七年级下册数学平行线的判定及性质
人教版七年级数学课件《平行线的判定》
B.①③
C.①④
D.③④
2.如图,下列条件中,能判断直线.l1//l2的是( B )
A.∠2=∠3
C.∠4+∠5=180°
B.∠1=∠3
D.∠2=∠4
达标检测
人教版数学七年级下册
3.如图,下列条件中,能判断直线l1//l2的是( C )
A.∠1=∠2
C.∠1+∠3=180°
B.∠1=∠5
D.∠3=∠5
得∠1=∠2(等量代换),
内错角相等,两直线平行
所以_________(________________________).
AE∥GF
针对练习
人教版数学七年级下册
已知如图所示,∠ = ∠,点、、在同一条直线上,
∠ = ∠ + ∠,且平分∠,试说明 ∥ 的理由.
复习回顾
人教版数学七年级下册
如何用直尺和三角板过直线AB外一点P做AB的平行线CD.
知识精讲
人教版数学七年级下册
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
起着什么样的作用?
知识精讲
人教版数学七年级下册
可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
4.如图,下列结论中正确的是( C)
A.若∠1=∠4,则m//c
B.若∠1=∠2,则a//b
C.若∠1+∠3=180,则n//c
D.若∠2+∠3=180°,则m//n
达标检测
人教版数学七年级下册
5.如图(1),光线AB,CD被一个平面镜反射,此时
∥
CD
∠1=∠3,∠2=∠4,则AB // _____,BE_____DF.
7年级数学 平行线判定及性质
D E EF1 23ACO知识精讲7 年级数学下:平行线的性质定理模块一:平行线的性质定理平行线的性质定理(1)两条平行线被第三条直线所截,同位角相等;简记为:两直线平行,同位角相等. (2)两条平行线被第三条直线所截,内错角相等;简记为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补;简记为:两直线平行,同旁内角互补.例题解析【例 1】如图,AC //DB , ∠DBC = 56 ,则∠ACB = . 【答案】124 度.【解析】因为 AC //DB (已知),所以∠DBC + ∠ACB = 180︒ (两直线平行,同旁内角互补),因为∠DBC = 56 (已知),所以∠ACB = 180︒ - 56︒ = 124︒ (等式性质)D B 【例 2】(1)如图,已知 DE //BC ,∠A = ∠C ,则与∠AED 相等的角(不包含∠AED )有 个; (2)如图,若 AB //FD ,则∠B = ,若 AC //ED ,则∠DFC = .AABC 【答案】(1)2 个;(2) ∠3 ;∠2.BD【解析】(1)因为 DE //BC (已知), 所以∠AED = ∠C (两直线平行,同位角相等),又因为∠A = ∠C (已知),所以∠A = ∠C = ∠AED (等量代换); (2)∠B = ∠3(两直线平行,同位角相等);∠DFC = ∠2.【例 3】如图,直线 a / /b ,则 x - y 的值等于( ) a A .20 B .80C .120D .180b【答案】A【解析】因为 a / /b ,所以 x = 30又因为3y + x = 180 ,解得 y = 50,故 x - y = 30 - 50 = 20︒ .【例 4】如图,直线 a / /b ,点 B 在直线b 上,且 AB ⊥ BC , ∠1 =A . 35B . 45C . 55D .125【答案】A【解析】因为 AB ⊥ BC (已知),所以∠ABC = 90︒ (垂直的意义)因为 a / /b (已知), 所以 ∠1 = ∠CBD (两直线平行,同位角相等)因为∠1 = 55 (已知), 所以∠CBD = 55 (等量代换)因为∠2 + ∠ABC + ∠CBD = 180 (平角的意义) 所以∠2 = 180︒ - 55︒ - 90︒ = 35︒ (等式性质)B【例5】如图,直线a / /b ,c ⊥d ,则下列说法中正确的个数有()(1)∠2 +∠4 = 90 ;(2)∠1 +∠4 = 90 ;(3)∠1 =∠3 ;(4)∠3 +∠4 = 90 .A.1 个B.2 个C.3 个D.4 个【答案】B【解析】(1)正确:因为a / /b ,所以∠2 与∠3 互为同位角,d又因为c ⊥d ,所以∠3 +∠4 = 90︒,所以∠2 +∠4 = 90︒;(2)错误:∠1 =∠4 (两直线平行,同位角相等);(3)错误∠1 +∠3 = 90︒;(4)正确.所以本题选B【例6】如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角()A.相等或互补B.互补C.相等D.相等且互余【答案】A【解析】分为同侧相等和异侧互补两种情况,故选A.【例7】如图,已知AB / /CD ,∠x 等于()A.75 B.80 C.85 D.95 【答案】C【解析】如图可过的顶点作平行线,那么被分为上下两部分.上半部分与角B 互补;下半部分与角D 互为内错角;所以易知∠x = (180︒-120︒) + 25︒= 85︒.A B120°xD 25°C【例8】如图,AB / /CD,MP / / AB,MN 平分∠AMD,∠A = 40 ,∠D = 30 ,则∠NMP 等于()A.10 B.15 C.5 D.7.5 【答案】C【解析】因为AB / /MP (已知)所以∠A =∠AMP (两直线平行,内错角相等)因为AB / /CD (已知),所以MP / /CD (平行的传递性)所以∠D =∠DMP (两直线平行,内错角相等)B MCAN PD因为∠AMD =∠AMP +∠DMP (角的和差),∠A = 40 ,∠D = 30 (已知)所以∠AMD = 30 + 40 = 70 (等式性质)因为MN平分∠AMD (已知),所以∠AMN =∠NMD = 35 (角平分线的意义)所以∠NMP = 40︒- 35︒= 5︒(等式性质)E【例9】如图,AB / /CD ,∠1 = (2x + 20) ,∠2 = (8x - 40) ,求∠1 及∠2 的度数.【答案】∠1 = 40︒,∠2 = 40︒. A1 B【解析】因为AB / /CD (已知),所以∠1 =∠2 (两直线平行,同位角相等)2 即(2x + 20) = (8x - 40) C DF 解得:x = 10所以∠1 = 40︒,∠2 = 40︒(等式性质)H2G 1CFD3 12 4【例 10】如图,已知∠1 = 40 ,∠2 = 140 ,∠3 = 40 ,能推断出 AB / /CD / / EF 吗?为什么? 【答案】能;见解析. 【解析】由题意,根据对顶角的性质,可知:∠2 + ∠1 = 180︒,∠2 + ∠3 = 180︒所以 AB //CD ,CD //EF (同旁内角互补,两直线平行)所以 AB //EF ,即 AB //CD //EF ,即证.N【例 11】已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的 2 倍少 30°,求∠A 与∠ B 的度数.【答案】∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒ .【解析】由题意可知, ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 2 倍少 30°,所以∠A = 2∠B - 30︒ ,即∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒ 【总结】本题考查平行线的性质及两个角的两边平行时的两种情况的讨论.【例 12】已知:如图, ∠1 = ∠2 ,∠3 = ∠B ,AC / / DE ,且 B 、C 、D 在一条直线上.试说明 AE / / BD .A E【答案】见解析.【解析】因为 AC / / DE (已知),所以∠2 = ∠4 (两直线平行,内错角相等) 因为∠1 = ∠2 (已知),所以∠1 = ∠(4 等量代换)所以 AB / /CE (内错角相等,两直线平行)所以∠B = ∠ECD (两直线平行,同位角相等)B因为∠3 = ∠B (已知),所以∠3 = ∠ECD (等量代换) 所以 AE / / BD (内错角相等,两直线平行)【例 13】已知:如图,E 、F 分别是 AB 和 CD 上的点,DE 、AF 分别交 BC 于 G 、H ,∠ A = ∠ D , ∠ 1= ∠ 2,试说明: ∠ B = ∠ C . E 【答案】见解析 A B 【解析】因为∠1 = ∠(2 已知),∠1 = ∠AHB (对顶角相等)所以∠2 = ∠AHB (等量代换), 所以 AF / / E D (同位角相等,两直线平行)所以∠D = ∠AFC (两直线平行,同位角相等)因为∠A = ∠D (已知), 所以∠A = ∠AFC (等量代换)所以 AB / /CD (内错角相等,两直线平行) 所以∠B = ∠C (两直线平行,内错角相等)【例 14】如图,直线 GC 截两条直线 AB 、CD ,AE 是∠GAB 的平分线,CF 是∠ACD 的平 分线,且 AE / /CF ,那么 AB ∥CD 吗?为什么?【答案】见解析【解析】因为 AE 是∠GAB 的平分线,CF 是∠ACD 的平分线(已知)所以∠GAE = ∠EAB ,∠ACF = ∠FCD (角平分线的性质)因为 AE / /CF (已知),所以∠GAE = ∠ACF (两直线平行, 3A1 E2 D同位角相等)所以∠EAB =∠FCD(等量代换)所以AB / /CD ( 同位角相等,两直线平行)【例15】如图∠1 =∠2 ,DC / /OA ,AB / /OD ,那么∠C =∠B【答案】见解析【解析】因为DC / /OA (已知),所以∠COA =∠C(两直线平行,内错角相等),即∠COB +∠1 =∠C因为AB / /OD (已知),所以∠DOB =∠B即∠2 +∠COB =∠B ,又因为∠1 =∠2 (已知),所以∠B =∠C (等量代换)【总结】本题考查平行线的判定及性质的综合运用.【例16】如图,已知AD 平分∠BAC ,∠1 =∠2 ,试说明∠1 =∠F 的理由.【答案】见解析F【解析】因为AD 平分∠BAC (已知),所以∠2 =∠BAD (角平分线的意义)因为∠1 =∠2 (已知),所以∠1 =∠BAD (等量代换)所以EF / / AD (同位角相等,两直线平行)所以∠F =∠2 (两直线平行,同位角相等) B C 所以∠1 =∠F (等量代换)【总结】本题考查平行线的判定及性质的运用.【例17】已知:如图,∠AGH =∠B,∠CGH =∠BEF ,EF⊥AB 于F,试说明CG⊥AB.【答案】见解析【解析】因为∠AGH =∠B (已知)C所以HG / /CB (同位角相等,两直线平行)所以∠CGH =∠BCG (两直线平行,内错角相等)E 因为∠CGH =∠BEF (已知),H所以∠BEF =∠BCG (等量代换)A B所以EF / /CG (同位角相等,两直线平行)G F因为EF⊥AB(已知),所以CG⊥AB.【例18】已知,正方形ABCD 的边长为4 cm ,求三角形EBC 的面积.D【答案】8 平方厘米. A E 【解析】由题意可知:三角形EBC 与正方形同底BC,且其高即是正方形的边DC,故三角形面积为正方形面积的一半:4 ⨯ 4 ÷ 2 = 8cm2C【例19】如图,AD//BC,BC =5AD ,求三角形ABC 与三角形ACD 的面积之比.2A D【答案】5: 2 .4B CBD EA G D【解析】因为 AD / /BC (已知)所以三角形 ABC 与三角形 ACD 的高相等 (平行线间的距离处处相等)所以 S ∆ABC : S ∆ACD = BC : AD = 5:2 (两三角形高相等,面积比等于底之比)【例 20】如图, AB / /GE , CD / / FG ,BE =EF =FC ,三角形 AEG 的面积等于 7,求四边形AEFD 的面积.【答案】21【解析】联结 BG 、CG . 因为 AB / /GE(已知)所以 S∆BEGB= S ∆AEG (同底等高的两个三角形面积相等)E FC因为 BE =EF (已知), 所以 S ∆BEG = S ∆GEF (等底等高的两个三角形面积相等)所以 S ∆AEG = S ∆GEF =7(等量代换), 同理 S ∆GEF = S ∆DFG = 7 . 所以 S 四边形AEFD = S ∆AEG + S ∆GEF + S ∆DFG = 7 + 7 + 7 = 21.【例 21】已知 E 是平行四边形 ABCD 边 BC 上一点,DE 延长线交 AB 延长线于 F ,试说明CS ∆ABE 与S ∆CEF 相等的理由.【答案】见解析1A1F【解析】因为 S △ADE = S △DCF = 2 S 四边形ABCD ,所以 S △CEF = S ∆DCF - S ∆DCE = 2S 四边形ABCD - S ∆DCE ,所以 S = S - S - S = S- 1 S - S = 1 S - S ∆ABE 四边形ABCD ∆ADE ∆DCE 四边形ABCD 2 四边形ABCD ∆DCE 2四边形ABCD∆DCE所以 S ∆ABE = S ∆CEF模块二:辅助线的添加例题解析【例 1】如图,已知 AB ∥ED ,试说明:∠B +∠D =∠C . 【答案】见解析【解析】过点 C 作 AB 的平行线 CF ,因为 AB ∥ED (已知)所以 AB / /CF / / ED (平行的传递性)所以∠B = ∠BCF ,∠D = ∠DCF 所以∠B + ∠D = ∠BCF + ∠DCF = ∠BCD (等式性质) E【例 2】如图所示,已知, ∠A +∠B +∠C = 360︒ ,试说明 AE ∥CD .5FE 【答案】见解析 A E 【解析】过点 B 向右作 BF //AE ,所以∠A + ∠ABF = 180(︒ 两直线平行,同旁内角互补)因为∠A +∠B +∠C = 360︒ (已知) B F 所以∠FBC + ∠C = 180︒ (等式性质) C D所以 BF / /CD (同旁内角互补,两直线平行) 所以 AE / /CD (平行的传递性)【例 3】如图,已知:AB //CD ,试说明: ∠ B + ∠ D + ∠ BED = 360︒ (至少用三种方法).【答案】见解析 A【解析】方法一:连接 BD则∠EBD +∠EDB +∠E =180°(三角形内角和等于 180因为 AB //CD (已知),所以∠ABD +∠BDC =180°(两直线平行,同旁内角互补)C所以∠ABD +∠EBD +∠EDB +∠BDC +∠E =360°,即∠B +∠D +∠BED =360° 方法二:过点 E 作 EF //CD ,因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠B +∠BEF =180°,∠D +∠DEF =180°(两直线平行,同旁内角互补) 所以∠B +∠BEF +∠D +∠DEF =360°(等式性质)即∠B +∠D +∠BED =360°; 方法三:过点 E 作 EF / / BA 因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠ABE + ∠BEF = 180︒ ,∠FED + ∠EDC = 180︒ (两直线平行,同旁内角互补) 所以∠ B + ∠ D + ∠ BED = 360︒ (等式性质);方法四:过点 E 作 EF ⊥CD 的延长线与 F ,EG 垂直于 AB 的延长线于 G , 则有:∠B =∠BGE +∠GEB ,∠D =∠EDF +∠DFE ,所以∠B +∠D +∠BED =∠BGE +∠DFE +∠GED =180+180=360°.【例4】如图所示,在六边形 ABCDEF 中,AF ∥CD ,∠A =∠D ,∠B=∠E ,试说明 BC ∥EF 的理由.【答案】见解析 A F【解析】连接 AD 、BE B因为 AF ∥CD (已知)E所以∠FAD = ∠ADC (两直线平行,内错角相等)C D 因为∠BAF = ∠CDE (已知), 所以∠BAD = ∠ADE (等式性质)所以 AB ∥DE (内错角相等,两直线平行)所以∠ABE = ∠BED (两直线平行,内错角相等)因为∠ABC = ∠FED (已知), 所以∠EBC = ∠BEF (等式性质)所以 BC ∥EF (内错角相等,两直线平行)【例 5】如图已知,AB //CD ,∠ABF = 2 ∠ABE ,∠CDF = 2∠CDE ,求∠E 和∠F 的关系.3 3【答案】∠E : ∠F = 3:2 .C【解析】过点 E 、点 F 分别作 AB 的平行线 EG 、FH .6ABD21因为 EG / / AB ,FH / / AB所以 AB / / EG / FH / /CD (等量代换)所以∠ABF = ∠BFH (两直线平行,内错角相等)所以∠CDF = ∠DFH (两直线平行,内错角相等)所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF (等量代换)同理: ∠BED = ∠DEG + ∠BEG = ∠ABE + ∠CDE (等量代换)因为∠ABF = 2 ∠ABE ,∠CDF = 2∠CDE3 3所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF = 2 (∠ABE + ∠CDE ) = 2∠BED3 3所以∠E : ∠F = 3:2【例 6】如图,已知:AC //BD ,联结 AB ,则 AC 、BD 及线段 AB 把平面分成①②③④四个部分,规定:线上各点不属于任何一个部分,当点 P 落在某个部分时,联结 PA 、PB ,构成 ∠ PAC 、∠ APB 、∠ PBD 三个角(提示:有公共角断点的两条重合的射线所组成的角是 0 °角)(1) 当点 P 落在第①部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB ; (2) 当点 P 落在第②部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB 是否成立?(3)当点 P 落在第③部分时,全面探究∠ PAC 、 ∠ APB 、 ∠ PBD 之间的关系是 ,并写出动点 P 的具体位置和相应的结论,选择其中一种加以证明.A 3A 3CCCA 3C21 B4DB 4DB4B4D【解析】(1)过点 P 作 PE // AC .