青岛版六年级数学上册知识点归纳总结
新青岛版小学数学六年级上册知识点归纳全册资料 通用版
小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
小学青岛版六年级数学上册知识点公式归纳
小学青岛版六年级数学上册知识点公式归纳分数乘法一、分数乘法的意义:2、分数乘分数是求一个数的几分之几是多少。
例如:×表示求的四分之一是多少。
1、分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如:×5表示求5个的和是多少?二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
整数和分母约分2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三.积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。
当b 1时,a×b a. 一个数(0除外)乘小于1的数,积小于这个数。
当b 1时,a×b a b≠0. 一个数(0除外)乘等于1的数,积等于这个数。
当b 1时,a×b a注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
四、乘法中比较大小时规律:一个数0除外乘大于1的数,积大于这个数。
一个数0除外乘小于1的数0除外,积小于这个数。
一个数0除外乘1,积等于这个数。
五、分数混合运算的运算顺序和整数的运算顺序相同。
六、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b b × a乘法结合律: a × b ×c a × b × c 乘法分配律: a + b ×c a×c + b×c七、分数乘法的解决问题(一)已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法一个数的几分之几一个数×几分之几1、找单位“1”: 在分数句中分数的前面; 或“占”、“是”、“比”的后面;2、看有没有多或少的问题;3、写数量关系式技巧:1“的”相当于“×”“占”、“是”、“比”相当于“”2分数前是“的”: 单位“1”的量×分数具体量3分数前是“多或少”的意思: 单位“1”的量×1-分数具体量;单位“1”的量×1+分数具体量(二)、倒数 1、倒数的意义: 乘积是1的两个数互为倒数。
青岛版六年级数学上册知识点归纳总结
青岛版六年级数学上册知识点归纳总结中小小学史伟丽第一单元分数乘法1、分数乘整数的意义与整数乘法的意义相同,是求几个相同加数的和的简便运算。
2、一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法计算。
3、分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
4、乘积是1的两个数互为倒数。
5、1的倒数是1,0没有倒数。
6、一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大。
7、真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。
第二单元可能性1.概率=获胜的情况数除以所有可能出现的情况数。
第三单元分数除法1、比较量=单位“1”的量×分率;2、单位“1”的量=比较量÷对应分率;分率=比较量÷单位“1”的量3、甲数除以乙数(0除外),等于甲数乘乙数的倒数(变号变倒数)。
4、一个数除以比1大的数商会比原数小,一个数除以比1小的数商会比原数大。
第四单元认识比1、两个数相除又叫做这两个数的比。
2、比号前面的数叫做比的前项,比号后面的数叫做比的后项。
3、比的前项相当于除式的被除数,相当于分数的分子;比号相当于除号相当于分数线:比的后项相当于除式的除数相当于分数的分母;比值相当于除式的商相当于分数的值。
4、两个数的比可以用比号连接也可以写成分数形式。
5、比的前项和后项同时乘或除以相同的数(0除外),比值不变,这是比的基本性质。
第五单元圆1.圆的各部分名称:圆心决定位置,半径决定圆的大小,直径。
2.圆的特征:在同圆或等圆当中,半径直径的长度都相等,直径的长度是半径的2倍,用字母表示d=2r;圆是轴对称图形,有无数条对称轴。
