Modelling reactive distillation
医学专业英语单词

医学专业英语单词随着全球化的发展,各国间的学术交流在形式与领域方面日益深入,医学英语作为促进国际间医学技术和知识交流的重要途径发挥着重要作用。
下面小编为大家分享医学专业英语单词,希望对大家有用。
医学专业英语单词如下:miniature ①微型②缩影③小型的,袖珍的miniature aorta clamp 小型主动脉夹miniature biomicroscope 微型生物显微镜miniature camera 微型照像机miniature diagnostic X-ray unit 小型X 射线诊断机miniature electrocardiograph 微型心电图机miniature hemostat 微型止血钳miniature needle holder 微型持针钳miniature radio transmitter 小型无线电发报机miniature roentgenography 缩影X 射线照像术miniaturization 小型化,微型化miniaturized intraocular surgicalsystem 眼内显微手术器械minicamera 微型照像机minicomputer 小型计算机mini-electrocentrifuge 微型电动离心机minim ①量滴(液量最小单位,美制=0.6ml,英制=0.ml)②最小的,微小的minimal 最低的,极微的minim pipette 滴液量管minimum (abgr. Min; min) 最小值,最小的minimum standard 最低标准minimum temperature 最低温度minimum thermoimeter 最低温度计minipump 微型真空泵miniscope 微型示波器ministry of foreign trade 外贸部ministry of public health 卫生部minitype 微型,小型minor 较小的,辅助的minor electro-surgical unit 小型手术电凝器minor forceps 小钳Minor's tremor pickup 米诺氏震颤传感器minus 减的,负的minus lens 负透镜,凹透镜minute ①分钟②微小的,精密的minute volume (abbr. MV) 分钟量(每分钟肺呼出气体量)MIO(million) 百万,北miophone 肌音听测器mirror 镜,反光镜mirror haploscope 镜面式视轴测定器mirror image 裂隙灯像,镜像mis- 错误,不利misadjustment 失调,误调谐misclmisc(miscellany) 杂物miscarriage pipet 流产吸引管mischance 故障,障碍miscible 可混合的misc medical supplies 医疗设备杂品misconnection 错接,误接mismatch (使)失配,失谐,不重合missile 投射器mission 任务,使命mist 雾,湿气mistranslation 错译,译误mist tent 喷雾帐篷mist separator 湿气分离器mist spray 喷雾mist extractor 湿气提取器mitella 臂吊带mitochondrial oscillator 线粒体振荡器mitral 二尖瓣的mitral inadequacy 二尖瓣关闭不全mitral stenosis valvuliotome 二尖瓣狭窄手术心瓣膜刀mitral valve dilator 二尖瓣瓣膜扩张器mitral valve scissors 二尖瓣膜扩张器mitten 连指手套(拇指分开,其它四指连在一起)mix 混合mixer 混合器,调拌器mixer-granulator 混合制粒机mixer mill 混合磨mixing tablet 调合板mixture 混合,混合物mixture indicator 混合物成分指示器MMF (maximum midexpiratoryflow) 最大呼气中期流速mm.Hg (milimetres of mercury) 毫米汞柱(压力单位,等于1/ 大气压)M-mode echocardiography M-型超声心动图机mm.P.P. (millimetres partial pressure) 毫米汞柱分压Mn(manganese) 锰mmeme 记忆力Mo(molybdenum) 钼mobile 移动的,流动的mobile mass radiography 流动集体X 射线检查mobile recorder 移动或记录器mobile type X-ray unit 流动式X 光机mobile X-ray condenser discharge unit 电容放电式流动X 光机mobility 运动性,移动性mobilometer 淌度计mock-up 模型,模型机modality ①形式,方式②物理疗法,物理治疗设备mode 方式,模型model 型号,模型,样品model alloy 模型合金model former 成模器modelling compound 印模膏model machine 样机model trimmer 模型修整器modem 调制解调器mode number 模数moder 脉冲编码装置moderator 缓和器,减速器modern 现代的,近代的modernization 现代化modified bone clamp 骨固定夹modified circumflex scissors 变型卷曲剪modified vascular clamp 变型血管夹modifier 调节器modify 改变,限制modulation 调节,调整,适应modulation level 调制电平modulator 调节器,调幅器modle 模数,组件moist 湿的,潮湿的moist dressing 湿敷料moistener 湿润器moist heat sterilizer 湿热灭菌器moisture 潮湿,湿度,水分moisture analyser 湿度分析仪moisture balance 测湿度天平moisture evolution analyzer 湿气散出分析器,水分放出分析器moisture meter 湿度计moistureproof 防潮的moisture resistant 防潮的moisture test apparatus 水分测定仪moisture tester 水分试验器moisture trap 除潮器,脱水器mole ①克分子②模molectron 集成电路,组合件molecular distillation apparatus 分子蒸溜器molecular still 分子蒸溜器molecular structure instruments 生物分子结构分析仪器molecular weight (abbr. mol. wt) 分子量molecular weight apparatus 分子量测定仪molecule 分子molybdenum(abbr. Mo) 钼moment ①瞬间,片刻②力矩momentary 瞬时的,暂时的moment of force 力矩monangle 单角器(牙科)Monday(abbr. Mon.) 星期一money 金钱,货币monitor 监护仪,监视器,探测器monitor controller 监控仪monitor for photography 摄像用监视器monitoring catheters 监护用导管monitoring oscilloscope 监测示波器,监视镜monitoring station 监测台monitoring system 病人监护系统monitor-scope 监护示波器monitor screen 监视屏monocardiogram 心电向量图,向量图monochord 单音听觉器monochrouic 单色的monochromatic 单色的,单染色的monochromatic light 单色光monochromatic objective 单色物镜monochromatic rays 单色射线monochromator ①单色器②单色镜monochrome ①单色②单色镜片monochromic 单色的monocle ①单眼镜②单眼绷带monocrystal silicon 单晶硅monocular 单眼的,单目镜的monocular ear microscope 单管窥耳显微镜monocular indirct ophthalmoscope 单目间接检目镜monocular microscope 单目显微镜monocular tube 单筒目镜monoculus 单眼绷带monocyte 单核细胞,单核白细胞monograph ①专题论文②记录monomer 单体,单分子物体monomodal oscillator 单峰振荡器monophase 单相的monophone 送受话器monopolar 单极的monopolar forceps 单极钳monopoly ①专利权②垄断,独占monoscope 单象管,存储管式示波器monoterminal 单极的monovalent element 一价元素montage ①安装,装配②剪辑画面month 月份,月monthly ①每月的②月刊mop ①拖把,拖布②刷mope-eyed 近视的morbidity 发病,发病率morgue 停尸室,太平间morpho- 形,形态morphology 形态学Morr's burette 摩尔氏滴定管mortal 致死率mortality 死亡率mortar 乳钵,研钵mortar-grinder 研磨器mortuary 停尸房,太平间mortuary