初中新人教版数学九年级上册25.2用列举法求概率优质课公开课教学设计版本2.
人教版数学九年级上册25.2.2《用列举法求概率》教学设计
人教版数学九年级上册25.2.2《用列举法求概率》教学设计一. 教材分析人教版数学九年级上册25.2.2《用列举法求概率》是概率论的一个基本内容,主要让学生了解列举法求概率的基本步骤和应用。
通过本节课的学习,学生能够理解列举法求概率的原理,掌握列举法求概率的基本方法,并能够应用列举法解决一些简单的实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率论的基本概念有一定的了解。
但是,对于列举法求概率的具体操作步骤和方法,学生可能还不够熟悉。
因此,在教学过程中,需要引导学生逐步理解列举法求概率的原理,并通过大量的练习来巩固所学知识。
三. 教学目标1.知识与技能:让学生掌握列举法求概率的基本步骤和方法,能够应用列举法解决一些简单的实际问题。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:列举法求概率的基本步骤和方法。
2.难点:如何引导学生理解列举法求概率的原理,并能够灵活运用。
五. 教学方法1.引导法:通过教师的问题引导,让学生自主探究和发现列举法求概率的原理和方法。
2.互动法:教师与学生之间的提问和回答,学生与学生之间的讨论和交流,以提高学生的参与度和积极性。
3.练习法:通过大量的练习题,让学生巩固所学知识,并能够灵活运用。
六. 教学准备1.教学课件:制作精美的教学课件,以吸引学生的注意力,并帮助学生更好地理解和记忆。
2.练习题:准备一些有关列举法求概率的练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个简单的实例,让学生思考如何求解该事件的概率,从而引出列举法求概率的方法。
2.呈现(10分钟)教师通过课件呈现列举法求概率的原理和方法,并进行讲解和演示。
3.操练(10分钟)学生分组进行练习,每组选择一道题目,应用列举法求解概率,并互相交流解题过程和方法。
九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(2)教案 (新版)新人教版
第2课时用列表法和树状图法求概率※教学目标※【知识与技能】理解并掌握列表法和树状图法求随即事件的概率,并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历列表或画树状图法求概率的学习,让学生在具体情境中分析事件,计算其发生的概率.渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力. 【情感态度】通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.【教学重点】学习运用列表法或树形图法计算事件的概率,能正确区分什么时候用列表法,什么时候用树状图.【教学难点】1.能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题.2.列表法和树状图的选取方法※教学过程※一、情境导入教师讲《田忌赛马》的故事,提出以下问题,引入新课:(1)你知道孙膑给的建议是什么吗?(2)在不知道齐王出马顺序的情况下,田忌能赢的概率是多少?二、掌握新知例1 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有36种.我们用这样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?以第一个骰子的点数为横坐标,第二个骰子的点数为纵坐标,组成平面直角坐标系第一象限的一部分,列出表格并填写.由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子的点数相同(记为事件A)的结果有6种(表中的红色部分),即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)=636=16.(2)两枚骰子的点数和是9(记为事件B)的结果有4种(表中的绿色阴影部分),即(3,6),(4,5),(5,4),(6,3),所以P(B)=436=19.(3)至少有一枚骰子的点数为2(记为事件C)的结果有11种(表中的蓝色阴影部分),所以P(C)=11 36.归纳总结当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法. 运用列表法求概率的步骤如下:(1)列表;(2)通过表格确定公式中m,n的值;(3)利用P(A)=mn计算事件的概率.思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?讨论结果“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此,作改动对所得结果没有影响.例2 甲口袋中装有2和相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全部是辅音字母的概率是多少?分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机取出1个小球,共取出3个小球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?树状图的画法:(1)可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行;(2)可能产生的结果有C,D和E,三者出现的可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C,D和E;(3)可能产生的结果有两个,H和I.两者出现的可能性相等且部分先后,从C,D和E 分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续)(4)把各种可能的结果对应竖写在下面,就得到了所有可能的结果总数,从中再找出符合要求的个数,就可以计算概率了.解:根据题意,可以画出如下的树状图:甲 A B乙 C D E C D E丙 H I H I H I H I H I H I由树状图可以看出吗,所有可能出现的结果共有12种,即A A A A A AB B B B B BC CD DE E C C D D E EH I H I H I H I H I H I这些结果出现的可能性相等.(1)只有1个元音字母的结果(红色)有5种,即ACH,ADH,BCI,BDI,BEH,所以P(1个元音)=512.