模电知识点复习总结
模电总结知识点复习资料大全
![模电总结知识点复习资料大全](https://img.taocdn.com/s3/m/2360eca24693daef5ff73d1e.png)
模电总结知识点复习资料大全第一章节半导体二极管的基本原理一.半导体的基础知识讲解1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性定理*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析算法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路算法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电各章重点内容及总复习.
![模电各章重点内容及总复习.](https://img.taocdn.com/s3/m/43d9a7e058f5f61fb736665f.png)
《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。
2、半导体奇妙特性:热敏性、光敏性、掺杂性。
3、本征半导体:完全纯净的、结构完整的、晶格状的半导体。
4、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。
它们在外电场作用下均能移动而形成电流,所以称载流子。
5、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而电子为少子。
6、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。
7、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。
所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。
8、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。
9、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。
其死区电压:S i管约0。
5V,G e管约为0。
1 V ,其死区电压:S i管约0.5V,G e管约为0.1 V 。
其导通压降:S i管约0.7V,G e管约为0.2 V 。
这两组数也是判材料的依据。
10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。
二、应用举例:(判二极管是导通或截止、并求有关图中的输出电压U0。
三极管复习完第二章再判)参考答案:a、因阳极电位比阴极高,即二极管正偏导通。
是硅管。
b 、二极管反偏截止。
f 、因V的阳极电位比阴极电位高,所以二极管正偏导通,(将二极管短路)使输出电压为U0=3V 。
模电各章节主要知识点总结
![模电各章节主要知识点总结](https://img.taocdn.com/s3/m/178acc12852458fb770b56bf.png)
(2)若是开环(无反馈),或正反馈,则放大器处于饱和状态 2、理想运放条件: Ri ,由此得到虚断, i i 0
Avo ,由此得到虚短, v v
3、虚短和虚断:
RO 0 KCMRR
各种运算(比例,加减法,积分微分电路等)中,
i i 0,说明两个输入端无电流 ; v v,说明两个输入端等电位
2
Rb2
VCC
,
VE
VB
VBE
IE
VE RE
IC
VCE
VCC
IC (RC
RE )
(2)图解分析方法:
要求: (a)用图解分析方法,判断什么情况下会发生截止和饱和失真现象,如何解决? (b)对于共射极放大器,用直流负载线和交流负载线求解最大不失真输出电压幅度
Vom VCEQ VCES ,以及ICQ RL ' 二者取最小的,即为最大不失真输出电压幅度。
Feedback Amplifier
反 馈 判 一、反馈性质判断(瞬时极性) 断 总 结 : 下图是常见器件的瞬时极性,务必掌握!
输入
-
+
+
+
输入 +
输入
+
+
+
输入
二、输入端的链接方式(串联还是并联)
并联负反馈
(+) X i
(-) X f
串联负反馈
X(+i) (+) X f
并联负反馈
(+)
1、K1、K3闭合,K2断开; 2、K2、K3闭合,K1断开; 3、K1、K2闭合,K3断开; 4、K1、K2、K3闭合。
模电笔记知识点总结
![模电笔记知识点总结](https://img.taocdn.com/s3/m/c2d6c266e3bd960590c69ec3d5bbfd0a7956d5d7.png)
模电笔记知识点总结一、模拟信号处理1. 模拟信号与数字信号模拟信号是指信号的数值是连续变化的,可以用连续的数学函数表示。
数字信号是指信号的数值是离散的,需要经过模数转换才能表示成数值输出。
模拟信号处理的目的是将模拟信号转换为数字信号,或者将数字信号转换为模拟信号。
2. 采样与保持采样是指将连续的模拟信号按照一定的时间间隔进行取样,得到一系列的离散数值。
保持是指在采样之后,保持所获得的信号值,直到下一次采样。
3. 模拟信号重构模拟信号重构是指将数字信号重新转换为模拟信号。