因为 AC / / BD ,所以 AC / / PE / / BD (平行的传递性)所以∠PAC = ∠APE ,∠BPE = ∠PBD (两直线平行,内错角相等) 因为∠APB = ∠APE + ∠BPE (角的和差)所以∠APB = ∠PAC + ∠PBD (等量代换)(2)不成立,过点 P 作 AC 的平行线即可证明. (3)分类讨论如下:①当动点 P 在射线 BA 的右侧时,结论是∠PBD = ∠PAC + ∠APB ; ②当动点 P 在射线 BA 上时,结论是∠PBD = ∠PAC + ∠APB 或∠PAC = ∠PBD + ∠APB 或∠APB = 0︒,∠PAC = ∠PBD (任写一个即可) ③当动点 P 在射线 BA 的左侧时,结论是∠PBD = ∠PAC + ∠APB .2P 1 A 321随堂练习【习题1】 填空:(1) 如图(1),AB //CD ,CE 平分∠ACD , ∠A = 120 ,则∠ECD ; (2) 如图(2),已知 AB //CD , ∠B = 100 ,EF 平分∠BEC , EG ⊥ EF ,则∠DEG = .【难度】★GB A FC【答案】(1)30°; (2)50°.E图(2)C【解析】(1)因为 AB ∥CD (已知),所以∠A + ∠ACD = 180 (两直线平行,同旁内角互补)因为∠A = 120 (已知), 所以∠ACD = 180 -120 = 60 (等式性质) 又因为 CE 平分∠ACD (已知), 所以∠ECD =30°(角平分线的意义)(2)因为 AB ∥CD (已知), 所以∠B + ∠BEC = 180 (两直线平行,同旁内角互补)因为∠B = 100 (已知), 所以∠BEC = 180 -100 = 80 (等式性质) 又因为 EF 平分∠BEC (已知), 所以∠BEF =40°(角平分线的意义)因为 EG ⊥EF (已知), 所以∠GEF = 90 (垂直的意义)因为∠DEG + ∠GEF + ∠CEF = 180 (平角的意义) 所以∠DEG = 180 - 90 - 40 = 50 (等式性质) 【总结】本题考查平行线的性质的运用.【习题2】 填空:(1)如图,直线 a / /b ,三角形 ABC 的面积是 42 cm 2 ,AB =6 cm ,则 a 、b 间的距离为 ;(2)如图,在三角形 ABC 中,点 D 是 AB 的中点,则三角形 ACD 和三角形 ABC 的面 积之比为 .【难度】★【答案】(1)14 厘米 ;(2) 1. 2 A D【解析】(1)三角形 ABC 的高为: 42 ⨯ 2 ÷离B 为 14 厘米;C(2)因为三角形 ACD 和三角形 ABC 高相等, 所以面积之比等于底之比,即 S ∆ACD = S ∆ABC AD = 1 AB 2【总结】本题考查平行线间距离及同高等底的三角形面积的之比.A B E图(1) DD.【习题3】 如图,已知 FC //AB //DE , ∠α : ∠D : ∠B = 2 : 3 : 4 ,则∠α 、∠D 、∠B 的度数分别为 .【难度】★ 【答案】∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ .【解析】因为 FC //AB //DE (已知),A 所以∠B + ∠CFB = 180(∠D = ∠CFD (两直线平行,内错角相等)设∠α = 2x ,∠D = 3x ,∠B = 4x ,则可列方程:180 - 4x + 2x = 3x ,解得: x = 36︒ 则∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ . 【习题4】 如果两个角的两边分别平行,其中一个角比另一个角的 3 倍多 12°,则这两个角是( ). A .42°和 138° B .都是 10°C .42°和 138°或都是 10°D .以上都不对【难度】★★ 【答案】A【解析】由题意假设这两个角分别为 A 、B ,则有: ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 3 倍多 12°,则有: ∠A = 3∠B + 12︒ , 即180︒- ∠B = 3∠B + 12︒,解得:∠B = 42︒,∠A = 138︒ . 【总结】本题考查两角位置关系的可能性,注意两种情况的讨论.【习题5】 如图,已知 QR 平分∠PQN ,NR 平分∠QNM ,∠1+∠2=90°,那么直线 PQ 、MN的位置关系. P Q 【难度】★★ 【答案】见解析.1【解析】因为 QR 平分∠PQN ,NR 平分∠QNM (已知)R所以∠PQN = 2∠1 , ∠MNQ = 2∠2 (角平分线的意义) 因为∠1+∠2=90°(因为),所以∠PQN +∠MNQ =180°(等式性质)2所以 PQ ∥MN (同旁内角互补,两直线平行) M N【总结】本题考查平行线的判定及角平分线意义的综合运用.【习题6】 如图,已知:AB ∥CD ,EF 和 AB 、CD 相交于 G 、H 两点,MG 平分∠BGH ,NH平分∠DHF ,试说明:GM ∥NH .【难度】★★【答案】略.【解析】 AB / /CD (已知)∴∠BGH = ∠DHF (两直线平行,同位角相等)又 MG 平分∠BGH ,NH 平分∠DHF∴∠1 = 1 ∠BGH , ∠2 = 1∠DHF2 2 ∴∠1 = ∠(2 等量代换)∴GM / / H N (同位角相等,两直线平行) 【总结】本题考查平行线的判定A B 1 2 O CBCM 1【习题7】 如图所示,在直角三角形 ABC 中,∠C =90°,AC =3,BC =4,AB =5,三角形内一点 O 到各边的距离相等,求这个距离是多少. 【难度】★★ 【答案】1.【解析】设这个距离是 x ,则有:S ∆ABC = 6 = 1( AC + BC + AB ) ⨯ x = 6x , 解得: x = 1 .2【总结】本题可以用面积法求解比较简单.【习题8】 如图,已知 AB ,CD 分别垂直 EF 于 B ,D ,且∠DCF =60°,∠1=30°.试说明: BM / / AF . A【难度】★★【答案】见解析.【解析】因为 CD ⊥EF , 所以∠CDF = 90 (垂直的意义)因为∠DCF =60°(已知), 所以∠F =30°(三角形的内角F 和等于 1D 80°) BE因为∠1=30°(已知), 所以∠1=∠F (等量代换)所以 BM ∥AF (同位角相等,两直线平行) 【总结】本题考查平行线的判定及垂直的意义的综合运用.【习题9】 如图,已知直线l 1 / /l 2 ;(1)若∠1 = (x + 2 y ) , ∠2 = x , ∠4 = ( y + 30) 求∠1 , ∠2 , ∠4 的度数; (2)若∠2 = x, ∠3 = y, ∠4 = [2(2x - y )],求 x 、 y 的值.1 2 3l【难度】★★【答案】见解析4 l 2【解析】(1)因为∠1+∠2=180°(平角的意义),所以 x + 2 y + x 180︒ ,即 x +y =90°因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = y +30, 解得:x =60°,y =30°,所以∠1=120°,∠2=60°,∠4=60°; (2)因为∠3+∠2=180°(平角的意义), 所以 x +y =180°,因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等) 即 x = 4x - 2 y , 解得:x =72°,y =108°.【总结】本题考查平行线的性质及角度的简单计算. 【习题10】 如图, ∠ ADC =∠ABC , ∠ 1+ ∠ FDB =180°,AD 是∠FDB 的平分线,试说明 BC 为∠DBE 的平分线. 【难度】★★★ E【答案】见解析.【解析】因为∠ 1+ ∠ FDB =180°(已知),又因为∠1 = ∠ABD (对顶角相等)所以∠ABD + ∠BDF = 180 (等量代换)所以 AB / / F D (同旁内角互补,两直线平行)F D CA EC 所以∠ABD = ∠2 (两直线平行,内错角相等)因为∠ADC = ∠ABC (已知), 所以∠ADB = ∠CBD (等式性质) 因为 AE / / FC (已证), 所以∠EBD = ∠FDB (两直线平行,内错角相等)即∠ADB + ∠ADF = ∠CBD + ∠CBE (角的和差)因为 AD 是∠FDB 平分线, 所以∠ADB = ∠ADF = ∠CBD = ∠EBC (角平分线的意义) 即 BC 为∠DBE 的平分线【总结】本题综合性较强,主要考查平行线的判定定理及性质定理以及角平分线的综合运用.【习题11】 如图,已知∠ABC =∠ACB ,AE 是∠CAD 的平分线,问:△ABC 与△EBC 的面积是否相等?为什么? D 【难度】★★★【答案】相等,证明见解析. F 【解析】因为∠DAE + ∠EAC + ∠BAC = 180 (平角的意义)又∠ABC + ∠ACB + ∠BAC = 180 (三角形内角和等于 180°)所以∠DAE + ∠EAC = ∠ABC + ∠ACB (等式性质)B 因为∠ABC =∠ACB ,AE 是∠CAD 的平分线(已知) 所以∠ABC = ∠ACB = ∠DAE = ∠CAE 所以 AE / / B C (内错角相等,两直线平行)所以 AE 与 BC 间的距离相等(夹在平行线间的距离处处相等) 所以△ABC 与△EBC 的面积相等(同底等高的两个三角形面积相等).【总结】本题综合性较强,主要考查平行线的判定定理及性质定理的综合运用,同时还考查了三角形的面积问题.课后作业【作业1】 如图,AB //CD ,直线l 分别交 AB 、CD 于 E 、F ,EG 平分∠BEF ,若∠EFG = 40 ,则∠EGF 的度数是( )A . 60B . 70C . 80D . 90【难度】★【答案】B【解析】因为 AB //CD (已知),所以∠BEF + ∠EFG = 180因为∠EFG = 40 (已知), 所以∠BEF =140°(等式性质)因为 EG 平分∠BEF (已知),所以∠BEG = 1 ∠BEF = 70(角平分线的意义)2因为 AB //CD (已知), 所以∠BEG = ∠EGF (两直线平行,内错角相等)所以∠EGF =70°(等量代换) 【总结】本题考查平行线的性质及角平分线的意义的运用.【作业2】 如图,AB //CD ,下列等式中正确的是( )A . ∠1 + ∠2 + ∠3 = 180B . ∠1 + ∠2 - ∠3 = 90C . ∠2 + ∠3 - ∠1 = 180D . ∠2 + ∠3 - ∠1 = 90【难度】★ 【答案】CA11B3CD21D 12 E 3【解析】由题意可得: (180︒- ∠3) + (180︒- ∠2) + ∠1 = 180︒ ,解得: ∠2 + ∠3 - ∠1 = 180︒ 【总结】本题考查平行线的性质.【作业3】 若两直线被第三条直线所截,则下列说法中正确的个数有( )(1)一对同位角的角平分线互相平行,(2)一对内错角的角平分线互相平行, (3)一对同旁内角的角平分线互相平行,(4)一对同旁内角的角平分线互相垂直 A .3 个 B .2 个 C .1 个 D .0 个 【难度】★ 【答案】D【解析】(1)同位角不一定相等,×;(2)内错角不一定相等,×;(3)×; (4)只有当这对同旁内角互补时才成立,× 【总结】本题考查三线八角的基本运用.【作业4】 直线 a ∥c ,且直线 a 到直线c 的距离是 3;直线b / /c ,直线b 到直线c 的距离为5,则直线 a 到直线b 的距离为( ) A .2 B .3 C .8 D .2 或 8 【难度】★★ 【答案】D【解析】当直线 a 和直线 b 在直线 c 的两侧时,距离为 8;当直线 a 和直线 b 在直线 c 的同一侧时,距离为 2. 【总结】本题考查平行线的性质,注意分类讨论.【作业5】 已知:如图 5,∠1=∠2=∠B ,EF ∥AB .试说明∠3=∠C . A 【难度】★★ 【答案】略.【解析】因为∠1 = ∠B (已知)所以 DE / / B C (同位角相等,两直线平行)所以∠2 = ∠C (两直线平行,同位角相等)又因为 EF / / AB (已知), 所以∠3 = ∠B 所以∠3 = ∠C (等量代换) BFC(两直线平行,同位角相等) 【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业6】 已知:∠1=60o ,∠2=60o , AB //CD .试说明:CD //EF . 【难度】★★l 【答案】略.【解析】设∠2 的对顶角为∠3,因为∠1=∠2 = 60o (已知),所以∠1=∠3(等量代换) 所以 AB ∥EF (同位角相等,两直线平行)A 1BCD又因为 AB ∥CD (已知) 所以 CD ∥EF (平行的传递性) E2F【总结】本题主要考查平行线的判定.D ′ C′F【作业7】 如图,已知∠4=∠B ,∠1=∠3,试说明:AC 平分∠BAD . 【难度】★★ 【答案】略. 【解析】因为∠4=∠B (已知)所以 CD ∥AB (同位角相等,两直线平行)所以∠3=∠2(两直线平行,内错角相等) 又因为∠1=∠3(已知), 所以∠1=∠2(等量代换),A B所以 AC 平分∠BAD (角平分线的意义)【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业8】 如图, AD / / BC ,BD 平分∠ABC ,且∠A : ∠ABC = 2 :1 ,求∠DBC 的度数.【难度】★★AD【答案】30°.【解析】因为 AD ∥BC (已知)所以∠A +∠ABC =180°(两直线平行,同旁内角互补)BC又因为∠A :∠ABC =2:1(已知), 所以∠A =120°,∠ABC =60°(等式性质) 又因为 BD 平分∠ABC (已知), 所以∠DBC =30°(角平分线的意义) 【总结】本题考查平行线的性质及角平分线的综合运用【作业9】 如图,把一个长方形纸片沿 EF 折叠后,点 D 、C 分别落在 D ′、C ′的位置.若∠AED ′=65°,则∠C 'FB 的度数为 . A E D【难度】★★【答案】65°【解析】因为翻折, 所以∠D 'EF = ∠DEF (翻折的性质) B 因为∠AED ' + ∠D 'EF + ∠DEF = 180 (平角的意义) 又∠AED ′=65°(已知), 所以∠D 'EF = ∠DEF =180 - ∠AED '= 57.5 (等式性质)2因为 AD / / BC (已知), 所以∠DEF + ∠EFC = 180 (两直线平行,同旁内角互补) ∠EFB = ∠DEF (两直线平行,内错角相等)所以∠EFB = 57.5 , ∠EFC = 180 - 57.5 = 122.5 (等式性质)因为∠EFC ' = ∠EFC (翻折的性质) 所以∠C 'FB = ∠EFC ' - ∠EFB = 65︒ . 【总结】本题主要考查平行线的性质及翻折的性质的综合运用.【作业10】 如图,已知 AD //BC ,AB //EF ,DC //EG ,EH 平分∠FEG , ∠A = ∠D = 110 ,试说明线段 EH 的长是 AD 、BC 间的距离. A E D 【难度】★★ 【答案】见解析.【解析】因为 AD //BC (已知)所以∠A + ∠B = 180 , ∠C + ∠D = 180 (两直线平行,同旁内角互补)因为∠A = ∠D = 110 (已知), 所以∠B =∠C =70°(等式性质)B F H G因为 AB //EF ,DC //EG (已知),D 43 C12所以∠EFG=∠B,∠EGF=∠C(两直线平行,内错角相等)所以∠EFG = ∠EGF = 70°(等量代换),所以∠FEG=40°因为EH 平分∠FEG (已知),所以∠FEH=1∠FEG=20 (角平分线的意义)2所以∠FHE = 180 -∠FEH =∠EFH = 90 (三角形内角和等于180°)即EH 的长是AD、BC 间的距离.【总结】本题综合性较强,主要考查平行线的性质及三角形的内角和以及平行线间的距离.【作业11】如图,AB ⊥l ,CD ⊥l (点B、D 是垂足),直线EF 分别交AB、CD 于点G、H.如果∠EGB =m ,∠FGB =n ,且∠EHD = (3m -n ) ,试求出∠EGB 、∠BGF 、∠EHD的度数.【难度】★★★【答案】∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【解析】因为AB ⊥l ,CD ⊥l (已知)所以AB / /CD (垂直于同一直线的两直线平行)所以∠FGB +∠EHD =180 (两直线平行,同旁内角互补)∠EGB =∠EHD (两直线平行,同位角相等)即n + 3m -n = 180 ,m = 3m -n ,解得:m = 60︒,n = 120︒.所以∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【总结】本题主要考查平行线的性质的运用.【作业12】如图,已知AB / /CD ,EG、FH 分别平分∠AEF 、∠DFN ,那么∠GEF +∠DFH = 90 ,试说明理由.【难度】★★【答案】见解析.【解析】因为AB / /CD (已知)所以∠AEF =∠CFN (两直线平行,同位角相等)因为∠CFN +∠DFN = 180︒(平角的性质)又因为EG、FH 分别平分∠AEF 、∠DFN (已知)所以∠AEG +∠GEF +∠DFH +∠NFH = 180︒(角的和差)即2∠GEF +∠DFH = 180︒,所以∠GEF +∠DFH = 90 .【总结】本题考查平行线的性质及角平分线性质的综合应用.【作业13】如图,已知AB∥EF,∠B=45°,∠C=x°,∠D=y°,∠E=z°,试说明x、y、z 之间的关系.【难度】★★★【答案】见解析.【解析】由题意,过C、D 两点分别作AB 的平行线CM、DN 因为AB∥EF(已知)所以AB / /CM / / DN / / EF (平行的传递性)N所以∠B =∠BCM ,∠MCD =∠CDN ,∠EDN =∠E (两直线平行,内错角相等)因为∠B=45°,∠C=x°,∠D=y°,∠E=z°(已知)所以x - 45 =y -z (等式性质)即x -y +z = 45 .【总结】本题综合性较强,主要考查平行线的性质以及辅助线的添加,注意观察角度间的关系.。
冀教版七年级下册数学第7章 相交线与平行线 平行线的判定和性质的应用
知2-讲
解:CD∥EF,理由: ∵∠B=∠D, ∴AB∥CD(内错角相等,两直线平行). ∵∠CEF=∠A, ∴EF∥AB(同位角相等,两直线平行). ∴CD∥EF(平行于同一条直线的两条直线平行).
