燃煤锅炉低氮燃烧改造技术原理及方案..共82页

合集下载

燃煤锅炉低氮燃烧改造技术原理及方案

燃煤锅炉低氮燃烧改造技术原理及方案
燃煤锅炉低氮燃烧改造技术原理及 方案
目录
• 引言 • 燃煤锅炉低氮燃烧技术原理 • 改造方案 • 实施步骤与注意事项 • 改造效果评估与优化建议 • 结论与展望
01 引言
背景介绍
随着我国经济的快速发展,能源需求 持续增长,燃煤锅炉作为主要的能源 供给设备之一,其排放的氮氧化物对 环境造成了严重污染。
注意事项
安全第一 质量保证 遵守法规 专业协作
在改造过程中,始终把安全放在第一位,确保施工过程不发生 安全事故。
确保改造工程质量,选用优质的材料和设备,严格把控施工工 艺。
改造过程应遵守国家和地方的相关环保法规,确保改造后的锅 炉氮氧化物排放达到标准。
充分利用专业人员的知识和经验,特别是在方案设计和技术实 施阶段,确保改造方案的科学性和可行性。
调整一次风和二次风比例
通过调整一次风和二次风的配比,控制燃料燃 烧过程中的氧气浓度,降低氮氧化物生成。
优化炉膛结构
改进炉膛设计,使炉膛内温度分布更加均匀,提高燃烧效率。
方案三:燃料分级燃烧技术
01
燃料分段燃烧
将燃料分成多段进行燃烧,降低 燃烧区的温度,减少氮氧化物生 成。
引入再燃区
02
03
优化再燃区结构
通过将燃料分成不同的阶段进行燃烧,降低氮氧 化物的生成。
国内外研究现状及发展趋势
国内外研究现状
国内外在低氮燃烧技术方面都有一定 的研究,但技术路线和应用情况有所 不同。
发展趋势
随着环保要求的提高,低氮燃烧技术 将更加受到重视,未来将有更多的研 究和应用。
03 改造方案
方案一:燃烧器改造
更换低氮燃烧器
通过更换低氮燃烧器,降低燃烧过程中氮氧化物的生 成量。

燃气锅炉超低氮排放改造原理及技术

燃气锅炉超低氮排放改造原理及技术

随着国家政府对环境保护的重视以及近几年连续出台的大气污染防治攻坚战文件来看,各地环保局对当地企业强制要求并执行燃煤锅炉更换为低氮燃气锅炉,普通的燃气锅炉实施低氮改造。

普通的燃气锅炉尾气排放的有害颗粒物,例如氮氧化物、一氧化碳等,成为大气污染的罪魁祸首,因此锅炉的低氮改造将会是一些生产企业及供暖单位迫切面临的任务。

那么,大家只知道锅炉需要改造,但是,燃气锅炉超低氮排放改造的原理是什么,需要什么技术能实现超低氮排放呢?下面,由中鼎锅炉专业技术人员给大家简单介绍一下。

1、氮氧化物危害氮氧化物即一氧化氮、二氧化氮等气体,为高温条件下,空气中的氮气和氧气化合反应生成。

氮氧化物与空气中的水结合最终会转化成硝酸和硝酸盐,硝酸是酸雨的成因之一;它与其他污染物在一定条件下能产生光化学烟雾污染。

酸雨危害是多方面的,包括对人体健康、生态系统和建筑设施都有直接和潜在的危害。

酸雨可使儿童免疫功能下降,慢性咽炎、支气管哮喘发病率增加,同时可使老人眼部、呼吸道患病率增加。

酸雨还可使农作物大幅度减产,特别是小麦,在酸雨影响下,可减产13%至34%。

大豆、蔬菜也容易受酸雨危害,导致蛋白质含量和产量下降。

酸雨对森林和其他植物危害也较大,常使森林和其他植物叶子枯黄、病虫害加重,最终造成大面积死亡。

2、氮氧化物排放标准我们知道用燃气锅炉替代燃煤锅炉能够大大降低污染,普通的燃气锅炉氮氧化物排放高于30毫克,这意味着大部分普通的燃气锅炉都达不到30mg以下,除非配有低氮燃烧机,但是使用低氮燃烧机的锅炉本身也是需要有特殊的要求的,那就是对锅炉炉膛尺寸需要加大,中鼎锅炉最新生产的低氮燃气锅炉专门针对环保政策要求的NOX排放30mg以下,且配置超低氮燃烧器,能安全、稳定、高效地运行,每一台出厂的低氮锅炉均能达到低氮排放达标。

3、甲烷-空气燃烧过程氮化学基本原理燃烧理论将NOx的生成分为热力型NOx(Thermal NOx)、快速型NOx (Prompt NOx)和燃料型NOx(Fuel NOx)。