通常通过数字到模拟转换器(DAC)来实现。
4. 模拟信号滤波模拟信号滤波是指对模拟信号进行频率特性的调整,滤除不需要的频率成分,以及放大需要的频率成分。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
5. 模拟信号调制模拟信号调制是指将模拟信号转换为相应的调制信号,以便在传输和处理中更容易应用。
常见的模拟信号调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)。
二、放大器设计1. 放大器的基本原理放大器是一种电路,它可以放大输入信号的幅度,并输出相应的放大信号。
放大器的核心原理是利用晶体管或运算放大器等电子器件的非线性特性,实现信号的增益。
放大器的设计目标通常包括增益、带宽、输入/输出阻抗、噪声等方面的考虑。
2. 放大器的分类放大器可以根据其工作方式、频率响应等特性进行分类。
比较常见的放大器包括运算放大器、差分放大器、共模抑制放大器、功率放大器等。
3. 放大器的频率特性放大器的频率特性是指放大器对不同频率信号的响应。
常见的频率特性包括通频带、截止频率、增益带宽积等。
4. 放大器的非线性失真非线性失真是指放大器输出信号与输入信号之间存在非线性关系,导致输出信号不完全等于输入信号。
常见的非线性失真包括谐波失真、交调失真等。
5. 放大器的稳定性放大器的稳定性是指当放大器输出端负载发生变化时,放大器是否能够保持稳定的工作状态。
完整版)模拟电子技术基础-知识点总结
![完整版)模拟电子技术基础-知识点总结](https://img.taocdn.com/s3/m/0c003a3703020740be1e650e52ea551810a6c909.png)
完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
大学模电知识点总结
![大学模电知识点总结](https://img.taocdn.com/s3/m/7dc3c15a15791711cc7931b765ce05087732754c.png)
大学模电知识点总结1. 电路基础电路是由电路元件和互相连接在一起的导线组成的。
电路是由电路元件和互相连接在一起的导线组成的。
电路的基本元件包括电源、电阻、电容和电感等。
电源可以提供电流,电阻可以阻碍电流的流动,电容可以储存电荷,电感可以储存能量。
电路中的元件之间通过电路连接线连接在一起,共同构成了一个闭合的电路。
2. 电路分析方法电路分析方法主要包括基尔霍夫定律、欧姆定律和电容电感元件的动态特性分析等。
基尔霍夫定律是用来分析电路中的电流和电压分布的重要方法。
欧姆定律则是用来分析电路中的电流和电压的关系的基本定律。
电容电感元件的动态特性分析包括对电容电感元件的充放电过程和动态特性的分析。
3. 有源电路分析有源电路分析是分析电路中带有能源的元件的分析方法。
有源电路中的电源可以提供电流和电压,分析有源电路需要考虑电源的作用和影响。
有源电路分析主要包括对电源的特性分析、对有源电路的电流和电压分布的分析等内容。
4. 无源电路分析与有源电路不同,无源电路是指电路中不含电源的电路。
无源电路分析主要是对无源电路中的电阻、电容、电感等元件的分析。
无源电路中的元件都是 passively响应的,因此分析无源电路需要考虑元件之间的相互影响和电流、电压的分布。
5. 交流电路分析交流电路是指交流电源供电的电路,交流电路分析需要考虑交流电源的特性和电路中的电阻、电容、电感等元件的特性。
分析交流电路需要考虑交流电源的频率和幅值对电路的影响,以及交流电路中的电压、电流的相位差等因素。
6. 数字电路设计数字电路设计是指在数字逻辑门的基础上设计各种数字电路。
数字电路设计需要考虑逻辑门的特性和组合逻辑、时序逻辑的设计。
数字电路设计还需要考虑输入信号的采样和量化、数字信号的处理和输出等内容。
7. 模拟电路设计模拟电路设计是指在模拟元件的基础上设计各种模拟电路。
模拟电路设计需要考虑模拟元件的特性和模拟电路的放大、滤波、整定等功能。
模拟电路设计还需要考虑输入信号的采样和处理、模拟信号的处理和输出等内容。
模拟电路基础知识点总结
![模拟电路基础知识点总结](https://img.taocdn.com/s3/m/318fe82524c52cc58bd63186bceb19e8b9f6ec6e.png)
模拟电路基础知识点总结一、电路基本概念1. 电路电路是由电子元件(如电源、电阻、电容、电感等)连接在一起形成的电子装置。
通过这些元件可以实现电能的输送、控制和转换,从而完成各种电子设备和系统的功能。
2. 电流、电压和电阻电流是电子在导体中流动的载体,是电荷的移动速度,通常用符号I表示,单位是安培(A)。
电压是电源推动电荷流动的力量,通常用符号U表示,单位是伏特(V)。
电阻是导体对电流的阻碍,通常用符号R表示,单位是欧姆(Ω)。
3. 串联电路、并联电路和混联电路串联电路是将电子元件连接在同一电路中,依次排列,电流只有一条通路可走。
并联电路是将电子元件连接在同一电路中,相互平行排列,电流可有多条通路走。
混联电路是将电子元件混合连接在同一电路中,既有串联又有并联的特点。
二、基本电路元件1. 电源电源为电路提供驱动力,可以是直流电源或交流电源,根据需要分别选择。