总结
知2-讲
找寻说明平行的方法: 1. 分析法:由结论往前推,要说明这个结论成立需要什么样 的条件,一直递推到已知条件为止;(如导引1) 2. 综合法:由已知条件一步一步往后推理,看这个已知条件 能推出什么结论, 一直推导出要说明的结论为止; (如导引2) 3. 两头凑:当遇到复杂问题的时候,我们常常将分析法和综 合法同时进行,即由两头向中间推,寻找到中间的结合点.
知2-练
2 【中考·枣庄】如图,将一副三角板和一张对边 平行的纸条按下列方式摆放,两个三角板的一 直角边重合,含30°角的直角三角板的斜边与 纸条一边重合,含45°角的三角板的一个顶点 在纸条的另一边上,则∠1的度数是( A ) A.15° B.22.5° C.30° D.45°
知识点 3 平行线的性质与判定的综合应用
总结
知3-讲
一个数学问题的构成含有四个要素:题目的条 件、解题的依据、解题的方法、题目的结论,如果 题目所含的四个要素解题者已经知道或者结论虽未 指明,但它是完全确定的,这样的问题就是封闭性 的数学问题.
知3-练
1 【中考·宿迁】如图,直线a,b被直线c,d所截, 若∠1=80°,∠2=100°,∠3=85°,则∠4 的度数是( B ) A.80° B.85° C.95° D.100°
易错点:画图考虑不周导致漏解.
解:画图如图①②③④所示.∠ABC与∠DEF相等或互补, 理由如下: 如图①,∵AB∥DE, ∴∠ABC=∠DPC. ∵BC∥EF,∴∠DEF=∠DPC. ∴∠ABC=∠DEF. 如图②,∵AB∥DE,∴∠ABC=∠EPC. ∵BC∥EF,∴∠EPC=∠DEF.∴∠ABC=∠DEF. 如图③,∵AB∥DE,∴∠ABC=∠BPE.∵BC∥EF, ∴∠DEF+∠BPE=180°.∴∠ABC+∠DEF=180°.
七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )
七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。
平行线的判定和性质
教师辅导讲义知识回顾写出下图中所有的同位角、内错角、同旁内角 同位角:内错角: 同旁内角: 新课知识一、平行线的判定知识点1:平行线的判定1用该符号语言表示:如图,∵∠1=∠2, ∴AB ∥CD (同位角相等,两直线平行)两直线平行的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单地说: 同位角相等 ,两直线平行.例1.如图,直线a,b 都与直线c 相交,若∠1=120°,,2=60°,则a ∥b.在下列括号中填写推理理由.∵∠1=120°().∴∠3=60°().又∵∠2=60°(). ∴∠2=∠3().∴a∥b知识点2:平行线的判定2思考:下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.解:∵∠1=∠7 ( )∠1=∠3( )∴∠7=∠3( )∴ AB∥CD( )用该符号语言表示:如图,∵∠2=∠3(已知),∴AB∥CD(内错角相等,两直线平行)两直线平行的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说: 内错角相等 ,两直线平行.知识点3:平行线的判定3下图中,如果∠4+∠7=180°,能得出AB∥CD?解: ∵∠4+∠7=180 °()∠4+∠3=180°()∴∠7=∠3()∴ AB∥CD()用该符号语言表示:如图,∵∠2+∠4=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)两直线平行的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单地说: 同旁内角互补 ,两直线平行.例4. 如图所示,回答下列问题,并说明理由.(1)由∠C=∠2,可判定哪两条直线平行?(2)由∠2=∠3,可判定哪两条直线平行?(3)由∠C+∠D=180°,可判定哪两条直线平行?注:(1)要掌握直线平行的判定方法,首先要掌握同位角、内错角、同旁内角的定义;(2)判定方法是从角的关系得到两直线平行的。
初中数学 平行线的判定定理有哪些
初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。
在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。
同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。
1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。
2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。
即如果l||n且m||n,则l||m。
3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。
即如果l∠n且m∠n,则l||m。
4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。
5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。
即如果l||m且m||n,则l||n。
6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。
即如果l∠n且∠A=90°,则l||m。
7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。
8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。
9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。
以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。
(完整版)七年级数学培优-平行线四大模型
平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型·点P在EF左侧,在AB、CD外部“骨折”模型结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .例6 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。
最新人教版七年级数学下册5.2.2平行线的判定(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如教室墙壁的边缘线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何学中具有重要地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。通过教室墙壁的边缘线,展示平行线在实际中的应用,以及它如何帮助我们理解和设计空间结构。
此外,我还发现,在课堂总结环节,部分学生仍然存在疑问。这说明我在课堂教学中,可能没有充分关注到每一个学生的学习情况。为了解决这个问题,我打算在今后的教学中,更加注重学生的个体差异,及时了解他们的学习进度和需求,尽量让每个学生都能跟上课堂节奏。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
பைடு நூலகம்(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(3)解决实际问题时,将问题转化为数学模型的能力:学生可能难以将实际问题抽象为数学问题,从而无法运用所学知识解决问题。
解决方法:设计具有代表性的实际问题,引导学生学会将实际问题转化为数学模型,并运用平行线判定定理解决问题。
专题 平行线的判定与性质(解析版)--七年级数学下册
专题02平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴DE∥BC(同位角相等,两直线平行)∴∠EDC=∠DCB(两直线平行,内错角相等)又∠EDC=∠GFB(已知)∴∠DCB=∠GFB(等量代换)∴GF∥CD(同位角相等,两直线平行)【分析】根据平行线的判定与性质即可证得.【解答】证明:∵∠B=∠ADE(已知),∴DE∥BC(同位角相等;两直线平行),∴∠EDC=∠DCB(两直线平行,内错角相等),又∠EDC=∠GFB(已知),∴∠DCB=∠DFG(等量代换),∴GF∥CD(同位角相等,两直线平行),故答案为:DE,BC,同位角相等,两直线平行,两直线平行,内错角相等,∠GFB,GF,CD,同位角相等,两直线平行.2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE(两直线平行,内错角相等①),因为EF平分∠CED(已知),所以∠DEF=∠CFE②(角平分线的定义),所以∠CFE=∠CEF(等量代换③),因为∠A=∠CFE(已知),所以∠A=∠CEF④(等量代换),所以EF∥AB(同位角相等,两直线平行⑤).【分析】先根据两直线平行,内错角相等,得到∠DEF=∠CFE,再根据角平分线得出∠DEF=∠CEF,进而得到∠CFE=∠CEF,再根据∠A=∠CFE,即可得出∠A=∠CEF,进而根据同位角相等,两直线平行,判定EF∥BC.【解答】解:因为DE∥BC(已知),所以∠DEF=∠CFE(两直线平行,内错角相等①),因为EF平分∠CED(已知),所以∠DEF=∠CFE②(角平分线的定义),所以∠CFE=∠CEF(等量代换③),因为∠A=∠CFE(已知),所以∠A=∠CEF④(等量代换),所以EF∥AB(同位角相等,两直线平行⑤)故答案为:两直线平行,内错角相等,∠CFE.等量代换,∠CEF,同位角相等,两直线平行.3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.【分析】(1)由已知条件可证得AB∥EF,从而有∠B=∠EFC,则得∠3=∠EFC,得证DE∥BC;(2)由(1)得DE∥BC,利用两直线平行,同旁内角互补可求解.【解答】(1)证明:∵∠1+∠2=180°,∠2=∠4,∴AB∥EF,∴∠B=∠EFC,∵∠B=∠3,∴∠3=∠EFC,∴DE∥BC;(2)解:∵DE∥BC,∠C=76°,∴∠C+∠DEC=180°,∠AED=∠C=76°,∵∠AED=2∠3,∴∠3=38°∵∠DEC=180°﹣∠C=104°,∴∠CEF=∠DEC﹣∠3=104°﹣38°=66°.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD(已知)∴∠BEF=∠BCD(两直线平行,同位角相等)∵∠B=∠ADG(添加条件)∴BC∥DG(同位角互补,两直线平行)∴∠CDG=∠BCD(两直线平行,内错角相等)∴∠BEF=∠CDG(等量代换).【分析】证明BC∥DG即可解答.【解答】证明:∵EF∥CD(已知),∴∠BEF=∠BCD(两直线平行,同位角相等),∵∠B=∠ADG,∴BC∥DG(同位角相等,两直线平行),∴∠CDG=∠BCD(两直线平行,内错角相等),∴∠BEF=∠CDG(等量代换);故答案为:∠BCD,两直线平行,同位角相等;DG,同位角互补,两直线平行;∠BCD,两直线平行,内错角相等,等量代换.5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3,对顶角相等∴∠2=∠3,(等量代换)∴AE∥FD同位角相等,两直线平行∴∠A=∠BFD两直线平行,同位角相等∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∴AB∥CD内错角相等,两直线平行∴∠B=∠C两直线平行,内错角相等.【分析】先根据题意得出∠2=∠3,故可得出AE∥FD,故∠A=∠BFD,再由∠A=∠D可得出∠D=∠BFD,故可得出AB∥CD,进而可得出结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠3对顶角相等,∴∠2=∠3(等量代换),∴AE∥FD(同位角相等,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等).∵∠A=∠D(已知),∴∠D=∠BFD(等量代换),∴AB∥CD(内错角相等,两直线平行).∴∠B=∠C(两直线平行,内错角相等).故答案为:对顶角相等;∠3;同位角相等,两直线平行;两直线平行,同位角相等;∠BFD;AB,内错角相等,两直线平行;两直线平行,内错角相等.6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.【分析】(1)根据∠3=∠4,可得∠AFD=∠3,再由三角形内角和定理,即可求证;(2)根据平行线的性质可得∠B+∠BCD=180°,从而得到∠BCD+∠D=180°,即可求证.【解答】证明:(1)∵∠AFD=∠4,∠3=∠4,∴∠AFD=∠3,∵∠B=180°﹣∠1﹣∠3,∠D=180°﹣∠2﹣∠AFD,又∠1=∠2,∴∠B=∠D;(2)∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=∠D.∴∠BCD+∠D=180°,∴AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠DBC,根据垂直推出BD∥EF,根据平行线的性质即可求出∠EFC.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.【分析】(1)只要证明∠2=∠DAC即可.(2)利用平行线的性质解决问题即可.【解答】解:(1)∵AD∥EF,∴∠1=∠DAC,∵∠1=∠2,∴∠2=∠DAC,∴DG∥AC.(2)∵DG∥AC,∴∠AGD+∠BAC=180°,∵∠BAC=70°,∴∠AGD=110°9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.【分析】(1)根据平行线的性质与判定方法证明即可;(2)设∠EDC=x°,由∠BFD=∠BDF=2∠EDC可得∠BFD=∠BDF=2x°,根据平行线的性质可得∠DFB=∠FDE=2x°,再根据平角的定义列方程可得x的值,进而得出∠B的度数.【解答】解:(1)证明:∵DF∥CA,∴∠DFB=∠A,又∵∠FDE=∠A,∴∠DFB=∠FDE,(2)设∠EDC=x°,∵∠BFD=∠BDF=2∠EDC,∴∠BFD=∠BDF=2x°,由(1)可知DE∥BA,∴∠DFB=∠FDE=2x°,∴∠BDF+∠EDF+∠EDC=2x°+2x°+x°=180°,∴x=36,又∵DE∥AB,∴∠B=∠EDC=36°.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.【分析】(1)由平行线的性质可得∠BAD=∠1,从而可求得∠BAD+∠2=180°,即可判断;(2)由题意可求得∠1=38°,再由角平分线的定义可得∠CDG=∠1=38°,再利用平行线的性质即可求解.【解答】(1)证明:∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°,(2)解:∵∠1+∠2=180°,∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG=∠1=38°,∵AB∥DG,∴∠B=∠CDG=38°.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE=∠PEF,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC=∠QEF(同角的余角相等),∴EF∥CD(内错角相等,两直线平行),又∵AB∥EF,∴AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).【分析】根据平行线的性质、判定填空即可.【解答】解:∵AB∥EF,∴∠APE=∠PEF.∵EP⊥EQ,∴∠PEQ=90°(垂直的定义).即∠QEF+∠PEF=90°.∴∠APE+∠QEF=90°.∵∠EQC+∠APE=90°,∴∠EQC=∠QEF(同角的余角相等).∴EF∥CD(内错角相等,两直线平行).