图像 (9)4.2对数与对数函数4.2.1对数运算 (15)4.2.2对数运算法则 (20)4.2.3对数函数的性质与图像 (24)4.3指数函数与对数函数的关系 (30)4.4幂函数 (33)4.5增长速度的比较 (38)4.6函数的应用(二) (42)4.7数学建模活动:生长规律的描述 (46)4.8结 (50)第五章统计与概率5.1统计5.1.1数据的收集 (55)5.1.2数据的数字特征 (61)5.1.3数据的直观表示 (68)5.1.4用样本估计总体 (77)5.2数学探究活动:由编号样本估计总数及其模拟 (90)5.3概率5.3.1样本空间与事件 (93)5.3.2事件之间的关系与运算 (98)5.3.3古典概型 (102)5.3.4频率与概率 (108)5.3.5随机事件的独立性 (114)5.4统计与概率的应用 (119)本章小结 (126)第六章平面向量初步6.1平面向量及其线性运算6.1.1向量的概念 (133)6.1.2向量的加法 (137)6.1.3向量的减法 (142)6.1.4数乘向量 (145)6.1.5向量的线性运算 (147)6.2向量基本定理与向量的坐标6.2.1向量基本定理 (152)6.2.2直线上向量的坐标及其运算 (157)6.2.3平面向量的坐标及其运算 (160)6.3平面向量线性运算的应用 (168)本章小结 (172)本书拓展阅读目录对数发明起源的简介 (17)素数个数与对数 (18)指数运算与生活哲学 (40)我国古代统计工作简介 (57)用样本估计总体的失败案例 (82)“黄金7 2小时”中的概率 (96)向量的推广与应用 (163)数学必修第三册(B版)第七章三角函数7.1任意角的概念与弧度制7.1.1角的推广 (3)7.1.2弧度制及其与角度制的换算 (8)7.2任意角的三角函数7.2.1三角函数的定义 (14)7.2.2单位圆与三角函数线 (18)7.2.3同角三角函数的基本关系式 (22)7.2.4诱导公式 (27)7.3三角函数的性质与图像7.3.1正弦函数的性质与图像 (36)7.3.2正弦型函数的性质与图像 (43)7.3.3余弦函数的性质与图像 (50)7.3.4正切函数的性质与图像 (54)7.3.5已知三角函数值求角 (57)7.4数学建模活动:周期现象的描述...•• (64)本章小结 (66)第八章向量的数量积与三角恒等变换8.1向量的数量积8.1.1向量数量积的概念 (71)8.1.2向量数量积的运算律 (76)8.1.3向量数量积的坐标运算 (81)8.2三角恒等变换8.2.1两角和与差的余弦 (87)8.2.2两角和与差的正弦、正切 (90)8.2.3倍角公式 (96)8.2.4三角恒等变换的应用 (99)本章小结 (107)本书拓展阅读目录更多三角函数及关系式 (25)向量的数量积与三角形的面积 (84)正弦型函数与信号处理 (103)数学必修第四册(B版)第九章解三角形9.1正弦定理与余弦定理9.1.1正弦定理 (3)9.1.2余弦定理89.2正弦定理与余弦定理的应用 (13)9.3数学探究活动:得到不可达两点之间的距离 (17)本章小结 (19)第十章复数10.1复数及其几何意义10.1.1复数的概念 (25)10.1.2复数的几何意义 (29)10.2复数的运算10.2.1复数的加法与减法 (33)10.2.2复数的乘法与除法 (36)10.3复数的三角形式及其运算 (43)本章小结 (50)第十一章立体几何初步11.1空间几何体11.1.1空间几何体与斜二测画法 (55)11.1.2构成空间几何体的基本元素 (60)11.1.3多面体与棱柱 (66)11.1.4棱锥与棱台 (72)11.1.5旋转体 (76)11.1.6祖暅原理与几何体的体积 (82)11.2平面的基本事实与推论 (91)11.3空间中的平行关系11.3.1平行直线与异面直线 (96)11.3.2直线与平面平行 (100)11.3.3平面与平面平行 (103)11.4空间中的垂直关系11.4.1直线与平面垂直 (110)11.4.2平面与平面垂直 (116)本章小结 (123)本书拓展阅读目录秦九韶的“三斜求积术” (11)利用复数产生分形图 (40)四元数简介 (47)我国古代数学中球的体积公式 (86)生物学必修1分子与细胞第一章走进细胞第1节细胞是生命活动的基本单位 (2)第2节细胞的多样性和统一性 (9)探究•实践使用高倍显微镜观察^种细胞 (9)生物科技进展人工合成生命的探索 (12)第二章组成细胞的分子第1节细胞中的元素和化合物 (16)探究•实践检测生物组织中的糖类、脂肪和蛋白质 (18)第2节细胞中的无机物 (20)第3节细胞中的糖类和脂质 (23)第4节蛋白质是生命活动的主要承担者 (28)生物科学史话世界上第一个人工合成蛋白质的诞生 (33)第5节核酸是遗传信息的携带者 (34)第三章细胞的基本结构第1节细胞膜的结构和功能 (40)第2节细胞器之间的分工合作 (47)探究•实践用高倍显微镜观察叶绿体和细胞质的流动 (50)第3节细胞核的结构和功能 (54)探究•实践尝试制作真核细胞的三维结构模型 (57)生物科技进展世界上首例体细胞克隆猴的诞生 (58)第四章细胞的物质和输入输出第1节被动运输 (62)探究•实践探究植物细胞的吸水和失水 (64)生物科学史话人类对通道蛋白的探索历程 (68)第2节主动运输与胞吞、胞吐 (69)第五章细胞的能量供应和利用第1节降低化学反应活化能的酶 (76)一酶的作用和本质 (76)探究•实践比较过氧化氢在不同条件下的分解 (77)二酶的特性 (81)探究•实践淀粉酶对淀粉和蔗糖的水解作用 (81)探究•实践影响酶活性的条件 (82)科学・技术・社会酶为生活添姿彩..85第2节细胞的能量“货币” ATP (86)第3节细胞呼吸的原理和应用 (90)探究•实践探究酵母菌细胞呼吸的方式..90第4节光合作用与能量转化 (97)一捕获光能的色素和结构 (97)探究•实践绿叶中色素的提取和分离 (98)二光合作用的原理和应用 (102)探究•实践探究环境因素对光合作用强度的影响 (105)第六章细胞的生命历程第1节细胞的增殖 (110)探究•实践观察根尖分生区组织细胞的有丝分裂 (116)第2节细胞的分化 (118)科学・技术・社会骨髓移植和中华骨髓库 (122)第3节细胞的衰老和死亡 (123)生物科技进展秀丽隐杆线虫与细胞凋亡研究 (127)与生物学有关的职业病理科医师 (128)附录生物学实验室的基本安全规则 (131)生物学必修2遗传与进化第一章遗传因子的发现第1节孟德尔的豌豆杂交实验(一) (2)探究•实践性状分离比的模拟实验 (6)第2节孟德尔的豌豆杂交(二) (9)与生物学有关的职业育种工作者 (14)第二章基因和染色体的关系第1节减数分裂和受精作用一减数分裂 (18)探究•实践观察蝗虫精母细胞减数分裂装片 (24)二受精作用 (25)探究•实践建立减数分裂中染色体变化的模型 (25)科学・技术・社会人类辅助生殖技术..28在染色体上 (29)科学家的故事染色体遗传理论的奠基人摩尔根 (33)第3节伴性遗传 (34)第三章基因的本质第1节DNA是主要的遗传物质 (42)生物科技进展生物信息学及其应用..47第2节DNA的结构 (48)探究•实践制作DNA双螺旋结构模型51科学・技术・社会DNA指纹技术 (52)第四章基因的表达指导蛋白质的合成 (64)生物科学史话遗传密码的破译 (70)第2节基因表达与性状的关系 (71)科学・技术・社会基因工程的应用 (76)第五章基因突变及其它变化第1节基因突变和基因重组 (80)生物科技进展基因组编辑 (85)科学・技术・社会精准医疗 (86)第2节染色体变异 (87)探究•实践低温诱导植物细胞染色体数目的变化 (89)第3节人类遗传病 (92)探究•实践调查人群中的遗传病 (93)与生物学有关的职业遗传咨询师.96第六章生物的进化第1节生物有共同祖先的证据 (100)科学・技术・社会理想的“地质时钟”105与生物学有关的职业化石标本的制作人员 (105)第2节自然选择与适应的形成 (106)第3节种群基因组成的变化与物种的形成..110物理必修第一册第一章运动的描述1.