3.扇形,圆心角4.圆的周长计算公式c=3.14d或c=2*3.14*r5.圆的面积计算公式:s=3.14r*r6.环形的面积:s=3.14R*R-3.14r*r第六单元分数的四则混合运算1.运算顺序:与整数相同;整数的运算律和运算性质对分数同样适用。
六年级数学上册知识点归纳总结(青岛版)
六年级数学上册知识点归纳总结(青岛版)一、整数1. 整数的概念整数是正整数、零和负整数的统称,用符号表示,整数包括正整数、负整数和零。
2. 整数的比较对于两个整数的比较,可以通过大小关系符号进行表示,例如:大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
3. 整数的加法和减法•整数的加法:同号相加,异号相减,并将结果的符号与绝对值较大的整数保持一致。
•整数的减法:减法可以转化为加法,将减法转化为加法运算,例如a-b可以转化为a+(-b)。
4. 整数的乘法和除法•整数的乘法:正整数相乘结果为正,负整数相乘结果为负,任何整数与0相乘结果为0。
•整数的除法:同号相除结果为正,异号相除结果为负,任何非零整数与0相除结果为无穷大或无定义。
二、分数1. 分数的概念分数是一个整数除以一个非零整数所得的结果,由分子和分母组成,分子表示被分为若干份中的几份,分母表示将一个整体分成几份。
2. 分数的大小比较•分数的比较:可以通过通分和比较分子的大小来比较分数的大小。
•分数的通分:将两个分数的分母变为相同的数,然后比较分子的大小。
3. 分数的加减乘除•分数的加减:分母相同的分数相加(减),保持分母不变,分子相加(减)得到结果。
•分数的乘法:分子相乘得到结果的分子,分母相乘得到结果的分母。
•分数的除法:将除数取倒数,然后使用分数的乘法规则求解。
4. 分数和整数的关系•任何整数都可以写成一个分子为整数,分母为1的分数。
•分数可以转化为整数,当分子与分母相等时,分数可以化简为一个整数。
三、小数1. 小数的概念小数是分数的一种特殊形式,它是用小数点和数字组成的表示数的形式。
2. 小数的读法和写法•小数的读法:小数点前面的数字按读整数的方法读,小数点后面的数字按读整数的方法读,小数点后的数位从百分位开始读起。
•小数的写法:小数点后面的数位从百分位开始写起。
3. 小数的大小比较•小数的大小比较:按照小数点后面的数位从高位开始比较,如果整数部分相同,则从小数部分的百分位开始比较。
青岛版六年级数学上册全册知识点汇总
青岛版六年级数学上册全册知识点汇总2)确定整体和平均数。
3)列出等式或不等式。
4)解方程或不等式,得出答案。
2.例题:___买了1/4千克的糖,他想把它平均分给4个人,每人应得多少克?解题步骤:1)含有分率的关键句:平均分给4个人。
2)整体和平均数:1/4千克的糖平均分给4个人。
3)等式:1/4 ÷ 4 = x (每人应得的克数)4)解方程:1/4 ÷ 4 = 1/16千克 = 62.5克答案:每人应得62.5克糖。
未知量为x和y,列出方程组解出x和y。
2)算术法解:把一个数看作单位“1”,先计算出已知量占单位“1”的几分之几,再根据已知和未知量的和,求出未知量占单位“1”的几分之几,最后用已知量÷已知量占单位“1”的几分之几=单位“1”的量的方法求出x和y。
小结:分数除法是求已知两个因数的积与其中一个因数,求另一个因数的运算。
在进行分数除法运算时,需要注意运算顺序和比较商与被除数的大小。
解决分数除法问题的关键是找准单位“1”,求单位“1”时用具体的数除以它所占的分率,得出的就是比较量。
在解决问题时,可以用方程解法或算术法解法,但都需要找到数量间的等量关系,确定未知量和已知量的关系。
数学中,比是用来表示两个数之间关系的一种方式。
比通常写成“甲∶乙”的形式,表示甲和乙的比值。
比的后项不能为0.在连比时,先求出相同量的两个数的最小公倍数,再根据比的基本性质计算出另外两种量的数,最后把几种量的比化简成最简整数比。
比可以用分数表示,写成分数的形式,读作“几比几”。
比和比值的区别在于,比值是一个数,通常用分数表示,也可以是整数或小数。
比的基本性质是,比的前项和后项同时乘或除以相同的数(0除外),比值不变。
因此,可以运用比的基本性质来化简比。
化简比的方法有多种。
对于整数比,可以找到前项和后项的最大公因数,然后同时除以最大公因数,化成最简整数比。
对于分数比,可以找到前项和后项分母的最小公倍数,然后同时乘以最小公倍数,再化简成最简整数比。
青岛版数学六年级上册知识点总结 (1)
六年级上册数学期末复习一.分数乘法分子乘分子,分母乘分母,(能约分的先约分)。