∴AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).故答案为:PEF;∠QEF;同角的余角相等;CD,内错角相等,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°(已知),∠AMC+∠AMD=180°(平角的定义),所以∠BAM=∠AMC(等量代换).因为AE平分∠BAM,所以∠BAM(角平分线的定义).因为MF平分∠AMC,所以∠AMC,得∠1=∠2(等量代换),所以AE∥MF(内错角相等,两直线平行).【分析】根据角平分线的定义,平行线的判定定理完成填空即可求解.【解答】解:因为∠BAM+∠AMD=180°(已知),∠AMC+∠AMD=180°(平角的定义),所以∠BAM=∠AMC(等量代换).因为AE平分∠BAM,所以∠BAM(角平分线的定义).因为MF平分∠AMC,所以∠AMC,得∠1=∠2(等量代换),所以AE∥MF(内错角相等,两直线平行)故答案为:已知;平角的定义;等量代换;∠BAM;角平分线的定义;∠AMC;∠1=∠2;等量代换;AE∥MF;内错角相等,两直线平行.13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行)∴∠1=∠3(两直线平行,内错角相等)∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°(垂直的定义)∴∠BDF=∠EFC=90°∴BD∥EF(同位角相等,两直线平行)∴∠2=∠3(两直线平行,同位角相等)∴∠1=∠2(等量代换)【分析】根据推理过程,填上依据即平行线的性质或者判定.【解答】证明:∵∠A=112°,∠ABC=68°(已知),∴∠A+∠ABC=180°.∴AD∥BC(同旁内角互补,两直线平行).∴∠1=∠3(两直线平行,内错角相等).∵BD⊥DC,EF⊥DC(已知),∴∠BDF=90°,∠EFC=90°(垂直的定义).∴∠BDF=∠EFC=90°.∴BD∥EF(同位角相等,两直线平行).∴∠2=∠3(两直线平行,同位角相等).∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;∠3;两直线平行,内错角相等;垂直的定义;同位角相等,两直线平行;∠3;两直线平行,同位角相等;等量代换.14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.【分析】(1)依据三角形内角和定理,即可得到∠1+∠3=90°,再根据角平分线的定义,即可得到∠BGH+∠DHG=2(∠1+∠3)=180°,进而得出AB∥CD;(2)依据对顶角相等以及平行线的性质,即可得到∠DHG=180°﹣60°=120°,再根据HP平分∠GHD,即可得到结论.【解答】解:(1)∵∠GPH=90°,∴△GHP中,∠1+∠3=90°,又∵GP平分∠BGH,HP平分∠GHD,∴∠BGH=2∠1,∠DHG=2∠3,∴∠BGH+∠DHG=2(∠1+∠3)=180°,∴AB∥CD;(2)∵∠BGH=∠AGE=60°,∴∠DHG=180°﹣60°=120°,又∵HP平分∠GHD,∴∠4=∠DHG=×120°=60°.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.【分析】(1)要证明EF∥BH,可通过∠E与∠EBH互补求得,利用平行线的性质说明∠EBH=∠CHB 可得结论.(2)要求∠CHO的度数,可通过平角和∠FHC求得,利用(1)的结论及角平分线的性质求出∠FHB 及∠BHC的度数即可.【解答】证明:(1)∵∠HCO=∠EBC,∴EB∥HC.∴∠EBH=∠CHB.∵∠BHC+∠BEF=180°,∴∠EBH+∠BEF=180°.∴EF∥BH.(2)解:∵∠HCO=∠EBC,∴∠HCO=∠EBC=64°,∵BH平分∠EBO,∴∠EBH=∠CHB=∠EBC=32°.∵EF⊥AO于F,EF∥BH,∴∠BHA=90°.∴∠FHC=∠BHA+∠CHB=122°.∵∠CHO=180°﹣∠FHC=180°﹣122°=58°.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.【分析】(1)应用平行线的判定与性质进行求解即可得出答案;(2)设点F到直线AB的距离为h,根据等面积法可得SAFB=,代入计算即可得出h△的值,即可得出答案.【解答】(1)证明:因为∠l=∠B(已知),所以CE∥BF(同位角相等,两直线平行),因为AF⊥CE(已知),所以AF⊥BF(垂直的性质),所以∠AFB=90°(垂直的定义),又因为∠AFC+∠AFB+∠2=180°(平角的定义).即∠AFC+∠2=90°,又因为∠A+∠2=90,所以∠AFC=∠A(同角的余角相等),所以AB∥CD(内错角相等,两直线平行);(2)解:因为AF⊥BF(已证),且AF=12,BF=5,AB=13.设点F到直线AB的距离为h.所以SAFB=,△所以,即h=,所以点F到直线AB的距离为.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.【分析】(1)根据已知条件判定AB∥EF,再结合平行线的性质可得∠ADE=∠B,从而判定出最终结论.(2)设∠B=x,结合已知条件,分别把∠1,∠ADE,∠ADC表示出来,根据∠ADB是平角列出方程,求出x的值,进而求出∠EFC的度数.【解答】解:(1)DE∥BC,理由如下:∵∠1=∠3,∴AB∥EF,∴∠2=∠ADE,∵∠2=∠B,∴∠ADE=∠B,∴DE∥BC(2)设∠B=x,则∠1=3∠B=3x,∵DE∥BC,∴∠ADE=∠B=x,∵DE平分∠ADC,∴∠ADC=2∠ADE=2x,∴x=36°,∴∠ADC=2x=72°,∵AB∥EF,∴∠EFC=∠ADC=72°18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.【分析】(1)根据“两直线平行,同旁内角互补”和“同旁内角互补,两直线平行”证明即可;(2)延长EF,与CD交于点I.根据“两直线平行,内错角相等”和角的等量代换证明即可.【解答】证明:(1)∵HF∥GE,∴∠HFE+∠GEF=180°(两直线平行,同旁内角互补).又∵∠HGE=∠HFE,∴∠HGE+∠GEF=180°,∴GH∥EF(同旁内角互补,两直线平行).(2)延长EF,与CD交于点I.∵GH∥EF,∴∠CMH=∠MIF.又∵AB∥CD,∴∠MIF=∠BNE.∴∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).【分析】(1)根据折叠得到∠BGH=∠EGH=110°,再根据平角的定义,利用∠AGE=∠BGH+∠EGH ﹣180°计算可得;(2)根据折叠得到∠CHG=∠FHG,再根据平角的定义计算即可;(3)根据互补得到∠BGH+∠CHG=180°,从而求出∠CHG=∠FHG=180°﹣α,继而可得结果.【解答】解:(1)由折叠可得:∠BGH=∠EGH=110°,∵∠BGH+∠AGH=180°,∴∠AGE=∠BGH+∠EGH﹣180°=40°;(2)由折叠可得:∠CHG=∠FHG,∴;(3)∵∠BGH和∠CHG始终互补,∴∠BGH+∠CHG=180°,∵∠BGH=α,∴∠CHG=180°﹣α,∴∠FHG=180°﹣α,∴∠FHC=∠FHG+∠CHG=360°﹣2α.20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.【分析】(1)根据角平分线的定义可得∠BAC=2∠BAE,等量代换可得∠GBE=∠BAC,根据平行线的判定定理,即可得证;(2)设∠DAB=∠DAC=α,∠BAM=∠QAM=β,根据三角形的内角和定理以及平行线的性质得出∠BQA,∠AMN,即可求解;(3)根据题意补充图形,分两种情况讨论,①当N在AE上时,设∠EBN=∠EFC=θ,根据平行线的性质以及三角形的外角的性质,分别表示出∠BNA,∠FEA,可的结论;②当点N在AE的延长线上时,根据平行线的性质,即可求解.【解答】(1)证明:∵射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE,∴∠BAC=2∠BAE,∴∠GBE=∠BAC,∴l1∥l2;(2)解:∠BQA=2∠AMN;理由如下,∵AD平分∠BAC,AM平分∠BAQ,∴,设∠DAB=∠DAC=α,∠BAM=∠QAM=β,∵MN⊥AD,∴∠MNA=90°,则∠AMN=90°﹣∠MAD=90°﹣(∠MAB+∠DAB)=90°﹣(α+β),∵l1∥l2,∴∠BQA=180°﹣∠QAC=180°﹣2(α+β),∴∠BQA=2∠AMN;(3)解:∠BNA+∠FEA=130°,理由如下,补全图形,如图所示,①当N在AE上时,∵∠EBN=∠EFC,设∠EBN=∠EFC=θ,∵l1∥l2,∠GBE=130°,∴∠BEF=∠EFC=θ,∠BAC=∠GBE=130°,∵AD平分∠BAC,,∵l1∥l2,∴∠BEA=∠EAC=65°,∴∠BNA=∠NBE+∠BEN=65°+θ,∠FEA=∠NEB﹣∠BEF=65°﹣θ,∴∠BNA+∠FEA=130°,②如图,当点N在AE的延长线上时,∠BNA=∠FEA,∵l1∥l2,∴∠BEF=∠EFC,∵∠EBN=∠EFC,∴∠BEF=∠EBN,∴BN∥EF,∴∠BNA=∠FEA.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ=110°;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.【分析】(1)根据两直线平行内错角相等,得出∠QAB=∠ABD=40°,再根据平角的定义,得出∠BAP =140°,再根据角平分线的定义,得出∠BAC=70°,再根据角之间的数量关系,计算即可得出答案;(2)根据角平分线的定义,得出∠CAE=2∠CAF,进而得出,再根据对顶角相等和三角形的内角和定理,得出∠EFD=∠AFC,∠AFC+∠ACE+∠CAF=180°,进而得出,再根据等量代换,得出∠ACE=∠CAE,即∠ACE=∠CAP,再根据角平分线的定义,得出∠CAP=∠CAB,再根据等量代换,得出∠ACE=∠CAB,再根据内错角相等两直线平行,即可得出结论;(3)根据题意,分三种情况:当0≤t≤4时、当4<t≤10时、当10<t≤12时,分别画出图形,根据角之间的数量关系,列出方程进行计算即可.【解答】解:(1)∵PQ∥MN,∠ABD=40°,∴∠QAB=∠ABD=40°,∴∠BAP=180°﹣∠QAB=180°﹣40°=140°,∵AC平分∠BAP,∴,∴∠CAQ=∠BAC+∠QAB=70°+40°=110°;故答案为:110°;(2)∵AD平分∠CAP,∴∠CAE=2∠CAF,∵,∴,∵∠EFD=∠AFC,∠AFC+∠ACE+∠CAF=180°,又∵,∴,∴,∴,∴,∴3∠CAF=∠ACE+∠CAF,即∠ACE=2∠CAF,∴∠ACE=∠CAE,即∠ACE=∠CAP,∵AC平分∠BAP,∴∠CAP=∠CAB,∴∠ACE=∠CAB,∴EC∥AB;(3)当0≤t≤4时,如图,∵∠M'AC=10°t,∠MBM'=30°(2+t),∵AQ'⊥BM',∴∠BM'A=90°﹣10°t,∵PQ∥MN,∴∠MBM'+∠AM'B=180°,即30°(2+t)+(90°﹣10°t)=180°,解得:;当4<t≤10时,如图,∵∠N'AC=10°t,∵AQ'⊥BN',∴∠BN'A=90°﹣10°t,∵∠NBN'=30°(t﹣4),∴90°﹣10°t=30°(t﹣4),解得:;当10<t≤12时,如图,∵∠MBM'=30(t﹣10),AQ'⊥BM',∴∠AQ'M=90+30(t﹣10),∵∠QAQ'=10t,PQ∥MN,∴90+30(t﹣10)=10t,解得:,在图形的左边垂直,10t+20t﹣120+30(t﹣10)=90,综上所述,t的值秒或秒或或9.75秒.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.【分析】(1)根据AD∥BC,可得∠DAE=∠C,再根据∠C=∠ADB,即可得到∠DAE=∠ADB,即可得证;(2)∠DAE+2∠C=90°.根据三角形外角的性质,可得到∠CGB=∠ADB+∠DAE,根据直角三角形两锐角互余,有∠CGB+∠C=90°,再根据∠C=∠ADB即可得到∠DAE与∠C的数量关系;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD=180°﹣8α,再根据∠DAE+2∠C=90°,即可得到α+2(180°﹣8α)=90°,求得α的值,即可运用三角形内角和定理得到∠BAD的度数.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠C,又∵∠C=∠ADB,∴∠DAE=∠ADB,∴AC∥BD;(2)解:∠DAE+2∠C=90°理由如下:∵∠CGB是△ADG的外角,∴∠CGB=∠ADB+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴在△BCG中,∠CGB+∠C=90°,∴∠ADB+∠DAE+∠C=90°,又∵∠C=∠ADB,∴∠DAE+2∠C=90°;(3)解:设∠DAE=α,则∠DFE=8α,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵∠DAE+2∠C=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8×18°=36°,∴∠ADB=∠C=36°,又∵∠BAC=∠BAD,∴∠ABC=180°﹣∠C﹣∠BAC=180°﹣∠ADB﹣∠BAD=∠ABD,∵∠CBD=90°,∴,∴在△ABD中,∠BAD=180°﹣45°﹣36°=99°,∴∠BAD的度数为99°.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.【分析】(1)由AB∥CD,得∠B=∠BFD,又∠B=∠EFB,得证;(2)由(1)∠EFB=∠BFD,由FH⊥FB,得∠BFD+∠DFH=90°,∠EFB+∠GFH=90°,由等角的余角相等,得∠DFH=∠GFH,命题得证;(3)由QH分别与△EBF的三边分别平行,分情况讨论处理;(4)在(3)的各种情况下,分别计算∠DFQ与∠GFH的度数,可得结论∠DFQ与∠GFH相差20°.【解答】解:(1)∵AB∥CD,∴∠B=∠BFD,又∠B=∠EFB,∴,∴∠B=35°;(2)∵FH⊥FB,∴∠BFD+∠DFH=90°,∠EFB+∠GFH=90°,∴∠DFH=∠GFH,∴FH平分∠GFD.(3)①QH与△EFB的边BF平行时,如下图1及图4,如图1,∵BF∥HQ,∴∠H+∠BFH=180°,又∠H=60°,∴∠BFH=120°,α=∠BFQ=120°﹣∠HFQ=120°﹣90°=30°;如图4,∠HFB=∠H=60°,α=∠1+∠2+∠3=360°﹣(∠HFB+∠HFQ)=360°﹣(60°+90°)=210°;②QH与△EFB的边BE平行时,如下图2,∠1=∠3=35°,∠2=∠4=30°,∴α=∠BFQ=∠1+∠2=35°+30°=65°;③QH与△EFB的边EF平行时,如下图3,∠3=∠Q=30°,∴α=∠BFQ=∠1+∠2+∠3=35°+110°+30°=175°,综上,旋转角为α=30°或65°或175°或210°.(4)α=30°时,∠DFQ=∠DFB﹣∠BFQ=35°﹣30°=5°,∠GFH=90°﹣∠EFB﹣∠BFQ=90°﹣35°﹣30°=25°;α=65°时,∠DFQ=65°﹣35°=30°,∠GFH=90°﹣∠GFQ=90°﹣(180°﹣35°﹣65°)=10°;α=175°时,∠DFQ=175°﹣35°=140°,∠GFH=180°﹣60°=120°;α=210°时,∠DFQ=210﹣35°=175°,∠GFH=360°﹣110°﹣35°﹣60°=155°;综上,∠DFQ与∠GFH相差20°.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.【分析】(1)根据同旁内角互补,两条直线平行即可判断直线AB与直线CD平行;(2)先根据两条直线平行,同旁内角互补,再根据∠BEF与∠EFD的角平分线交于点P,可得∠EPF =90°,进而证明PF∥GH;(3)根据直角三角形的性质求出∠HPG=75°,根据角的和差及邻补角定义求出∠EPQ=60°,根据角平分线定义求解即可.