质点参考系 (11)2.时间位移 (14)3.位置变化快慢的描述一一速度 (19)4.速度变化快慢的描述一一加速度 (25)第二章匀变速直线运动的研究1.实验:探究小车速度随时间变化的规律..342.匀变速直线运动的速度与时间的关系 (37)3.匀变速直线运动的位移与时间的关系 (40)4.自由落体运动 (45)第三章相互作用力1.重力与弹力 (55)2.摩擦力 (60)3.牛顿第三定律 (64)4.力的合成和分解 (68)5.共点力的平衡 (72)第四章运动和力的关系1.牛顿第一定律 (79)2.实验:探究加速度与力、质量的关系 (83)3.牛顿第二定律 (88)4.力学单位制 (93)5.牛顿运动定律的应用 (97)6.超重和失重 (101)课题研究 (108)学生实验 (112)索引 (116)化学必修第一册第一章物质及其变化第一节物质的分类及转化 (6)第二节离子反应 (13)第三节氧化还原反应 (20)整理与提升 (27)第二章海水中的重要元素——钠和氯第一节钠及其化合物 (32)第二节氯及其化合物 (41)第三节物质的量 (49)整理与提升 (58)实验活动1配制一定物质的量浓度的溶液..61第三章铁金属材料第一节铁及其化合物 (64)第二节金属材料 (73)整理与提升.............. 整实验活动2铁及其化合物的性质 (84)第四章物质结构元素周期律 (84)第一节原子结构与元素周期表 (86)第二节元素周期律 (101)第三节化学键 (107)整理与提升 (111)实验活动3同周期、同主族元素性质的递变115附录I实验室突发事件的应对措施和常见废弃物的处理方法 (116)附录口一些化学品安全使用标识 (117)附录印名词索引 (119)附录V部分酸、碱和盐的溶解性表(室温)120附录V 一些常见元素中英文名称对照表..121附录VI相对原子质量表 (122)元素周期表地理必修第一册第一章宇宙中的地球第一节地球的宇宙环境 (2)第二节太阳对地球的影响 (8)第三节地球的历史 (14)第四节地球的圈层结构 (21)问题研究火星基地应该是什么样子.25第二章地球上的大气第一节大气的组成和垂直分层 (28)第二节大气受热过程和大气运动 (34)问题研究何时“蓝天”常在 (42)第三章地球上的水第一节水循环 (46)第二节海水的性质 (50)第三节海水的运动问题研究能否淡化海冰解决环渤海 (57)地区淡水短缺问题 (63)第四章地貌第一节常见地貌类型 (66)第二节地貌的观察 (76)问题研究如何提升我国西南喀斯特峰丛山地的经济发展水平 (79)第五章制备与土壤第一节植被 (82)第二节土壤 (88)问题研究如何让城市不再“看海” (96)第六章自然灾害第一节气象灾害 (100)第二节地质灾害 (106)第三节防灾减灾 (110)第四节地理信息技术在防灾减灾中的应用 (114)问题研究救灾物资储备库应该建在哪里 (120)附录一本书主要地理词汇中英文对照表122附录二本套书常用地图图例 (124)体育与健康必修全一册。
新课标高中数学人教A版必修1全册导学案及答案(105页)
课题:1.1.1集合的含义与表示(1)一、三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。
过程与方法:通过实例了解,体会元素与集合的属于关系。
情感态度与价值观:培养学生的应用意识。
二、学习重、难点:重点:掌握集合的基本概念。
难点:元素与集合的关系。
三、学法指导:认真阅读教材P 1-P 3,对照学习目标,完成导学案,适当总结。
四、知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合” 这一词?(试举几例)五、学习过程:1、阅读教材P 2 页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P 3的思考题,并再列举一些集合例子和不能构成集合的例子。
2、集合与元素的字母表示: 集合通常用大写的拉丁字母A ,B ,C …表示,集合的元素用小写的拉丁字母a,b,c,…表示。
问题5:元素与集合之间的关系?A 例1:设A 表示“1----20以内的所有质数”组成的集合,则3、4与A 的关系?B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A 1.判断以下元素的全体是否组成集合:(1)大于3小于11的偶数; ( ) (2)我国的小河流; ( ) (3)非负奇数; ( ) (4)本校2009级新生; ( ) (5)血压很高的人; ( ) (6)著名的数学家; ( ) (7)平面直角坐标系内所有第三象限的点 ( ) A 2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B 3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉-,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3B 4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为 ( )A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是方程x 2-4x+m=0的解集,求实数m 的取值范围。
2020高中数学A版新教材必修1学案导学案 第一章 1.4 1.4.1 充分条件与必要条件
19
课前预习
课堂互动
核心素养
二、素养训练 1.若p:a∈M∪N,q:a∈M,则p是q的( )
A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.既是充分条件,也是必要条件 D.既不是充分条件,也不是必要条件 解析 由a∈M∪Na∈M,但a∈Ma∈M∪N,即pq,但qp. 答案 B
@《创新设计》
故p是q的充分条件. (3)由x=1(x-1)(x-2)=0,
故p是q的充分条件.