二.可能性有些时间的发生是确定的,有些则是不确定的。
不确定时间发生的可能性有大有小。
三.分数除法(1)分数除法转化为分数乘法计算。
(2)除以一个数等于乘以它的倒数(整数看做分母为1的分数)。
(3)乘积是1的两个数互为倒数。
四.比(1)前项:后项(读作前项比后项);两个数相除又叫作两个数的比;比的前项除以后项所得的商叫作比值。
(2)比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
(3)黄金比:较长部分与整体的比是0.618:1(即较长部分/整体=0.618:1)本章计算基本知识点是化简比和求比值;难点是解有关比的应用题,在解此类题时,一定要把份数与它相对应的量找对。
五.圆(1)圆心(O),半径(r),直径(d),周长(C),面积(S),圆周率(π)(2)公式:r=d÷2 C= πd =2πr S= πr2 =2π(d/2)2 (3)圆心角顶点在圆心的角。
(4)圆周率=周长/直径≈3.1425926535...(通常计算时,取值3.14)本章做题时,一定要看明白是求周长还是面积,区分清楚半径和直径。
基础知识点是直接用公式计算;难点是通过半径,灵活运用公式计算所求量。
六.分数四则混合运算分数四则混合运算的运算顺序和整数,小数四则混合运算的运算顺序是一样的:先算乘除后算加减;有括号的先算小括号,后算中括号,最后算大括号;如果符合运算定律,可以利用运算定律进行简算。
灵活运用乘法的分配律及其逆运算。
七.百分数一个数是另一个数的百分之几的数叫作百分数,也叫作百分比或百分率。
百分数通常不写成分数形式,而是在原来的分子后面面加上百分号“%”来表示。
例如:1/4=25/100=25%,读作百分之二十五。
百分数就是分母是100的分数;计算时,求百分率或百分比,分母不是100的,需通过通分改写成百分数的形式。
四年级上册数学期末复习一.万以上数的认识计数单位:个(一),十,百,千,万,十万……都是计数单位。
(完整版)青岛版六年级数学上册知识点汇总,推荐文档
青岛版六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0). 一个数(0除外)乘等于1的数,积等于这个数。
a ×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
青岛版六年级数学上册第一单元知识点
青岛版六年级数学上册第一单元学问点
1、分数×整数的意义:表示求几个几是多少?或表示求一个数的几倍是多少?
2、分数×整数的计算方法:分母不变,分子×整数的积作分子,能约分的要提
前约分。
3、一个数×分数的意义:表示求一个数的几分之几是多少?
4、求一个数的几分之几是多少用×法。
5、数学公式:单重量×数量=总重量
6、分数乘法的计算方法:分子×分子(能约分的要求提前约分)
分母×分母
分子乘分子做分子,分母乘分母做分母,能约分要先约分。
分子和整数与分母约分,因倍关系的先约分。
7、解决分数应用题的基本方法:
(1)找单位“1”法:仔细读题,从题目中找出单位“1”的量,分析单位“1”的量是已知还是未知,假如单位“1”的量已知,则用×法计算(单位“1”已知的状况下,所求问题事实上求的是两个数的乘积)假如单位“1”的量未知,则用除法计算(单位“1”未知的状况下,所求问题事实上是求的其中一个因数)。
(2)选题关系法:依据题目中列出的等量关系的到解决问题的方法。
(3)画线段图法。
青岛版小学数学六年级上册分数除法重点知识归纳
青岛版小学数学六年级上册第三单元分数除法重点知识归纳知识点1 分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
1.分数除以整数的意义【注意】分数除法是分数乘法的逆运算。
2.分数除以分数的意义分数除以分数可以转化成被除数乘除数的倒数。
3.整数除以分数的意义知识点2 分数除法的计算方法1.转化法:分数转化成小数来计算例:45÷2=0.8÷2=0.4 2.根据平均分的含义计算例:45÷2=25 把4个15平均分成2份,每份是2个15,即45÷2=4÷25=253.倒数法:把除法转化成乘法来计算例:45÷2=45 ×12=25 【注意】分数除以整数(0除外)等于分数乘以这个数的倒数。
4.分数除法的统一计算方法一个数除以分数等于这个数(被除数)乘分数(除数)的倒数。
被除数÷除数=被除数×除数的倒数 例53÷3=53×31=51 3÷53=3×35=5 【注意】分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