2. 电阻电阻是电路中常用的元件,可以用来控制电流大小,限制电流大小,分压和分流等。
3. 电容电容是储存电荷的元件,可以用来实现一些信号处理和滤波的功能,在交流电路中有重要作用。
4. 电感电感是导体绕制的线圈,可以将电能转换为磁能,反之亦然,对交流信号传输有重要作用。
5. 二极管二极管是一种电子元件,可以将电流限制在一个方向上流动,常用于整流、开关和光电转换等应用。
6. 晶体管晶体管是一种半导体元件,可以放大电流信号,控制电流开关等,是集成电路中最基本的元件之一。
三、基本电路分析1. 基尔霍夫定律基尔霍夫定律是用来分析串联电路和并联电路中电压和电流的分布情况的定律,包括基尔霍夫电流定律和基尔霍夫电压定律。
2. 电压分压和电流分流电压分压和电流分流是串联电路和并联电路中常见的分析方法,可以通过这些方法来实现电路中电压和电流的控制。
3. 戴维南定理和戴维南等效电路戴维南定理是用来分析电路中电阻和电压之间的关系,戴维南等效电路是用来替代一些复杂电路,简化分析过程的方法。
模电必考知识点总结
![模电必考知识点总结](https://img.taocdn.com/s3/m/ba333abbbb0d4a7302768e9951e79b8969026879.png)
模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。
2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。
3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。
4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。
二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。
2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。
3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。
4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。
三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。
2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。
四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。
2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。
3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。
五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。
模电重点总结复习必备
![模电重点总结复习必备](https://img.taocdn.com/s3/m/5ea3f17f11661ed9ad51f01dc281e53a58025187.png)
混合型等效电路
简化的混合型等效电路
场效应管等效电路
其中:gmugs是压控电流源,它体现了输入电压对输出电流的控制作用。
—
-
+
+
d
g
s
gs
u
u
ds
i
d
+
—
+
+
-
gs
m
u
gs
u
u
-
S
ds
g
g
d
S
d
i
运算放大器
工作在线性区时的特点
虚短 虚断
工作在非线性区时的特点
虚断
波特图
画复杂电路或系统的波特图,关键在于一些基本因子
(4)输出电阻
反馈放大电路
反馈类型的判断
负反馈对放大电路性能的影响
深度负反馈下的近似估算
反馈稳定性判断
深度负反馈条件下的近似计算
一、 估算的依据
深度负反馈:
深度负反馈条件下,闭环增益只与反馈系数有关。
由
得
方法一:
估算电压增益
方法二:
根据
将
代入上式
得
即:输入量近似等于反馈量
净输入量近似等于零
截止频率的计算方法是“时间常数法”,即根据信号传递的具体情况,求出每一个起作用的电容所在RC回路的时间常数,进而求出截止频率。
直流稳压电源
工作原理
整流
滤波
稳压
计算
(1)差模电压增益
(3)差模输入电阻
不论是单端输入还是双端输入,差模输入电阻Rid是基本放大电路的两倍。
单端输出时, 双端输出时,
等效电路法
模电 知识点总结
![模电 知识点总结](https://img.taocdn.com/s3/m/d9bffc9b48649b6648d7c1c708a1284ac85005d4.png)
模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。
其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。
2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。
常见的信号形式有直流信号、交流信号、脉冲信号等。
3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。