锅炉低氮改造方案

锅炉低氮改造方案

锅炉低氮改造方案锅炉低氮改造方案一、背景介绍随着环保意识的增强和环境保护法规的逐步推进,减少氮氧化物(NOx)的排放已成为许多工业领域的关注重点之一。

作为重要的能源供应设备之一,锅炉在能源消耗和NOx排放方面面临着一定的挑战。

为了满足环境保护的要求,锅炉低氮改造成为一项重要的工程。

二、改造目标锅炉低氮改造的目标是降低锅炉燃烧过程中产生的氮氧化物排放。

具体目标如下:1. 将锅炉NOx排放浓度降低至国家环境保护规定标准以下;2. 保证锅炉燃烧效率不受明显影响;3. 减少锅炉运行成本,提高能源利用率。

三、改造方案3.1 锅炉燃烧调整通过控制锅炉的燃烧过程,可以有效降低锅炉燃烧产生的NOx排放。

具体措施包括:1. 优化燃烧器结构,采用低氮燃烧技术,控制燃烧温度和燃气混合比,减少NOx的生成;2. 优化燃烧过程参数,如氧供给量和负荷调整等,在保证燃烧效率的前提下降低NOx排放;3. 使用燃烧助剂,如变质煤粉等,改善燃烧条件,降低NOx排放。

3.2 污染物处理装置安装为了进一步减少锅炉排放的污染物,可以在锅炉排放气体处理系统中加装相应的污染物处理装置。

常见的处理装置包括:1. SCR(Selective Catalytic Reduction,选择性催化还原)装置:通过添加氨水或尿素作为还原剂,使用催化剂降解NOx为氮气和水,减少NOx的排放;2. SNCR(Selective Non-Catalytic Reduction ,选择性非催化还原)装置:通过添加尿素溶液或氨水等还原剂,直接喷入燃烧区域进行还原,减少NOx排放;3. 烟气脱硝装置:利用化学吸收法、氧化催化法等处理技术,将NOx转化为无害物质,降低NOx排放。

3.3 锅炉运行管理和维护锅炉低氮改造不仅需要改变锅炉的硬件结构,还需要加强对锅炉的运行管理和维护。

具体要求如下:1. 加强锅炉的日常巡检和维护,确保锅炉燃烧器等关键部件的正常运行;2. 定期清洗和检查锅炉换热面、烟道和排烟系统等,防止积灰和堵塞,影响排放效果;3. 对锅炉进行精细调试,合理控制炉膛温度和氧含量,达到低氮排放要求。

燃气锅炉低氮改造方案

燃气锅炉低氮改造方案

燃气锅炉低氮改造方案燃气锅炉低氮排放成为了新时代的新要求,为了保护环境,保证国人健康,燃气锅炉低氮排放势在必行,使命必达。

远大锅炉紧跟时代步伐,积极响应国家政策,时刻不忘研发新产品,不忘为用户谋福利。

远大低氮燃气锅炉:FGR烟气再循环低氮燃烧技术;国外原装进口低氮燃烧器;压力、水位多重安全防护;PLC触摸屏智能化控制技术。

远大锅炉低氮技术研发历程:保护环境,节能减排,绿色生产,可持续发展是每一个企业的使命,远大锅炉每年按销售额的5%提取新产品研发费用,专注低氮、节能锅炉技术的研发。

2015年,远大锅炉与芬兰奥林、德国欧科、意大利利雅路、意科法兰等积极合作,通过使用超低NOx燃烧器,增加烟气外循环设计,实现氮氧化物<30mg/m3排放标准。

NOx成分分析及产生机理:在燃烧过程中所产生的氮的氧化物主要为NO和NO2,通常把这两种氮氧化物通称为氮氧化物NOx。

大量实验结果表明,燃烧装置排放的氮氧化物主要为NO,平均约占95%,而NO2仅占5%左右。

燃料燃烧过程生成的NOx,按其形成分类,可分为三种:1、热力型NOx(ThermalNOx),它是空气中的氮气在高温下氧化而生成的NOx;2、快速型NOx(PromptNOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx;3、燃料型NOx(FuelNOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx;燃烧时所形成NO可以与含氮原子中间产物反应使NO还原成NO2。

实际上除了这些反应外,NO还可以与各种含氮化合物生成NO2。

在实际燃烧装置中反应达到化学平衡时,[NO2]/[NO]比例很小,即NO转变为NO2很少,可以忽略。

降低NOx的燃烧技术:NOx是由燃烧产生的,而燃烧方法和燃烧条件对NOx的生成有较大影响,因此可以通过改进燃烧技术来降低NOx,其主要途径如下:1选用N含量较低的燃料,包括燃料脱氮和转变成低氮燃料;2降低空气过剩系数,组织过浓燃烧,来降低燃料周围氧的浓度;3在过剩空气少的情况下,降低温度峰值以减少“热反应NO”;4在氧浓度较低情况下,增加可燃物在火焰前峰和反应区中停留的时间。