refrigerator 尸体冷藏柜mosaic structure 镶嵌型结构mOsm (milliosmol) 毫渗(一个渗透压的千分之一)mosquito clamp 蚊嘴夹,蚊嘴钳mosquito forceps 蚊式止血钳motarium 绒布(外科用布)motile 自动的,能动的motion 运转,运动,机动motionless 固定的,不活动的motoceptor 运动感受器motometer 转数计motor 马达,电动机motor analysor 运动分析器motor-driven arc therapy unit 电动式电弧治疗装置motor-driven operating table 电动手术台motor-driven surgery instruments 电动手术器motor for the dental laboratory 牙科技工室马达motor generator 电动发电机motorgraphic 描记运动的motormeter 运动力计motor pump 马达泵motor rescue boat 机动救护船motor stirrer 电动搅拌器motortherapy 运动疗法mould 模型moulded tablet 模印片moulding compound 牙科油泥mould paste 印模膏,打样膏mount 支架,座,装置mountain 山,高山mouse cage 鼠笼mouse tooth forceps 鼠牙钳mouth 口,嘴mouth adapter 口用麻醉接头mouth blowpipe 吹火管(牙科用)mouth gag 开口器,张口器mouth jaw 张口器mouth lamp 口腔灯mouth mirror 口腔镜mouthpiece 牙垫,接口管,口器mouthpiece tubing 接口吸管mouth prop 张口器mouth shade 口罩mouth speculum 窥口器,口腔镜movable support 可动支架movement ①运动,移动②机构,机械装置mover ①搬运车②发动机movie 影片,电影(院)moving boundary electrophoresis 移动区带电泳moving film camera 电影摄影机moving grid 活动X 线滤线栅moving-iron type hot stylus recorder 热笔描绘动铁式记录器moxa 灸料,灼烙剂moxosphyra 灸锤Mrna (messenger ribonucleic acid) 信使核糖核酸MRI(magnetic resonance imaging) 磁共振成像技术M-scan echocardiogram M 型扫描超声心动图MT (microtome) 切片机mucilage 胶水mucosa 粘膜mucotome 粘膜刀mucous membrane knife 鼻粘膜刀mucous plug 宫颈粘液塞mu-factor 放大系数,放大率muff 袖套,套筒muffle electric furnace 电热炉muffler 消音器,减声器mug 有柄杯,大杯Mules's scoop 谬耳斯氏眼刮匙mull 软布mulla 药布mull dressing 软布敷料muller 平底乳钵(研磨器)multi- 多,多数multibeam oscilloscope 多束示波器multicavity magnetron 多腔磁控管multichannel 多信道的,多路的multichannel amplifier 多通道放大器multichannel analyzer ①(针灸用)多经分析器②多波道分析器multichannel monitor 多道监视器multichannel oscilloscope 多线示波器multichannel recorder 多道记录器multi-crystal scanning gammacamer 多晶体扫描伽玛照像机multidiaphragm collimator 多叶集光筒multi-direction planigraphic device 多方向平面摄影装置multiformat camera 多规格照相机multiformat gamma camera 多幅伽玛照像机multiformat changing device 多幅幻灯片变换装置multifunctional 多功能的multifunction generator 多功能发生器multifunction system 多功能系统multi-heads curette 多头刮匙multi-heads tooth forceps 多头拔牙钳multiimage 重复图像multi-input 多端输入multi-level 多能极的multilocular 多腔的multiloop 多回路的,多匝的,多环的multimeter 万用表multimicroelectrode 微电极组multi-orbit tomographic unit 多轨迹断层摄影机multipath 多通道的,多途径的multi-pen recorder 多笔式记录器multiphasic screening 多项普检(以多种方式检诊)multiplane tomographic scanner 多平面断层扫描仪multiplanimat 多轨迹体层摄影装置(商品名)multiple aliquot sample harvester 多用等分试样标本采集器multiple electronic acupunctoscope 多用电子的位测定治疗仪multiple point electrode 多头电极multiple screening 多项普检(以多种方式检诊)multiple sheet filter 多层滤器multiple stethoscope 多管听诊器(教学用)multiplexer ①多路扫描装置,多路调制器②倍增器multiplicator 倍增器multiplier 乘法器,倍增器multiplier tube 倍增管multiply 增加,扩大multipoint combustible gas alarm 多点可燃气体报警器multipoint indicator 多点指示器multipoint trend recorder 多点式病情趋向记录器multipole 多极的multiprobe detector 多探头检测器multipurpose 多用途的,万用的multipurpose clamp 多用夹multipurpose computer 通用计算机multipurpose electroacupuncture apparatus 综合电针仪multipurpose electrostimulator 多用电刺激器multiopurpose operating table 综合手术台multipurpose oscilloscope 多用示波器multipurpose peripheral vascular retractor 多用外周血管牵开器multipurpose polygraph 多导生理记录仪multipurpose retractor 多用牵开器multipurpose scanning microscope 多用途扫描显微镜multipurpose scintillation counter 多用途闪烁计数器multipurpose therapy unit 综合治疗机muotipurpose tractor 多用牵引器multipurpose ultrasonic diagnostic equipment 多用途超声诊断仪multirange 多波段的multiscaler 万能定标器,多用定标器multiscan ultrasonic diagnostic unit 超声波断层诊断仪multispirograph 多用肺活量计multistage 多级的multistage amplifier 多级放大器multiterminal electrode 多端电极multivibrator 多谐振荡器multiway socket 多脚插座murmur 杂音muscle 肌muscle biopsy 肌肉活组织检查muscle booster 肌肉助力器muscle boosting device 肌肉助力装置muscle clamp 肌肉夹,肌肉钳muscle forceps 肌肉镊(眼科)muscle hook 肌钩muscle stimulator 肌肉刺激器mush 噪音,干扰mushroom catheter 蕈头导管music 音乐muslin 细薄棉布,软棉布muslin bag 棉布袋mutable 易变的,不定的mutual 相互的,不定的MV(millivolt) 毫伏MV(minute volume) 每分钟量(每分钟肺呼出气体量)MVE(mitral valve echogram) 二尖瓣回波描记图MVV(maximum voluntary ventilation) 最大随意通气量myasthenia 有无力mycology 真菌学,霉菌学mydriasis 瞳孔放大,散瞳myel-;myelo- 骨髓,脊髓myelin nucleus drill 髓核钻myelogram 脊髓X 射线造影片myelography 脊髓X 射线造影术myeloid biopsy needle 骨髓活检针myeloscintigram 脊髓闪烁图myelotome 脊髓刀mylar 聚酯薄膜myo- 肌肉myocardial 心肌的myocardial bloptome 心肌活检刀myocardial electrode 心肌电极myocardiogram 心肌运动描记图myocardiograph 心肌运动描记器myocardium 心肌myochronoscope 