常见的放大器有运放放大器、晶体管放大器等。
4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。
5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。
调制解调技术是模拟电子技术中的重要应用之一。
二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。
常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。
2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。
常见的电容电路包括RC电路、LC电路、多级滤波器等。
3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。
常见的电感电路包括RLC电路、振荡电路、滤波器等。
4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。
5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。
常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。
6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。
常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。
7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。
模电知识点复习总结
![模电知识点复习总结](https://img.taocdn.com/s3/m/0ffc0c07ce84b9d528ea81c758f5f61fb6362860.png)
模电知识点复习总结模拟电子技术(模电)是电子工程中的重要基础学科之一,主要研究电路中的电压、电流以及能量的传输和转换。
下面是我对模电知识点的复习总结:一.基础知识1.电路基本定律:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律、功率定律。
2.信号描述与频域分析:时间域与频域的关系。
傅里叶级数和傅里叶变换的基本概念和应用。
3.理想放大器:增益、输入/输出电阻、输入/输出阻抗的概念和计算方法。
4.放大器基本电路:共射、共集、共基放大器的特点、电路结构和工作原理。
二.放大器设计1.放大器的参数:增益、输入/输出电阻、输入/输出阻抗。
2.放大器的稳定性:稳态稳定性和瞬态稳定性。
3.放大器的频率响应:截止频率、增益带宽积、输入/输出阻抗对频率的影响。
4.放大器的非线性失真:交趾略失真、交调失真、互调失真等。
5.放大电路的优化设计:负反馈、输入/输出阻抗匹配、增益平衡等。
三.运算放大器1.运算放大器的基本性质:增益、输入阻抗、输出阻抗、共模抑制比。
2.电压放大器:非反转放大器、反转放大器、仪表放大器、差分放大器。
3.运算放大器的应用电路:比较器、积分器、微分器、换相器、限幅器等。
4.运算放大器的非线性失真:输入失真、输出失真、交调失真等。
四.双向可调电源1.双向可调电源的基本原理:输入电压、输出电压和控制信号之间的关系。
2.双向可调电源的电路结构:移相电路、比较器、反相放大器、输出级等。
3.双向可调电源的控制方式:串行控制和并行控制。
五.滤波器设计1.常见滤波器类型:低通、高通、带通和带阻滤波器。
2.滤波器的频率响应特性:通频带、截止频率、衰减量。
3.滤波器的传输函数:频率选择特性、阶数选择。
4.滤波器的实现方法:RC、RL、LC和电子管等。
六.可控器件1.二极管:理想二极管模型、二极管的非理想特性、二极管的应用。
2.可控硅:双向可控硅、单向可控硅、可控硅的触发电路和应用。
3.功率晶体管:NPN、PNP型功率晶体管的特性参数、功率放大电路设计。
模电知识点总结笔试
![模电知识点总结笔试](https://img.taocdn.com/s3/m/ced26907f6ec4afe04a1b0717fd5360cba1a8d33.png)
模电知识点总结笔试一、基础理论知识1. 电子学基础(1)电子学的基本概念:电子、电荷、电流、电压等。
(2)半导体物理学:半导体材料的性质、PN结的特性等。
2. 电路基础(1)电路分析方法:基尔霍夫定律、戴维南定理、叠加原理等。
(2)电路中的元件:电阻、电容、电感等实际应用。
二、模拟信号处理1. 信号与系统(1)信号的分类:连续信号、离散信号、周期信号、非周期信号等。
(2)系统的分类:线性系统、非线性系统、时变系统、时不变系统等。
2. 模拟滤波(1)滤波器的分类:低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
(2)滤波器的设计:巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。
三、放大电路1. 放大器的基本概念(1)放大器的分类:按输入输出信号类型分为模拟放大器和数字放大器。