低氮燃烧技术和燃烧烟气再循环工作原理

低氮燃烧技术和燃烧烟气再循环工作原理

低氮燃烧技术和燃烧烟气再循环工作原理一、低氮燃烧技术低氮燃烧技术是一种通过优化燃烧过程来减少氮氧化物排放的方法。

它主要包括三个方面的措施:燃烧器结构优化、燃烧过程控制和燃料改造。

燃烧器结构优化是通过改变燃烧器的设计和布局来提高燃烧效率和降低氮氧化物排放。

例如,采用分级燃烧技术可以使燃烧过程更加充分,减少未燃烧物质的产生。

此外,还可以采用内循环燃烧技术,将一部分烟气重新引入燃烧器中进行再燃烧,以提高燃烧效率和降低氮氧化物的生成。

燃烧过程控制是通过调节燃料和空气的配比、燃烧温度等参数来控制氮氧化物的生成。

例如,通过提高燃烧温度可以促进氮氧化物的还原,从而减少氮氧化物的排放。

此外,还可以采用燃烧过程分层控制技术,将燃烧过程分为预混燃烧和主燃烧两个阶段,以降低氮氧化物的生成。

燃料改造是通过改变燃料的组成和性质来减少氮氧化物的生成。

例如,采用低氮燃料可以降低氮氧化物的排放。

此外,还可以采用燃料添加剂,如氨水、尿素等,在燃烧过程中与氮氧化物发生反应,形成氮和水等无害物质。

二、燃烧烟气再循环工作原理燃烧烟气再循环是一种通过将一部分燃烧产生的烟气重新引入燃烧器中进行再燃烧的技术。

它主要包括两个步骤:烟气收集和再循环。

烟气收集是将燃烧产生的烟气通过烟囱或其他烟气排放装置收集起来。

在收集过程中,需要对烟气进行净化处理,以去除其中的颗粒物、氮氧化物等污染物,以免对环境造成污染。

再循环是将收集到的烟气重新引入燃烧器中进行再燃烧。

通过再燃烧,可以使燃烧过程更加充分,提高燃烧效率。

此外,再燃烧还可以降低燃烧过程中的氮氧化物生成,从而减少氮氧化物的排放。

燃烧烟气再循环的工作原理是利用再循环系统将部分烟气从烟囱中抽取回燃烧器,与新鲜空气和燃料进行混合燃烧。

再循环系统一般包括烟气收集装置、再循环风机、再循环管道和再循环口等组成部分。

通过控制再循环烟气的比例和再循环位置,可以实现对燃烧过程的调节,提高燃烧效率和降低氮氧化物排放。

总结起来,低氮燃烧技术和燃烧烟气再循环技术是两种常用的减少氮氧化物排放和提高燃烧效率的方法。

燃气锅炉低氮改造方案

燃气锅炉低氮改造方案
2.施工过程中,采取有效措施,降低粉尘、噪音等污染;
3.改造完成后,定期对环保设施进行维护,确保其正常运行。
十、项目总结
本方案旨在通过对燃气锅炉进行低氮改造,实现氮氧化物排放浓度≤30mg/m³,满足国家及地方环保要求。改造过程中,注重安全性、环保性和经济效益,确保改造项目的顺利实施。通过本次改造,将为企业带来长期的环境效益和经济效益,为我国环保事业贡献力量。
6.调试优化:完成改造后,对锅炉进行调试,调整燃烧参数,确保氮氧化物排放浓度达标。
7.验收评估:组织专家对改造效果进行评估,确保各项指标达到预期目标。
八、改造效果评估
1.氮氧化物排放浓度:改造后,氮氧化物排放浓度应≤30mg/m³。
2.燃烧效率:改造后,锅炉燃烧效率提高3%以上。
3.能源消耗:改造后,能源消耗降低5%以上。
2.调整燃烧参数:根据实际运行情况,优化燃烧器结构,提高燃烧效率;
3.增设烟气再循环系统:在锅炉尾部增设烟气再循环风机,将部分烟气引入燃烧器,降低火焰温度;
4.优化控制系统:采用先进的控制策略,实现燃烧过程的实时监控和优化调整,提高锅炉运行稳定性;
5.更新锅炉本体及辅助设备:对锅炉本体进行改造,提高热效率,降低氮氧化物排放。
第2篇
燃气锅炉低氮改造方案
一、前言
为响应我国环保政策,降低大气污染物排放,特别是氮氧化物的排放,本方案针对某地区燃气锅炉进行低氮改造。通过采用先进的低氮燃烧技术和优化锅炉运行参数,旨在实现氮氧化物排放浓度符合国家及地方环保标准,同时提高锅炉的热效率,降低能源消耗。
二、改造目标
1.降低氮氧化物排放浓度,满足国家及地方环保要求。
4.安全性:改造后,锅炉运行安全性提高,故障率降低。
5.经济效益:改造成本在合理范围内,投资回收期≤3年。