【解答】(1)证明:∵∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:由(1)知,AB∥CD,∴∠BEF+∠EFD=180°,又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF,∵GH⊥EG,∴PF∥GH;(3)解:∵∠PHG=15°,GH⊥EG,∴∠HPG=90°﹣15°=75°,∵∠HPQ=45°,∴∠QPG=∠HPQ+∠HPG=120°,∵∠QPG+∠EPQ=180°,∴∠EPQ=60°,∵PQ平分∠EPK,∴∠QPK=∠EPQ=60°.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E =90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α=4°时,DE∥BC,当∠α=94°时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.【分析】(1)由DE∥BC得∠EDA=∠ABC=40°,再根据α=∠EDA﹣∠EDF可得出答案;先求出∠A =50°,由DE⊥BC得DE∥AC,进而得∠EDA+∠A=180°,由此得∠EDA==130°,然后根据α=∠FDA=∠EDA﹣∠EDF可得出答案;(2)①先求出∠BCD=∠ACD=45°,∠CDA=85°,求出当DE和CD重合时α=∠CDA﹣∠EDF=49°,当EF与CD重合时,α=∠CDA=85°,据此可求出∠α的度数范围;②连接MN,在△CMN中得∠CNM+∠CMN+∠MCN=180°,则∠CNM+∠CMN=90°,在△MND中得∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠1+∠CMN+∠MDN=180°,据此可得∠1+∠2的度数【解答】解:(1)∵∠ABC=40°,∴当DE∥BC时,∠EDA=∠ABC=40°,如图①所示:又∵∠EDF=36°,∴α=∠EDA﹣∠EDF=40°﹣36°=4°,故当∠α=4°时,DE∥BC;在△ABC中,∠ACB=90°,∠ABC=40°,∴∠A=180°﹣(∠ACB+∠ABC)=50°,当DE⊥BC时,则DE∥AC,如图②所示:∴∠EDA+∠A=180°,∴∠EDA=180°﹣∠A=130°,又∠EDF=36°,∴α=∠FDA=∠EDA﹣∠EDF=130°﹣36°=94°,故当α=94°时,DE⊥BC.故答案为:4,94.(2)①∵∠ACB=90°,CD平分∠ACB,∴∠BCD=∠ACD=45°,∴∠CDA=180°﹣(∠ACD+∠A)=180°﹣(45°+50°)=85°,当DE和CD重合时,α=∠CDA﹣∠EDF=85°﹣36°=49°,当EF与CD重合时,α=∠CDA=85°,∴当顶点C在△DEF的内部时,∠α的度数范围是:49°<α<85°.②∠1与∠2的度数和不发生变化,∠1+∠2=54°,理由如下:连接MN,如图③所示:在△CMN中,∠CNM+∠CMN+∠MCN=180°,∵∠MCN=∠ACB=90°,∴∠CNM+∠CMN=90°,在△MND中,∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠1+∠CMN+∠MDN=180°,∵∠CNM+∠CMN=90°,∠MDN=∠EDF=36°,∴∠1+∠2+90°+36°=180°,∴∠1+∠2=180°﹣90°﹣36°=54°.。
平行线的判定与性质
平行线的判定与性质平行线是几何学中常见的重要概念之一。
在我们的日常生活中,平行线也有着广泛的应用。
本文将介绍平行线的判定方法以及它们的性质。
一、平行线判定方法在几何学中,有三种常见的方法可以判定两条线是否平行:1. 共线性判定法如果两条直线上的某个点与另两个不同的点的连线分别平行,那么这两条直线就是平行线。
2. 夹角判定法如果两条直线上的两个夹角相等(不等于 180 度),那么这两条直线是平行线。
3. 斜率判定法如果两条直线的斜率相等,那么这两条直线是平行线。
二、平行线的性质平行线具有许多有趣的性质,下面我们逐一介绍。
1. 对应角性质如果两条平行线被一条截线所交,那么交线两边所成的对应角是相等的。
2. 内错角性质如果两条平行线被一条截线所交,那么交线两边所成的内错角互补,即它们的和等于 180 度。
3. 外错角性质如果两条平行线被一条截线所交,那么交线两边所成的外错角是相等的。
4. 平行线之间的距离性质如果一条直线与一组平行线相交,那么从这条直线到任意平行线的距离都相等。
5. 平行线与平行线之间的距离性质如果有两组平行线相交,那么它们之间的距离是恒定的。
三、平行线的应用案例平行线在我们的日常生活中有许多应用。
以下是几个实际案例:1. 铁路与公路铁路中的两条平行线代表了两条不同方向的铁轨,保持平行关系确保了火车行驶的稳定性。
与之类似,公路中的车道也是平行的,使车辆能够有序行驶。
2. 建筑设计在建筑设计中,平行线常用于规划建筑物的布局。
比如,设计师可能会使用平行线来确定房间的大小和形状,从而达到美观和实用的目的。
3. 数学问题平行线也经常出现在数学问题中。
例如,计算几何中的一些证明和问题解决,会涉及到平行线的性质和判定方法。
四、总结平行线是几何学中的重要概念,具有多种判定方法和性质。
了解平行线的判定方法和性质有助于我们更好地理解几何学和应用它们于实际问题中。
无论是在日常生活还是学习中,平行线都有其重要的作用。
七年级数学下册-平行线的判定和性质(10类热点题型讲练)(解析版)
第02讲平行线的判定和性质(10类热点题型讲练)1.掌握同位角、内错角、同旁内角的位置关系;2.掌握利用同位角、内错角、同旁内角判定判定两条直线平行的条件,并能解决一些问题;3.掌握平行线的性质与判定的综合运用;4.体会平行线的性质与判定的区别与联系.知识点01同位角、内错角、同旁内角的概念1.同位角、内错角和同旁内角:填空:(1)如图,∠1和∠5,分别在直线AB,CD的上方(同一方),在直线EF的右侧(同侧).具有这种位置关系的一对角是同位角.(2)如图,∠3和∠5,在直线AB,CD之间,在直线EF的两侧.具有这种位置关系的一对角叫做内错角.(3)如图,∠3和∠6,在直线AB,CD之间,在直线EF的同侧.具有这种位置关系的一对角叫做同旁内角.【总结】(1)同位角:在被截直线的同一方向,截线的同侧的一对角.(2)内错角:在被截直线的内侧,截线的两侧的一对角.(3)同旁内角:在被截直线的内侧,截线的同侧的一对角.知识点02平行线的定义及表示(1)定义:在同一平面内内,不相交的两条直线.(2)表示:平行用“∥”符号表示,读作“平行于”.1.同一平面内,两条直线的位置关系:(1)平行(2)相交2.利用直尺和三角尺画平行线:一“落”、二“靠”、三“移”、四“画”.【注意】平行线的画法四字诀1.“落”:三角板的一边落在已知直线上;2.“靠”:用直尺紧靠三角板的另一边;3.“移”:沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点;4.“画”:沿三角板过已知点的边画直线.知识点03平行公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果b∥a,c∥a,那么b∥c.【注意】平行公理(1)“有且只有”强调直线的存在性和唯一性.(2)前提条件“经过直线外一点”,若点在直线上,不可能有平行线.知识点04平行线的判定方法平行线的判定方法1:(1)文字表述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.(2)几何语言:∵∠1=∠5(或者∠2=∠6,∠4=∠8,∠3=∠7),∴AB∥CD.平行线的判定方法2:(1)文字表述:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.(2)几何语言:∵∠2=∠8(或者∠3=∠5),∴AB∥CD.平行线的判定方法3:(1)文字表述:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.(2)几何语言:∵∠2+∠5=180°(或者∠3+∠8=180°),∴AB∥CD.平行线的其他判定方法:(1)在同一平面内,平行于同一条直线的两条直线平行.(2)在同一平面内,垂直于同一条直线的两条直线平行.【总结】判定两直线平行的方法方法一:平行线的定义:在同一平面内,不相交的两条直线就是平行线.方法二:平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.方法三:同位角相等,两直线平行.方法四:内错角相等,两直线平行.方法五:同旁内角互补,两直线平行.方法六:同一平面内,垂直于同一条直线的两条直线平行.知识点05平行线的性质(1)文字表达:①两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补;②简单说成:两直线平行,同位角相等;两直线平行,内错家相等;两直线平行,同旁内角互补;(2)几何语言表述:已知,如图所示,若AB∥CD,则①同位角:∠1=∠5(或∠2=∠6,∠4=∠8,∠3=∠7);②内错角:∠2=∠8(或∠3=∠5);③同旁内角:∠2+∠5=180°(或∠3+∠8=180°).题型01同位角、内错角、同旁内角的辨别【例题】(2023上·黑龙江哈尔滨·七年级校考期中)如图,下列结论正确的是()A .5∠与4∠是对顶角B .1∠与3∠是同位角C .2∠与3∠是同旁内角D .1∠与2∠是同旁内角【答案】D 【分析】本题考查同位角同旁内角、对顶角,根据同位角、同旁内角、对顶角的定义进行判断,熟练掌握各角的定义是解题的关键.【详解】A 、5∠与23∠+∠是对顶角,故本选项错误,不符合题意;B 、1∠与34∠+∠是同位角,故本选项错误,不符合题意;C 、2∠与3∠没有处在两条被截线之间,故本选项错误,不符合题意;D 、1∠与2∠是同旁内角;故本选项正确,符合题意;故选:D .【变式训练】1.(2023上·四川巴中·七年级四川省巴中中学校考阶段练习)如图所示,有下列五种说法:①1∠和4∠是同位角;②3∠和5∠是内错角;③2∠和6∠是同旁内角;④5∠和2∠是同位角;⑤1∠和3∠是同旁内角;其中正确的是()A .①②③⑤B .①②③④C .①②③④⑤D .①②④⑤【答案】D 【分析】本题考查了同位角、内错角以及同旁内角的定义,根据内错角、同位角以及同旁内角的定义寻找出各角之间的关系,再比照五种说法判断对错,即可得出结论.【详解】解:根据内错角、同位角以及同旁内角的定义分析五种说法.①1∠和4∠是同位角,即①正确;②3∠和5∠是内错角,即②正确;③2∠和6∠是内错角,即③不正确;④5∠和2∠是同位角,即④正确;⑤1∠和3∠是同旁内角,即⑤正确.故选:D .2.(2023下·广东河源·七年级期中)如图,a ,b ,c 三条直线两两相交,下列说法错误的是()A .1∠与2∠是同位角B .2∠与4∠是内错角C .3∠与4∠是对顶角D .1∠与3∠是同旁内角【答案】B 【分析】本题考查相交直线所成相关角的概念,解答关键是熟知同位角、内错角、同旁内角、对顶角的相关概念和判断方法.【详解】解:A .1∠与2∠是直线a 、直线b 被直线c 所截,所得到的同位角,因此选项A 不符合题意;B .2∠与4∠是直线a 、直线c 被直线b 所截,所得到的同位角,因此选项B 符合题意;C .3∠与4∠是对顶角,因此选项C 不符合题意;D .1∠与3∠是直线b 、直线c 被直线a 所截,所得到的同旁内角,因此选项D 不符合题意;故选:B .题型02同位角相等,两直线平行【例题】根据要求完成下面的填空:如图,直线AB ,CD 被EF 所截,若已知12∠=∠.23∠=∠ (______),又12∠=∠ (已知),∴∠______=∠______,∴______∥______(______).【详解】23∠=∠ (对顶角相等),又12∠=∠ (已知),13∠∠∴=,AB CD ∴∥(同位角相等,两直线平行),故答案为:对顶角相等,1,3,AB ,CD ,同位角相等,两直线平行.【变式训练】1.请完成下面的推理过程并在括号里填写推理依据:如图,129023,,AB BC ⊥=︒∠+∠∠=∠,BE 与DF 平行吗?为什么?解:BE DF ∥.理由如下:∵AB BC ⊥(已知),∴ABC ∠=________°即34∠+∠=________°()又∵1290∠+∠=︒(),且23∠∠=(已知)∴14∠=∠()∴BE DF ∥()【详解】解:BE DF ∥.理由如下:∵AB BC ⊥(已知),∴90ABC ∠=︒,即3490∠+∠=°(等量代换)又∵1290∠+∠=︒(已知),且23∠∠=(已知)∴14∠=∠(等角的补角相等)∴BE DF ∥(同位角相等,两直线平行).故答案为:90,90,等量代换,已知,等角的补角相等,同位角相等,两直线平行.2.如图,已知AC AE ⊥,BD BF ⊥,135∠=︒,235∠=︒.AC 与BD 平行吗?AE 与BF 平行吗?阅读下面的解答过程,并填空或填写理由.解:AC 与BD 平行;AE 与BF 平行,理由如下:135∠=︒,235∠=︒∴12∠=∠∴(________)∥(________)(________________________);又 AC AE⊥∴EAC 90∠=∴1EAB EAC ∠=∠+∠=(________)o同理可得2FBG FBD ∠=∠+∠=(________)o∴(________)∥(________)(_____________________________).【详解】解:AC 与BD 平行;AE 与BF 平行,理由如下:135∠=︒,235∠=︒∴12∠=∠∴AC ∥BD (同位角相等,两直线平行);又 AC AE⊥∴90EAC ∠=︒∴1125EAB EAC ∠=∠+∠=︒同理可得2125FBG FBD ∠=∠+∠=︒∴AE ∥BF (同位角相等,两直线平行).题型03内错角相等,两直线平行【例题】如图,EF 交AD 于O ,AB 交AD 于A ,CD 交AD 于D ,12∠=∠,34∠∠=,试判断AB 和CD 的位置关系,并说明为什么.【详解】解:AB CD .理由:12∠=∠ ,34∠∠=,23∠∠=,14∴∠=∠,∴AB CD .【变式训练】1.推理填空:已知:如图AB BC ⊥于B ,CD BC ⊥于C ,12∠=∠,求证:BE CF ∥.证明:∵AB BC ⊥于B ,CO ∴139024∠+∠=︒∠+∠=,∴1∠与3∠互余,2∠与4∠又∵12∠=∠(),(1)求BOF ∠的度数;(2)试说明AB CD ∥的理由.【详解】(1)∵OA OB ,分别平分∴12AOE AOC COE ∠∠∠==,∵180COE DOE ∠+∠=°,题型04同旁内角互补,两直线平行【例题】如图,已知直线AB CD 、被直线EF 所截,GE 平分AEF ∠,GF 平分EFC ∠,1290∠+∠=︒,AB CD ∥吗?为什么?解:∵GE 平分AEF ∠,GF 平分EFC ∠(已知),∴2AEF ∠∠=___________,2EFC ∠∠=___________,∴AEF EFC ∠∠+=___________(),∵1290∠+∠=︒(),∴AEF EFC ∠∠+=___________°,∴AB CD ∥.【详解】解:GE 平分AEF ∠,GF 平分EFC ∠(已知),21AEF ∴∠=∠,22EFC ∠=∠,2(12)AEF EFC ∴∠+∠=∠+∠(等量代换)1290∠+∠=︒ (已知),180AEF EFC ∴∠+∠=︒,AB CD ∴∥.【变式训练】1.如图,160,260,3120︒︒︒∠=∠=∠=.试说明,DE BC DF ∥∵160260,︒∠=∠=∴12∠=∠(等量代换)∴________//_________∵,AB DE 相交,∴4160∠=∠=︒(∵3120∠=︒∴34180∠+∠=︒∴ (___________________【详解】∵160∠=∴12∠=∠(等量代换)∴DE BC ∥(同位角相等,两直线平行)∵AB ,DE 相交,证明:∵12180∠+∠=︒,∴a ∥______(______).∵13∠=∠,∴a ∥______(______).∴b c ∥(______).【详解】证明:∵12180∠+∠=︒,∴a ∥b (同旁内角互补,两直线平行).∵13∠=∠,∴a ∥c (同位角相等,两直线平行).∴b c ∥(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).