故(1)(2)(3)命题中p是q的充分条件.
14
课前预习
课堂互动
核心素养
@《创新设计》
题型三 根据必要条件(充分条件)求参数的范围 【例3】 (1)已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,
核心素养
@《创新设计》
5.若“x>m”是“x>3或x<1”的充分条件但不是必要条件,求m的取值范围. 解 由已知条件,知{x|x>m}{x|x>3或x<1}.∴m≥3.
24
课前预习
课堂互动
核心素养
@《创新设计》
三、审题答题
示范(一) 利用充分条件(必要条件)求参数范围
【典型示例】 (12分)已知
18
课前预习
课堂互动
核心素养
@《创新设计》
1.通过学习充分条件与必要条件的概念提升数学抽象素养,通过判断充分条件与必 要条件及其应用培养逻辑推理素养.
2.充分条件、必要条件的判断方法 (1)定义法:直接利用定义进行判断. (2)利用集合间的包含关系进行判断.
3.根据充分条件、必要条件求参数的取值范围时,注意转化与化归思想的应用.
人教统编部编版高中数学必修第一册A版第五章《三角函数》全章节教案教学设计(含章末综合复习)
【新教材】人教统编版高中数学必修第一册A版第五章教案教学设计5.1.1《任意角和弧度制---任意角》教案教材分析:学生在初中学习了o 0~o 360,但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.教学目标与核心素养:课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.教学重难点:重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入初中对角的定义是:射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到o 0~o 360范围内的角.但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与 x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.跟踪训练一1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C【答案】D【解析】由已知得B C,所以B∪C⊆C,故D正确.2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-315°=-360°+45°且0°<45°<90°.所以这四个命题都是正确的.题型二终边相同的角的表示及应用例2(1)将-885°化为k·360°+α(0°≤α<360°,k∈Z)的形式是________.(2)写出与α=-910°终边相同的角的集合,并把集合中适合不等式-720°<β<360°的元素β写出来.【答案】(1)(-3)×360°+195°,(2)终边相同的角的集合为{β|β=k·360°-910°,k∈Z},适合不等式-720°<β<360°的元素-550°、-190°、170°.【解析】(1)-885°=-1 080°+195°=(-3)×360°+195°.(2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z},∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z,∴k取1,2,3.当k=1时,β=360°-910°=-550°;当k=2时,β=2×360°-910°=-190°;当k=3时,β=3×360°-910°=170°.解题技巧:(终边相同的角的表示)1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到所求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.跟踪训练二1.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′【答案】B【解析】与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z),当k =3时,α=-850°12′+1 080°=229°48′.2.写出角α的终边落在第二、四象限角平分线上的角的集合为________.【答案】{α|α=k ·180°+135°,k ∈Z}.【解析】落在第二象限时,表示为k ·360°+135°.落在第四象限时,表示为k ·360°+180°+135°,故可合并为{α|α=k ·180°+135°,k ∈Z}. 题型三 任意角终边位置的确定和表示例3 (1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角(2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)B (2) ①终边落在OA 位置上的角的集合为{α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z}.②故该区域可表示为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z}.【解析】(1) 因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.所以α2是第一、三象限角.(2) ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.解题技巧:(任意角终边位置的确定和表示)1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.提醒:表示区间角时要注意实线边界与虚线边界的差异.2.nα或所在象限的判断方法:的范围;(1)用不等式表示出角nα或αn所在象限.(2)用旋转的观点确定角nα或αn跟踪训练三1.如图所示的图形,那么终边落在阴影部分的角的集合如何表示?【答案】角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.【解析】在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本171页练习及175页习题5.1 1、2、7题.教学反思:本节课主要采用讲练结合与分组探究的教学方法,让学生从旋转方向和旋转度数熟悉角的概念,象限角,终边相同的角等,并且掌握其应用.5.1.2《任意角和弧度制---弧度制》教案教材分析:前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养:课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点:重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
2020高中数学A版新教材必修1学案导学案 第四章 4.5 4.5.1 函数的零点与方程的解
4.5 函数的应用(二)4.5.1 函数的零点与方程的解课标要求素养要求1.结合学过的函数图象与性质,了解函数零点与方程解的关系.2.了解零点存在性定理、会判断函数零点的个数.通过本节内容的学习,使学生体会转化思想在研究函数中的作用,提升学生的数学抽象、逻辑推理、直观想象素养.教材知识探究路边有一条河,小明从A点走到了B点.观察下列两组画面,并推断哪一组能说明小明的行程一定曾渡过河?将这个实际问题抽象成数学模型.问题 如图,若将河看成x轴,建立平面直角坐标系,A,B是人的起点和终点,则点A,B应该满足什么条件就能说明小明的行程一定曾渡过河?提示 只要满足点A与点B分布在x轴的两侧即可,即图中A处的函数值与B处的函数值符号相反,这也是我们将要学习的零点的相关知识.1.函数的零点注意零点不是点,而是一个实数f(x)=0(1)概念:对于一般函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.(2)函数的零点、函数的图象与x 轴的交点、对应方程的根的关系:f(x)=0x轴f (a )·f (b )<0是函数y =f (x )在区间(a ,b )内存在零点的充分不必要条件2.函数零点存在定理(1)条件:①如果函数y =f (x )在区间[a ,b ]上的图象是一条 的曲线;② <0.(2)结论:函数y =f (x )在区间(a ,b )内至少有一个零点,即存在c ∈(a ,b ),使得,这个c也就是方程f (x )=0的解.连续不断f (a )·f (b )f(c)=0×2.若函数f (x )在(a ,b )内有零点,则f (a )f (b )<0.()提示 反例:f (x )=x 2-2x 在区间(-1,3)内有零点,但f (-1)·f (3)>0.3.若函数f (x )的图象在区间[a ,b ]上是一条连续不断的曲线,且f (a )·f (b )<0,则f (x )在(a ,b )内只有一个零点.()提示 反例:f (x )=x (x -1)(x -2),区间为(-1,3),满足条件,但f (x )在(-1,3)内有0,1,2三个零点.××[微训练]1.