5.被除数与商的变化规律①除以大于1的数,商小于被除数;②除以小于1的数,商大于被除数; ③除以等于1的数,商等于被除数。
知识点3 分数乘除法混合运算1.运算顺序没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
同级运算,按照从左往右的顺序进行计算。
【说明】(1)加、减法为一级运算,乘、除法为二级运算。
2.计算方法(1)分步计算:分步转化成乘法进行计算。
(2)一次转化成乘法计算:分数连除,可以一次转化成乘法计算。
知识点4 分数除法的应用1.分数除法应用解题方法(1)根据分数的意义解答;(2)归一法:先求一份的量,再用一份的量乘份数。
(3)根据等量关系列方程。
2.分数乘除法应用题统一计算方法(知二求一)万能公式:A=B×几几【说明】看到“是、相当于、比、占”字眼,写“=”号,看见“的”写“×”号,等号前面表达的数量是多少就写在等号前面,“的”前面的数直接写上,无论单位“1”知道不知道,先列出这个等量关系式。
(最新版)青岛版六年级数学上册知识点归纳总结
青岛版六年级数学上册知识点归纳总结第一单元分数乘法1、分数乘整数的意义:与整数乘法的意义相同,是求几个相同加数的和的简便运算。
【例】 25+25+25+25=()×()25+25+25+25+25=()×()=()2、分数乘法的计算法则:两个分数相乘:分子与分子的乘积做分子,分母与分母的乘积做分母,能约分先约分。
整数乘分数:分子与整数的乘积做分子,如果整数能与分母约分,先约分再计算。
【例】计算:2126×391449×3143、一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法计算。
【例】12×25表示()。
一千克大饼52元,买910千克大饼需要多少元?4、乘积是1的两个数互为倒数,两数互为倒数乘积是1;1的倒数是1,0没有倒数。
【例】A和B互为倒数,则A5×B3=()。
A×43=B×1123=1,则6A=(),22B=()判断:任何数都有倒数。
()5、【规律】:【分数乘法比较乘积大小】:一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大,一个数乘假分数积可能比原数大可能等于原数。
【例】:78×1.02 ○78 12.4×0.05 ○12.4 98×1314○98 2314×12.4 ○12.4【例】:当43×a>43时,则a应();当43×a<43时,则a应()。
【倒数大小】:真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。
【例】判断:假分数的倒数一定小于1。
()得数是1的两个数互为倒数。
()【求一个数倒数的方法】:求真分数或假分数的倒数把这个数的分子与分母交换位置,求带分数的倒数要先把带分数转化成假分数再交换分子分母位置;对于整数求倒数,只需让整数做分母,分子是1即可;对于小数求倒数,有两个方法一法是:先把小数转化成分数再交换分子分母位置,二法是用1除以这个小数所得商就是这个小数的倒数。
青岛版小学六年级数学上册重点归纳
青岛版小学六年级数学上册重点归纳数的认识和整数的加减- 掌握1-100以内数的认识和大小比较;- 熟悉数的进位和借位(1-100以内);- 掌握整数加减法的应用;- 理解计算顺序对结果的影响;- 熟练解决包含算式的问题。
分数- 掌握基本的分数概念;- 熟悉分数的大小比较;- 掌握分数的加减法和简单的分数乘除法;- 知道分数与小数的转化关系;- 熟练解决包含分数的问题。
小数- 熟悉小数的表示方法;- 掌握小数的大小比较;- 掌握小数的加减法和简单的小数乘除法;- 知道小数与分数的转化关系;- 熟练解决包含小数的问题。
三角形- 熟悉三角形的基本性质;- 能够区分三角形的种类;- 掌握三角形内角和的计算方法。
四边形- 熟悉四边形的基本性质;- 能够区分四边形的种类;- 掌握各种四边形内角和的计算方法。
单位换算- 理解长度、重量、时间的概念;- 掌握长度、重量、时间的基本单位;- 掌握常用长度、重量、时间之间的换算关系;- 熟练解决包含单位换算的问题。
图形的认识- 熟悉各种常见图形,如:正方形、长方形、圆形、等边三角形等;- 能够通过观察图形的特征进行辨认;- 能够画出常见图形,掌握画图的基本方法。