肌动时间测定器,肌兴奋时间测定器myocinesimeter 肌收缩计,肌动计myoculator 眼肌运动矫正器myodynamia 肌力myodynamometer 肌力计myoglobin 肌红蛋白myogram 肌动(描记)图myograph 肌动描记器myographion 肌记纹鼓myography 肌动描记法myohaemoglobin(abbr. MHb) 肌红蛋白myokinesimeter 肌收缩力计myoma forceps 肌瘤钳myomatome 肌瘤刀myometer 肌收缩计,肌力计myoneural junction 神经肌肉接点myophone 肌音听诊器myopia 近视myoscope 肌缩观测器myosis 瞳孔缩小myosthenic 肌力的myosthenometer 肌力测量器myotome 肌刀myotonometer 肌张力测量器myringa 鼓膜myringoscope 鼓膜镜myringotome 鼓膜刀MZE(microzone electrophoresis) 微区带电泳MZIS(medical interpretative information system) 医学解释的信息系统N(nitrogen) 氮Na(natrium) 钠nail ①指甲②钉子nail and wire nippers 穿钉和钢丝钳nail brush 指甲刷nail cleaner 指甲清洁器nail driver 骨髓钉打入器nail extension 导钉牵引术nail extension apparatus 穿钉牵引器mail extractor 骨穿钉拔出器nail file 指甲锉nail hammer 穿钉锤nailing 插钉术nailnippers 指甲钳nail-plate 鹅头针nail scissors 指甲剪nail set 穿针器naked 裸露的naked radiator 无保护罩散热器name 名称name of commodity 品名,货名name of goods 品名,货名nameplate 铭牌,商标nano- 小,毫微,十亿分之一nanoammeter 毫微安计nanogram(abbr.ng) 毫微克nanoprogram 毫微程序nanoscope 毫微秒示波器,超高频示波器nanosecond 毫微秒,10-9 秒nape 项,颈背napkin 餐巾narco- 麻醉,睡眠narcology 麻醉学narcosis 麻醉narcotic ①麻醉的②麻醉剂naris 鼻孔narrow ①狭窄的②变窄,限制narrow-nouth bottle 小口瓶narrow tube 小直径管nasal 鼻的nasal airway 鼻腔导气管nasal applicator 鼻卷棉子nasal bird-shape douche 鼻用鸟形冲洗器nasal cannula 输氧鼻管nasal catheter 鼻腔导管nasal cavity 鼻腔nasal cavity canula 鼻腔套管nasal chisel 鼻平凿nasal cotton wool carrier 鼻卷棉子nasal curet 鼻刮匙nasal cutter 鼻甲剪nasal cutting forceps 鼻咬骨钳,鼻切钳nasal dilator 鼻扩张器nasal douche 鼻用冲洗器nasal douche nozzle 鼻冲洗管嘴nasal dressing forceps 鼻敷料钳nasal endoscope 鼻镜nasal ethnoid punch forceps 鼻筛窦咬取钳nasal feeding 鼻饲法nasal feeding tube 鼻饲管nasal flat round-bladed knife 鼻用扁平圆刃刀nasal foreign body forceps 鼻异物钳nasal glass nozzle 鼻用玻璃冲洗管嘴nasal gouge 鼻圆凿nasal instruments 鼻用器械nasal irrigator 鼻冲洗器nasal knife 鼻刀nasal mucosa knife 鼻粘膜刀nasal oxygen cannula 鼻腔给氧插管nasal periosteum elevator ①鼻骨膜起子②鼻骨膜分离器nasal plastic scissors 鼻整形剪nasal polypus forceps 鼻息肉钳nasal polypus snare 鼻息肉圈断器nasal probe 鼻探针nasal prosthesis 假鼻nasal punch forces 鼻咬取钳nasal rongeur 鼻咬骨钳nasal saw 鼻锯nasal scissors 鼻剪nasal scoop 鼻匙nasal septum 鼻中隔nasal septum cutting forceps 鼻中隔咬骨钳nasal septum gouge 鼻中隔凿nasal septum round chisel 鼻中隔圆凿nasal septum speculum 鼻中隔镜nasal snare 鼻息肉勒除器nasal speatula 鼻铲。
低温多效海水淡化系统的模拟计算_解利昕

图 1 低温多效蒸馏海水淡化系统流程示意图 Fig.1 Schematic of LT-MED desalination process
2
数学模型
本文以稳态操作的低温多效蒸馏海水淡化系统
为对象,建立数学模型,其中包括一系列的物料平 衡、 能量平衡、 传热方程、 热力学关系式及海水物性 参数计算公式等。 为了简化系统模型, 假设: ①各效产生的蒸汽均 是纯水 (盐度为零); ②系统在相对温度较低 (40~ 100 ℃)的状态下运行, 且各装置绝热性能良好, 故 忽略系统与环境之间的热损失。 第 i 效蒸发器及闪蒸罐示意图见图 2。图中, F、 、 、 、 分别表示进料溶液量 、 浓水量 、 蒸发量 、 B D dd db 淡水闪蒸量及浓水闪蒸量; Tf、 Tv、 Tc、 T 分别代表进 料温度、 蒸汽温度、 蒸汽冷凝温度及浓水温度; 下标 i、 i-1 分别表示第 i 效和第 i-1 效。
(ΣDj+Σdd,j +Σdb,j +Σdd,j )Cp(Tc,i-1 -Tc,i )=dd,i Δhd,i ;
j = 1 j = 1 j = 1 j = 2
Å Ã Ä Æ Ã Ä Á Â Â Á Ã Ä
51 (2) (3) (4)
P ,P M汽喷射泵模型示意图 Schematic of the steam ejector model
闪蒸罐等系统组成部分,建立数学模型;借助于 MATLAB 编程软件, 编制并调试运行各嵌套子程序 及系统源程序, 计算得出系统的各性能参数, 为进一 步分析优化系统奠定了基础。
1 低温多效蒸馏海水淡化技术原理
低温多效蒸馏海水淡化技术 (Low temperature multi-effect distillation, LT-MED) 是指盐水的最高 蒸发温度 (盐水顶温) 不高于 70 ℃的海水淡化技 术,其特征是将一系列的水平管降膜蒸发器串联起 来并被分成若干效组, 用一定量的蒸汽输入, 蒸馏出 的二次蒸汽作为蒸发器次一效的加热蒸汽,海水在 各效蒸发器中通过多次的蒸发和冷凝,从而得到多 倍于加热蒸汽量的蒸馏水的海水淡化技术[10]。 低温多效蒸馏海水淡化系统的工艺流程如图 1 所示。 各效的压力、 温度从左至右依次降低。 海水首 先进入冷凝器中预热 、 脱气, 而后被分成两股物流, 一股作为冷却水排回大海,另一股作为蒸馏过程的 进料。进料海水加入阻垢剂后被引入到蒸发器的后 几效中, 经喷嘴被均匀分布到顶排管上, 以薄膜形式 沿顶排管向下流动,部分吸收管内冷凝蒸汽的潜热 而蒸发, 二次蒸汽在下一效中冷凝成产品水。 加热蒸 汽被输入到第一效的蒸发管内并在管内冷凝,管外 海水产生与冷凝量基本等量的二次蒸汽,经过气液 分离器后, 进入下一效传热管。蒸发、 冷凝过程在各 效重复, 最后一效的蒸汽在冷凝器中被海水冷凝。 各
木材英文辨析

木材英文辨析这些名词均有“木材,木”之意。
lumber:指伐下后未经削磨的木材,现多用于美国英语中。
timber:指经过匠人初步加要的备用木材,多用于英国英语。
wood:最普通用词,含义广,除表示“木材,木”外,还可用复数形式表示森林。
log:指原木或圆木。
情景会话Decorate construction to be given priority to with lumber, breed is multi-purpose wood of Walnut, cherry, beech, door window, partition uses all sorts of traditional lines to act the role of the woodcarving joggle that makes commonly and into.装修施工以木材为主,品种多用胡桃木、樱桃木、山毛榉等,门窗、隔断一般使用各种传统纹饰制成的木雕榫接而成。
2.The ground condition of the bedroom should consider when select material, for example bungalow or building ground floor, because humidity of direct contact ground is big, should do moistureproof processing, can choose oak wood, northeast china ash, because of this kind of lumber hind of be affected with damp be affected with damp is out of shape not easily.选材时要考虑居室的地面条件,例如平房或楼房底层,因直接接触地面湿度大,应做防潮处理,可选用柞木、水曲柳,因为这种木材受潮后不易变形。