下列各图象表示的函数中没有零点的是( )答案 D2.若2是函数f(x)=a·2x-log2x的零点,则a=________.[微思考]1.结合所学的基本初等函数(如一次函数、二次函数、指数函数、对数函数),思考是否所有的函数都有零点?并说明理由.提示 不一定.因为函数的零点就是方程的根,但不是所有的方程都有根,所以说不是所有的函数都有零点.如:指数函数,其图象都在x轴的上方,与x轴没有交点,故指数函数没有零点;对数函数有唯一一个零点.2.在零点存在定理中,若f(a)·f(b)<0,则函数f(x)在(a,b)内存在零点.则满足什么条件时f(x)在(a,b)上有唯一零点?提示 满足f(x)在(a,b)内连续且单调,且f(a)·f(b)<0.题型一 求函数的零点(2)令f(x)=21-x-4=0解得x=-1,即f(x)的零点为-1,令g(x)=1-log2(x+3)=0,解得x=-1,所以函数f(x)的零点与g(x)的零点之和为-2.(3)由f(3)=32-3m=0解得m=3.答案 (1)B (2)-2 (3)3规律方法 探究函数零点的两种求法(1)代数法:求方程f(x)=0的实数根,若存在实数根,则函数存在零点,否则函数不存在零点.(2)几何法:与函数y=f(x)的图象联系起来,图象与x轴的交点的横坐标即为函数的零点.【训练1】 函数f(x)=ax+b有一个零点是2,那么函数g(x)=bx2-ax的零点是________.解析 ∵函数f(x)=ax+b有一个零点是2,∴2a+b=0 b=-2a,∴g(x)=bx2-ax=-2ax2-ax=-ax(2x+1).题型二 判断函数零点的个数(2)法一 函数对应的方程为ln x+x2-3=0,所以原函数零点的个数即为函数y=ln x与y=3-x2的图象交点个数.在同一直角坐标系下,作出两函数的图象(如图).由图象知,函数y=3-x2与y=ln x的图象只有一个交点.从而方程ln x+x2-3=0有一个根,即函数y=ln x+x2-3有一个零点.法二 由于f(1)=ln 1+12-3=-2<0,f(2)=ln 2+22-3=ln 2+1>0,所以f(1)·f(2)<0,又f(x)=ln x+x2-3的图象在(1,2)上是连续的,所以f(x)在(1,2)上必有零点,又f(x)在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的四种常用方法(1)利用方程根,转化为解方程,有几个不同的实数根就有几个零点.(2)画出函数y=f(x)的图象,判定它与x轴的交点个数,从而判定零点的个数.(3)结合单调性,利用零点存在性定理,可判定y=f(x)在(a,b)上零点的个数.(4)转化成两个函数图象的交点问题.答案 C题型三 判断函数零点所在的区间【例3】 (1)二次函数f(x)=ax2+bx+c的部分对应值如下表:x-3-2-101234 y6m-4-6-6-4n6不求a,b,c的值,判断方程ax2+bx+c=0的两根所在区间是( )A.(-3,-1)和(2,4)B.(-3,-1)和(-1,1)C.(-1,1)和(1,2)D.(-∞,-3)和(4,+∞)解析 (1)易知f(x)=ax2+bx+c的图象是一条连续不断的曲线,又f(-3)f(-1)=6×(-4)=-24<0,所以f(x)在(-3,-1)内有零点,即方程ax2+bx+c=0在(-3,-1)内有根,同理方程ax2+bx+c=0在(2,4)内有根.故选A.答案 (1)A (2)C规律方法 确定函数f(x)零点所在区间的常用方法(1)解方程法:当对应方程f(x)=0易解时,可先解方程,再看求得的根是否落在给定区间上.(2)利用函数零点存在定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若f(a)·f(b)<0,则函数y=f(x)在区间(a,b)内必有零点.(3)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.【训练3】 (1)函数f(x)=e x+x-2的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)(2)若方程x lg(x+2)=1的实根在区间(k,k+1)(k∈Z)上,则k等于( )A.-2B.1C.-2或1D.0解析 (1)∵f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,∴f(0)·f(1)<0,又f(x)的图象在(0,1)内是一条连续不断的曲线,∴f(x)在(0,1)内有零点.答案 (1)C (2)C一、素养落地1.通过学习函数零点与方程根的关系培养数学抽象素养,通过学习零点存在定理判断零点的个数及判断零点所在区间提升逻辑推理、直观想象素养.2.在函数零点存在定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.3.方程f(x)=g(x)的根是函数f(x)与g(x)的图象交点的横坐标,也是函数y=f(x)-g(x)的图象与x轴交点的横坐标.4.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时可以转化为方程问题,这正是函数与方程思想的基础.二、素养训练1.函数f(x)=2x2-4x-3的零点有( )A.0个B.1个C.2个D.不能确定解析 由f(x)=0,即2x2-4x-3=0,因为Δ=(-4)2-4×2×(-3)=40>0,所以方程2x2-4x-3=0有两个不相等的实根,即f(x)有两个零点.答案 C答案 B答案 B4.函数f(x)=x2-2x在R上的零点个数是________.解析 函数f(x)=x2-2x的零点个数,等价于函数y=2x,y=x2的图象交点个数.如图,画出函数y=2x,y=x2的大致图象.由图象可知有3个交点,即f(x)=x2-2x有3个零点.答案 3本节内容结束。
2020年新课标高中数学人教A版必修1全册导学案及答案(145页)
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果是集合A 的元素,就说属于集合A,记作;(2)如果不是集合A 的元素,就说不属于集合A,记作.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn 图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作,正整数集记作或,整数集记作,有理数集记作,实数集记作. [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形a a a A ∈a a a A ∉N *N N +Z Q R 217x +>{},,M a b c =例3.设若,求的值.分析: 某元素属于集合A,必具有集合A 中元素的性质,反过来,只要元素具有集合A 中元素的性质,就一定属于集合A.例4.已知,,且,求实数的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合 (B )0与 的意义相同 (C )集合 是有限集 (D )方程的解集只有一个元素 2.下列四个集合中,是空集的是( )A .B .C .D . 3.方程组的解构成的集合是( )A .B .C .(1,1)D ..4.已知,,则B =5.若,,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=()3,2A ∈,a b p p {}2,,M a b ={}22,2,N a b =M N =,a b {}0⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,10122=++x x }33|{=+x x },,|),{(22R y x x y y x ∈-=}0|{2≤x x }01|{2=+-x x x 20{=+=-y x y x )}1,1{(}1,1{}1{}1,0,1,2{--=A }|{A x x y y B ∈==}4,3,2,2{-=A },|{2A t t x xB ∈==的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
2020高中数学A版新教材必修1学案导学案 第一章 1.4 1.4.1 充分条件与必要条件
∴m≤1. (2)由已知条件得{x|x>a}{x|x<-3 或 x>1},∴a≥1.
一、素养落地 1.通过学习充分条件与必要条件的概念提升数学抽象素养,通过判断充分条件与 必要条件及其应用培养逻辑推理素养. 2.充分条件、必要条件的判断方法 (1)定义法:直接利用定义进行判断. (2)利用集合间的包含关系进行判断. 3.根据充分条件、必要条件求参数的取值范围时,注意转化与化归思想的应用. 二、素养训练 1.若 p:a∈M∪N,q:a∈M,则 p 是 q 的( ) A.充分条件但不是必要条件 B.必要条件但不是充分条件
A.充分条件但不是必要条件
B.必要条件但不是充分条件
C.既是充分条件,也是必要条件
D.既不是充分条件,也不是必要条件
解析 x≥2 且 y≥2 可以推出 x2+y2≥4,但 x=1 且 y=3 满足 x2+y2≥4 但不满
足 x≥2 且 y≥2,故选 A.