有2个元音字母的结果(绿色)有4种,即ACI,ADI,AEH,BEI,所以P(2个元音)=412=13.全部为元音字母的结果(蓝色)只有1种,即AEI,所以P(3个元音)=112.(2)全是辅音字母的结果共有2种,即BCH,BDH,所以P(3个辅音)=212=16.归纳总结画树状图求概率的基本步骤:(1)明确试验的几个步骤及顺序;(2)画树状图列举试验的所有等可能的结果;(3)计数得出m,n的值;(4)计算随机事件的概率.思考什么时候用“列表法”方便?什么时候用“树状图法”方便?一般地,当一次试验要涉及两个因素(或两个步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.三、巩固练习袋子中装有红、绿、黄、白、蓝5个除颜色外均相同的小球.欢欢设计了四种摸球获奖的方案(每个方案都是前后共摸球两次,每次从袋子中摸出一个小球).(1)第一次摸球后放回袋子并混合均匀,先摸出红球,后摸出绿球;(2)第一次摸球后放回盒子并混合均匀,摸出红球和绿球(不分先后);(3)第一次摸球后不再放回袋子中,先摸出红球,后摸出绿球;第一次摸球后不再放回袋子中,摸出红球和绿球(不分先后).上述四种方案,摸球获奖的概率依次是,,, .如果让你从中选择一种方案,你会选择方案,原因如下:.答案:125225120110(4)方案(4)获奖的可能性大四、归纳小结1.为了正确地求出所要求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?※布置作业※从教材习题25.2中选取.※教学反思※本节课以学生的生活实际为背景提出问题,让学生在自主探究解决问题的过程中,自然地学习使用“树状图”这种新的列举法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。
人教版数学九年级上册25.2.1《用列举法求概率》教案
人教版数学九年级上册25.2.1《用列举法求概率》教案一. 教材分析《用列举法求概率》是人教版数学九年级上册第25章第二节的第一课时,本节课主要内容是让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。
教材通过引入实际问题,引导学生用列举法列出所有可能的结果,再找出符合条件的结果,从而计算概率。
本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、必然事件等,并掌握了用树状图法求概率的方法。
但是,由于九年级学生的逻辑思维能力和空间想象能力还在发展阶段,对于用列举法求概率的方法可能会感到困惑。
因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握列举法求概率的方法。
三. 教学目标1.知识与技能目标:让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。
2.过程与方法目标:通过学生自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:用列举法求概率的方法。
2.难点:如何引导学生理解和掌握用列举法求概率的方法,以及如何解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.互动教学法:通过学生之间的合作交流,培养学生解决问题的能力。
3.引导发现法:教师引导学生发现列举法求概率的步骤和方法,培养学生自主学习的能力。
六. 教学准备1.教学课件:制作课件,展示相关例题和练习题。
2.练习题:准备一些实际问题,让学生课后练习。
七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如抛硬币、抽奖等,引导学生思考如何求解这些问题。
让学生意识到用列举法求概率的重要性。
2.呈现(10分钟)教师展示一些简单的例题,如抛硬币两次,求正正、正反、反正、反反的概率。
25.2 用列举法求概率(第1课时)-公开课-优质课(人教版教学设计精品)
25.2用列举法求概率(第1课时)一、内容和内容解析1.内容用列举法(列表法)求简单随机事件的概率.2.内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.当每次试验涉及两个因素时,为了更清晰、不重不漏地列举出试验的所有结果,教科书给出了以表格形式呈现的列举法——列表法.这种方法适合列举每次试验涉及两个因素,且每个因素的取值个数较多的情形.相对于直接列举,用表格列举体现了分步分析对思考较复杂问题时起到的作用.将试验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中,就形成了不重不漏地列举出这两个因素所有可能结果的表格.这种分步分析问题的方法,将在下节课树状图法和高中分步乘法计数原理的学习中进一步运用.另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念.基于以上分析,确定本节课的教学重点是:用列表法求简单随机事件的概率.二、目标和目标解析1.目标(1)用列举法(列表法)求简单随机事件的概率,进一步培养随机观念;(2)感受分步分析对思考较复杂问题时起到的作用.2.目标解析达成目标(1)的标志是:学生清晰地知道:对于结果种数有限且每种结果等可能的随机试验中的事件,可以用列举法求概率;当每次试验涉及两个因素,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将试验的所有结果不重不漏地列举出来.学生能够利用列表法正确计算简单随机事件的概率,结合具体问题进一步体会概率是如何定量地刻画随机事件发生可能性大小的.目标(2)体现在学生探索、归纳列表法的过程中,学生在问题的引导下思考如何才能将涉及两个因素的试验所有可能的结果不重不漏的列举出来,体会“分步”策略对解决复杂问题起到的重要作用.三、教学问题诊断分析学生已经理解了列举法求概率的含义,但对于涉及两个因素的试验,如何正确列举出试验所有可能的结果,怎样才能做到不重不漏地列举,如何设计出一种办法解决这个较复杂问题,“分步”分析起到了重要作用.学生容易出现的问题是,没有真正理解列表法的含义,虽然能够通过模仿解决一些简单问题,但是无法灵活地使用列表法解决问题.其于以上分析,本节课的教学难点是:如何使用列表法.四、教学过程设计1.复习旧知、引入列举法问题1填空,并说明理由.(1)掷一枚硬币,正面向上的概率是__________;(2)袋子中装有5个红球,3个绿球,这些球除了颜色外都相同,从袋子中随机的摸出一个球,它是红色的概率为__________;(3)掷一个骰子,观察向上一面的点数,点数大于4的概率为__________.师生活动:学生回答问题.