聚合过程强化技术的发展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2018年第37卷第4期·1314·化 工 进展聚合过程强化技术的发展许超众,冯连芳(浙江大学化学工程与生物工程学院,化学工程联合国家重点实验室,浙江 杭州 310027)摘要:聚合过程强化技术是实现聚合过程效能最大化、聚合物产品结构可控化以及聚合过程和产品绿色化的有效技术手段。
本文综述了聚合过程强化技术的国内外进展,从流动与混合强化、传热与传质强化、反应耦合过程强化、超临界流体强化、外场强化等方面重点分析了不同聚合过程强化技术的特点,并对聚合过程强化技术中存在的问题进行了探讨。
指出聚合过程强化应注重聚合动力学特性和设备特性的有效耦合,基于聚合反应特性的过程强化方法是今后的发展方向。
关键词:聚合;过程强化;流动混合;传热传质;反应耦合中图分类号:TQ316 文献标志码:A 文章编号:1000–6613(2018)04–1314–09 DOI :10.16085/j.issn.1000-6613.2017-2436Process intensification technologies for polymerizationXU Chaozhong ,FENG Lianfang(State Key Laboratory of Chemical Engineering ,College of Chemical and Biological Engineering ,Zhejiang University ,Hangzhou 310027,Zhejiang ,China )Abstract: Process intensification technology for polymerization is an effective technical means tomaximization of the efficiency of polymerization process ,controllability of polymer product structures ,and green polymerization process and polymer product. Development of process intensification technology for polymerization was reviewed. The features of different process intensification methods were analyzed with emphasis in terms of flow and mixing ,heat and mass transfer ,reactive coupling ,supercritical fluid ,external field ,etc. Also ,the existent problems were discussed. It is revealed that process intensification technologies for polymerization should focus on the effective coupling between polymerization kinetics and polymerization equipment. Process intensification methods based on polymerization characteristics are the future directions of development.Key words: polymerization ;process intensification ;flow and mixing ;heat and mass transfer ;reactive coupling高能耗、高污染和高物耗一直是化学工业关注的问题,化工过程强化技术致力于简化工艺流程、提高设备效率、降低生产成本等来达到节能、减排、降耗的目的[1-4],这对于发展循环经济、建设资源节约型和环境友好型社会具有重要意义。
制冷专业英语大全e

制冷专业英语根本术语制冷refrigeration蒸发制冷evaporative refrigeration沙漠袋desert bag制冷机refrigerating machine制冷机械refrigerating machinery制冷工程refrigeration engineering制冷工程承包商refrigeration contractor制冷工作者refrigerationist制冷工程师refrigeration engineer制冷技术员refrigeration technician制冷技师refrigeration technician制冷技工refrigeration mechanic冷藏工人icer制冷安装技工refrigeration installation mechanic 制冷维修技工refrigeration serviceman冷藏链cold chain制冷与空调维修店refrigeration and air conditioning repair shop冷藏refrigerated prvservation一般制冷换热器英语换热器heat exchanger热交换器heat exchanger紧凑式换热器compact heat exchanger管式换热器tubular heat exchanger套管式换热器double-pipe heat exchanger间壁式换热器surface type heat exchanger外表式换热器surface type heat exchanger板管式换热器tube-on-sheet heat exchanger板翅式换热器plate-fin heat exchanger板式换热器plate heat exchanger螺旋板式换热器spiral plate heat exchanger平板式换热器flat plate heat exchanger顺流式换热器parallel flow heat exchanger逆流式换热器counter flow heat exchanger*流式换热器cross-flow heat echanger折流式换热器turn back flow heat exchanger直接接触式换热器direct heat exchanger旋转式换热器rotary heat exchanger刮削式换热器scraped heat exchanger热管式换热器heat pipe exchanger蓄热器recuperator壳管式换热器shell and tube heat exchanger管板tube plate可拆端盖removable head管束bundle of tube 管束尺寸size of tube bundle顺排管束in-line hank of tubes错排管束staggered hank of tubes盘管coil蛇形管serpentine coilU形管U-tube光管bare tube肋片管finned tube翅片管finned tube肋管finned tube肋管束finned tube bundle肋片fin套片plate fin螺旋肋spiral fin整体肋integral fin纵向肋longitudinal fin钢丝肋wire fin内肋inner fin肋片管尺寸size of fin tube肋片厚度fin thickness肋距spacing of fin肋片数pitch of fin肋片长度finned length肋片高度finned height肋效率fin efficiency换热面积heat exchange surface传热面积heat exchange surface冷却面积cooling surface加热外表heat exchange surface基外表primary surface扩展外表extended surface肋化外表finned surface迎风外表face area流通外表flow area净截面积net area;effective sectional area迎风面流速face velocity净截面流速air velocity at net area迎风面质量流速face velocity of mass净截面质量流速mass velocity at net area冷〔热〕媒有效流通面积effective area for cooling or heating medium冷〔热〕媒流速velocity of cooling or heating medium干工况dry condition;sensible cooling condition 湿工况wet condition;dehumidifying condition接触系数contact factor旁通系数bypass factor换热效率系数coefficient of heat transmission effectiveness盘管风阻力air pressure drop of coil;air resistance of coil盘管水阻力pressure drop of cooling or heating medium外表冷却surface cooling蒸发冷却evaporating cooling冷却元件cooling element涡流管制冷英语涡流制冷效应vortex refrigerating effect兰克-赫尔胥效应Ranque-Hilsch effect涡流管制冷vortex