模板-燃气锅炉低氮改造技术方案

模板-燃气锅炉低氮改造技术方案

模板-燃气锅炉低氮改造技术方案本文介绍了燃气锅炉低氮改造技术方案。

首先,介绍了锅炉房的现状,包括锅炉的型号、使用的燃烧器品牌、主管道燃气压力以及平均负荷和排放情况。

其次,明确了本项目的实施目标,包括NOx排放降低至30mg/Nm3以下、改造后锅炉出力降低控制在10%左右、施工过程不应影响锅炉房正常运行等。

最后,详细介绍了改造方案,包括更换燃烧器、烟气再循环和控制系统等。

其中,更换的燃烧器是公司自主研发的FGR型ULN系列低氮燃烧器,可以通过烟气循环技术将NOx排放降低到30mg/m3以下。

该技术已获得多项国家专利,并在多个项目中成功应用。

燃烧器更换考虑到锅炉中心距水平地面的距离,需要更换枪式燃烧器。

安装时,根据燃烧器连接法兰盘尺寸改造锅炉转接面板。

为了满足低氮火焰需要扩散角度,需要将原耐火泥去除重新制作,确保耐火泥的隔热效果。

2.2烟气再循环福士德6T蒸汽锅炉的烟气再循环管道由锅炉左侧敷设,取出位置在一级节能器和二级节能器后排烟温度约60-80℃的位置。

而金牛锅炉的烟气再循环管道取口位置在室内,也就是一级节能器前,相对合适,管道铺设为左侧,避免在室外长期暴露会产生大量冷凝水,甚至结冰。

2.3控制系统燃烧器的控制采用独立控制柜,燃气、空气、烟气三电子比调,与原有锅炉控制实现安全联锁,可在锅炉控制端实现起停,报警功能。

3.改造效果匹配泷涛低氮燃烧器可将NOx降低至30mg/m3以下,同类型同吨位相近炉膛尺寸锅炉,我公司已有近百台的成功案例,最大吨位为80吨。

这2台6吨位的燃烧器,均配备法国VENTMECA(风力嘉)风机,此风机具有高效、节能、噪音低,变频控制,使负荷调节范围扩至16.7%-100%,同时使燃烧器整体电耗会有所下降,运行一个自然年,可在原基础上降低15%耗电量。

锅炉匹配的最优性根据锅炉实际孔径进行燃烧器优化设计,固定位置、燃烧头长度、燃烧头直径等指标精确匹配现有锅炉,避免后续产生锅炉效率下降、燃烧不稳定、锅炉振动等情况,无需改动锅炉本体结构。

浅析燃煤锅炉低氮燃烧技术

浅析燃煤锅炉低氮燃烧技术

浅析燃煤锅炉低氮燃烧技术燃煤锅炉是工业和生活生产中常用的一种设备,但由于其燃烧过程中会排放大量氮氧化物,会对环境和人体健康产生潜在的危害,因此,燃煤锅炉低氮燃烧技术的研究和应用十分重要。

燃煤锅炉低氮燃烧技术的目的就是降低燃烧过程中产生的氮氧化物(NOx)的排放量。

常见的低氮燃烧技术包括:炉内掺氧技术、分级燃烧技术、倾斜燃烧技术、再燃技术和SNCR(选择性非催化还原)技术。

炉内掺氧技术是一种将燃烧空气分为两部分,把其中一部分氧气引入燃烧室的距离火焰最近的区域(炉喉区),另一部分氧气在火焰上方进入燃烧室的技术。

这种方法可以使燃烧过程中氧气和燃料更充分地混合,促进燃料的完全燃烧,降低NOx的排放。

但是,这种技术需要加装掺氧设备,成本较高。

分级燃烧技术是将燃料在锅炉燃烧时分为两级进行,第一级在较低的燃烧条件下进行,生成的NOx较少;第二级在较高的燃烧条件下进行,此时可以用来燃烧一些难燃的燃料,燃烧效率更高,同时也可以降低NOx排放。

然而,这种技术需要增加炉墙的复杂设计,成本较高,并且需要对锅炉的操作要求更高。

倾斜燃烧技术是利用流体动力学的原理,使燃料在燃烧室内呈偏斜分布。

研究表明,当燃烧室内呈偏斜分布时,燃料和空气混合更加充分,可以使NOx排放减少。

然而,这种技术具有一定的局限性,适用于一些规模较小的锅炉,对于大型锅炉则难以实现。

再燃技术是一种在燃料燃烧室中注入少量的再燃料进行再燃的技术。

这种技术可以在极短的时间内使燃料完全燃烧,减少未完全燃烧产生的NOx。

此外,再燃气的产生还可提升锅炉燃烧室内流体的混合,也有助于提高燃烧效率。

SNCR技术则是通过给燃烧室注入一种还原剂(如氨水、尿素等),并加热使其分解,产生氢气和氨气,再与NOx进行反应,生成氮气和水。

这种技术可以有效地降低NOx的排放,但其降低效果与还原剂的添加量、反应室的温度、氨水尿素的纯度等因素有关。

总的来说,各种低氮燃烧技术都具有其各自的优缺点,燃煤锅炉低氮燃烧技术的选择需要根据具体的应用情况和经济效益来综合考虑。

锅炉低氮改造工程技术方案

锅炉低氮改造工程技术方案

锅炉低氮改造工程技术方案一、项目背景随着环境保护意识的增强和国家对环保政策的不断加强,对于工业企业的污染排放标准也在不断提高。

而作为工业生产过程中使用最为广泛的设备之一,锅炉在大气污染治理中扮演着重要的角色。

然而,由于传统锅炉在燃烧过程中排放的氮氧化物(NOx)含量较高,偏离了环保政策的要求,因此,对锅炉进行低氮改造已成为当前工业企业中亟需解决的问题。

本项目旨在对现有的锅炉进行低氮改造,减少氮氧化物的排放,提高锅炉的燃烧效率,并符合环保政策的要求,为企业的可持续发展提供保障。

二、目标与要求1. 降低氮氧化物排放浓度,符合国家环保标准;2. 提高锅炉的燃烧效率,降低能耗;3. 减少二氧化硫和其他有害气体的排放;4. 保持锅炉原有的工作稳定性和安全性;5. 降低改造成本,提高经济效益。