答案 A
4.设 x,y 是两个实数,命题:“x,y 中至少有一个数大于 1”成立的充分条件但
(2)如果“若 p,则 q”为假命题,那么由条件 p 不能推出结论 q,记作 p / q, 此时,我们就说 p 不是 q 的充分条件,q 不是 p 的必要条件. 2.判定定理和性质定理与充分条件、必要条件的关系 (1)数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件. (2)数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.
要使 p 是 q 的充分条件但不是必要条件,则 MN,应有
2或
2
1+a>1 1+a≥1,
解得 a≥1.10 分 2
令 a=1,则 M={x|x<0 或 x>2}N={x|x<1或 x>1}. 2
2020高中数学A版新教材必修1学案导学案 第五章 5.4 5.4.2 第一课时 正弦函数、余弦函数的周期性与奇偶性
且当
x∈
0,π 2
时,f(x)=sin
x,则
f
5π 3 等于(
)
A.-1
B.1
2
2
C.- 3 2
D. 3 2
解析 f(5π)=f(5π-π)=f(2π)=f(2π-π)=f(-π)=f(π)=sinπ= 3.
33
33
3 3 32
答案 D
【迁移 1】 若将例 3(2)题中的“偶函数”改为“奇函数”,其他条件不变,结
提示 常数函数 f(x)=c,任意一个正实数都是其周期,因而不存在最小正周期.
3.若存在正数 T,使 f(x+T)=-f(x),则函数 f(x)的周期为 2T.(√)
4.函数 f(x)=sin 2x 是奇函数.(√)
5.函数 f(x)=sin
2x+π 2
是偶函数.(√)
6.y=sin x 与 y=cos x 既是中心对称图形又是轴对称图形.(√)
1x+π 26
+2π
=2sin
1x+π 26
,
∴自变量 x 只要并且至少要增加到 x+4π,
函数
y=2sin
1x+π 26
,x∈R
的值才能重复出现,
∴函数
y=2sin
1x+π 26
,x∈R
的周期是
4π.
(2)∵1-2cos[π(x+4)]=1-2cos(πx+2π)=1-2cos(πx),
2
2
2
∴自变量 x 只需并且至少要增加到 x+4,函数 y=1-2cos(πx),x∈R 的值才能 2
若函数 f(x)是以π为周期的偶函数,且 f
π 3
=1,则 f
-17π 6
=________.
2020高中数学A版新教材必修1学案导学案 第五章 5.4 5.4.3 正切函数的性质与图象
2
解析 T= π =π. |-3| 3
答案 B
4.比较大小:tan1________tan5.
2
2
解析 因为 tan1>0,tan5<0,所以 tan1>tan5.
2
2
22
答案 >
5.求函数 y=tan 2x 的定义域、值域和周期,并作出它在区间[-π,π]内的图象.
解 由 2x≠π+kπ,k∈Z,得 x≠π+1kπ,k∈Z,
T= π . |ω|
(3)正切函数在
-π+kπ,π+kπ
2
2
(k∈Z)上递增,不能写成闭区间.正切函数无单调
减区间.
二、素养训练
1.函数 y=2tan(2x+π)的定义域为( ) 3
A.{x|x≠ π } 12
B.{x|x≠- π } 12
C.{x|x≠ π +kπ,k∈Z} 12
D.{x|x≠ π +1kπ,k∈Z} 12 2
两侧相邻的两条渐近线方程分别是 x=-π,x=5π,从而得到函数 y=f(x)在一个
3
3
-π,5π 周期 3 3 内的简图(如图).
规律方法 熟练掌握正切函数的图象和性质是解决正切函数综合问题的关键,正 切曲线是被相互平行的直线 x=π+kπ,k∈Z 隔开的无穷多支曲线组成,y=tan x
2 kπ,0 的对称中心为 2 ,k∈Z. 【训练 3】 画出 f(x)=tan|x|的图象,并根据其图象判断其单调区间、周期性、奇 偶性. 解 f(x)=tan|x|化为 tan x,x≠kπ+π,x≥0(k∈Z),
2 f(x)= -tan x,x≠kπ+π,x<0(k∈Z),
2 根据 y=tan x 的图象,作出 f(x)=tan|x|的图象,如图所示,
新教材高中数学人教A版必修一【导学案】5
5.1.1 任意角学习目标教材考点学习目标核心素养任意角的概念理解任意角的概念,能区分各类角数学抽象终边相同的角掌握终边相同的角的含义及其表示方法数学抽象、逻辑推理象限角与区域角的表示掌握象限角的概念并能用集合表示各类象限角及区域角数学抽象、直观想象知识梳理1.任意角(1)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(2)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有做任何旋转形成在平面直角坐标系中,若角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.名师导学知识点1 任意角的概念【例】(多选)下列说法正确的是()A.锐角都是第一象限角B.第一象限角一定不是负角C.小于180°的角是钝角、直角或锐角D.在90°≤β<180°范围内的角β不一定是钝角[解析]锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以A 正确;-350°角是第一象限角,但它是负角,所以B错误;0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以C错误:由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,所以D正确.[答案]AD反思感悟关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需要举一个反例即可.变式训练经过2个小时,钟表的时针和分针转过的角度分别是()A.60°,720°B.-60°,-720°C.-30°,-360°D.-60°,720°解析:选B.钟表的时针和分针都是顺时针旋转,因此转过的角度都是负的,而212×360°=60°,2×360°=720°,故钟表的时针和分针转过的角度分别是-60°,-720°.知识点2 终边相同的角【例】在与角10 030°终边相同的角中,求满足下列条件的角β.(1)最大的负角;(2)[360°,720°)内的角.【解】与10 030°终边相同的角的一般形式为β=k·360°+10 030°(k∈Z).(1)由-360°<k·360°+10 030°<0°,得-10 390°<k·360°<-10 030°,解得k=-28,故所求的最大负角为β=-50°.(2)由360°≤k·360°+10 030°<720°,得-9 670°≤k·360°<-9 310°,解得k =-26,故所求的角为β=670°.反思感悟(1)写出终边落在直线上的角的集合的步骤①写出在[0°,360°)内相应的角;②由终边相同的角的表示方法写出角的集合;③根据条件能合并一定合并,使结果简洁.(2)终边相同的角常用的三个结论①终边相同的角之间相差360°的整数倍;②终边在同一直线上的角之间相差180°的整数倍;③终边在相互垂直的两直线上的角之间相差90°的整数倍.变式训练1.(2021·吉林省实验中学高一月考)将-880°化为α+k×360°(0°≤α<360°,k∈Z)的形式是()A.160°+(-3)×360°B.200°+(-2)×360°C.160°+(-2)×360°D.200°+(-3)×360°解析:选D易知-880°=200°+(-3)×360°,故选D.2.在直角坐标系中写出下列角的集合:(1)终边在x轴的非负半轴上;(2)终边在y=x(x≥0)上.解:(1)在0°~360°范围内,终边在x轴的非负半轴上的角有一个0°.故终边落在x 轴的非负半轴上的角的集合为{α|α=k·360°,k∈Z}.(2)在0°~360°范围内,终边在y=x(x≥0)上的角有一个45°.故终边在y=x(x≥0)上的角的集合为{α|α=k·360°+45°,k∈Z}.知识点3 象限角【例】(1)(多选)在①160°;②480°;③-960°;④1 530°这四个角中,是第二象限角的是( )A .①B .②C .③D .