tube refrigeration涡流管vortex tube兰克管Ranque tube膨胀喷嘴expansion injector涡流室vortex device别离孔板separation orifice调节阀control valve膨胀压力比expansion pressure ratio冷气流分量cold gas fraction热气流分量hot gas fraction冷却效应cooling effect加热效应heating effect冷却效率cooling efficiency磁制冷英语磁热效应magnetocaloric effect磁制冷magnetic refrigeration磁制冷机magnetic refrigerating machine磁冰箱magnetic refrigerator压缩机制冷系统及机组制冷系统refrigeration system制冷机refrigerating machine机械压缩制冷系统mechanical compression refrigeration system蒸气压缩制冷系统vapour compression refrigeration system压缩式系统compression system压缩机compressor制冷压缩机refrigerating compressor,refrigerant compressor吸气端suction end排气端discharge end低压侧low pressure side高压侧high pressure side蒸发压力evaporating pressure 吸气压力suction pressure,back pressure排气压力discharge pressure蒸发温度evaporating temperature冷凝压力condensing pressure冷凝温度condensing temperature吸气温度suction temperature回气温度back temperature排气温度discharge temperature压缩比compression ratio双效压缩dual compression单级压缩single-stage compression双级压缩compound compression多级压缩multistage compression压缩级compression stage低压级low pressure stage高压级high pressure stage中间压力intermediate pressure中间冷却intercooling多级膨胀multistage expansion湿压缩wet compression干压缩dry compression制冷系统refrigerating system机械制冷系统mechanical refrigerating system氟利昂制冷系统freon refrigerating system氨制冷系统ammonia refrigerating system压缩式制冷系统compression refrigerating system 单级压缩制冷系统single-stage compression refrigeration system双级压缩制冷系统two-stage compression refrigeration system多级制冷系统multistage refrigerating system复叠式制冷系统cascade refrigerating system混合制冷剂复叠系统mixed refrigerant cascade集中制冷系统central refrigerating plant直接制冷系统direct refrigeration system直接膨胀供液制冷系统refrigeration system with supply liqiud direct expansion重力供液制冷系统refrigeration system with supply liquid refrigerant for the evaporator by gravity液泵供液制冷系统refrigeration system with supply liquid refrigerant for evaporator by liquid pump间接制冷系统indirect refrigeration system融霜系统defrosting system热气融霜系统defrosting system by superheated vapour电热融霜系统eletrothermal defrosting system制冷系统故障breakdown of the refrigeratingsystem冰堵freeze-up冰塞ice plug脏堵filth blockage油堵greasy blockage液击〔冲缸、敲缸〕slugging湿行程wet stroke镀铜现象appearance of copper-plating烧毁burn-out倒霜frost back制冷机组refrigerating unit压缩机组compressor unit开启式压缩机组open type compresssor unit开启式压缩机open type compressor半封闭式压缩机组semihermetic compressor unit 半封闭式压缩机semihermetic compressor全封闭式压缩机组hermetically sealed compressor unit全封闭式压缩机hermetically sealed compressor压缩冷凝机组condensing unit全封闭式压缩冷凝机组hermetically sealed condensing unit半封闭式压缩冷凝机组semihermetically sealed condensing unit开启式压缩冷凝机组open type compressor condensing unit工业用压缩冷凝机组industrial condensing unit商业用压缩冷凝机组commercial condensing unit 整马力压缩冷凝机组integral horsepower condensing unit分马力压缩冷凝机组fractional horsepower condensing unit跨式制冷机组straddle refrigerating unit容积式压缩机及零部件英语容积式压缩机positive displacement compressor往复式压缩机〔活塞式压缩机〕reciprocating compressor回转式压缩机rotary compressor滑片式压缩机sliding vane compressor单滑片回转式压缩机single vane rotary compressor滚动转子式压缩机rolling rotor compressor三角转子式压缩机triangle rotor compressor多滑片回转式压缩机multi-vane rotary compressor 滑片blade旋转活塞式压缩机rolling piston compressor 涡旋式压缩机scroll compressor涡旋盘scroll固定涡旋盘stationary scroll,fixed scroll驱动涡旋盘driven scroll,orbiting scroll斜盘式压缩机〔摇盘式压缩机〕swash plate compressor斜盘swash plate摇盘wobble plate螺杆式压缩机screw compressor单螺杆压缩机single screw compressor阴转子female rotor阳转子male rotor主转子main rotor闸转子gate rotor无油压缩机oil free compressor膜式压缩机diaphragm compressor活塞式压缩机reciprocating compressor单作用压缩机single acting compressor双作用压缩机double acting compressor双效压缩机dual effect compressor双缸压缩机twin cylinder compressor闭式曲轴箱压缩机closed crankcase compressor开式曲轴箱压缩机open crankcase compressor顺流式压缩机uniflow compressor逆流式压缩机return flow compressor干活塞式压缩机dry piston compressor双级压缩机compund compressor多级压缩机multistage compressor差动活塞式压缩机stepped piston compound compressor,differential piston compressor串轴式压缩机tandem compressor,dual compressor截止阀line valve,stop valve排气截止阀discharge line valve吸气截止阀suction line valve局部负荷旁通口partial duty port能量调节器energy regulator容量控制滑阀capacity control slide valve容量控制器capacity control消声器muffler联轴节coupling曲轴箱crankcase曲轴箱加热器crankcase heater轴封crankcase seal,shaft seal填料盒stuffing box轴封填料shaft packing机械密封mechanical seal波纹管密封bellows seal转动密封rotary seal迷宫密封labyrinth