三、技术方案1. 锅炉低氮燃烧技术低氮燃烧技术是当前锅炉低氮改造的主要手段之一。

通过对锅炉燃烧系统进行调整和优化,减少氮氧化物的生成和排放。

具体包括以下几个方面:(1)调整燃烧风量和分布通过对锅炉的燃烧风量和分布进行调整,使之更加均匀,减少局部高温区域的形成,降低氮氧化物的生成。

(2)优化燃烧控制系统采用先进的燃烧控制系统,实时监测和控制燃烧过程中的氧气浓度和燃烧温度,确保燃烧过程的稳定性和完全燃烧,从而减少氮氧化物的生成。

(3)选用低氮燃烧器低氮燃烧器采用了特殊的设计结构和燃烧技术,通过与燃烧空气的充分混合,降低燃烧温度,减少氮氧化物的生成。

2. 尾气再循环技术尾气再循环技术是一种有效的锅炉低氮改造手段,通过将一部分燃烧产生的废气再循环混入燃料和空气中,减少燃烧温度,降低氮氧化物的生成。

具体操作包括:(1)收集尾气利用除尘设备和废气处理系统,将部分燃烧产生的废气收集起来。

(2)混合再循环将收集到的废气与燃料和空气进行混合再循环,降低燃烧温度,减少氮氧化物的生成。

3. 碱吸收脱硫技术除了降低氮氧化物排放,对于锅炉中二氧化硫和其他有害气体的排放也需要进行控制。

低氮燃烧改造施工方案

低氮燃烧改造施工方案

低氮燃烧改造施工方案1. 引言随着环境保护意识的提高和相关法规的出台,对空气质量的要求越来越高。

其中,控制燃烧排放的氮氧化物(NOx)成为重要的环保指标之一。

为了满足对低氮燃烧的要求,许多工业设备需要进行燃烧改造。

本文将介绍低氮燃烧改造施工方案。

2. 改造目标本方案的改造目标是降低设备燃烧过程中产生的氮氧化物排放量,达到国家和地方环保法规的要求。

3. 改造措施为了实现低氮燃烧,我们将采取以下措施进行燃烧设备的改造:3.1 燃烧器的更换首先,需要更换原有的燃烧器。

新燃烧器应具备低氮燃烧技术,能够在燃烧过程中控制氮氧化物的生成。

选择合适的燃烧器要考虑设备的类型、尺寸和运行环境等因素。

3.2 进气调节调整燃烧设备的进气量,保证燃料和空气的理想混合比。

通过控制进气量,可以有效降低氮氧化物的生成。

3.3 氮氧化物排放监测安装氮氧化物排放监测设备,实时监测燃烧设备运行过程中的氮氧化物排放情况。

监测结果将作为改造效果的评价依据,也可用于调整燃烧设备的运行参数。

3.4 燃烧温度控制控制燃烧过程中的温度,避免过高的温度产生更多的氮氧化物。

通过优化燃烧器的设计和调整燃料供给,可以有效控制燃烧温度。

3.5 烟气后处理某些情况下,即使进行了低氮燃烧改造,仍无法达到目标排放要求。

此时,需要进行烟气后处理,例如采用SCR技术(选择性催化还原技术)降解氮氧化物。

4. 实施计划为了确保改造过程的顺利进行,制定以下实施计划:4.1 前期准备在改造开始前,需要进行必要的准备工作,包括确定改造方案、采购相关设备、组织施工人员等。

4.2 设备更换按照改造方案,进行燃烧器的更换工作。

确保新燃烧器的安装质量和性能满足要求。

4.3 调试和优化在新燃烧器安装完成后,进行设备的调试和优化工作。

包括进气量的调节、温度的控制等。

4.4 安装监测设备安装氮氧化物排放监测设备,确保能够实时监测改造后的燃烧设备的排放情况。

4.5 进行烟气后处理如有需要,进行烟气后处理设备的安装和调试工作,确保达到更严格的排放要求。

燃煤锅炉低氮燃烧器改造

燃煤锅炉低氮燃烧器改造

燃煤锅炉低氮燃烧器改造现行锅炉机组随时间推移,设备性能、工况日趋下降,且当前大气污染物环保要求日益严格,为保证氮氧化物排放达标,限制了锅炉出力,逐渐出现带负荷困难,各项能耗增加,经济效益下降.。

关键词:低氮燃烧器节能氮氧化物一、概述某厂因锅炉设备老化,为使氮氧化物达标排放,尿素耗量远大于设计指标,经济性能特差.。

考虑节能环保要求,针对以上所面临的问题,组织相关部门对燃煤锅炉水平烟道出口、脱硝入口进行检测,在不投尿素溶液情况下锅炉出口氮氧化物为500~700mg/m3.。

显然,低氮燃烧器出现了问题.。

经过对现场锅炉运行情况摸底调研,锅炉存在以下问题:1、为控制锅炉出口氮氧化物浓度,长期低氧运行,无法投入SOFA,使得煤粉燃尽效果较差,煤粉燃烧不完全,飞灰含碳量高,机械不完全燃烧及化学不完全燃烧热损失大.。