④[解析] 第二象限角α需满足k ·360°+90°<α<k ·360°+180°,k ∈Z ,分析可知:①是第二象限角;②是第二象限角;③是第二象限角;④不是第二象限角.故选A 、B 、C.[答案] ABC(2)已知α是第二象限角,求角α2所在的象限.[解] ∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).∴k2·360°+45°<α2<k 2·360°+90°(k ∈Z ). 当k 为偶数时,令k =2n (n ∈Z ),得n ·360°+45°<α2<n ·360°+90°,这表明α2是第一象限角;当k 为奇数时,令k =2n +1(n ∈Z ),得n ·360°+225°<α2<n ·360°+270°,这表明α2是第三象限角.∴α2为第一或第三象限角.反思感悟1.给定一个角判断它是第几象限角的思路判断角α是第几象限角的常用方法为将α写成β+k·360°(其中k∈Z,β在0°~360°范围内)的形式,观察角β的终边所在的象限即可.2.分角、倍角所在象限的判定思路(1)求解的思维模式应是:由欲求想需求,由已知想可知,抓住内在联系,确定解题方略;(2)由α的象限确定2α的象限时,应注意2α可能不再是象限角,对此特殊情况应特别指出.如α=135°,而2α=270°就不再是象限角.变式训练1.-1 060°的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限解析:选A因为-1 060°=-3×360°+20°,所以-1 060°的终边落在第一象限.2.若α是第四象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:选C因为α是第四象限角,则角α应满足:k·360°-90°<α<k·360°,k∈Z,所以-k·360°<-α<-k·360°+90°,k∈Z,则-k·360°+180°<180°-α<-k·360°+270°,k∈Z,当k=0时,180°<180°-α<270°,故180°-α为第三象限角.当堂测评1.下列角中,终边在y轴非负半轴上的是()A.45°B.90°C.180°D.270°解析:选B.根据角的概念可知,90°角是以x轴的非负半轴为始边,逆时针旋转了90°,故其终边在y轴的非负半轴上.2.下列各角中与330°角终边相同的角是()A.510°B.150°C.-150°D.-390°解析:选D.-390°=330°-720°,所以与330°角终边相同的角是-390°.3.与2 019°角终边相同的最小正角是________角;与2 019°角终边相同的最大负角是________.解析:因为与2 019°角终边相同的角是2 019°+k·360°(k∈Z),所以当k=-5时,与2 019°角终边相同的最小正角是219°角.当k=-6时,与2 019°角终边相同的最大负角是-141°.答案:219°-141°4.若角α的终边与75°角的终边关于x轴对称,且-360°<α<360°,则角α的值为____________.解析:如图,设75°角的终边为射线OA,射线OA关于x轴对称的射线为OB,则以射线OB为终边的一个角为-75°,所以以射线OB为终边的角的集合为{α|α=k·360°-75°,k∈Z}.又-360°<α<360°,令k=0或1,得α=-75°或285°.答案:-75°或285°5.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°.解:(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.。
2020-2020学年高中数学必修第一册学案:第5章5.1.1任意
5.1任意角和弧度制5.1.1任意角学习目标核心素养1.理解任意角的概念.2.掌握终边相同角的含义及其表示.(重点、难点)3.掌握轴线角、象限角及区间角的表示方法.(难点、易混点)1.通过终边相同角的计算,培养数学运算素养.2.借助任意角的终边位置的确定,提升逻辑推理素养.现实生活中随处可见超过0°~360°范围的角.例如,体操中有“前空翻转体540度”“后空翻转体720度”这样的动作名称,这里不仅有超出0°~360°范围的角,而且旋转的方向也不相同.问题:要准确地描述这些现象,不仅要知道旋转的度数,还要知道旋转的方向,你知道在数学中是如何表示此种现象的吗?提示:借助正角、负角的概念.1.角的概念角可以看成平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.2.角的表示如图,(1)始边:射线的起始位置OA,(2)终边:射线的终止位置OB,(3)顶点:射线的端点O.这时,图中的角α可记为“角α”或“∠α”或简记为“α”.3.任意角的分类(1)按旋转方向分(2)按角的终边位置分①前提:角的顶点与原点重合,角的始边与x轴的非负半轴重合.②分类:4.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.思考:终边相同的角相等吗?相等的角终边相同吗?提示:终边相同的角不一定相等,它们相差360°的整数倍;相等的角,终边相同.1.思考辨析(正确的打“√”,错误的打“×”)(1)第二象限角大于第一象限角.()(2)第二象限角是钝角.()(3)终边相同的角一定相等.()(4)终边相同的角有无数个,它们相差360°的整数倍.()[提示](1)错误.如第二象限角100°小于第一象限角361°.(2)错误.如第二象限角-181°不是钝角.(3)错误.终边相同的角可表示为α=β+k·360°,k∈Z,即α与β不一定相等.(4)正确.[答案](1)×(2)×(3)×(4)√2.下列说法正确的是()A.三角形的内角是第一象限角或第二象限角B.第四象限的角一定是负角C.60°角与600°角是终边相同的角D.将表的分针拨慢10分钟,则分针转过的角为60°D[A错误,90°角既不是第一象限角也不是第二象限角;B错误,280°角是第四象限角,但它不是负角;C错误,600°-60°=540°不是360°的倍数;D正确,分针转一周为60分钟,转过的角度为-360°,将分针拨慢是逆时针旋转,拨慢10分钟转过的角为360°×16=60°.]3.50°角的始边与x轴的非负半轴重合,把终边按顺时针方向旋转2周,所得角是________.-670°[由题意知,所得角是50°-2×360°=-670°.]4.已知0°≤α<360°,且α与600°角终边相同,则α=________,它是第________象限角.240°三[因为600°=360°+240°,所以240°角与600°角终边相同,且0°≤240°<360°,故α=240°,它是第三象限角.]角的有关概念的判断①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°.②855°.③-510°.(1)①[①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.](2)[解]作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.1.理解角的概念的关键与技巧:(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.(2)技巧:判断命题为真需要证明,而判断命题为假只要举出反例即可.2.象限角的判定方法:(1)在坐标系中画出相应的角,观察终边的位置,确定象限.(2)第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.提醒:理解任意角这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.[跟进训练]1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是()A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆CD[由已知得B C,所以B∪C=C,故D正确.]2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有()A.1个B.2个C.3个D.4个D[-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-360°<-315°<-270°.