(2)放大器的性能参数:增益、带宽、输入阻抗、输出阻抗等。
2. 放大电路设计(1)基本放大电路:共射放大器、共集放大器、共基放大器等。
(2)放大电路稳定性分析:稳定性条件、负反馈、电容耦合等。
四、信号发生与调制1. 信号发生器(1)基本信号源:RC震荡器、LC震荡器、晶体振荡器等。
(2)信号源的稳定性分析:频率稳定度、振幅稳定度、相位噪声等。
2. 调制技术(1)调制原理:调频、调幅、调相等基本调制方式的原理和特点。
(2)调制电路设计:频率调制电路、幅度调制电路、相位调制电路等。
五、反馈电路1. 反馈的基本概念(1)反馈电路的分类:正反馈、负反馈。
(2)反馈电路的性能:增益稳定、带宽拓展、非线性失真降低等。
2. 反馈网络设计(1)反馈网络结构:电流负反馈、电压负反馈。
(2)反馈网络应用:放大电路、振荡器、滤波器等反馈电路的设计。
六、运算放大器1. 运算放大器的特性(1)运算放大器的基本原理:差分输入、单端输出、大增益、高输入阻抗等。
(2)运算放大器的理想模型:无输入偏置电流、无输入偏置电压等。
2. 运算放大器的应用(1)运算放大器在电路中的基本应用:比较器、积分器、微分器等。
模拟的电子技术基础知识点的总结
![模拟的电子技术基础知识点的总结](https://img.taocdn.com/s3/m/2d8cbed1f61fb7360b4c6575.png)
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电总结(大全5篇)
![模电总结(大全5篇)](https://img.taocdn.com/s3/m/5fe6b7386d85ec3a87c24028915f804d2a16875d.png)
模电总结(大全5篇)第一篇:模电总结半导体器件半导体中有两种载流子:电子,空穴。
当电子挣脱共价键的束缚成为自由电子后,共价键就留下一个空位,这个空位就称为空穴。
影响半导体导电性的因素:外界热(温度)和光的作用或往纯净的半导体中掺入某些杂质。
本征半导体:完全纯净的、结构完整的半导体晶体。
在绝对0度(T=0K)和没有外界激发时,价电子完全被共价键束缚着,本征半导体中没有可以运动的带电粒子(即载流子),它的导电能力为0,相当于绝缘体。
在常温下,由于热激发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下一个空位,称为空穴。
本征激发的特点:① 两种载流子参与导电,自由电子数(n)=空穴数(p)② 外电场作用下产生电流,电流大小与载流子数目有关③ 导电能力随温度增加显著增加杂质半导体(通过掺杂,提高导电能力)N 型半导体:电子是多数载流子,空穴是少数载流子,但半导体呈中性,也称为(电子半导体)。
(在硅或锗晶体中掺入少量的五价元素,如磷形成)P 型半导体:空穴是多数载流子,电子是少数载流子,但半导体呈中性,也称为(空穴半导体)。
(在硅或锗晶体中掺入少量的三价元素,如硼形成)多子浓度主要取决于杂质浓度,少子浓度与温度有关。
二极管:导通管的压降看做常值(硅0.7V,锗0.2V)或0V(理想二极管)。
特殊二极管——稳压管(工作在反向击穿区)稳压原理:无论输入变化或负载变化,引起的电流变化都加于稳压管上,使输出电压稳定。
双极性晶体管(BJT)集电区:面积较大,基区:较薄,掺杂浓度低,发射区:掺杂浓度较高。
要使三极管能放大电流,必须使发射结正偏,集电结反偏。
双极性晶体管输出特性三个区域的特点: ① 放大区:发射结正偏,集电结反偏。
② 饱和区:发射结正偏,集电结正偏。
③ 截止区: 发射结、集电结均反偏。
双极型三极管是电流控制器件,场效应管是电压控制器件。
场效应管有两种: 结型场效应管JFET;绝缘栅型场效应管MOS ① N沟道增强型② N 沟道耗尽型③ P 沟道增强型④ P 沟道耗尽型耗尽型与增强型的区别在与UGS=0时是否有导电沟道。
模拟电子技术知识点总结
![模拟电子技术知识点总结](https://img.taocdn.com/s3/m/c41e012155270722192ef757.png)
模拟电子技术知识点总结篇一:模拟电子技术基础知识汇总模拟电子技术第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*n型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7.Pn结*Pn结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
*Pn结的单向导电性---正偏导通,反偏截止。
8.Pn结的伏安特性二.半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若V 阳>V阴(正偏),二极管导通(短路);若V阳)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2)等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V 阳>V阴(正偏),二极管导通(短路);若V阳?微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在Pn结的反向击穿区,所以稳压二极管在电路中要反向连接。