现场检查,省煤器处存在大量坚硬碳渣混合物,曾经发生电除尘灰斗积碳再燃.。

锅炉结焦严重,捞渣机捞出很多大而坚硬的焦渣,锅炉热效率明显下降.。

2、SOFA風投不上,投上SCR就超温;主燃区最上2层二次風不能开,开大SCR就超温,因此现有分级配風无法实现.。

SOFA風长期在低風量状态下运行,锅炉出口氧含量仅为0.5%~1%,产生大量CO,对锅炉运行存在安全事故風险.。

3、部分一次風口损坏,燃烧器喷口烧损变形,百叶窗磨损严重,个别百叶窗几乎看不见.。

部分二次風门执行器坏,二次風風门损坏,内部存在卡涩现象,无法调整.。

4、炉内低氮燃烧效果不好,为满足环保氮氧化物排放要求,炉内过量喷尿素溶液,SCR负担过大.。

导致尾部受热面(低温省煤器、空预器)堵塞严重、腐蚀爆管.。

5、尾部受热面堵灰导致空预器换热效果下降,热風温度长期偏低,设计值为335℃,目前普遍在240~280℃.。

6、锅炉DCS画面,锅炉的排烟温度较高,有时可到170℃甚至更高,给后面脱硫系统造成极大影响.。

影响锅炉燃烧,降低经济性.。

根据环境保护部《火电厂氮氧化物防治技术政策》的规定,火电厂氮氧化物控制技术的选择原则要求,低氮燃烧技术是燃煤电厂氮氧化物控制的首选技术.。

锅炉低氮改造工程方案

锅炉低氮改造工程方案

锅炉低氮改造工程方案一、前言随着环保政策愈发严格,工业锅炉在运行过程中产生的氮氧化物排放成为了环境污染的重要源头之一。

为了减少氮氧化物的排放,提高环保意识,促进工业锅炉的绿色发展和可持续发展,进行锅炉低氮改造工程显得尤为重要。

本项目拟对XX厂燃煤锅炉进行低氮改造工程,通过对锅炉进行技术改造和设备更新,降低氮氧化物排放浓度,保护环境,提高企业社会责任感。

二、项目概况1. 项目名称:XX厂燃煤锅炉低氮改造工程2. 项目地址:XX省XX市XX区XX村3. 项目内容:对XX厂燃煤锅炉进行低氮改造工程4. 项目业主:XX有限公司5. 项目总投资:XX万元6. 项目工期:XX个月三、工程原因目前,XX厂的燃煤锅炉在运行过程中产生的氮氧化物排放浓度较高,不符合环保要求,存在环境污染的风险。

为了减少氮氧化物的排放量,降低对环境的影响,企业决定进行锅炉低氮改造工程。

四、工程范围1. 燃煤锅炉燃烧系统改造:对锅炉的燃烧系统进行改造,采用先进的低氮燃烧技术,降低氮氧化物的生成。

2. 燃烧调整系统安装:安装燃烧调整系统,实现对燃料的精细调控,提高燃烧效率,减少氮氧化物的排放。

3. 烟气再循环系统增设:增设烟气再循环系统,通过将部分烟气再循环至燃烧室,减少燃烧温度,降低氮氧化物生成。

4. SCR脱硝装置安装:安装SCR(选择性催化还原)脱硝装置,对烟气进行脱硝处理,降低氮氧化物排放浓度。

5. 操作监控系统更新:对现有操作监控系统进行更新,实现对锅炉低氮燃烧过程的实时监控和调节。

6. 其他配套设施改造:对锅炉相关的管道、结构件等进行相应的改造和更新,保证改造后的设施能够正常运行。

五、工程技术方案1. 低氮燃烧技术选用:采用先进的低氮燃烧技术,通过合理的空气分配和燃料燃烧控制,降低氮氧化物的生成。

2. SCR脱硝技术选用:选择高效、稳定的SCR脱硝技术,通过合理的脱硝催化剂选择和脱硝反应控制,实现对烟气中氮氧化物的脱除。

3. 烟气再循环技术应用:通过采用烟气再循环技术,将部分烟气再循环至燃烧室,降低燃烧温度,减少氮氧化物的生成。

低氮燃烧改造施工方案

低氮燃烧改造施工方案

低氮燃烧改造施工方案随着环境保护意识的增强和大气污染问题日益突出,低氮燃烧技术逐渐成为解决大气污染和提高能源利用效率的关键措施之一。

本文将介绍低氮燃烧改造的施工方案,以期提供一个全面、系统的指导,保证改造工程的顺利进行。

1. 工程前期准备在开始低氮燃烧改造工程前,需要进行充分的前期准备,包括对原有设备进行检查和评估,制定详细的施工方案,并从政府相关部门获得必要的审批文件和许可证。