质数- 熟悉自然数的概念;- 了解质数的定义;- 能够用筛法求出给定范围内的质数。
时间的读写- 理解时间的基本概念,如:年、月、日、时、分、秒等;- 能够读懂和写出各种时间格式。
量的认识和度量衡- 熟悉长度、质量、容积等量的基本概念;- 了解各种长度、质量、容积的基本单位;- 了解一些日常生活中常见物品的长度、质量、容积的大小;- 熟练解决包含度量衡的问题。
二维图形的周长和面积- 熟悉正方形、长方形、三角形、平行四边形等图形的周长和面积的计算方法;- 能够根据图形的大小求出周长和面积。
异常处理- 能够在计算过程中发现异常,并进行正确的处理。
以上为青岛版小学六年级数学上册的重要内容,希望同学们能够认真学习并掌握这些知识点,为以后的学习打下坚实的基础。
青岛版数学六年级上册(六三制)期末各单元知识点整理
1.分数乘整数方法:①分母不变,分子与整数相乘的积作分子。
②能约分的要约分。
2.分数乘整数的意义:求几个几分之几的和是多少。
(P4 4 P513)3.一个数乘分数计算方法:①分子相乘的积作分子;②分母相乘的积作分母;③过程中化简。
4.一个数乘分数,可以看作求这个数的几分之几。
(P8 2、3)5.求一个数的几分之几是多少:①单位1已知用乘法②画线段图:(部分与整体关系画一条线段;多种关系并列,画多条线段)(P11 1、2)6.连续求一个数的几分之几是多少:①单位1已知用连乘②简便计算(P14 1、2)7.求一个数的倒数的方法:把这个数分子和分母调换位置。
8.乘积是1的两个数互为倒数。
(0没有倒数,1的倒数是1)(P17 3、5)9.求小数的倒数:先将小数化成分数,再求倒数。
1.事件的发生分为(P21 1、2)可能性大;数量少,可能性小。
)1.分数除以整数(0除外)计算方法:等于分数乘整数的倒数。
(P24 2)2.两种关系量,如何确定被除数:看问号中单位是什么,什么作被除数。
3.一个数除以分数计算方法:一个数乘分数的倒数。
4.一个数除以分数:①确定被除数,看问号中的单位②平均分问题:已知总量和1份量,求总量;已知总量和份数,求1份量。
(P29 1、3、9)5.已知一个数的几分之几是多少,求这个数:计算方法:①方程法:先找单位“1”,设单位“1”为X,根据等量关系列出方程,再解答。
②算术法:先找单位“1”,单位“1”,未知用除法,用具体量÷对应分数(P33 1、3、4)6.利用倒数知识解决问题:(P35 20)(先把除法变乘法,再让结果=1)7.分数乘除混合运算顺序:①先把除法转化成乘法②按从左到右顺序计算,有括号的先算括号里的。
③单位“1”已知用“X”,单位“1”未知用“÷”。
(P37 3、7)第四单元比1.“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
青岛版六年级数学上册全部知识点
青岛版六年级数学上册全部知识点第一部分 数与代数第一单元:分数乘法(1)分数乘法的计算法则:分子乘分子做分子;分母乘分母做分母;能约分先约分。
分子和整数与分母约分;因倍关系的先约分。
(2)列乘法算式的原理:“1”是已知量;求“1”的几分之几是多少;用乘法。
(3)积与因数的大小比较:(4)倒数:乘积是1的两个数互为倒数;两数互为倒数乘积是1。
1的倒数是1;0没有倒数。
求一个数倒数的方法:把这个数的分子与分母交换位置。
第二单元:分数除法(5)分数除法的计算法则:法1:画图(基本方法)。
法2:分数除以整数:分子是整数的倍数;分母不变;分子除以整数。
法3: a ÷b=a ×b 1(b ≠0)(6)列除法算式的原理:“1”是未知量;已知“1”的几分之几是多少;求“1”是多少用除法。
(7)商与被除数大小的比较:(8)解决分数应用题的方法:第三单元:比(9)比的定义:两个数相除又叫两个数的比。
(10)求比值的方法:前项÷后项(11)化简比的方法:1、依据比的基本性质:比的前项和后项同时乘或除以相同的数(0除外);比值不变。
这叫做比的基本性质。
2、化简整数比:找前项和后项的最大公因数;前项后项同时除以最大公因数;化成最简整数比。
化简分数比:找前项和后项分母的最小公倍数;前项后项同时乘最小公倍数;再化简整数比。
化简小数比:把小数转化成整数;再化简整数比。
(12)按比例分配:找总量;找出部分量是总量的几分之几;用乘法计算。
甲:乙=a:b,甲是乙的a/b;乙是甲的b/a;甲是全部的a/a+b;乙是全部的b/a+b常见题型:长方形、长方体、分书、分点心……第五单元:分数四则混合运算13)混合运算顺序:先乘除;后加减。