seal轴承bearing滑动轴承sleeve bearing偏心环eccentric strap滚珠轴承ball bearing滚柱轴承roller bearing滚针轴承needle bearing止推轴承thrust bearing外轴承pedestal bearing臼形轴承footstep bearing轴承箱bearing housing止推盘thrust collar偏心销eccentric pin曲轴平衡块crankshaft counterweight,crankshaft balance weight曲柄轴crankaxle偏心轴eccentric type crankshaft曲拐轴crankthrow type crankshaft连杆connecting rod连杆大头crank pin end连杆小头piston pin end曲轴crankshaft主轴颈main journal曲柄crank arm,crank shaft曲柄销crank pin曲拐crank throw曲拐机构crank-toggle阀盘valve disc阀杆valve stem阀座valve seat阀板valve plate阀盖valve cage阀罩valve cover阀升程限制器valve lift guard阀升程valve lift阀孔valve port吸气口suction inlet压缩机气阀compressor valve吸气阀suction valve排气阀delivery valve圆盘阀disc valve环片阀ring plate valve簧片阀reed valve舌状阀cantilever valve条状阀beam valve 提升阀poppet valve菌状阀mushroom valve杯状阀tulip valve缸径cylinder bore余隙容积clearance volume附加余隙〔补充余隙〕clearance pocket活塞排量swept volume,piston displacement理论排量theoretical displacement实际排量actual displacement实际输气量actual displacement,actual output of gas气缸工作容积working volume of the cylinder活塞行程容积piston displacement气缸cylinder气缸体cylinder block气缸壁cylinder wall水冷套water cooled jacket气缸盖〔气缸头〕cylinder head平安盖〔假盖〕safety head假盖false head活塞环piston ring气环sealing ring刮油环scraper ring油环scrape ring活塞销piston pin活塞piston活塞行程piston stroke吸气行程suction stroke膨胀行程expansion stroke压缩行程compression stroke排气行程discharge stroke升压压缩机booster compressor立式压缩机vertical compressor卧式压缩机horizontal compressor角度式压缩机angular type compressor对称平衡型压缩机symmetrically balanced type compress吸收式制冷机英语吸收式制冷机absorption refrigerating machine吸收式制冷系统absorption refrigerating system间歇式吸收系统intermittent absoprtion system连续循环吸收式系统continuous cycle absorption system固体吸收式制冷solid absorption refrigeration氨-水吸收式制冷机ammonia/water absorption refrigerating machine单级氨-水吸收式制冷机single stage ammonia/water absorption refrigerating machine 多级氨-水吸收式制冷机multistage ammonia/water absorption refrigerating machine 双级氨-水吸收式制冷机ammonia/water absorption refrigerating machine with two stage absorption process双级发生和双级吸收式氨-水制冷机ammonia/water absorption refrigerating machine with two stage generation and absoprtion process 分解decomposition水解hydrolysis扩散diffusion能量增强剂energy booster缓蚀剂anticorrsive发生缺乏incomplete boiling吸收缺乏incomplete absorption喷淋密度sprinkle density溴化锂lithium bromide溴化锂水溶液aqueous solution of lithium bromide 氨水溶液aqueous solution of ammonia吸收剂absorbent,absorbing agent吸附剂adsorbent溶液solution浓度concentration溶解度solubility溶剂solvent溶质solute浓溶液rich solution,concentrated solution稀溶液weak solution,diluted solution溶液分压partial pressure of liquor吸收absorption吸附adsorption吸收式制冷absorption refrigeration吸附式制冷adsorption refrigeration工质对working substance热力系数heat ratio放气范围deflation ratio焓-浓度图enthalpy concentration chart溴化锂吸收式制冷机lithiumbromide absorption refrigerating machine单效型溴化锂吸收式制冷机single-effect lithiumbromide absorption refrigerating machine两效型溴化锂吸收式制冷机double-effect lithiumbromide absorption refrigerating machine单筒型溴化锂吸收式制冷机one-shell lithiumbromide absorption refrigerating machine 双筒型溴化锂吸收式制冷机two-shell lithiumbromide absorption refrigerating machine三筒型溴化锂吸收式制冷机three-shell lithiumbromide absorption refrigerating machine两级溴化锂吸收式制冷机two-stage lithiumbromide absorption refrigerating machine直燃式溴化锂吸收式制冷机direct-fired lithiumbormide absorption refrigerating machine 溴化锂吸收式冷温水机组lithiumbromide absorption water heater chiller无泵型溴化锂吸收式制冷机lithiumbromide absorption refrigerating machine with bubble pump 蒸汽型吸收式制冷机steam operated absorption refrigerating machine热水型吸收式制冷机hot water operated absorption refrigerating machine发生器generator沉浸式发生器submerged generator喷淋式发生器spray-type generator立式降膜式发生器vertical falling film generator直燃式发生器direct-fired generator高压发生器high pressure generator低压发生器low pressure generator吸收器absorber喷淋式吸收器spray absorber降膜式吸收器falling film absorber立式降膜式吸收器vertical falling film absorber卧式降膜式吸收器horizontal falling film absorber 喷淋装置spray system溶液换热器solution heat exchanger溶晶管anti-crystallinic pipe抽气装置purging system精馏器rectifier屏蔽泵shield pump发生器泵generator pump吸收器泵absorber pump蒸发器泵evaporator pump溶液泵solution pump氨水泵aqua-ammonia pump混合阀mixing valve太阳能制冷与供热英语太阳能solar energy太阳常数solar constant太阳能系统solar energy system被动式太阳能系统passive solar energy system主动式太阳能系统active solar energy system混合式太阳能系统hybrid solar energy system太阳能制冷solar cooling太阳能热机驱动制冷solarpowered cooling太阳能吸收式制冷机solar