第二章三极管及其基本放大电路一.三极管的结构、类型及特点1.类型---分为nPn和PnP两种。
(完整版)模电知识总结
![(完整版)模电知识总结](https://img.taocdn.com/s3/m/d7f51cbfb4daa58da1114a63.png)
第一部分半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。
1、导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电半导体导电有两种载流子:自由电子和空穴均参与导电自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。
2、本征半导体的导电性很差,但与环境温度密切相关。
3、杂质半导体(1)N型半导体——掺入五价元素(2)P型半导体——掺入三价元素4、PN结——P型半导体和N型半导体的交界面在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层反向电压超过一定值时,就会反向击穿,称之为反向击穿电压5、PN结的单向导电性——外加电压正向偏置反向偏置6、二极管的结构、特性及主要参数(1)P区引出的电极——阳极;N区引出的电极——阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。
二极管的特性对温度很敏感。
其中,Is为反向电流,Uon为开启电压,硅的开启电压——0.5V,导通电压为0.6~0.8V,反向饱和电流<0.1μA,锗的开启电压——0.1V,导通电压为0.1~0.3V,反向饱和电流几十μA。
(2)主要参数1)最大整流电流I:最大正向平均电流2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性7、稳压二极管在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。
(1)稳压管的伏安特性(2)主要参数1)稳定电压U:规定电流下稳压管的反向击穿电压2)稳定电流I:稳压管工作在稳定状态时的参考电流。
电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。
模电常见知识点总结
![模电常见知识点总结](https://img.taocdn.com/s3/m/fde9c74ca7c30c22590102020740be1e640ecc13.png)
模电常见知识点总结一、基本概念1. 电压、电流、功率:电压是电势差,单位是伏特;电流是电荷在单位时间内通过导体的数量,单位是安培;功率是单位时间内能量的转化率,单位是瓦特。
2. 电路元件:电路元件主要包括电阻、电容和电感。
电阻是电流对电压的阻碍作用,单位是欧姆;电容是储存电荷的能力,单位是法拉;电感是存储磁场能量的元件,单位是亨利。
3. 信号处理:模拟信号是连续的信号,可以采用模拟电子技术进行处理。
模拟信号的处理包括滤波、放大、混频等操作。
4. 放大器:放大器是一种能够增加信号幅度的电路,通常包括运放放大器、功率放大器等类型。
5. 混频器:混频器是一种能够将两个不同频率的信号进行混合的电路,主要用于调频、调相和倍频等应用。
6. 滤波器:滤波器可以根据频率特性对输入信号进行滤波,主要包括低通滤波器、带通滤波器和高通滤波器等。
7. 稳压器:稳压器是一种能够在负载变化时保持输出电压稳定的电路,主要包括线性稳压器和开关稳压器。
8. 模拟信号的采样与保持、量化与编码:在数字信号处理中,要将模拟信号转换为数字信号,需要进行模拟信号的采样与保持、量化与编码等操作。
二、基本电路分析方法1. 基尔霍夫定律:基尔霍夫定律是电路分析中的重要方法之一,包括基尔霍夫电流定律和基尔霍夫电压定律。
2. 节点分析法和支路分析法:节点分析法和支路分析法是电路分析中常用的两种方法,用于求解电路中的电压和电流。
3. 物理尺解法:物理尺解法是一种将电路问题转化为几何问题进行求解的方法,通常用于分析长线搭接、三角形回路等特殊电路。
4. 电压源法和电流源法:电压源法和电流源法是一种简化复杂电路的方法,适用于求解电路中的等效电阻和电流分布。
5. 理想变压器:理想变压器是一个重要的电路模型,可以通过它来求解电路中的电压和电流。
6. 交流电路分析:交流电路分析是模拟电子技术中的重要内容,包括交流电路中的阻抗、功率、相位等内容。
7. 电路的频率响应:电路的频率响应是指电路对不同频率信号的响应情况,可以通过传递函数或频率特性曲线来描述。
模电各章节主要知识点总结
![模电各章节主要知识点总结](https://img.taocdn.com/s3/m/3c1fd445bb1aa8114431b90d6c85ec3a86c28b45.png)
06
第六章:信号发生器与信号变换器
信号发生器的定义和分类
总结词
信号发生器是用于产生所需信号的电子设备 ,根据产生信号的方式不同,可以分为振荡 器和调制器两类。
详细描述
信号发生器是用来产生各种所需信号的电子 设备,这些信号可以是正弦波、方波、脉冲 波等。根据产生信号的方式不同,信号发生 器可以分为两类:振荡器和调制器。振荡器 是利用自激反馈产生所需信号的电子设备, 而调制器则是利用调制技术将低频信号加载