有括号;先括号;括号内先小后中。
(14)运用运算律进行简便运算:加法运算律:1)加法交换律:a+b=b+a2)加法结合律:(a+b)+c=a+(b+c)乘法运算律:1)乘法交换律:a·b=b·a2)乘法结合律:(a·b)·c=a·(b·c)3)乘法分配律:a·(b+c)=a·b+a·c(15)去括号的方法:括号外有加号、乘号;去括号;括号内不变号。
青岛版六年级数学上册知识点整理归纳
六年级上册数学知识点第一单元分数乘法(一)分数乘法意义 :1、 分数乘整数的意义 与整数乘法的意义相同,就是求几个相同加数的和的简便运 算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
3×7表示 : 求 7 个 53的和是多少? 53 的 5例如: 或表示: 7 倍是多少?2、 一个数乘分数的意义就是 求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个 因数是什么都可以)例如: 3 ×1 表示 : 5 63 的 1是多少?求 5611× 表示: 6×1 表示: 6求 9 的 是多少? 6 求 a 的 1是多少? 69 A (二)分数乘法计算法则 :1、 分数乘整数的运算法则是: 分子与整数相乘,分母不变。
注:( 1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)( 2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是: 用分子相乘的积做分子, 分母相乘的积做分母。
(分 子乘分子,分母乘分母)注: (1) 如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0 除外),分数的大小不变。
(三)积与因数的关系:一个数(0 除外)乘大于 1 的数,积大于这个数。
a×b=c当,b >1 时,c>a.一个数(0 除外)乘小于 1 的数,积小于这个数。
a×b=c当,b<1时,c<a (b≠0).一个数(0 除外)乘等于 1 的数,积等于这个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版六年级数学上册知识点归纳总结中小小学史伟丽第一单元分数乘法1、分数乘整数的意义与整数乘法的意义相同,是求几个相同加数的和的简便运算。
2、一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法计算。
3、分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
4、乘积是1的两个数互为倒数。
5、1的倒数是1,0没有倒数。
6、一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大。
7、真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。
第二单元可能性1.概率=获胜的情况数除以所有可能出现的情况数。
第三单元分数除法1、比较量=单位“1”的量×分率;2、单位“1”的量=比较量÷对应分率;分率=比较量÷单位“1”的量3、甲数除以乙数(0除外),等于甲数乘乙数的倒数(变号变倒数)。
4、一个数除以比1大的数商会比原数小,一个数除以比1小的数商会比原数大。
第四单元认识比1、两个数相除又叫做这两个数的比。
2、比号前面的数叫做比的前项,比号后面的数叫做比的后项。
3、比的前项相当于除式的被除数,相当于分数的分子;比号相当于除号相当于分数线:比的后项相当于除式的除数相当于分数的分母;比值相当于除式的商相当于分数的值。
4、两个数的比可以用比号连接也可以写成分数形式。
5、比的前项和后项同时乘或除以相同的数(0除外),比值不变,这是比的基本性质。
第五单元圆1.圆的各部分名称:圆心决定位置,半径决定圆的大小,直径。
2.圆的特征:在同圆或等圆当中,半径直径的长度都相等,直径的长度是半径的2倍,用字母表示d=2r;圆是轴对称图形,有无数条对称轴。
3.扇形,圆心角4.圆的周长计算公式c=3.14d或c=2*3.14*r5.圆的面积计算公式:s=3.14r*r6.环形的面积:s=3.14R*R-3.14r*r第六单元分数的四则混合运算1.运算顺序:与整数相同;整数的运算律和运算性质对分数同样适用。
2.已知一个数以及另一个数比它多或者少几分之几,求另一个数。