2. 设备改造与更新低氮燃烧技术主要通过改造和更新燃烧设备来实现。

根据具体情况,可能需要对锅炉、燃烧机、燃烧系统等进行改造,以保证其达到低氮排放的要求。

改造的关键是选用先进的低氮燃烧器和控制系统,并确保其与原有设备的兼容性。

3. 输配系统的优化输配系统的优化是低氮燃烧改造的另一个重要环节。

通过对燃气输配管道、燃气计量以及燃气泄漏等进行系统性检查和维护,保证燃气的质量和输送的安全性。

此外,也需要对烟气脱硫、脱硝等系统进行优化,降低燃烧过程中产生的有害气体排放。

4. 控制系统的升级低氮燃烧改造方案中,控制系统的升级也是非常重要的一环。

通过引入先进的自动控制和调节系统,实现燃烧过程的精确控制和优化调节。

这样能够提高燃烧效率,减排污染物,同时还能降低运行成本和改善设备的可靠性。

5. 检测与维护改造完成后,需要对低氮燃烧设备进行定期检测和维护,保证其正常运行和达到预期的低氮排放效果。

这包括对燃烧器、燃烧系统和控制系统等各个部分进行维护和清洁,及时更换老化和损坏的部件。

同时,也要建立完善的运行记录和数据采集系统,进行性能监测和异常报警,及时发现和处理问题。

6. 培训和宣传低氮燃烧改造的成功与否,不仅依赖于技术手段的掌握,也与操作人员的素质和意识密不可分。

因此,在施工完成后,需要对相关人员进行培训,提高其对低氮燃烧技术的理解和应用能力。

同时,还需要通过宣传和推广,提高社会公众对低氮燃烧改造的认识和支持度。

结语:低氮燃烧改造是解决大气污染问题的有效手段,也是未来能源发展的必然趋势。

燃煤锅炉低氮燃烧技术

燃煤锅炉低氮燃烧技术

燃煤锅炉低氮燃烧技术摘要:燃煤在锅炉实际燃烧过程中会产生氮氧化物,如果没有进行全面性的优化改造,会造成氮氧化物的排放量持续增多,对人们的生存环境也会造成较大的影响。

在当前的环保情况下,低氮燃烧技术在燃煤锅炉中的应用应该进行积极的优化。

针对氮氧化物的实际生成以及排放等进行全面的控制,最终促进工业的良好的发展。

本文将针对低氮燃烧技术在燃煤锅炉中的应用进行针对性的探讨。

关键词:低氮燃烧技术;燃煤锅炉;环保随着经济的发展,社会的进步,低氮燃烧技术在燃煤锅炉中的应用受到了广泛的关注。

在工业生产中锅炉占有重要的地位,同时发挥着重要的作用,在实际运行中会消耗大量的燃料,进而释放出一些含有氮氧化物的废气。

如果这些物质没有经过精细化的处理,对环境会造成一定的污染。

在当前节能环保政策影响下,燃煤锅炉开始向低氮燃烧技术方式发展,同时将先进技术应用其中,进而降低氮氧化物的实际排放,在真正意义上能够提高锅炉的实际燃烧效率,对环境也具有一定的保护作用。

1、燃煤锅炉在燃烧过程中生成NOX的原理煤炭在燃烧的过程中,会产生NO和NO2等氮氧化物。

通常情况下,把NO和NO2合称为NOX。

一般来说,NOX的生成方式有三种,分别为燃烧生成方式、高温氧化生成方式及快速生成方式。

燃烧生成方式,指的是燃料当中存在氮化合物,在燃料燃烧的过程当中,形成NOX。

高温氧化生成方式,指的是空气中的氮气在高温状态之下,氧化形成NOX。

快速生成方式,指的是燃料在燃烧时,空气中的氮和燃料中的碳氢原子团反应形成NOX。

2、低氮燃烧技术具体分类低氮燃烧技术主要是将燃烧反应温度降低,同时将过量空气系数不断减少,进而能够将烟气在高温区中的实际停留时间不断缩短,最终将NOX进行全面性的控制。