THANKS
感谢观看
限流、分压、反馈等
电阻的串并联
串联增大阻值,并联减小阻值
电容
电容的种类
电解电容、瓷片电容、薄膜电 容等
电容的参数
标称容量、允许偏差、额定电 压、绝缘电阻等
电容的作用
隔直流通交流、滤波、耦合等
电容的充电放电
在交流电下,电容具有“隔直 流通交流”的作用,即让高频 信号通过,阻止低频信号通过
电感
电感的种类
信号变换器的工作原理和应用
• 总结词:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化和 编码,转换成数字信号输出;数字式信号变换器则是将输入的数字信号进行解 码和数模转换,转换成模拟信号输出。
• 详细描述:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化 和编码,转换成数字信号输出。采样是将连续时间信号转换为离散时间信号的 过程,量化是将采样后的离散值进行近似取整的过程,编码则是将量化后的离 散值转换为二进制码元的过程。数字式信号变换器的工作原理是将输入的数字 信号进行解码和数模转换,转换成模拟信号输出。解码是将输入的数字码元进 行解码的过程,数模转换则是将解码后的离散值转换为连续时间信号的过程。 模拟式和数字式信号变换器在通信、测量、控制等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际特性
u+ - u-
-Uo(sat)
理想运算放大器
理想运放及其分析依据 1)开环电压放大倍数 Auo→∞ 理想化条件: 2)差模输入电阻 rid→∞ 3)开环输出电阻 ro→0 4)共模抑制比 KCMRR→∞
+ +
Vp
- -
vN
+
+
Avo(vp-vN)
-
vo
-
理想运算放大器的特性
理想运算放大器具有“虚短”和“虚断”的特性, 这两个特性对分析线性运用的运放电路十分有用。为 了保证线性运用,运放必须在闭环(负反馈)下工作。
RS
uS
信号源
ii
Ri
输入电阻:
Ri=ui / ii
ui
输入端
Au
输出端
一般来说, Ri越大越好。
(1)Ri越大,ii就越小,从信号源索取的电流越小。 (2)当信号源有内阻时, Ri越大, ui就越接近uS。
3. 输出电阻Ro——从放大电路输出端看进 去的等效电阻。决定了放大电率
f
通频带: fBW=fH–fL
第二章
运算放大器
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
开环电压放大倍数高(104-107);
输入电阻高(约几百KΩ); 输出电阻低(约几百Ω); 漂移小、可靠性高、体积小、重量轻、价格低 。
电压传输特性
理想特性
Vo=Avo(vp-vN)
+Uo(sat) o
其中
IS ——反向饱和电流 VT ——温度的电压当量
且在常温下(T=300K)
PN结的伏安特性
kT VT = = 0.026V = 26 mV q
3.2.4 PN结的反向击穿
当PN结的反向电压 增加到一定数值时,反 向电流突然快速增加, 此现象称为PN结的反向 击穿。
热击穿——不可逆 雪崩击穿 齐纳击穿
(2)虚断
由于运放的差模输入电阻很大,一般都在1 M 以上。因此流入运放输入端的电流往往不足1 A, 远小于输入端外电路的电流。故通常可把运放的两 输入端视为开路,且输入电阻越大,两输入端越接 近开路。 “虚断”是指在分析运放处于线性状态时, 可以把两输入端视为等效开路,这一特性称为虚假 开路,简称虚断。显然不能将两输入端真正断路。 下面举两个例子说明虚短和虚断的运用。
(1)虚短
由于运放的电压放大倍数很大,而运放的输出电 压是有限的,一般在10 V~14 V。因此运放的差模输入 电压不足1 mV,两输入端近似等电位,相当于 “短 路”。开环电压放大倍数越大,两输入端的电位越接 近相等。 “虚短”是指在分析运算放大器处于线性状态时, 可把两输入端视为等电位,这一特性称为虚假短路,简 称虚短。显然不能将两输入端真正短路。
几种常见的基本运算电路
• • • • • • 反相比例运算 同相比例运算 电压跟随器 加法电路 减法电路 积分电路
3.1 半导体的基本知识
3.2 PN结的形成及特性
3.3 半导体二极管
3.4 二极管基本电路及其分析方法
3.5 特殊二极管
3.1.4 杂质半导体
在本征半导体中掺入某些微量元素作为杂质, 可使半导体的导电性发生显著变化。掺入的杂质 主要是三价或五价元素。掺入杂质的本征半导体 称为杂质半导体。
过Q点的切线可以等 效成一个微变电阻
v D 即 rd = i D
根据 iD = I S (evD / VT 1)
(a)V-I特性 (b)电路模型
得Q点处的微变电导
di gd = D dv D
Q
I = S evD /VT VT
Q
iD VT
Q
I = D VT
则 rd =
1 VT = gd ID
︱V(BR) ︱> ︱V︱ > 0 ︱V︱> ︱U(BR) ︱
iD = IS < 0.1 A(硅)几十 A (锗) 反向电流急剧增大 (反向击穿)
3.4.2 二极管电路的简化模型分析方法
1.二极管V-I 特性的建模 将指数模型 iD = I S (evD VT 1) 分段线性化,得到二极 管特性的等效模型。
(1)理想模型
(a)V-I特性