absorption refrigerating machine光-热转换制冷photothermal refrigeration光-电转换制冷photoelectrical refrigeration太阳能蒸汽喷射制冷机solar steam jet refrigerating machine连续式太阳能吸收式制冷机continual solar absorption refrigerating machine间歇式太阳能吸收式制冷机intermittent solar absorption refrigerating machine敞开式太阳能吸收式制冷机open solar absorption refrigerating machine太阳能空调装置solar air-conditioning system太阳能制冷系统solar energy cooling system,solar cooling system太阳能集热器solar collector选择式吸收外表selective absorber surface电淀积electrodeposition平板型太阳能集热器flat plate solar collector真空管太阳能集热器tubular solar collector,vacuum tube collector聚光型太阳能机热器focus solar collector集热量heat-collecting capacity集热温度heat-collecting temperature集热效率heat-collecting efficiency蓄热介质heat storge medium岩石蓄热容器rock storge container辅助热源supplementary heat source太阳能贮存系统solar energy storge system太阳能供热系统solar heating system,solar space heating installation自然循环闭式供水系统natural convection closed water system强制循环闭式供水系统forced convection in a closed water system热风供热系统warm air heating system家用太阳能热水系统solar domestic water heating system热管与余热制冷英语热管heat pipe深冷热管cryogenic heat pipe低温热管low temperature heat pipe中温热管moderate temperature heat pipe 高温热管liquid metal heat pipe管芯wick相容性compatibility传热极限heat transport limitation重力热管gravity assisted heat pipe热管换热器heat pipe exchanger深冷热管手术器heat pipe surgery cryoprobe余热exhaust heat低温余热low temperature exhaust heat余热制冷utilizing waste heat for refrigeration氟利昂透平freon turbine氟利昂透平离心式制冷机centrifugal refrigerating machine driven by freon turbine动力-制冷循环power/refrigeration cycle透平压缩机及零部件英语涡流swirl叶片颤振blade flutter叶片通过频率blade passing frequency喘振surging脱流stall叶轮反响度(反作用度) impeller reaction叶轮impeller半开式叶轮unshrouded impeller闭式叶轮shrouded impeller叶片blade,vane导流叶片组件pre-rotary vane assembly扩压器diffuser蜗壳scroll滑动slip透平压缩机turbocompressor离心式压缩机centrifugal compressor轴流式压缩机axial flow compressor刚性轴离心式压缩机stiff-shaft centrifugal compressor挠性轴离心式压缩机flexibleshaft centrifugal compressor亚音速压缩机subsonic compressor超音速压缩机supersonic compressor冷却塔英语自然通风式冷却塔atmpspheric cooling tower,natural draught cooling tower机械通风式冷水塔mechanical draught cooling tower吸风式冷水塔induced draught cooling tower送风式冷水塔forced draught cooling tower水膜式冷水塔film cooling tower水滴式冷水塔drop cooling tower喷雾式冷水塔spray cooling tower拉西环Rasching rings温度接近值approach水垢scale水垢抑制剂scale inhibitor藻类algae防藻剂algaecide淀渣slime升压阀back-up valve冷水塔water cooling tower,cooling tower凉水塔water cooling tower,cooling tower冷却塔water cooling tower,cooling tower喷水池spray pond干式冷水塔dry cooling tower湿-干式冷水塔wet-dry cooling tower冷水塔填料packing of cooling tower,fill of cooling tower膜式填料film packing帘栅形填料grid packing,grid fill片式填料plate packing,plate fill松散填料random packing,random fill飞溅式填料splash packing空气压缩制冷系统英语空气循环制冷air-cycle refrigeration空气循环制冷机air-cycle refrigerating machine涡轮冷却器turbine cooler温降temperature drops开式循环open cycle闭式循环closed cycle除水water elimination补气air supply回热式空气制冷循环regenerative air cycle飞机座舱空调系统aircraft air-conditioning system 增压式飞机空调系统"Bootstrap" system冲压空气ram air制冷系统自动调节流量调节flow regulation制冷剂控制器refrigerant control膨胀阀expansion valve节流阀throttle valve热力膨胀阀thermostatic expansion valve热电膨胀阀thermal electric expansion valve内平衡热力膨胀阀internal equalizer thermostaice expansion valve外平衡热力膨胀阀external equalizer thermostaice expansion valve外平衡管external equalizer pipe内平衡管internal equalizer pipe蒸发器阻力损失pressure drop of evaporator同工质充注same material charge交*充注cross charge吸附充注absorptive charge气体充注gas charge膨胀阀过热度superheat degree of expansion valve 过热温度调节superheat temperature regulation膨胀阀容量expansion valve capacity手动膨胀阀hand expansion valve自动膨胀阀automatic expansion valve浮球调节阀float regulation valve浮球阀float valve低压浮球阀low pressure float valve高压浮球阀high pressure float valve流量调节flow regualation制冷剂控制器refrigerant control膨胀阀expansion valve节流阀throttle valve热力膨胀阀thermostatic expansion valve热电膨胀阀thermal electric expansion valve内平衡热力膨胀阀internal equalizer thermostaice expansion valve外平衡热力膨胀阀external equalizer thermostaice expansion valve外平衡管external equalizer pipe内平衡管internal equalizer pipe蒸发器阻力损失pressure drop of evaporator同工质充注same material charge交*充注cross charge吸附充注absorptive charge气体充注gas charge膨胀阀过热度superheat degree of expansion valve 过热温度调节superheat temperature regulation膨胀阀容量expansion valve capacity手动膨胀阀hand expansion valve自动膨胀阀automatic expansion valve浮球调节阀float