师生小结:在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法.设计意图:复习概率的意义,点明列举法,为探究列表法作铺垫.2.探究归纳列表法例1同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.师生活动:学生思考、交流.有些学生认为上述三个事件恰好代表了抛掷两枚硬币的所有可能的结果,故概率分别为13;有些学生不赞同,认为出现结果“正反”与“反正”应分别算作两种可能的结果,此外还有“正正”和“反反”两种可能的结果,故上述事件的概率分别为14,14和12.教师强调,使用列举法求概率的关键,是列举出试验各种可能的结果,并且确保每种结果出现的可能性大小相等.设计意图:突出用列举法求概率的使用条件,即“结果只有有限个,且各种结果出现的可能性大小相等”.问题2对于抛掷两枚硬币的问题,如何才能不重不漏地列举出试验所有可能的结果,并且保证各种结果出现的可能性大小相等?师生活动:教师引导学生设计多种方法列举抛掷两枚硬币所能产生的全部结果.学生容易想到的方法是:将两枚硬币分别记做A、B,于是可以直接列举得到(A正、B正)、(A反、B正)、(A正、B反)、(A反、B反)四种等可能的结果,从而求得概率.设计意图:鼓励学生思考、分析,列举出抛掷两枚硬币所产生的全部结果.教师追问1:“同时抛掷两枚质地均匀的硬币”与“先后两次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结果一样吗?师生活动:师生讨论,就例1的三个问题而言,“同时掷两枚硬币”与“先后两次掷一枚硬币”可以取同样的试验的所有可能结果.因此可以将同时掷两枚硬币,想象为先掷一枚,再掷一枚,分步思考:在第一枚为正面的情况下第二枚硬币有正、反两种情况;同理,第一枚为反面的情况下第二枚硬币有正、反两种情况.所有的结果共有4个,并且这4个结果的可能性相等.教师指出:与“掷一枚硬币”不同,“掷两枚硬币”的结果涉及两个因素(第一枚硬币与第二枚硬币),可以采用“分步”的策略对两个因素逐一进行分析.设计意图:用问题提示学生:当试验涉及两个因素时,可以“分步”对问题进行分析.教师追问2:能否设计出一种方式,将“分步”分析的所有结果更清晰地列举出来?师生活动:师生交流,可以设计出如下表格,将“分步”思考的结果表示出来,从而列举出所有等可能的结果.教师追问3:在设计表格时,表头的横行、竖列分别表示什么?每个格表示什么?师生活动:学生回答,设计表格时,表头的横行表示掷第一枚硬币所有可能的结果,竖列表示掷第二枚硬币所有可能的结果,表格中的每个格表示掷两枚硬币的一种可能结果;可以清晰地看到,所有结果共有4个,并且这4个结果出现的可能性相等.教师点明列表法.设计意图:用问题启发思考,让学生感受到“分步”分析对思考较复杂问题时起到的作用.学生探索、归纳得出列表法,感受到用表格更有利于不重不漏地列举出所有可能的结果,更有说服力.3.运用列表法求概率例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子的点数和是9;(3)至少有一枚骰子的点数为2.问题3 例2的试验涉及几个因素?能否直接列举出试验所有可能的结果.师生活动:师生分析得出,与例1类似,例2的试验也涉及两个因素(第一枚骰子和第二枚骰子),但这里每个因素的取值个数要比例1多(抛一枚硬币有2种可能的结果,但掷一枚骰子有6种可能的结果),因此试验的结果数也就相应要多很多.因此,直接列举会比较繁杂,可以使用列表法.列表法适合列举每次试验涉及两个因素,并且每个因素的取值个数较多的情形.设计意图:分析列表法在解决如例2的问题时的优势.教师追问1:如何列表?师生活动:学生分析,因为试验涉及两个因素(两枚骰子),可以分两步进行思考,将第1枚骰子的所有可能结果作为表头的横行,将第2枚骰子的所有可能结果作为表头的竖列,列出如下表格:上述表格不重不漏地列举出了掷两枚骰子所有可能出现的结果,可以看出,可能的结果共有36个,并且它们出现的可能性相等.设计意图:明确列表法.教师追问2:如何计算上述三个事件的概率?师生活动:学生回答,根据用列举法求概率的方法,已经通过列表知道试验共有36种可能的结果,并且它们发生的可能性相等,还需弄清各事件包含其中的多少种可能结果.从表格中可以看出:两枚骰子的点数相同(记为事件A )的结果有6个(表中浅色阴影部分),所以P (A )=366=61;两枚骰子的点数和是9(记为事件B )的结果有4个(表中深色阴影部分),所以P (B )=364=91;至少有一枚骰子的点数为2(记为事件C )的结果有11个(表中蓝色方框部分),所以P (C )=3611. 设计意图:巩固用列举法求概率.教师追问3:如果把例2中的“同时掷两枚质地均匀的骰子”改为“把一枚质地均匀的骰子掷两次”,得到的结果有变化吗?师生活动:学生分析回答,就例3中的三个问题而言,“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此作此改动对所得结果没有影响.教师小结,当试验涉及两个因素时,可以“分步”对问题进行分析.设计意图:巩固“分步”分析问题的意识.4.巩固用列表法求概率练习 一个不透明的布袋子里装完全相同的四个乒乓球,上面分别标有数字1,2,3,4.小林和小华按照以下方式抽取乒乓球:先从布袋中随机抽取一个乒乓球,记下标号后放回袋内搅匀,再从布袋内随机抽取第二个乒乓球,记下标号.若两次取的乒乓球标号之和为4,小林赢;若标号之和为5,小华赢.请判断这个游戏是否公平,并说明理由.问题4 如何判断这个游戏是否公平?师生活动:师生分析,这是一个随机试验,要判断游戏是否公平,需考察标号之和为4(记为事件A )的概率与标号之和为5(记为事件B )的概率是否相同.学生列表、计算得出P (A )=163,P (B )=164=41,所以这个游戏不公平,小华获胜的可能性更大. 设计意图:复习巩固用列表法求概率,培养学生应用概率知识解决问题的意识,渗透随机观念.5.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)用列举法求概率应该注意哪些问题?(2)列表法适用于解决哪类概率求解问题?使用列表法有哪些注意事项?设计意图:归纳小结,巩固知识.6.布置作业教科书P138练习.五、目标检测设计假定鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果两枚卵全部成功孵化,则两只雏鸟都为雄鸟的概率是多少?设计意图:考查学生对投两枚硬币模型的理解.1.一个不透明的口袋中有五个完全相同的小球,上面分别标有数字1,2,3,4,5.随机摸出一个小球记下标号后放回搅匀,再随机摸出一个小球记下标号.用列表法求下列事件的概率:(1)两次摸出的小球标号的和为奇数;(2)两次摸出的小球标号的和为3的倍数.设计意图:考查学生对用列表法求概率的理解.3.如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).小聪和小明分别拨动A,B两个转盘上的指针,使之旋转,指针自由停止后所指数字较大的一方为获胜者(若箭头恰好停留在分界线上,则重转一次).请用列表法说明小聪与小明谁获胜的可能性更大?A B设计意图:考查学生在实际情景中运用列表法解决问题的能力.。