题型05平行线及平行公理【详解】解:因为∠13∠=∠(对顶角相等)所以∠2=∠3(等量代换)所以a ∥c (同位角相等,两直线平行)又因为a b ∥(已知)1.如图所示,直线AB CD ,相交于点O ,OD 平分EOB ∠,OF 平分AOE ∠,GH CD ⊥,垂足为点H ,GH 与FO 平行吗?说明理由.【详解】解:GH FO ∥,理由如下:(1)判断CD与AB的位置关系;(2)求证:DF BE∥.⊥【详解】(1)解:∵AB MN∥.∴CD AB题型06添加一条件使两条直线平行∠=∠【答案】EAB【分析】本题主要考查了平行线的判定.要判断的位置关系,根据平行线的判定定理解答即可.∠=∠(答案不唯一).故答案为:EAB C【变式训练】【答案】①②④【分析】根据平行线的判定条件,逐一判断即可解答.【详解】解:①12∠=∠,能判断∠=︒.(答案不唯一)【答案】250【分析】根据平行线的判定和性质进行解答即可.【详解】解:可以添加条件∠⊥,∵EF MN∠=︒90EFM线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.题型07根据平行线的性质求角度【例题】(2023下·新疆阿克苏·七年级校考期末)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,EG 平分AEF ∠,135∠=︒,求2∠的度数.【答案】110︒【分析】根据平行线的性质、角平分线的定义结合平角的定义即可求解.【详解】解:如图所示,∵AB CD ∥,135∠=︒∴3135∠=∠=︒∵EG 平分AEF∠∴3435∠=∠=︒∴21803535110∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质、角平分线的定义,熟练掌握平行线的性质、求出3135∠=∠=︒是关键.【变式训练】1.(2023下·浙江金华·七年级校联考期末)如图,点E 在BC 的延长线上,连接DE ,作CED ∠的角平分线分别交线段AD ,DC 于点F ,点G ,已知AB CD ∥,AD BC ∥.(1)试说明2BED DFE ∠=∠;(2)若105B ∠=︒,28DFE ∠=︒,求CDE ∠的度数.【答案】(1)见解析(2)19CDE ∠=︒【分析】(1)根据角平分线的性质得出2BED BEF ∠=∠,根据平行线的性质可得DFE BEF ∠=∠;(2)根据平行线的性质可得105DCE B ∠=∠=︒,根据平行线的性质得出105ADC DCE ∠=∠=︒,180ADE BED ∠+∠=︒,根据(1)的结论得出256BED DFE ∠=∠=︒,180124ADE BED ∠=︒-∠=︒,进而根据CDE ADE ADC ∠=∠-∠,即可求解.【详解】(1)解:∵EF 平分CED ∠,∴2BED BEF ∠=∠,∵AD BC∥∴DFE BEF ∠=∠,(2)解:∵AB CD ∥,105B ∠=︒,∴105DCE B ∠=∠=︒,∵AD BC ∥,∴105ADC DCE ∠=∠=︒,180ADE BED ∠+∠=︒.∵28DFE ∠=︒,∴256BED DFE ∠=∠=︒,∴180124ADE BED ∠=︒-∠=︒,∴12410519CDE ADE ADC ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.2.(2023下·贵州黔南·七年级统考期末)如图,已知AB CD ∥,AD BC ∥,90DCE ∠=︒,点E 在线段AB 上,90FCG ∠=︒,点F 在直线AD 上,90AHG ∠=︒.(1)图中与D ∠相等的角有__________;(2)若25ECF ∠=︒,求BCD ∠的度数;(3)在(2)的条件下,点C (点C 不与B ,H 两点重合)从点B 出发,沿射线BG 的方向运动,其他条件不变,求BAF ∠的度数.【答案】(1)DCG ∠,ECF ∠,B∠(2)155︒(3)25︒或155︒【分析】(1)根据同角的余角相等以及平行线的性质,即可得到与D ∠相等的角;(2)根据25ECF ∠=︒,90DCE ∠=︒,可得65FCD Ð=°,再根据90BCF ∠=︒,即可得到6590155BCD Ð=°+°=°;(3)分两种情况讨论:当点C 在线段BH 上;点C 在BH 延长线上,根据平行线的性质,即可得到BAF ∠的度数为25︒或155︒.【详解】(1)解:AD BC ∥ ,D DCG ∴∠=∠,90FCG ∠=︒ ,90DCE ∠=︒,ECF DCG ∴∠=∠,D ECF ∴∠=∠,AB DC ∥,DCG B ∴∠=∠,D B ∴∠=∠;∴与D ∠相等的角为DCG ∠,ECF ∠,B ∠;(2)解:25ECF ∠=︒ ,90DCE ∠=︒,65FCD ∴∠=︒,90BCF ∠=︒Q ,6590155BCD ∴∠=︒+︒=︒;(3)解:分两种情况进行讨论:①如图a ,当点C 在线段BH 上时,点F 在DA 的延长线上,此时25ECF DCG B ∠=∠=∠=︒,AD BC ∥ ,25BAF B ∴∠=∠=︒;②如图b ,当点C 在BH 的延长线上时,点F 在线段AD 上.25B ∠=︒ ,AD BC ∥,18025155BAF ∴∠=︒-︒=︒,综上所述,BAF ∠的度数为25︒或155︒.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题关键.题型08平行线的性质在生活中的应用【答案】120︒/120度【分析】首先过B作BF AE∥,根据100∠=︒,A∴∠=∠=︒,100ABF A又160ABC ∠=︒ ,16010060FBC ∴∠=︒-︒=︒,AE CD ∥ ,FB CD ∴∥,180********C FBC ∴∠=︒-∠=︒-︒=︒,故答案为:120︒.【点睛】此题主要考查了平行线性质,关键是掌握两直线平行,同旁内角互补;两直线平行,内错角相等.【变式训练】【答案】17︒/17度【分析】由平行线的性质可知DBC MBC MBD ∠=∠-∠求解即可.【详解】解:∵MN EF ∥∴160MBC ∠=∠=︒.【答案】30︒/30度【分析】过点B 作BF CE ∥.先利用平行线的性质和垂直的定义、角的和差关系求出CBF ∠,再利用平行线的性质和角的和差关系求得结论.【详解】解:过点B 作BF CE ∥.CE l ∥ ,BF l ∴∥.190ABF ∴∠=∠=︒.140ABC ∠=︒ ,1409050CBF ∴∠=︒-︒=︒.BF CE ∥ ,50ECB CBF ∴∠=∠=︒.DCE DCB BCE∴∠=∠-∠8050=︒-︒30=︒.故答案为:30︒.【点睛】本题主要考查了平行线的性质,掌握平行线的性质和角的和差关系是解决本题的关键.题型09平行线的性质与判定综合应用【答案】(1)见解析;(2)F BMF DNF∠=∠-∠;(3)20【分析】本题主要考查平行线的判定和性质,作辅助线是解题的关键.(1)过点E作EF AB∥,根据平行线的性质可求解;∥,根据平行线的性质即可得到结论;(2)如图②,过F作FH AB∥,根据平行线的性质即可得到结论.(3)如图③,过C作CG AB【详解】(1)证明:如图①,过点E作EF AB∥,则MEF BME∠=∠,∥,又∵AB CD∥,∴EF CD∴∠=∠,NEF DNEMEN MEF NEF∴∠=∠+∠,∠=∠+∠;即MEN BME DNE(2)解:BMF MFN FND∠=∠+∠.,证明:如图②,过F作FK AB∴∠=∠,BMF MFK∥,∵AB CD,∴FK CD∴∠=∠,FND KFN∴∠=∠-∠=∠-∠,MFN MFK KFN BMF FND即:BMF MFN FND ∠=∠+∠.故答案为:BMF MFN FND ∠=∠+∠;(3)如图③,过C 作CG AB ∥,18060GCA BAC ∴∠=︒-∠=︒,∵AB DE ∥,∴CG DE ∥,80GCD CDE ∴∠=∠=︒,20ACD ∴∠=︒,故答案为:20.【变式训练】1.(2023上·湖南岳阳·八年级校考开学考试)如图,12∠=∠,BAE BDE ∠=∠,点F 在DE 的延长线上,点C 在AB 的延长线上,且EA 平分BEF ∠.(1)求证:AB DE ∥;(2)若40BAE ∠=︒,求EBD ∠.【答案】(1)见解析(2)40︒【分析】(1)根据对顶角相等结合题意推出1ABE ∠=∠,根据“同位角相等,两直线平行”即可判定AB DE ∥;(2)根据平行线的性质结合题意推出AEF BDE ∠=∠,即可判定AE BD ,根据平行线的性质及角平分线的定义求解即可.【详解】(1)证明:∵2ABE ∠=∠(对顶角相等),又12∠=∠(已知),∴1ABE ∠=∠(等量代换),∴AB DE ∥(同位角相等,两直线平行);(2)解:由(1)已证AB DE ∥可得:40BAE AEF ∠=∠=︒(两直线平行,内错角相等),又∵BAE BDE ∠=∠,∴AEF BDE ∠=∠(等量代换),∴AE BD (同位角相等,两直线平行),∴AEB EBD ∠=∠(两直线平行,内错角相等),又∵EA 平分BEF ∠,∴AEB AEF ∠=∠,∴40EBD AEB AEF BAE ∠=∠=∠=∠=︒,∴40∠=︒EBD .【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.2.(2023下·江苏泰州·七年级校考期中)如图,在ABC 中,点D 、F 在BC 边上,点E 在AB 边上,点G 在AC 边上,EF 与GD 的延长线交于点H ,BDH B ∠=∠,AEH ADH ∠=∠.(1)EH 与AD 平行吗?为什么?(2)若40H ∠=︒,求BAD ∠的度数.【答案】(1)平行,见解析(2)40︒【分析】(1)EH AD ∥,理由如下:由已知条件,BDH B ∠=∠,根据平行线的判定可得AB GH ∥,根据平行线的性质得180BAD ADH ∠+∠=︒,等量代换得到180BAD AEH ∠+∠=︒,即可得出答案;(2)结合(1)根据平行线的性质即可得解.【详解】(1)EH AD ∥,理由如下:BDH B ∠=∠ ,AB GH ∴∥,180BAD ADH ∴∠+∠=︒,AEH ADH ∠=∠ ,180BAD AEH ∴∠+∠=︒,EH AD ∴∥;(2)180BAD ADH ∠+∠=︒ ,又EH AD ∥,180H ADH ∴∠+∠=︒,40,∠=︒H∴∠=︒.40BAD【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质定理是解题的关键.题型10根据平行线的性质与判定探究角的关系(1)123、、之间的关系为∠∠∠(2)如果点P在A、B两点之间运动时,(3)如果点P(点P和A、∠+∠=∠【答案】(1)123∠+∠=∠(2)123∠-∠=∠或2∠-∠(3)123∴123∠+∠=∠(等量代换);故答案为:123∠+∠=∠;(2)解:由(1)的证明过程知,123∠∠∠、、之间的关系不发生变化;故答案为:123∠+∠=∠;(3)解:过点P 作1PQ l ∥,∵12l l ∥,∴21PQ l l ∥∥;当点P 在AB 延长线上时,如左图,则24∠∠=,134CPQ Ð=Ð=Ð+Ð,∴132∠=∠+∠,即123∠-∠=∠;当点P 在BA 延长线上时,如右图,∵21PQ l l ∥∥,∴14∠=∠,234DPQ Ð=Ð=Ð+Ð,∴231∠=∠+∠,即213∠-∠=∠;综上,123∠-∠=∠或213∠-∠=∠.故答案为:123∠-∠=∠或213∠-∠=∠.【变式训练】(1)图中CBD ∠=︒;(2)当ACB ABD ∠=∠时,ABC ∠=(3)随点P 位置的变化,图中APB ∠【答案】(1)60;(1)求证:AB CD(2)点G是射线MD上的一个动点EHN交直线AB于点N,设∠=αβ=︒①点G在点F右侧,且70∴HEF HEG ∠=∠,∵HN EM ∥,∴EHN HEM HEF FEM ∠=∠=∠+∠,∵FEM FME ∠=∠,∴EHN HEF FME α∠=∠+∠=,∵()180********EGF FME GEM FME FEM HEF FME HEF ∠=︒-∠-∠=︒-∠-∠-∠=︒-∠+∠,∴1802βα=︒-,∵70β=︒,∴701802α︒=︒-,解得55α=︒.②α和β之间的数量关系为2βα=或1802βα=︒-.理由如下:当点G 在点F 的右侧,由(2)得1802αβ=︒-,当点G 在点F 的左侧时,如图2,∵EH 平分FEG ∠,∴HEF HEG ∠=∠,∵HN EM ∥,∴EHN HEM ∠=∠,∵FEM FME ∠=∠,∴()222EGF FME GEM FEM GEM GEM HEG GEM GEM HEG HEM ∠=∠+∠=∠+∠=∠+∠+∠=∠+∠=∠,∴2EGF EHN ∠=∠,即2βα=,综上所述,α和β之间的数量关系为2βα=或1802βα=︒-.【点睛】本题考查角平分线的定义,平行线的性质,利用数形结合和分类讨论的思想是解题关键.一、单选题1.(2023下·云南昭通·七年级统考阶段练习)如图,下列条件不能判定AB CD 的是()A .13∠=∠B .35∠=∠C .12180∠+∠=︒D .15∠=∠【答案】B 【分析】根据平行线的判定定理,对各项逐一进行判断即可.【详解】解:A 、13∠=∠,根据同位角相等,两直线平行可判定AB CD ,故此选项不符合题意;B 、35∠=∠,对顶角相等,不能判定AB CD ,故此选项符合题意;C 、12180∠+∠=︒,根据同旁内角互补,两直线平行可判定AB CD ,此选项不符合题意;D 、15∠=∠,根据内错角相等,两直线平行可判定AB CD ,故此选项不符合题意;故选:B .【点睛】本题考查了平行线的判定定理,解题的关键是正确识别“三线八角”中的同位角、内错角、同旁内角,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.(2023下·广东江门·七年级统考期末)如图所示,以下说法错误的是()A .1∠与2∠是同位角B .4∠与3∠是同位角C .5∠与3∠是内错角D .4∠与5∠是同旁内角【答案】C 【分析】根据同位角、内错角、同旁内角的定义逐项判断即可.【详解】解:A 、1∠与2∠是同位角,正确,不符合题意;B 、4∠与3∠是同位角,正确,不符合题意;C 、5∠与3∠不是内错角,错误,符合题意;D 、4∠与5∠是同旁内角,正确,不符合题意,故选:C .【点睛】本题考查同位角、内错角、同旁内角,解答的关键是理解定义:如果两条直线被第三条直线所截所形成的的角,在两条被截直线之间且在截线两侧的两个角互为内错角;在两条被截直线同一方且在截线同侧的两个角互为同位角;在两条被截线之间且在截线同侧的两个角互为同旁内角.3.(2023上·陕西铜川·八年级统考期末)如图,下列推理及括号中所注明的推理依据错误的是()A .∵AD BC ∥,180BAD D ∴∠+∠=︒(两直线平行,同旁内角互补)B .∥ AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补)C .13∠=∠ ,AB CD ∴∥(内错角相等,两直线平行)D .DAM CBM ∠=∠ ,AD BC ∴∥(同位角相等,两直线平行)【答案】A【分析】本题考查的是平行线的判定与性质,利用平行线的判定方法与性质逐一分析即可得到答案,熟记平行线的判定方法与平行线的性质是解本题的关键.【详解】解:∵AD BC ∥,180BAD ABC ∴∠+∠=︒(两直线平行,同旁内角互补),故A 符合题意;∥ AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补),故B 不符合题意;13∠=∠ ,AB CD ∴∥(内错角相等,两直线平行),故C 不符合题意;DAM CBM ∠=∠ ,AD BC ∴∥(同位角相等,两直线平行),故D 不符合题意;故选A4.(2023上·陕西榆林·八年级校考期末)如图,直线a b ,直线l 与直线a 相交于点P ,与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠的度数为()A .35︒B .55︒C .125︒D .145︒【答案】A 【分析】本题考查了平行线性质,根据两直线平行,同位角相等,平角的定义计算即可.【详解】如图,∵a b ,155∠=︒,∴3155∠=∠=︒,∵34180,2+∠=︒∠∠+∠∴180324∠=∠故选A .5.