3.已知一个数的几分之几是多少,求这个数,既可以用除法计算,也可以列方程。
第七单元认识百分数1、表示一个数是另一个数的百分之几的数叫做百分数,百分数又叫做百分比或百分率。
2、分数可以表示分率和数量,但百分数只能表示分率不能表示数量,所以百分数不能跟单位。
3、我们不能说分母是100的分数叫做百分数,因为它有可能是表示数量的分数。
4、把小数化成百分数:先把小数的小数点向右移动两位,再添上“%”。
把百分数化成小数:先去掉“%”,再把小数点向左移动两位。
5、把分数化成百分数,除不尽时要先除到第四位小数,保留三位小数再化成百分数。
把百分数化成分数先化成分母是100的分数,再约成最简分数。
六年级上册数学知识点 第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0). 一个数(0除外)乘等于1的数,积等于这个数。
a ×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如)(1b a a +⨯的分数可折成(b a a +-11)×b 1(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c=a ×(b ×c) 乘法分配律:a ×(b ±c)=a ×b ±a ×c(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a ×b=1则a 、b 互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a ≠0),它的倒数为a 1;非零整数a 的倒数为a 1;分数ab 的倒数是ba。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题 1、求一个数的几分之几是多少?(用乘法)“1”× ab = ?例如:求25的53是多少? 列式:25×53=15甲数的53等于乙数,已知甲数是25,求乙数是多少? 列式:25×53=15注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的)()(几几。
( )= ( “1” ) ×)()(几几 例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数= 乙数 ×53 即25×53=15注:(1)“是”“的”字中间的量“乙数”是53的单位“1”的量,即53是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量例2:甲数比乙数多(少)53,乙数是25,求甲数是多少? = ± 乙数×53 即25±25×53=25×(1±53)=40(或10)3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?——速度是单位时间内行驶的路程。
速度=路程÷时间 时间=路程÷速度 路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?多:(甲-乙)÷乙 = 比字后面的量乙)—甲(少:(乙-甲)÷乙=比后差第三单元 分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例53÷3=53×31=51 3÷53=3×35=52、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a ÷b=c 当b>1时,c<a (a ≠0) ②除以小于1的数,商大于被除数:a ÷b=c 当b<1时,c>a (a ≠0 b ≠0) ③除以等于1的数,商等于被除数:a ÷b=c 当b=1时,c=a 三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a ±b )÷c=a ÷c ±b ÷c四、比:两个数相除也叫两个数的比1. 1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
2. 比值通常用分数、小数和整数表示。
3. 比的后项不能为0。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶2012=12÷53=0.6 12∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。