人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计
人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计一. 教材分析人教版九年级数学上册第25.2.2节《用列举法求概率(2)》主要讲述了如何运用列举法求解概率问题。
这部分内容是学生在学习了概率的基本概念、列举法求概率的基础上,进一步深化对概率计算方法的理解和运用。
通过本节课的学习,学生将能够掌握列举法求概率的技巧,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和列举法求概率已有初步的认识。
但在运用列举法解决实际问题时,部分学生可能会存在列举不全面、思路不清晰等问题。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们建立正确的解题思路,提高他们运用概率知识解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。
2.过程与方法:通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神,提高他们运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神风貌。
四. 教学重难点1.重点:列举法求概率的方法及运用。
2.难点:如何引导学生运用列举法解决实际问题,避免列举不全面、思路不清晰等问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.小组合作学习:引导学生分组讨论,培养学生的团队协作能力。
3.启发式教学:教师引导学生思考,让学生在探索中掌握知识。
4.反馈与评价:及时给予学生反馈,鼓励他们积极思考,不断提高。
六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。
2.练习题:准备一些相关练习题,用于巩固所学知识。
3.教学素材:收集一些生活中的实例,用于引导学生在实际情境中运用概率知识。
七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抽奖活动,引导学生思考如何计算中奖的概率。
新人教版初中数学九年级上册《第二十五章概率初步:25.2用列举法求概率》优课教学设计_0
科目班级1407 课型新授课执教课题用列举法求概率(1)课时安排 2 课时课次第 1 课时序号教学环节教学设计学生活动一复习导入1.袋里有红、绿、黄三种除颜色外其余都相同的球,其中有红球4个,绿球5个,任意摸出一个绿球的概率是53.求:(1)袋中摸出黄球的概率;(2)任意摸出一个球为红球的概率。
二出示目标1、学习运用列举法、列表法计算事件的概率;2、能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
认真阅读课本第136页到第137页的内容,完成下面练习并体验知识点的形成过程。
三自主探究1.例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上解:全部可能结果分别是,(1) P(全部正面向上)= _______(2) P(全部反面向上)=________(3) P(正反面各一枚)=__________2.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别。
随机摸出一个小球后,放回并摇匀,再随机摸出一个。
求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;(3)两次摸到的球中一个绿球,一个红球。
3.例2 同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2.1.学生分组讨论:掷两枚硬币,其本质就是掷一枚硬币两次,它们都满足列举法的条件,因此,用列举法解题。
2.解:全部可能结果有4种,分别有红红,红绿,绿红,绿绿,则(1)第一次摸到红球,第二次摸到绿球的概率,P(A)=(2)P(相同颜色)=(3)两次摸到的球中一个绿球,一个红球P(红绿、绿红)=3.解:结合列表法对列举所有可能出现的结果的作用。
四展示提升1.思考如果把例2中的“同时掷两枚质地均匀的骰子”改为“把一枚质地均匀的骰子掷两次”,所得到的结果有变化吗?为什么?所得到的结果没有变化。
人教版九年级上册25.2用列举法求概率(教案)
4.培养学生的合作交流能力,通过小组讨论、分享解题思路,促进学生之间的互动交流,提升团队协作能力。
三、教学难点与重点
1.教学重点
(1)理解和掌握列举法求解概率问题的步骤和方法。
(2)能够运用列举法解决实际问题,如抛硬币、掷骰子等。
五、教学反思
在今天的课堂中,我引导学生学习了用列举法求概率这一章节。通过教学,我发现有几个地方值得反思和改进。
首先,关于导入新课的部分,我发现用生活中的实例来引导学生思考概率问题很有效,大家的兴趣一下子就被调动起来了。但在今后的教学中,我还可以尝试更多有趣的例子,让同学们能更直观地感受到概率与生活的紧密联系。
(3)在实际问题中区分必然事件、不可能事件和随机事件。例如,从一副52张的扑克牌中随机抽取一张,求抽到红桃的概率。难点在于理解这是一个随机事件,而不是必然事件或不可能事件。
在教学过程中,教师需针对这些难点进行详细讲解,并通过具体实例帮助学生理解,确保学生能够透彻掌握核心知识。
四、教学流程
(一)导入新课(用时5分钟)
其次,在新课讲授环节,我发现理论介绍部分,尽管我已经尽量用简练的语言解释概念,但仍有部分同学显得有些迷茫。我考虑在接下来的教学中,可以增加一些互动环节,让学生在讨论和实践中更好地理解概率的概念。
关于案例分析,我觉得选取的例子贴近生活,学生容易理解。但在讲解过程中,我发现有些同学在列举所有可能性时容易遗漏。为了帮助这部分同学,我打算在接下来的课堂中,多设计一些类似的练习,加强他们对列举法的掌握。
1.理论介绍:首先,我们要了解列举法的基本概念。列举法是一种通过罗列出所有可能结果来计算概率的方法。它是解决简单概率问题的重要工具。