(2023上·四川宜宾·七年级四川省宜宾市第二中学校校考阶段练习)平分BAC ∠,AC CE ⊥A .1个【答案】D 【分析】①根据平行线的传递性可以判断出来;内角互补可得2BAC ∠+∠212180Ð+Ð=°,可求得结果;二、填空题【答案】①②④【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】解:①∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角;②∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角;【答案】B DAB∠=∠【分析】根据“内错角相等,两直线平行【详解】解:由“内错角相等,两直线平行【答案】36︒/36度【分析】由对顶角相等可得∠∠,即可求解.件可求得B【详解】解:如图,,1108∠=︒∴∠=∠=︒,31108∥,∵l AB∴∠+∠=︒,2BA3180∠=∠,【答案】3或7.5或12【分析】本题考查了平行线的性质.分类讨论∠的大小即可求解.性质确定旋转角AFE∥时,如图所示:【详解】解:①当DE BC30AFE ∠=︒∴30310t ==秒②当DE AB ∥时,如图所示:∵45FHD A ∠=∠=︒,∴45HFD ∠=︒45AFE HFD EFD ∠=∠+∠=︒+∴757.510t ==秒180120AFE E ∠=︒-∠=︒∴1201210t ==秒综上所述:t 的值为3或7.5或12三、解答题11.(2023上·新疆克孜勒苏·七年级统考期末)如图,已知12180∠+∠=︒,3B ∠=∠,试判断C ∠与AED ∠的大小关系,请补全证明过程,即在横线处填上结论或理由.解:AED C ∠=∠.理由如下:∵12180∠+∠=︒(已知),1180DFE ∠+∠=︒(_______),∴2DFE ∠=∠(_______),∴AB ∥_______(_______),∴3ADE ∠=∠(_______),∵3B ∠=∠(已知),∴∠_______=∠_______(_______),∴_______∥_______(_______),C AED ∠=∠(_______).【答案】平角的定义;等量代换;EF ;内错角相等,两直线平行;两直线平行,内错角相等:ADE ;B ;等量代换;DE ;BC ,同位角相等,两直线平行;两直线平行,同位角相等【分析】本题考查了平行线的判定与性质,根据证明的思路,把证明过程填写完整即可.【详解】AED C ∠=∠.理由如下:∵12180∠+∠=︒(已知),1180DFE ∠+∠=︒(平角的定义),∴2DFE ∠=∠(等量代换),∴AB EF ∥(内错角相等,两直线平行),∴3ADE ∠=∠(两直线平行,内错角相等),∵3B ∠=∠(已知),∴ADE B ∠=∠(等量代换),∴DE BC ∥(同位角相等,两直线平行),∴C AED ∠=∠(两直线平行,同位角相等).故答案为:平角的定义;等量代换;EF ;内错角相等,两直线平行;两直线平行,内错角相等:ADE ;B ;等量代换;DE ;BC ,同位角相等,两直线平行;两直线平行,同位角相等.12.(2023上·吉林长春·七年级统考期末)在下列解答中,填空(理由或数学式).如图,已知直线b c ∥,1116∠=︒,3=4∠∠.(1)求AOB ∠的度数;(2)求证:直线a c ∥.解:(1)∵1116∠=︒(已知)∴2116∠=︒().∵b c ∥(已知),∴2AOB ∠=∠().∴AOB ∠=(等量代换).证明:(2)∵3=4∠∠()∴a b ∥().又∵b c ∥(已知),故答案为:已知;内错角相等,两直线平行;如果两条直线都和第三条直线平行,那么这两条直线也互相平行.13.(2023上·吉林长春·七年级校考期末)如图,已知AB CD ,AC 与BD 相交于点E ,从点E 引一条射线EF 交线段AB 于点F ,若180AFE DCB ∠+∠=︒,A AEF ∠=∠,求证:DCA ACB ∠=∠.证明:∵AB CD (已知),∴180ABC DCB ∠+∠=︒(两直线平行,同旁内角互补),又∵180AFE DCB ∠+∠=︒(已知),∴AFE ABC ∠=∠(____________________),∴EF ∥__________(____________________),∴∠=AEF __________(____________________),∵AB CD (已知),∴A DCA ∠=∠(____________________),∵A AEF ∠=∠(已知),∴DCA ACB ∠=∠(____________________).【答案】见解析【分析】本题考查平行线的性质与判定,根据题目已知条件及现有步骤结合平行线的判定和性质定理,即可得到答案.【详解】证明:AB CD (已知),∴180ABC DCB ∠+∠=︒(两直线平行同旁内角互补),又∵180AFE DCB ∠+∠=︒(已知),∴AFE ABC ∠=∠(同角的补角相等);∴EF BC ∥(同位角相等,两直线平行),∴AEF ACB ∠=∠(两直线平行,同位角相等),∵AB CD (已知),∴A DCA ∠=∠(两直线平行,内错角相等),∴A AEF ∠=∠(已知),∴DCA ACB ∠=∠(等量代换),故答案为:同角的补角相等;BC ;同位角相等,两直线平行;ACB ∠;两直线平行,同位角相等;两直线平行,内错角相等;等量代换.14.(2023上·重庆沙坪坝·八年级统考期中)已知:如图,在ABC 中,点D 在BC 边上,EF AD ∥分别交AB ,CB 于点E ,F ,DG 平分ADC ∠,12180∠+∠=︒,(1)求证:AB DG ∥;(2)若40B ∠=︒,60DAC ∠=︒,求DGC ∠的度数.【答案】(1)见解析(2)100︒【分析】本题考查了平行线的性质与判定、角平分线的定义、三角形的外角性质,熟练掌握平行线的性质和判定,是解决本题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补;平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.三角形的外角性质:三角形的外角等于与它不相邻的两个内角的和.【详解】(1)证明:∵EF AD ∥,∴1180BAD ∠+∠=︒.∵12180∠+∠=︒.∴2BAD ∠=∠.∴AB DG ∥;(2)解:∵AB DG ∥,40B ∠=︒,∴40GDC B ∠=∠=︒,∵DG 平分ADC ∠,∴240GDC ∠=∠=︒,又∵60DAC ∠=︒,∴2100DGC DAC ∠=∠+∠=︒.15.(2023上·四川遂宁·七年级射洪中学校联考阶段练习)如图1,直线AD EF ,点B C ,分别在EF 和AD 上,A ABC ∠=∠,BD 平分CBF ∠.【探索】如图②,AM 平分BAC ∠,CAM CMA ∠=∠,点E 在射线AB 上,点F 在线段CM 上,若AEF C ∠=∠,求证:EF AC ∥.【拓展】如图③,将【探索】中的点F 移动到线段CM 的延长线上,其他条件不变,若357CAM MEF ∠=∠=︒,请直接写出AME ∠的度数.【答案】感知:BAM ∠;BAM ∠;探索:见解析;拓展:76AME =︒∠【分析】感知:根据角平分线定义和平行线的性质进行解答即可;探索:先证明AB CD ,得出AEF EFD ∠=∠,在证明EFD C ∠=∠,根据平行线的判定得出结论即可;拓展:根据角平分线定义得出57BAM CAM ==︒∠∠,257114BAC =⨯︒=︒∠,根据平行线的性质求出18066C BAC =︒-=︒∠∠,求出661947AEM =︒-︒=︒∠,最后根据平行线的性质求出结果即可.【详解】解:感知:∵AM 平分BAC ∠,(已知),∴CAM BAM ∠=∠(角平分线的定义),∵AB CD (已知),∴CMA BAM ∠=∠(两直线平行,内错角相等)∴CAM CMA ∠=∠(等量代换).故答案为:BAM ∠;BAM ∠.探索:∵AM 平分BAC ∠,∴CAM BAM ∠=∠,∵CAM CMA ∠=∠,∴A BAM CM =∠∠,∴AB CD ,∴AEF EFD ∠=∠,∵AEF C ∠=∠,∴EFD C ∠=∠,∴EF AC ∥.拓展:∵357CAM MEF ∠=∠=︒,∴根据探索可知:57BAM CAM ==︒∠∠,19MEF =︒∠,∴257114BAC =⨯︒=︒∠,根据探索可知:AB CD ,∴18066C BAC =︒-=︒∠∠,∴66AEF C ==︒∠∠,∴661947AEM =︒-︒=︒∠,∵AB CD ,∴57AMC BAM ==︒∠∠,47DME AEM ==︒∠∠,∴18076AME AMC DME =︒--=︒∠∠∠.【点睛】本题主要考查了平行线的判定和性质,角平分线的定义,几何图形中的角度计算,解题的关键是熟练掌握平行线的判定方法,内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.17.(2023上·内蒙古乌海·八年级统考期末)综合与实践:问题:如图1,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作DE BC∥交AC 于点E ,过点E 作EF AB ∥交BC 于点F .(1)若65ABC ∠=︒,求DEF ∠的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE BC ∥,∴DEF ∠=______(______),∵EF AB ∥,∴______ABC =∠(______),∴DEF ABC ∠=∠(______),∵65ABC ∠=︒,∴65DEF ∠=︒.探究:如图2,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 的延长线上,过点D 作DE BC ∥交AC 于点E ,过点E 作EF AB ∥交BC 于点F .(2)在图2中,若65ABC ∠=︒,求DEF ∠的度数并说明理由.(3)猜想:如果ABC ∠的两边分别平行于DEF ∠的两边,直接写出ABC ∠与DEF ∠这两个角之间有怎样的数量关系?【答案】(1)EFC ∠;两直线平行,内错角相等;EFC ∠;两直线平行,同位角相等;等量代换;(2)115DEF ∠=︒,理由见解析;(3)ABC DEF ∠=∠或180ABC DEF ∠+∠=︒【分析】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.(1)由平行线的性质可得DEF EFC ∠=∠,EFC ABC ∠=∠,则有DEF ABC ∠=∠,即可得解;(2)由平行线的性质得65ABC ADE ∠=∠=︒,180ADE DEF ∠+∠=︒,则可求DEF ∠得度数.(3)根据平行线的性质分析,即可获得答案.【详解】解:(1)∵DE BC ∥,∴DEF EFC ∠=∠(两直线平行,内错角相等),∵EF AB ∥,∴EFC ABC ∠=∠(两直线平行,同位角相等),∴DEF ABC ∠=∠(等量代换),∵65ABC ∠=︒,∴65DEF ∠=︒.故答案为:EFC ∠;两直线平行,内错角相等;EFC ∠;两直线平行,同位角相等;等量代换;(2)115DEF ∠=︒,理由如下:∵DE BC ∥,∴65ABC ADE ∠=∠=︒(两直线平行,同位角相等),∵EF AB ∥,∴180ADE DEF ∠+∠=︒(两直线平行,同旁内角互补),∴180115DEF ADE ∠=︒-∠=︒;(3)ABC DEF ∠=∠或180ABC DEF ∠+∠=︒,理由如下:如图1,ABC ∠的两边分别平行于DEF ∠的两边时,ABC DEF ∠=∠;如图2,ABC ∠的两边分别平行于DEF ∠的两边时,180ABC DEF ∠+∠=︒.18.(2023上·全国·八年级专题练习)如图,线段AB 与线段CD 平行,P 是平面内一点,连接PA PD ,,射线AM DN ,分别平分BAP CDP ∠∠,.(1)当点P 在线段DA 的延长线上时:①在图1中,依题意补全图形;②请直接写出直线AM 与直线DN 的位置关系:___________;(2)如图2,当点P 在直线AB 与直线CD 之间时,射线AM ,DN 交于点Q ,探究P ∠与AQD ∠的数量关系,。
平行线的判定与性质
平行线的判定与性质平行线是几何学中一个重要的概念,它在许多数学问题中起着重要的作用。
本文将介绍平行线的判定方法以及平行线的一些性质。
一、平行线的判定判定两条直线是否平行,可以通过以下几种方法进行判断:1. 两线的斜率相等:设有两条直线L1和L2,它们的斜率分别为k1和k2。
如果k1=k2,那么L1和L2是平行线。
2. 两线的倾斜角相等:直线的倾斜角是指与x轴夹角的大小。
如果两条直线L1和L2的倾斜角相等,那么它们是平行线。
3. 两线的截距比相等:设有两条直线L1和L2,它们的截距分别为b1和b2。
如果b1/b2=k,k为常数,那么L1和L2是平行线。
二、平行线的性质平行线有以下几个重要的性质:1. 平行线上的任意一对对应角相等:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠CAB=∠CBA,∠CDA=∠CDB,∠EAF=∠FAG等。
2. 平行线上的内角和为180度:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠CAB+∠CBA=180度。
3. 平行线上的外角相等:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠ADB=∠EBC。
4. 平行线与直角线的关系:如果两条直线L1和L2相互垂直,而且L1和L2中的任意一条与第三条直线L3(横切线)平行,那么L1和L2也是平行线。
5. 平行线与三角形的性质:如果一条直线与一个三角形的两边分别平行,那么这条直线与第三边也平行。
三、实例分析举个例子来说明平行线的判定和性质。
设有两条直线L1:y=2x+1和L2:y=2x+5。
首先,我们可以通过比较两条直线的斜率,发现它们的斜率相等,即k1=k2=2,因此L1和L2是平行线。
根据平行线的性质,我们可以得到一系列结论:1. 如果L1和L2是平行线,那么它们上的对应角必定相等,即∠CAB=∠CBA,∠CDA=∠CDB,∠EAF=∠FAG等。
2. 如果L1和L2是平行线,那么它们上的内角和为180度,即∠CAB+∠CBA=180度。
数学七年级下学期第2讲 平行线的判定(1)