所以这四个命题都是正确的.]终边相同的角的表示及应用式-720°≤β<360°的元素β写出来.(2)写出终边在直线y=x上的角的集合S.S中满足不等式-360°≤β<720°的元素β有哪些?[解](1)与α=-1 910°终边相同的角的集合为{β|β=k·360°-1 910°,k∈Z}.∵-720°≤β<360°,即-720°≤k·360°-1 910°<360°(k∈Z),∴31136≤k<61136(k∈Z),故取k=4,5,6.k=4时,β=4×360°-1 910°=-470°;k=5时,β=5×360°-1 910°=-110°;k=6时,β=6×360°-1 910°=250°.(2)如图,在直角坐标系中画出直线y=x,可以发现它与x轴的夹角是45°,在0°~360°范围内,终边在直线y=x上的角有两个:45°,225°.因此,终边在直线y =x上的角的集合S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}={β|β=45°+n·180°,n∈Z}.S中适合不等式-360°≤β<720°的元素β有45°-2×180°=-315°,45°-1×180°=-135°,45°+0×180°=45°,45°+1×180°=225°,45°+2×180°=405°,45°+3×180°=585°.1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中的β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到要求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.提醒:表示终边相同的角,k∈Z这一条件不能少.[跟进训练]3.下面与-850°12′终边相同的角是()A.230°12′B.229°48′C.129°48′ D.130°12′B[与-850°12′终边相同的角可表示为α=-850°12′+k·360°(k∈Z),当k=3时,α=-850°12′+1 080°=229°48′.]4.在-360°~360°之间找出所有与下列各角终边相同的角,并判断各角所在的象限.①790°;②-20°.[解]①∵790°=2×360°+70°=3×360°-290°,∴在-360°~360°之间与它终边相同的角是70°和-290°,它们都是第一象限的角.②∵-20°=-360°+340°,∴在-360°~360°之间与它终边相同的角是340°,它们都是第四象限的角.任意角终边位置的确定和表示1.若射线OA的位置是k·360°+10°,k∈Z,射线OA绕点O逆时针旋转90°经过的区域为D,则终边落在区域D(包括边界)的角的集合应如何表示?提示:终边落在区域D包括边界的角的集合可表示为{α|k·360°+10°≤α≤k·360°+100°,k∈Z}.2.若角α与β的终边关于x轴、y轴、原点、直线y=x对称,则角α与β分别具有怎样的关系?提示:(1)关于x轴对称:若角α与β的终边关于x轴对称,则角α与β的关系是β=-α+k·360°,k∈Z.(2)关于y轴对称:若角α与β的终边关于y轴对称,则角α与β的关系是β=180°-α+k·360°,k∈Z.(3)关于原点对称:若角α与β的终边关于原点对称,则角α与β的关系是β=180°+α+k·360°,k∈Z.(4)关于直线y=x对称:若角α与β的终边关于直线y=x对称,则角α与β的关系是β=-α+90°+k·360°,k∈Z.【例3】(1)若α是第一象限角,则-α2是()A.第一象限角B.第一、四象限角C.第二象限角D.第二、四象限角(2)已知,如图所示.①分别写出终边落在OA,OB位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.[思路点拨](1)根据角终边的对称性确定-α2是第几象限角(2)①观察图形→确定终边落在OA,OB位置上的角(1)D[因为α是第一象限角,所以k·360°<α<k·360°+90°,k∈Z,所以k·180°<α2<k·180°+45°,k∈Z,所以α2是第一、三象限角,又因为-α2与α2的终边关于x轴对称,所以-α2是第二、四象限角.](2)[解]①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.1.若将本例(2)改为如图所示的图形,那么终边落在阴影部分(包括边界)的角的集合如何表示?[解]在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k +1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.2.若将本例(2)改为如图所示的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?[解]在0°~360°范围内,阴影部分(包括边界)表示的范围可表示为:150°≤β≤225°,则所有满足条件的角β为{β|k·360°+150°≤β≤k·360°+225°,k∈Z}.1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.2.nα或αn所在象限的判断方法:(1)用不等式表示出角nα或αn的范围;(2)用旋转的观点确定角nα或αn所在象限.例如:k·120°<α3<k·120°+30°,k∈Z.由0°<α3<30°,每次逆时针旋转120°可得α3终边的位置.提醒:表示区间角时要注意实线边界与虚线边界的差异.1.掌握3个知识点(1)任意角的概念.(2)终边相同的角与象限角.(3)区域角的表示.2.掌握1种方法——数形结合由α所在象限,确定α2所在象限,可用如下方法判断:(1)画出区域:将坐标系每个象限二等分,得到8个区域;(2)标号:自x轴正向逆时针方向把每个区域依次标上Ⅰ,Ⅱ,Ⅲ,Ⅳ(如图所示);(3)确定区域:找出与角α所在象限标号一致的区域,即为所求.3.规避2个易错(1)锐角与小于90°角的区别.(2)终边相同角的表示中漏掉k∈Z.1.下列角中,终边在y轴非负半轴上的是()A.45°B.90°C.180°D.270°B[根据角的概念可知,90°角是以x轴的非负半轴为始边,逆时针旋转了90°,故其终边在y轴的非负半轴上.]2.下列各个角中与2 019°终边相同的是()A.-149°B.679°C.319°D.219°D[因为2 019°=360°×5+219°,所以与2 019°终边相同的角是219°.]3.已知角α的终边在如图阴影表示的范围内(不包含边界),那么角α的集合是________.{α|k·360°+45°<α<k·360°+150°,k∈Z}[观察图形可知,角α的集合是{α|k·360°+45°<α<k·360°+150°,k∈Z}.]4.若角α的终边与75°角的终边关于直线y=0对称,且-360°<α<360°,则角α的值为________.-75°或285°[如图,设75°角的终边为射线OA,射线OA关于直线y=0对称的射线为OB,则以射线OB为终边的一个角为-75°,所以以射线OB为终边的角的集合为{α|α=k·360°-75°,k∈Z}.又-360°<α<360°,令k=0或1,得α=-75°或285°.]5.在0°到360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°;(2)640°.[解](1)与-120°终边相同的角的集合为M={β|β=-120°+k·360°,k∈Z}.当k=1时,β=-120°+1×360°=240°,∴在0°到360°范围内,与-120°终边相同的角是240°,它是第三象限的角.(2)与640°终边相同的角的集合为M={β|β=640°+k·360°,k∈Z}.当k=-1时,β=640°-360°=280°,∴在0°到360°范围内,与640°终边相同的角为280°,它是第四象限的角.莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。
2019-2020新课程同步人教A版高中数学必修第一册新学案课件:5.4 5.4.2 第一课时 正弦
由图象可知 T=π.