人教版九年级上册25.2用列举法求概率教学设计 (2)
人教版九年级上册25.2用列举法求概率教学设计一、前置知识1.概率的基本概念和性质2.对事件A发生的可能性用区间 $\\left[0,1\\right]$ 内的一个数来表示3.用古典概型(等可能概型)求事件的概率4.用频率估计概率二、教学内容1. 学习目标1.了解列举法的概念和基本方法;2.了解列举法求概率的原理;3.能够灵活运用列举法求解问题。
2. 教学重点1.掌握列举法的基本方法及其应用;2.能够用列举法求事件的概率。
3. 教学难点1.能够用列举法求事件的概率;2.能够灵活运用列举法求解问题。
4. 教学过程步骤一:引入概念•观察两个事件:掷一颗骰子与从一副扑克牌中取出一张牌,是否属于等可能概型?•引入列举法概念,谈论正面和反面,引导学生理解列举法。
步骤二:列举法求解•通过实例让学生了解列举法的具体应用。
例如:有两个盒子,第一个盒子里有2个白球、3个红球,第二个盒子里有3个白球、4个红球。
从这两个盒子中任选一个盒子并从中任取一球。
那么,当取出的球是白球时,这个球是从第一个盒子中取的可能性是多少?•导入事件概率理论,用列举法求出该实例的答案。
例如:先列举出所有可能情况:第一个盒子取白球,第一个盒子取红球,第二个盒子取白球,第二个盒子取红球。
其中,第一个盒子取白球的情况有:2/5、第二个盒子取白球的情况有:3/7。
因此,答案为:$$ \\frac{2}{5}\\times\\frac{1}{2}+\\frac{3}{7}\\times\\frac{1}{2}=\ \frac{29}{70} $$步骤三:应用扩展•进行类比,深化对列举法的理解,在实例中加入难度,比如增加多组事件同时发生问题。
通过课堂讨论和小组互动,让学生通过列举法解决多个问题。
•教师用多个实例,引导学生灵活运用列举法解决相关问题。
三、教学反思1.整个教学过程中,学生积极参与、表现良好。
2.初中学生兴趣爱好多样,引导学生通过实际问题的分析来帮助学生感受到概率运算的实用性。
人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》教学设计
人教版九年级数学上册第二十五章概率初步《25.2用列举法求概率》教学设计一. 教材分析本节课的主题是“用列举法求概率”,这是人教版九年级数学上册第二十五章概率初步的内容。
教材通过实例引入概率的概念,让学生了解概率是反映事件发生可能性大小的量。
本节课的主要内容是用列举法求概率,通过列举所有可能的结果,再计算符合条件的结果数与总结果数之比,从而得到概率。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,了解了随机事件、必然事件和不可能事件。
他们已经能够理解事件发生的可能性,并能够用分数表示事件发生的概率。
但是,学生对于用列举法求概率的方法可能还不够熟悉,需要通过本节课的学习和实践来掌握。
三. 教学目标1.知识与技能:使学生掌握用列举法求概率的方法,能够通过列举所有可能的结果,计算符合条件的结果数与总结果数之比,得到概率。
2.过程与方法:培养学生运用概率知识解决实际问题的能力,提高学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生对概率学科的兴趣,培养学生积极的学习态度,使学生认识到数学在生活中的应用。
四. 教学重难点1.重点:掌握用列举法求概率的方法。
2.难点:如何引导学生列举出所有可能的结果,并计算出概率。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,激发学生的学习兴趣。
2.讲授法:讲解概率的定义和列举法求概率的方法。
3.实践操作法:让学生动手列举实例,求解概率,提高学生的实践能力。
4.讨论法:分组讨论,引导学生交流与合作,共同解决问题。
六. 教学准备1.教学课件:制作课件,展示概率的定义和列举法求概率的方法。
2.实例:准备一些生活实例,用于导入和巩固所学知识。
3.练习题:准备一些练习题,用于让学生动手实践,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币实验。
向学生展示硬币抛掷的结果,并引导学生思考:如何计算抛出正面的概率?2.呈现(10分钟)向学生讲解概率的定义,并用课件展示。
新人教版初中数学九年级上册《第二十五章概率初步:25.2用列举法求概率》公开课教案_0
《用列举法求概率》教学设计一、教材分析节,本节内容分四课时完成,本次课设计是第一课时的教学。
主要内容是学习用列表法求概率。
处于非常重要的位置。
二、学情分析我班学生少,但活泼好动、有一定的自学能力,好奇心、求知欲、表现欲都非常强;在初一,初二学习基础上,他们具有一定的观察能力、分析能力、归纳能力,学习新知识速度快模仿能力强,具备一定的探索知识自主创新的能力,但课后复习巩固的效果较差。
为了加强他们的自学能力,提高课堂学习效率,根据他们的特点,本节课以学生自主探究方式完成学习,选择联系生活中的实际问题,适合学生的习题,由浅入深的引导,注重培养学生的自学能力,通过一定练习,激发学生的求知欲和提高学生的自信心。
三、目标分析【知识与技能目标】(1)理解“包含两步,并且每一步的结果为有限多个情形”的意义。
(2)会用列表的方法求出:包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果。
(3)学习用列表法计算概率,并通过比较概率大小作出合理的决策。
【过程与方法目标】(1)经历实验、列表、统计、运算等活动,学生在具体情境中分析事件,计算其发生的概率。
(2)渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
【情感与态度目标】(1)通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯和提高学生的自学能力。
(2)在解决实际问题中提高他们解决问题的能力,发展学生应用知识的意识。
四、教学重难点【重点】正确地用列表法计算出现结果数目较多时随机事件发生的概率【难点】如何灵活地列表表示出试验所有等可能的结果五、教具准备教师准备:多媒体课件、学案、硬币、骰子学生准备:硬币六、活动流程《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。
”为了向学生提供更多从事数学活动的机会,我将本节课的教学过程。
最新人教版初中数学九年级上册《25.2 用列举法求概率(第2课时)》精品教学课件
解:设两名领奖学生都是女生的事件为A,两种奖 项各任选1人的结果用“树状图”来表示.