在当前降低燃煤锅炉NOX排放量中是最为主要的方式。

对于低氮燃烧技术来讲工艺较为成熟,同时实际的投资以及相关的运行费用较低,因此在火电厂中的NOX实际排放控制具有较好的应用。

在当前形势下针对低氮燃烧技术具有以下几种分类。

燃煤机组低氮燃烧技术的研究与应用

燃煤机组低氮燃烧技术的研究与应用

燃煤机组低氮燃烧技术的研究与应用随着经济不断发展,能源需求也不断增加。

然而,传统的燃煤机组所排放的氮氧化物等有害气体却给环境带来了很大的损害,尤其在大气污染防治攻坚战的背景下,开展燃煤机组低氮燃烧技术研究与应用显得非常重要。

本文将从技术原理、研究进展以及应用方面阐述燃煤机组低氮燃烧技术的相关知识。

一、技术原理首先,什么是低氮燃烧技术?低氮燃烧技术是指通过改变燃烧方式,减少燃煤中氮的氧化物产生量,从而达到减少氮氧化物排放的目的。

燃煤机组低氮燃烧技术一般采用以下两种方式来达到目的:1.改变燃烧方式:优化炉膛结构及燃烧过程,使其满足低氮燃烧的需求。

2.喷射还原剂,如NH3或H2O2等:还原剂在燃烧时与NOx反应,生成N2和H2O等无害物质。

二、研究进展低氮燃烧技术的相关研究已经持续多年,随着科技的不断发展,研究的领域也越来越广泛。

其中,燃煤机组低氮燃烧技术的研究从早期的试验研究逐渐向系统优化、机理分析和模拟仿真等领域拓展。

早期试验研究表明,改变燃烧方式是最有效的低氮燃烧方法,通过调整燃烧器设计、喷嘴结构、混合比例等可以达到较好的效果。

后来,人们通过理论分析和数值模拟的方法,对低氮燃烧的机理和过程进行了深入研究,提出了一些新的低氮燃烧技术。

例如,在燃煤机组中加入还原剂可以大大降低氮氧化物的排放,但仍需注意还原剂的加入量以及其它和还原剂相关的问题。

三、应用方面随着低氮燃烧技术的不断完善,越来越多的燃煤机组开始采用低氮燃烧技术以达到减少氮氧化物排放的目的。

目前,国内外已经有很多的煤电基地开始采用低氮燃烧技术。

例如,我国某燃煤电站通过对锅炉结构和燃烧过程的优化,实现了低氮燃烧技术的应用,氮氧化物排放浓度降低了约80%。

此外,燃煤机组低氮燃烧技术在工程应用中还存在一些问题,如低负荷下的氮氧化物排放、燃烧稳定性等问题。

因此,在应用中仍需进一步研究和改进。

总之,燃煤机组低氮燃烧技术的开发及应用已经成为了环境保护领域的重要课题,既有利于环境保护又可以提高企业的经济效益。

浅析燃煤锅炉低氮燃烧技术

浅析燃煤锅炉低氮燃烧技术

浅析燃煤锅炉低氮燃烧技术燃煤锅炉是我国当今主要的供热设备之一,而其烟气中含有大量的氮氧化物对环境造成了污染。

因此,如何实现燃煤锅炉的低氮燃烧,减少氮氧化物排放,是一个必须解决的问题。

目前,低氮燃烧技术广泛应用于燃煤锅炉中,通常采用以下三种方法:燃烧控制技术、燃烧添加剂技术和燃烧改进技术。

燃烧控制技术主要采用两步骤燃烧法,即在燃烧工艺的前段添加一定数量的空气,形成还原气氛,使部分NOx转化为N2;在后段添加适量的空气,进一步氧化NOx,减少排放。

此外,还可以采用高效燃烧器、燃烧过程智能控制等技术,降低燃烧温度和氮氧化物因素的生成。

燃烧添加剂技术是在燃烧过程中添加还原剂或氧化剂,改变燃烧过程中的氧氮比,从而减少NOx的生成。

目前主要使用的添加剂有NH3、尿素、氨水、氧化钙等。

通过添加还原剂来降低燃烧温度、加强还原作用,将NOx还原为N2。

而添加氧化剂则增加氧化反应,将NOx转化为NO2,通过后续处理将其减少排放。

燃烧改进技术是对燃烧设备的结构和参数进行优化改进,以降低燃烧过程中的燃烧温度和气体停留时间。

目前主要采用的技术有SNCR技术、SCR技术、高炉煤气直入式锅炉技术等。

其中,SCR技术是目前应用最广泛的一种技术,通过添加催化剂,在烟气中将NOx还原为N2和H2O。

通过以上的三种技术应用,可以实现燃煤锅炉的低氮燃烧,降低NOx的排放。

但是需要注意的是,不同技术的适用范围和效果不同,需要根据实际应用情况进行选择。

同时,对于加强对大气污染治理的要求,我们也需要努力寻求更加低氮的燃烧技术和治理措施,保护环境和人民健康。

燃煤锅炉低氮燃烧改造技术原理及方案学习教案

燃煤锅炉低氮燃烧改造技术原理及方案学习教案

第30页/共81页
第三十一页,编辑于星期二:三点 磨 煤 机 停 运 时, 提高并 投入 三次风 冷却风 ,相 当于增 加了燃 烬风 ,则对 降低NOx是 有 利的; • 某 300MW机 组 锅 炉 的 三 次风 冷却风 管从Ф 154× 4.5改造 为Ф273× 5, NOx排 放下降 100mg/m3, 但 效 率 略 有降 低。
第26页/共81页
第二十七页,编辑于星期二:三点 三十六分。
2.3 分级配风技术
周 界 风 调 整 试 验 结 果
结 论 : 适 当 关小 周界风
第27页/共81页
第二十八页,编辑于星期二:三点 三十六分。
2.3 分级配风技术
300MW 贫 煤 锅 炉 配 风试验 结果
第28页/共81页
第二十九页,编辑于星期二:三点 三十六分。
3.2 空气分级的燃烧器布置
3.3 烟煤锅炉低氮燃烧系统改造实例 3.4 无烟煤锅炉低氮燃烧改造要点
第1页/共81页
第二页,编辑于星期二:三点 三十六分。
1.1 NOx生成类型
• 氮 氧 化 物 是 化石燃 料与空 气在高 温燃烧 时产生 的,包 括NOx( 一氧 化氮(NO)、 二氧化 氮(NO2) )、 氧 化二 氮(N2O)等 。在氮 氧化物 中, NO占有 90%以 上, 二氧化 氮占 5%-10%。 • NOX按 生 成 机 理 的 不同分 为三类 :热力 型 、 快速型 和燃料 型,其 中燃料 型占60% ~ 95% 。 • 研 究 表 明 , 煤中 氮几乎 全部 以有机 物的形 式存 在。形 态主要 是吡 咯型、 吡啶型 和季 氮,其 中吡咯 型氮 和吡啶 型氮是 煤中 氮的主 要存在 形式 。
2.3 分级配风技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档