(b)代表符号
(c)正向偏置时的电路模型
(d)反向偏置时的电路模型
(2)恒压降模型
(3)折线模型
(a)V-I特性 (b)电路模型
(a)V-I特性 (b)电路模型
(4)小信号模型
1 1 iD = vD (VDD vs ) R R
vs =0 时, Q点称为静态工作点 ,反映直流时的工作状态。 vs =Vmsint 时(Vm<<VDD), 将Q点附近小范围内的V-I 特性线性化,得到 小信号模型,即以Q点为切点的一条直线。
根据放大电路输入信号的条件和对输出信号的要求,放大器 可分为四种类型,所以有四种放大倍数的定义。
(1)电压放大倍数定义为: (2)电流放大倍数定义为: (3)互阻增益定义为: (4)互导增益定义为:
AU=UO/UI
AI =IO /II
Ar=UO/II Ag=IO/UI
2. 输入电阻Ri——从放大电路输入端看进去的等效电 阻,决定了放大电路从信号源吸取信号幅值的大小。
Uz 0 U/V I/mA
Izmin
Izmax
(a) 图形符号 (b) 伏安特性
(3)主要参数 稳定电压:Uz 最小稳定电流:Izmin
最大稳定电流:Izmax
30 返 回 上一节 下一节 上一页 下一页
第四章
三极管及放大电路基础
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
半导体三极管的结 构示意图如图所示。 它有两种类型:NPN型 和PNP型。
电击穿——可逆
3.3.2 二极管的伏安特性
一、PN 结的伏安方程
玻尔兹曼常数 1.38*10-23J/K
iD = IS (e
反向饱和电流 10-8---10-14A
uD / nVT
1)
温度的 电压当量
kT VT = q
电子电量
当 T = 300(27C):
VT = 26 mV
二、二极管的伏安特性
(a) NPN型管结构示意图 (b) PNP型管结构示意图
(c) NPN管的电路符号
(d) PNP管的电路符号
4.1.2 放大状态下BJT的工作原理
三极管的放大作用是在一定的外部条件控制下,通过载 流子传输体现出来的。
由于三极管内有两种载流子(自 由电子和空穴)参与导电,故称为双 极型三极管或BJT (Bipolar Junction Transistor)。
根据 IE=IB+ IC 且令
IC= InC+ ICBO
I nC = IE
ICEO= (1+ ) ICBO (穿透电流)
I C I CEO 则 = IB
IC 当 I C I CEO 时, IB
是另一个电流放大系数。同样,它也只与管
子的结构尺寸和掺杂浓度有关,与外加电压无关。 一般 >> 1 。
iD /mA
0 V Vth
iD = 0
V (BR) IS
正向特性
uD /V
Vth = 0.5 V (硅管) 0.1 V (锗管)
V Vth iD 急剧上升 反 反向特性 O Vth 向 击 VD(on) = (0.6 0.8) V 硅管 0.7 V 死区 穿 电压 (0.2 0.4) V 锗管 0.3 V
第一章
绪论
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
1.2 放大电路基本知识
一、放大电路的表示方法
放大电路主要用于放大微弱的电信号,输出电压或电流
在幅度上得到了放大。放大电路为双口网络,即一个信号 输入口和一个信号输出口。
1.3 放大电路的主要技术性能指 标
1.放大倍数(增益)——表征放大器的放大能力
4.1.4 BJT的主要参数
极限参数
(1) 集电极最大允许电流ICM
(2) 集电极最大允许功率损耗PCM
PCM= ICVCE
V(BR)CEO——基极开路时集电极和发射 极间的击穿电压。
4.3.1 图解分析法
1. 静态工作点的图解分析 在输入特性曲线上,作出直线 vBE = VBB iB Rb ,两线的交点 即是Q点,得到IBQ。 在输出特性曲线上,作出直流负载线 VCE=VCC-iCRc,与IBQ曲 线的交点即为Q点,从而得到VCEQ 和ICQ。
N型半导体——掺入五价杂质元素(如磷)的 半导体。 P型半导体——掺入三价杂质元素(如硼)的 半导体。
3.2.1 载流子的漂移与扩散
漂移运动:
由电场作用引起的载流子的运动称为漂移运动。
扩散运动: 由载流子浓度差引起的载流子的运动称为扩散运动。
3.2.2 PN结形成
在一块本征半导体两侧通过扩散不同的杂质, 分别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程: 因浓度差 多子的扩散运动 由杂质离子形成空间电荷区 空间电荷区形成内电场 内电场促使少子漂移 内电场阻止多子扩散
(1)内部条件:发射区杂质浓度远大于基区
杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反
向偏置。
4.1.3 BJT的V-I 特性曲线
1. 输入特性曲线 (以共射极放大电路为例) iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。
(2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收 集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。