探究新知
开始
获演唱奖的
男
女'
女''
获演奏奖的
男1 男2 女1 女2 男1 男2 女1 女2 男1 男2 女1 女2
(1)P(全部继续直行)= 1 ; 27
共有27种行驶方向
(2)P(两车向右,一车向左)= 1 ;
(3)
P(至少两车向左)=
7 27
.
9
探究新知
例2 甲、乙、丙三人做传球的游戏,开始时,球在 甲手中,每次传球,持球的人将球任意传给其余两 人中的一人,如此传球三次. (1)写出三次传球的所有可能结果(即传球的方式); (2)指定事件A:“传球三次后,球又回到甲的手中”, 写出A发生的所有可能结果;
袋中装有2个相同的小球,分别写有数字1和2.从两个
口袋中各随机取出1个小球,取出的两个小球上都写有
数字2的概率是( C )
A.12
B.13
C.1
4
D.16
解析:如图所示,
一共有4种可能,取出的两个小球上都写有数字2的有1种情况, 故取出的两个小球上都写有数字2的概率是:14 .
链接中考
2.在一个不透明的袋子里装有两个黄球和一个白球,它 们除颜色外都相同,随机从中摸出一个球,记下颜色后 放回袋子中,充分摇匀后,再随机摸出一个球.两次都 摸到黄球的概率是( A )
1. 2
问题2 同时抛掷两枚均匀的硬币,出现正面向上的 概率是多少?
九年级数学上册25.2用列举法求概率教案(新版)新人教版 (2)
课时
第1课时
课 型
新课
教具
多媒体
教学目标
知识与能力
能够运用列举法计算简单事件发生的概率
过程与方法
用列举法求事件的概率,探究如何画出适当的表格,列举出事件的所有等可能结果,如何用树形图列举事件的所有等可能的结果。探究什么时候使用“列表法”方便,什么时候使用“树形图法”方便。
态度与情感
合作探究如何画出适当的表格,如何用树形图列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯。
(1)指针指向红色;
(2)指针指向红色或黄色;
(3)指针不指向红色.
分析 问题中可能出现的结果有7个,即指针可能指向7个扇形中的任何一个.由于这是7个相同的扇形,转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等.因此可以通过列举法求出概率.
解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2,所有可能结果的总数为7.
2.利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类列举、列表、画树形图(下课时将学习)等.
A.4 B.7 C.12 D.81.
3.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于( ).
(六)小结
(一)等可能性事件的两的特征:
1.出现的结果有限多个;
2.各结果发生的可能性相等;
(二)列举法求概率.
1.有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.
小组讨论以上3个例题的解法,首先分析透题意,如果在一次试验中,有n种可能的结果,分析出n是多少?事件A包含其中的m种结果,m是多少?最后利用式子P(A)=。得出事件A发生的概率。
人教版九年级数学(上)第二十五章第二节25.2 用列举法求概率(2)教案
人教版九年级数学(上)第二十五章第二节25.2 用列举法求概率(2)教案过程设计上节课学习了列举法求事件的概率的方法---列表法,这节课继续探究这个内容,以方便解决较为复杂的实际问题. 二、探索新知 (一)用画树形图法求概率 课本第138页例3. 分析:分步画图和分类排列相关的结论是解题的关键,弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共取出3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?你打算用什么方法求得? (学生阅读问题,师生分析题意,教师引导,元素多,怎样才能列出所有结果的可能性?引出树形图,教师详细讲解树形图各步的操作方法,学生尝试按步画树形图。
) 介绍树形图的方法:第一步可能产生的结果为A 和B ,两者出现的可能性相同且不分先后,写在第一行. 第二步可能产生的结果有C 、D 和E ,三者出现的可能性相同且不分先后,从A 和B 分别画出三个分支,在分支下的第二行分别写上C 、D 和E. 第三步可能产生的结果有两个H 和I ,两者出现的可能性相同且不分先后,从C 、D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I.(如果有更多的步骤可依上继续) 第四步把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数.从中再找出符合要求的个数,就可以计算概率了. “树形图”如下: 归纳:画树形图求概率的基本步骤: ①明确试验的几个步骤及顺序②画树形图列举试验的所有可能结果;③计数得出m 、n 的值;④计算随机事件的概率. (学生尝试归纳画树形图求概率的一般步骤.) 三、巩固练习 1.完成课本P139页练习;感受认识用画树形图法求概率的优势,并学会画树形图,认识什么时候用此种方法解决问题.深化理解画树形图解决问题的优点,培养学生应用意识.应用巩固,掌握画树形图法球概率的方法.使学生能灵活。
九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(2)教案 (新版)新人教版
——————————新学期新成绩新目标新方向——————————
用列举法求概率
生的所有可能结果,了解事件的概率。
列表和画
导学生主动探究和构建知并在应用中逐渐加深理解
.用画树形图法计算概率,并通过比较概率大小作出合理的决策.
.经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算运用画树形图法进行列举,解决较复杂事件概率的计算问题.