第2讲平行线的判定(核心考点讲与练)一、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.考点一:平行公理及推论【例题1】(2019春•余姚市期末)已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥c C.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c【变式训练1】(2018春•杭州期中)下列说法:①两点之间的距离是两点间的线段的长度;②过一点有且只有一条直线与已知直线平行;③两点之间的所有连线中,线段最短;④若a⊥b,c⊥b,则a与c的关系是平行;⑤只有一个公共点的两条直线叫做相交直线;其中正确的是.【变式训练2】(2020春•椒江区期末)如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?考点二:平行线的判定【例题2】(2021秋•平阳县期中)如图,下列条件中①∠1=∠2;②∠3=∠4;③∠2+∠5=∠6;④∠DAB+∠2+∠3=180°,能判断AD∥BC的是()A.①③④B.①②④C.①③D.①②③④【变式训练1】(2021秋•余姚市期中)木条a、b、c如图用螺丝固定在木板α上且∠ABM =50°,∠DEM=70°,将木条a、木条b、木条c看作是在同一平面α内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系,则下列描述错误的是()A.木条b、c固定不动,木条a绕点B顺时针旋转20°B.木条b、c固定不动,木条a绕点B逆时针旋转160°C.木条a、c固定不动,木条b绕点E逆时针旋转20°D.木条a、c固定不动,木条b绕点E顺时针旋转110°【变式训练2】(2021春•拱墅区期末)如图,已知∠F+∠FGD=90°(其中∠F>∠FGD),添加一个以下条件:①∠F+∠FEA=180°;②∠F+∠FGC=180°;③∠FEB+2∠FGD=90°;④∠FGC﹣∠F=90°.能证明AB ∥CD的是()A.①B.②C.③D.④【变式训练3】(2021春•萧山区期末)如图,下列条件中能判断AD∥BC的是()①∠1=∠2;②∠3=∠4;③∠2+∠5=∠6;④∠DAB+∠2+∠3=180°.A.①③④B.①②④C.①③D.①②③④【变式训练4】(2021春•怀安县期末)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【变式训练5】(2021•下城区一模)如图,直角三角形ABC的顶点A在直线m上,分别度量:①∠1,∠2,∠C;②∠2,∠3,∠B;③∠3,∠4,∠C;④∠1,∠2,∠3.可判断直线m与直线n是否平行的是()A.①B.②C.③D.④【例题3】(2021春•椒江区期末)如图,∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD为75°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转度.【变式训练1】(2021春•鄞州区期中)如图,下列条件中:①∠BAD+∠ABC=180°;②∠1=∠2;③∠3=∠4;④∠BAD=∠BCD,能判定AD∥BC的是.【变式训练2】(2020秋•婺城区校级期末)如图,点E是BA延长线上一点,在下列条件中:①∠1=∠3;②∠5=∠B;③∠1=∠4且AC平分∠DAB;④∠B+∠BCD=180°,能判定AB∥CD的有.(填序号)【变式训练3】(2021春•奉化区校级期末)如图,点E在AD的延长线上,下列四个条件:①∠1=∠2;②∠C+∠ABC=180°;③∠C=∠CDE;④∠3=∠4,能判断AB∥CD的是(填序号).【变式训练4】(2021•柳南区校级模拟)如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=度时,a∥b.【例题4】(2021春•槐荫区期末)点B,E分别在AC,DF上,BD,CE分别交AF于点G,H,∠AGB=∠EHF,∠C=∠D.求证:AC∥DF.【变式训练1】(2021春•乾安县期末)已知:如图,直线l分别与直线AB,CD相交于点P,Q,PM垂直于l,∠1+∠2=90°.求证:AB∥CD.【变式训练2】(2020春•岱岳区期末)将一副三角尺拼图,并标点描线如图所示,然后过点C作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.【变式训练3】(2020春•麻城市校级月考)根据要求完成下面的填空:如图,直线AB,CD被EF所截,若已知∠1=∠2,说明AB∥CD的理由.解:根据得∠2=∠3又因为∠1=∠2,所以∠=∠,根据得:∥.【变式训练4】(2020秋•温州月考)已知:如图,∠ACD=2∠B,CE平分∠ACD.求证:CE∥AB.【变式训练5】(2019春•秀洲区期中)如图,如果∠1+∠3=180°,那么AB与CD平行吗,请说明理由.类型一、平行公理及推论【例题5】在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。
平行线的性质与判定
平行线的性质与判定平行线是几何学中重要的概念之一,在实际生活和数学推理中都有广泛应用。
理解平行线的性质和判定方法对于几何学的学习和问题解决都具有重要意义。
本文将介绍平行线的性质以及常用的判定方法,帮助读者深入了解这一概念。
一、平行线的性质平行线是指在同一个平面上从未相交的两条直线。
根据平行线的性质,我们可以得出以下几点规律:1. 平行线的斜率相等斜率是直线的一个重要特征,决定了直线的倾斜程度。
对于两条平行线来说,它们的斜率是相等的。
这也是判定两条直线平行的常用方法之一,即根据它们的斜率进行比较。
2. 平行线的内角和相等当一条直线与两条平行线相交时,由这两条平行线与交线所夹的内角和是相等的。
这个性质被广泛应用于三角形的内角和问题以及平行四边形的性质推导中。
3. 平行线的对应角相等当两条平行线被一条直线截断时,所形成的对应角是相等的。
这一性质常用于解决平行线与交叉线的问题,例如用于证明两个三角形相似的场景中。
二、平行线的判定方法在几何学中,我们经常需要根据给定条件判断两条直线是否平行。
以下是常用的平行线判定方法:1. 直线斜率判定法通过计算两条直线的斜率,如果它们的斜率相等,那么这两条直线是平行的。
这是一种简便快捷的判定方法。
例如,对于直线y = 2x + 3和直线y = 2x + 6来说,它们的斜率都为2,因此这两条直线是平行的。
2. 等夹法如果两条直线与一条直线相交,并且形成对应角相等,那么这两条直线是平行的。
这需要通过观察和证明来得到结论,常用于解决平行四边形和三角形的性质问题。
3. 平行线定理平行线定理是一种基于三角形内角和的判定方法。
当一条直线与两条平行线相交时,这两条平行线所夹的内角分别与另外两条直线的对应角相等。
三、应用举例平行线的性质和判定方法在几何学问题中有着广泛应用。
以下是一些例子,展示了平行线在实际场景中的使用:1. 城市规划在城市规划中,经常需要将街道设置为平行线。
通过确保街道之间的直线保持平行关系,可以提高交通的效率和规划的美观性。
七年级数学下册教学课件《平行线的判定》
中能判定AB//CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
2.如图,若∠1=∠2,则 _A_B__//_D__E_;若∠2=∠3, 则_B__C_∥__E_F_.
问题3 能否利用内错角,或同旁内角来判定两条直线
同一个平面内,两条直线 不__相__交___
同__位__角__相__等__,两直线平行
内__错__角__相__等__,两直线平行
同__旁__内__角__互__补__,两直线平行
作业布置 1.教材P15习题5.2第1,2,4,5题.
(1)由∠CBE=∠A可以判定哪两条直线平行?
根据是什么?
D
C
答:(1)AD∥BC,根据是
“同位角相等,两直线平行”;
A
B
E
(2)由∠CBE=∠C可以判定哪两条直线平行? 根据是什么?
D
(2)DC∥AB,根据是“内
错角相等,两直线平行”;
A
C
B
E
知识结构
随堂训练,课堂总结
平行线的 判定
定义法 判定方法
总结
判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
c 3
a
2 b
符号语言: 因为∠2=∠3 , 所以 a∥b.
对应训练
1.如图是一条街道的两个拐角,若∠ABC与∠BCD均 为140°,则街道AB与CD的位置关系是__A_B__//_C_D__.
例 (1)如图,当∠1=∠3时,直线a,b平行吗? (2)当∠2+∠3=180°时,直线a,b平行吗? 为什么?
专题02 平行线的判定与性质(原卷版)七年级数学下册
专题02平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴∥()∴∠EDC=∠DCB()又∠EDC=∠GFB(已知)∴∠DCB=(等量代换)∴∥()2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE(①),因为EF平分∠CED(已知),所以∠DEF=②(角平分线的定义),所以∠CFE=∠CEF(③),因为∠A=∠CFE(已知),所以∠A=④(等量代换),所以EF∥AB(⑤).3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD()∴∠BEF=()∵∠B=∠ADG(添加条件)∴BC∥()∴∠CDG=()∴∠BEF=∠CDG().5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3,∴∠2=,(等量代换)∴AE∥FD∴∠A=∠BFD∵∠A=∠D(已知)∴∠D=(等量代换)∴∥CD∴∠B=∠C.6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE=,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC=(),∴EF∥(),又∵AB∥EF,∴AB∥CD().12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°(),∠AMC+∠AMD=180°(),所以∠BAM=∠AMC().因为AE平分∠BAM,所以().因为MF平分∠AMC,所以,得(),所以().13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC()∴∠1=()∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°()∴∠BDF=∠EFC=90°∴BD∥EF()∴∠2=()∴∠1=∠2()14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ=;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E=90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α=°时,DE∥BC,当∠α=°时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.。
七年级数学下册所有公式
七年级数学下册所有公式平行线的判定公理(定理)(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简称“同位角相等,两直线平行”).(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(简称“内错角相等,两直线平行”).(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(简称“同旁内角互补,两直线平行”).2.平行线的性质公理(定理)如果两条平行线被第三条直线所截,那么(1)同位角相等(简称“两直线平行,同位角相等”).(2)内错角相等(简称“两直线平行,内错角相等”).(3)同旁内角含有未知数的等式叫方程。
等式的基本性质1:等式两边同时加〔或减〕同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。
则:〔1〕a+c=b+c 〔2〕a-c=b-c 等式的基本性质2:等式的两边同时乘或除以同一个不为0的的数所得的结果仍是等式。
3若a=b,则b=a(等式的对称性)。
4若a=b,b=c则a=c(等式的传递性)。
【方程的一些概念】方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
编辑本段一元一次方程人教版7年级数学上册第四章会学到,冀教版7年级数学下册第七章会学到。
定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。
通常形式是kx+b=0(k,b为常数,且k≠0)。
一般解法:⒈去分母方程两边同时乘各分母的最小公倍数。
⒉去括号一般先去小括号,在去中括号,最后去大括号,可根据乘法分配率。
⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)重要知识点:
1、两直线平行的判定方法
方法一两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行
方法二两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简称:内错角相等,两直线平行
方法三两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行
几何符号语言:
∵∠3=∠2
∴AB∥CD(同位角相等,两直线平行)
∵∠1=∠2
∴AB∥CD(内错角相等,两直线平行)
∵∠4+∠2=180°
∴AB∥CD(同旁内角互补,两直线平行)
请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行。
平行线的判定是写角相等,然后写平行。
判断下列说法是否正确,如果不正确,请给予改正:
⑴不相交的两条直线必定平行线。
⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。
⑶过一点可以且只可以画一条直线与已知直线平行
如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?
2、平行线的性质:
性质1:两直线平行,同位角相等;
性质2:两直线平行,内错角相等;
性质3:两直线平行,同旁内角互补。
A B
C D
E
F
1
2
3
4
A B
E
1
3
4
几何符号语言: ∵AB ∥CD
∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD
∴∠3=∠2(两直线平行,同位角相等) ∵AB ∥CD
∴∠4+∠2=180°(两直线平行,同旁内角互补)
3、两条平行线的距离
如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。
4、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成
每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,那么……”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。
对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。
注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。
5、平行线的性质与判定
①平行线的性质与判定是互逆的关系 两直线平行
同位角相等;
两直线平行内错角相等; 两直线平行同旁内角互补。
其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。
1=∠B ,求证:∠2=∠C
A E G B
C F
H D
AB ∥DF ,DE ∥BC ,∠1=65°,求∠2、∠3的度数
6、平移变换
①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点
③连接各组对应点的线段平行且相等
2、平移的特征:
①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。
如图,△ABC 经过平移之后成为△DEF ,那么:
⑴点A 的对应点是点_________;⑵点B 的对应点是点______。
⑶点_____的对应点是点F ;⑷线段AB 的对应线段是线段_______; ⑸线段BC 的对应线段是线段_______;⑹∠A 的对应角是______。
⑺____的对应角是∠F 。
(二)试题精选:
1.如图(4),给出下列论断:①AD ∥BC:②AB ∥CD;③∠A=∠C.以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.
A D F B
E C 1 2 3
D
C B
A
F
E
O D
C
B
A
c
l
N
M
b a
2
1
(4) (5) (6)
2.如图(5),直线AB 、CD 、EF 相交于同一点O,而且
∠BOC=23∠AOC,∠DOF=1
3
∠AOD,那么∠FOC=______度.
3.如图(6),直线a 、b 被C 所截,a ⊥L 于M,b ⊥L 于N,∠1=66°,则∠2=________.
4. 如图,图中的内错角的对数是( ) A. 2对 B. 3对 C. 4对 D. 5对
5.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( ) A. 42138 、
B. 都是10
C. 42138 、或4210 、
D. 以上都不对
针对性练习:
1.已知:如图,∠=∠∠=∠123,,B AC DE //,且B 、C 、D 在一条直线上。
求证:AE BD //
A
E 3
1
2
4 B
C
D
2.已知:如图,∠=∠CDA CBA ,DE 平分∠C DA ,BF 平分∠CBA ,且∠=∠ADE AED 。
求证:DE FB //
3.已知:如图,∠+∠=∠=∠BAP APD 18012 ,。
求证:∠=∠E F
D F C
A E B
A B
1 E
F 2 C
P
D。