第九页,编辑于星期日:点 三十分。
[方法技巧]
求三角函数周期的方法
(1)定义法,即利用周期函数的定义求解.
(2)公式法,对形如 y=Asin(ωx+φ)或 y=Acos(ωx+φ)(A,ω, φ 是常数,A≠0,ω≠0)的函数,T=|2ωπ|.
(3)图象法,即通过画出函数图象,通过图象直接观察即可. 三种方法各有所长,要根据函数式的结构特征,选择适当的 方法求解.
第二十二页,编辑于星期日:点 三十分。
2.函数 y=sin2x+52π的图象的一个对称中心是
()
A.π8,0
B.π4,0
C.-π3,0
D.38π,0
解析:sin2x+52π=cos 2x,由 2x=kπ+π2,k∈Z ,
得 x=k2π+π4,k∈Z ,令 k=0,得 x=π4.故函数图象
的一个对称中心是π4,0. 答案:B
第一课时 正弦函数、余弦函数的性质(一)
第一页,编辑于星期日:点 三十分。
知识点 正弦函数、余弦函数的周期性和奇偶性
(一)教材梳理填空
(1)函数的周期性
①一般地,设函数 f(x)的定义域为 D,如果存在一个 _非__零__常__数___T__ , 使 得 对 每 一 个 x ∈ D 都 有 x+T ∈ D, 且 __f(__x_+_T_)__=_f(__x_)_, 那 么 函 数 f ( x ) 就 叫 做 周 期 函 数 . _非__零__常___数__T__叫做这个函数的周期.
[答案] C
第十七页,编辑于星期日:点 三十分。
(2)定义在 R 上的函数 f(x)既是偶函数,又是周期函数,若
f(x)的最小正周期为 π,且当 x∈0,π2时,f(x)=sin x,则 f
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4.2 正弦函数、余弦函数的性质
第一课时 正弦函数、余弦函数的周期性与奇偶性课标要求
素养要求
1.了解周期函数、周期、最小正周期的定义.
2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.
3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.
利用y =sin x ,y =cos x 的图象,探索y =sin x ,y =cos x 的周期性、奇偶性,重点提升学生的直观想象、逻辑推理
和数学抽象素养.
教材知识探究
丹麦这个处在安徒生童话中的国家,如同安徒生的童话描写一般,有很大的风,也有很多的风,自然也有很多很大的风车,而现在丹麦又有了世界上最大的风力发电机组,这个维斯塔斯和三菱合作的大风车V164-8.0 MW,全部高度有220米,风车风轮的直径也达到了世界最大的风力发电机组164米,扫掠面积21 000平米,在风速11米/秒时,转速在4.8~12.1 rpm之间,电力输出可达到每小时最大8百万瓦,这个风力发电组的电能能满足7 500个家庭的电力需求.
的收益.这种周而复始的转动就是周期现象.
问题 1.你能用数学语言刻画函数的周期性吗?如果函数y=f(x)的周期是T,那
么函数y=f(ωx)(ω>0)的周期是多少?
2.函数y=A sin(ωx+φ)或y=A cos (ωx+φ)的周期与什么量有关?其计算周期的公
式是什么?
1.周期函数没有特别说明的情况下,周期均指函数的最小正周期
条件
①对于函数f (x ),存在一个______________常数T
②当x 取定义域内的每一个值时,都有________________=f (x )
结论函数f (x )叫做周期函数,非零常数T 叫做这个函数的周期
非零f (x +T )
2.最小正周期
条件
如果周期函数f (x )的所有周期中存在一个最小的_________
结论
这个最小_________
叫做f (x )的最小正周期正数正数
3.正弦函数、余弦函数的周期性和奇偶性
函数y =sin x y =cos x 周期2k π(k ∈Z 且k ≠0)
2k π(k ∈Z 且k ≠0)最小正周期_____________________________
_____________奇偶性
_____________
_____________
2π
2π奇函数偶函数
教材拓展补遗
[微判断]
1.周期函数y =f (x )的定义域可以为[a ,b ](a ,b ∈R ).( )提示 周期函数的定义域一定为无限集,且无上下界.
2.任何周期函数都有最小正周期.(
)提示 常数函数f (x )=c ,任意一个正实数都是其周期,因而不存在最小正周期.3.若存在正数T ,使f (x +T )=-f (x ),则函数f (x )的周期为2T .( )4.函数f (x )=sin 2x 是奇函数.(
)××√√
√
√
答案 D
答案 C
解析 图象关于y轴对称,则为偶函数,故选B.答案 B
[微思考]
函数y=A sin(ωx+φ)满足什么条件时为奇函数、偶函数?y=A cos (ωx+φ)满足什么条件时为奇函数、偶函数?
∴自变量x只要并且至少要增加到x+4π,
(3)作图如下:
观察图象可知最小正周期为π.
题型二 三角函数的奇偶性
∴f(x)的定义域关于原点对称.
又∵f(x)=lg(1-sin x)-lg(1+sin x)
∴f(-x)=lg[1-sin(-x)]-lg[1+sin(-x)]=lg(1+sin x)-lg(1-sin x)=-f(x).
∴f(x)为奇函数.
(3)∵1+sin x≠0,∴sin x≠-1,
∵定义域不关于原点对称,∴该函数是非奇非偶函数.
规律方法 判断函数奇偶性的两个关键点
(1)看函数的定义域是否关于原点对称;
(2)看f(-x)与f(x)的关系.
对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.
解 (1)函数的定义域为R,
又f(-x)=|sin(-x)|+cos(-x)=|sin x|+cos x=f(x),所以f(x)是偶函数.
(2)由1-cos x≥0且cos x-1≥0,得cos x=1,从而x=2kπ,k∈Z,
此时f(x)=0,故该函数既是奇函数又是偶函数.
答案 D
答案 D
【迁移1】 若将例3(2)题中的“偶函数”改为“奇函数”,其他条件不变,结果如何?
规律方法 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.
答案 1
答案 C
2.下列是定义在R上的四个函数图象的一部分,其中不是周期函数的是( )
解析 对于D,x∈(-1,1)时的图象与其他区间图象不同,不是周期函数.答案 D
3.函数f(x)=x+sin x,x∈R( )
A.是奇函数,但不是偶函数
B.是偶函数,但不是奇函数
C.既是奇函数,又是偶函数
D.既不是奇函数,又不是偶函数
解析 由f(-x)=-x-sin x=-(x+sin x)=-f(x)可知f(x)是奇函数,但f(-x)≠f(x),故f(x)不是偶函数.
答案 A
答案 B
答案 ±π
本节内容结束。