分别写有字母
个元音字母的概率分
由树状图可以看出,所有可能出现的结果共有12种,即
这些结果出现的可能性相等.
(1)只有1个元音字母的结果(红色)有5
1
法求概率分为哪几种情况?程
25.2。
人教版数学九年级上册25.2用列举法求概率(第2课时)优秀教学案例
3. 组织学生进行小组合作,让学生共同反思和评价列举法求概率的过程和方法,提高学生的批判性思维和自我反思能力。例如,可以让学生分组讨论列举法求概率的过程是否有改进的空间,并共同提出改进的建议。
5. 总结:通过总结本节课所学的知识,让学生明确列举法求概率的方法和步骤,以及它在实际问题中的应用。
6. 作业:布置相关的练习题,让学生进一步巩固列举法求概率的知识,提高学生的运用能力。
五、教学评价
1. 学生能够理解列举法求概率的基本概念和步骤,能够运用列举法求解简单事件的概率。
2. 学生能够掌握列举法求概率的方法,能够运用列举法求解复杂事件的概率,并能够进行合理的简化。
3. 学生能够运用列举法求概率解决实际问题,提高学生运用数学知识解决实际问题的能力。
4. 学生能够积极思考、勇于探索,培养学生的学习态度和价值观。
三、教学策略
(一)情景创设
1. 利用现实生活中的实例,创设情境,引导学生思考如何求解概率,激发学生的兴趣和好奇心。例如,可以创设一个抽奖活动的情境,让学生思考如何求解中奖的概率。
2. 要求学生在作业中运用列举法解决实际问题,培养学生的实践能力和创新意识。
3. 鼓励学生在作业中积极思考、勇于探索,培养学生的学习态度和价值观。
五、案例亮点
1. 实践性与生活化相结合:本节课通过引入现实生活中的实例,如抽奖活动、抛掷硬币和正方体等,使学生能够直观地理解列举法求概率的概念和步骤,体现了数学与生活的紧密联系。这种实践性与生活化相结合的教学方式,不仅能够激发学生的学习兴趣,还能够提高学生运用数学知识解决实际问题的能力。
25.2用列举法求概率用列表法求概率(教案)2021-2022学年九年级数学人教版上册
本节课将结合具体例题,让学生在实际操作中掌握列举法和列表法求概率的方法。
二、核心素养目标
本节课旨在培养学生的数学核心素养,主要包括以下方面:
1.逻辑推理:通过列举法和列表法的应用,让学生掌握求解概率问题的基本方法,提高逻辑推理能力,能够从具体实例中抽象出一般性规律,形成严密的逻辑思维。
2.数据分析:培养学生从实际问题中提取信息,运用列表法整理数据,分析事件概率的能力,提高对数据敏感度和数据分析能力。
3.数学建模:引导学生将实际问题转化为数学模型,运用列举法和列表法求解概率问题,培养学生建立数学模型解决问题的能力。
4.数学抽象:通过具体实例,让学生体会概率问题的抽象性,提高数学抽象思维,培养学生从具体情境中提炼数学问题的能力。
5.数学运算:培养学生熟练运用列举法和列表法进行概率计算,提高数学运算的准确性和速度。
本节课将紧密结合课本内容,以实际问题为载体,有针对性地提升学生的数学核心素养。
三、教学难点与重点
1.教学重点
(1)掌握列举法求概率的基本步骤:找出所有可能结果,确定事件A的所有可能结果,计算事件A的概率。
举例:抛掷一枚硬币,求正面朝上的概率。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子、抽卡片等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如抛硬币、掷骰子等。这个操作将演示概率的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
举例:在求取出红球的概率时,正确计算红球的数量(3个)除以总球数(3+2+5=10个),得出概率为3/10。
九年级数学上册高效课堂(人教版)25.2用列举法求概率优秀教学案例
1.教师简要介绍列举法求概率的基本概念和步骤,引导学生理解并掌握列举法求概率的方法。
2.通过具体案例,讲解如何运用列举法求解概率问题,让学生在实际问题中体会列举法求概率的应用。
3.教师演示互斥事件概率的计算方法,让学生跟随教师一起动手操作,提高学生的实践能力。
(三)学生小组讨论
1.教师布置具有挑战性和趣味性的小组讨论任务:设计一个游戏,使得游戏的公平性得到保证。
5.反思与总结的教学环节:在本节课的总结归纳环节,教师引导学生对所学知识进行总结与反思,提高学生的认知水平。学生分享自己在课堂上的收获和感悟,加深对概率知识的理解和记忆。教师针对学生的总结进行点评,查漏补缺,确保学生掌握列举法求概率的方法。
本节课的案例亮点体现了以学生为主体的教学理念,注重培养学生的自主学习能力、团队合作精神和实际应用能力。通过生活情境的创设、启发式教学、小组合作等策略,本节课有效地提高了学生的学习兴趣和效果,为学生的未来学习和生活打下了坚实基础。
3.小组合作的学习模式:本节课采用小组合作的学习模式,合理划分学习小组,确保组内成员之间具有良好的互补性。教师设计具有挑战性和趣味性的小组合作任务,激发学生的团队合作意识。在小组合作过程中,教师注重指导与评价,提高小组合作的学习效果。
4.多元化的评价方式:本节课运用自评、互评、师评等多种评价方式,对学生的学习过程和成果进行评价。关注学生的个体差异,给予每个学生充分的肯定和鼓励,增强学生的自信心。针对学生的不足之处,提出改进意见和建议,引导学生持续发展。
2.培养学生勇于探索、坚持不懈的学习精神,提高学生面对困难的自信心;
3.培养学生运用数学知识解决生活问题的意识,增强学生的实践能力;
4.培养学生合作交流、分享成果的团队精神,提高学生的人际沟通能力;
九年级数学上册 25.2 用列举法求概率(2)教案 (新版)新人教版
25.2 用列举法求概率(2)
教学目标:能够运用列表法计算简单事件发生的概率.
教学重点、难点:当实验涉及两个因素时,会列表表示出所有可能出现的结果.
教学过程
一、预习导学简记同时掷两枚质地均匀的硬币,求下列事件的概率:
(1)两枚硬币全部正面向上;(2)一枚硬币正面朝上,一枚硬币反面朝上.
二、学习研讨
例同时掷两枚质地均匀的骰子,计算下列事件的概率
(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;
(3)至少有一枚骰子的点数为2.
将这两枚骰子分别记为第1枚和第2枚,完成下表:
思考:如果将上题中的“同时掷两枚骰子”改为“把一枚骰子掷两次”,
所得到的结果有变化吗?
三、巩固练习
1.口袋里装有大小相同的卡片4张,且分别标有1、2、3、4. 从口袋里简记抽取一张卡片然后放回,再抽取一张卡片. 请求出两次取出的卡片上的
数字之和为偶数的概率.
2.口袋里装有大小相同的卡片4张,且分别标有1、2、3、4. 从口袋里
抽取一张卡片不放回,再抽取一张卡片. 请求两次取出的卡片上的数字
之和为奇数的概率.
3.第一盒乒乓球中有3个白球1个黄球,第二盒乒乓球中有2个白球2个
黄球,分别从每个盒中随机地取出1个球来,求下列事件的概率:
(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.
教后反思。
人教版九年级上册25.2用列举法求概率课程设计 (2)
人教版九年级上册25.2用列举法求概率课程设计一、教学目标1.了解概率的定义和基本性质;2.掌握根据试验结果与样本空间确定概率的方法;3.使用列举法求概率。
二、教学内容1.概率的概念和定义;2.根据试验结果与样本空间确定概率的方法;3.使用列举法求概率。
三、教学重难点1.掌握列举法求概率的方法;2.在列举法求概率的过程中,理解概率的基本概念和性质。
四、教学方法1.理论讲授;2.组内讨论,集体展示;3.数学游戏。
五、教学过程及课时安排第一课时学生活动1.学生自主观看视频,了解概率的概念和定义;2.学生自主阅读教材相关内容,巩固概率的基础知识。
1.引导学生思考和讨论概率的基本概念和性质;2.介绍根据试验结果与样本空间确定概率的方法。
第二课时学生活动1.学生分组讨论,针对不同的问题使用根据试验结果与样本空间确定概率的方法;2.学生展示讨论结果,进行比较和分析。
教师活动1.指导学生使用根据试验结果与样本空间确定概率的方法;2.引导学生分析比较不同问题的求解过程和结果。
第三课时学生活动1.学生自主阅读教材关于列举法求概率的内容;2.学生在组内练习使用列举法求概率。
教师活动1.介绍使用列举法求概率的方法;2.指导学生在组内练习使用列举法求概率。
第四课时学生活动1.学生分组完成使用列举法求概率的练习题;2.学生在组内展示练习结果,互相评价。
1.提供练习题目;2.引导学生在组内展示练习结果,互相评价。
第五课时学生活动1.学生参加数学游戏,巩固所学知识;2.学生自主总结本节课所学内容。
教师活动1.设计数学游戏;2.引导学生总结本节课所学内容。
六、教学评价方法1.学生的书面作业;2.学生的展示和课堂表现;3.数学游戏的效果。
标准1.能够用概率的基本概念和性质解决实际问题;2.能够使用列举法求概率;3.活跃表现和合作能力。
七、教学资源1.人教版九年级上册数学教材;2.数学PPT和视频教学资源;3.数学游戏资源。
八、课后作业熟悉概率的基本概念和性质,并尝试使用列举法求解实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 25.2 用列举法求概率(2)
教学目标:能够运用列表法计算简单事件发生的概率.
教学重点、难点:当实验涉及两个因素时,会列表表示出所有可能出现的结果 .
教学过程
一、预习导学简
记
同时掷两枚质地均匀的硬币,求下列事件的概率:
(1 )两枚硬币全部正面向上;(2)一枚硬币正面朝上,一枚硬币反面朝上.
二、学习研讨
例同时掷两枚质地均匀的骰子,计算下列事件的概率
(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;
(3)至少有一枚骰子的点数为2.
将这两枚骰子分别记为第1枚和第2枚,完成下表:
(第1枚骰子正面向上的点数为横坐标, 第2枚骰子正面向上的点数为纵坐标)
思考:如果将上题中的“同时掷两枚骰子”改为“把一枚骰子掷两次”,
所得到的结果有变化吗?
三、巩固练习
1.口袋里装有大小相同的卡片4张,且分别标有1、2、3、4. 从口袋里简记抽取一张卡片然后放回,再抽取一张卡片. 请求出两次取出的卡片上的
数字之和为偶数的概率.
2.口袋里装有大小相同的卡片4张,且分别标有1、2、3、4. 从口袋里
抽取一张卡片不放回,再抽取一张卡片. 请求两次取出的卡片上的数字之和为奇数的概率.
3.第一盒乒乓球中有3个白球1个黄球,第二盒乒乓球中有2个白球 2个黄球,分别从每个盒中随机地取出1个球来,求下列事件的概率:
(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球. 教后反思。