regulation valve浮球阀float valve低压浮球阀low pressure float valve高压浮球阀high pressure float valve恒压膨胀阀constant pressure expansion valve能量调节capacity regulator单机能量调节capacity regulation of single unit卸载能量调节capacity regulation of load drainage 程序指令式能量调节系统capacity regulation system of program order电磁阀solenoid valve电磁滑阀magnetic slide valve三通电磁阀three way magnetic valve蒸汽喷射式制冷系统英语蒸汽喷射制冷steam jet refrigeration蒸汽喷射制冷机steam-jet refrigerating machine蒸发式蒸汽喷射制冷机evaporation-type steam jet refrigeration machine混合式蒸汽喷射制冷机contact-type steam jet refrigerating machine蒸汽喷射制冷系统steam jet refrigerating system 蒸汽喷射器steam ejector主喷射器main ejector辅助喷射器auxiliary ejector喷射系数jet coefficient主冷凝器main condenser辅助冷凝器auxiliary condenser多效蒸发multieffective evaporation高位安装high-level installation低位安装low-level installation上下位安装high-low-level installation臭氧层保护英语臭氧ozone臭氧层ozonesphere,ozone layer臭氧层破坏ozonesphere depletion,ozonesphere disturbance消耗臭氧层物质ozone depleting substances〔ODS〕禁用制冷剂forbidden refrigerant过渡制冷剂transition refrigerant替代制冷剂substitute refrigerant自然制冷剂natural refrigerant氟利昂家族freon group全氟代烃fluorocarbon 〔FC〕氯氟烃chloroflurocarbon〔CFC〕氢氟烃hydrofluorocarbon〔HCF〕含氢氯氟烃hydrochloroflurocarbon〔HCFC〕含氢氯化烃hydrochlorocarbon〔HCC〕全氯化烃polychlorocarbon〔PCC〕哈龙Halon共沸混合物azeotropic mixture碳氢化合物hydrocarbon compound,hydrocarbon 〔HC〕臭氧消耗潜能值ozone depletion potential〔ODP〕温室效应greenhouse effect全球变暖global warming京都议定书kyoto protocol全球变暖潜能值global warming potential〔GWP〕变暖影响总当量total equivalent warming impact 〔TEWI〕寿命期气候性能life cycle climate performance 〔LCCP〕蕴含能量embodied energy不易收集的排放fugitive emissions热电制冷英语热电制冷thermoelectric refrigeration温差电制冷thermoelectric refrigeration半导体制冷semiconductor refrigeration热电效应thermoelectric effect塞贝克效应Seebeck effect珀尔帖效应Peltier effect热电制冷效应thermoelectric refrigeration effect汤姆逊效应Thomson effect焦耳效应Joule effect傅里叶效应Fourier effect温差电动势thermoelectric power塞贝克系数Seebeck coefficient优值系数figure of merit热电堆thermoelectric pile温差电堆thermoelectric pile最正确电流optimum current经济电流economic current热电半导体thermoelectric semiconductors热电材料thermoelectric material热电制冷材料thermoelectric cooling materialn型半导体n-type semiconductorsp型半导体p-type semiconductors半导体制冷器thermoelectric-refrigerating unit热电制冷器thermoelectric refrigerating unit热电空调器thermoelectric air conditioner半导体空调器thermoelectric air conditioner半导体恒温器thermoelectric thermostat半导体冷饮水器thermoelectric drinking water cooler半导体热泵thermoelectric heat pump半导体降温机thermoelectric dehumidifier低温半导体制冷器low temperature thermoelectric unit焊接式半导体制冷器soldered thermoelectric refrigerating unit粘接式半导体制冷器sticky thermoelectric refrigerating unit嵌装式半导体制冷器inlaid thermoelectric refrigerating unit复叠式半导体制冷器cascade thermoelectric refrigerating unit医用半导体制冷器medicine thermoelectric refrigerating unit盐水冷却系统开式盐水冷却系统open brine system闭式盐水系统closed brine system盐水箱brine bank盐水混合箱brine mixing tank盐水溢流箱brine return tank盐水回流箱brine return tank盐水膨胀箱brine balance tank盐水加热器brine heater盐水冷却器brine cooler盐水筒brine drum盐水集管brine header盐水泵brine pump盐水喷雾brine spray盐水喷淋brine sparge制冷暖通行业品牌中英文对照AEROFLEX “亚罗弗〞保温ALCO “艾科〞自控Alerton 雅利顿Alfa laval阿法拉伐ARMSTRONG “阿姆斯壮〞保温AUX 奥克斯BELIMO 瑞士“搏力谋〞BERONOR西班牙“北诺尔〞电加热器BILTUR 意大利“百得〞BOSIC “柏诚〞自控BROAD 远大Burnham美国“博恩汉〞锅炉CALPEDA意大利“科沛达〞水泵CARLY 法国“嘉利〞制冷配件Carrier 开利Chigo 志高Cipriani 意大利斯普莱力CLIMAVENETA意大利“克莱门特〞Copeland“谷轮〞压缩机CYRUS意大利〞赛诺思〞自控DAIKIN 大金Danfoss丹佛斯Dorin “多菱〞压缩机DUNHAM-BUSH 顿汉布什DuPont美国“杜邦〞制冷剂Dwyer 美国德威尔EBM “依必安〞风机ELIWELL意大利“伊力威〞自控EVAPCO美国“益美高〞冷却设备EVERY CONTROL意大利“美控〞Erie 怡日FRASCOLD 意大利“富士豪〞压缩机FRICO瑞典“弗瑞克〞空气幕FUJI “富士〞变频器FULTON 美国“富尔顿〞锅炉GENUIN “正野〞风机GREE 格力GREENCOOL格林柯尔GRUNDFOS “格兰富〞水泵Haier 海尔Hisense 海信HITACHI 日立Honeywell 霍尼韦尔Johnson 江森Kelon 科龙KRUGER瑞士“科禄格〞风机KU BA德国“库宝〞冷风机Liang Chi 良机LIEBERT 力博特MARLEY “马利〞冷却塔Maneurop法国“美优乐〞压缩机McQuary 麦克维尔Midea 美的MITSUBISHI三菱Munters 瑞典“蒙特〞除湿机Oventrop德国“欧文托普〞阀门Panasonic 松下RANCO “宏高〞自控REFCOMP意大利“莱富康〞压缩机RIDGID 美国“里奇〞工具RUUD美国“路德〞空调RYODEN “菱电〞冷却塔SanKen “三垦〞变频器Samsung 三星SANYO 三洋SASWELL英国森威尔Schneider 施耐德SenseAir 瑞典“森尔〞传感器SIEMENS 西门子SINKO "新晃“空调SINRO “新菱〞冷却塔STAND “思探得〞加湿器SWEP 舒瑞普TECKA “台佳〞空调Tecumseh“泰康〞压缩机TRANE 特灵TROX德国“妥思〞VASALA芬兰“维萨拉〞传感器WILO德国“威乐〞水泵WITTLER 德国〞威特〞阀门YORK 约克ZENNER德国“真兰〞计量制冷能力及计算术语英语运行工况operating conditions标准性能standard rating标准工况standard condition空调工况air conditioning condition内部条件internal conditions外部条件external conditions蓄热accumulation of heat蓄冷accumulation of cold制冰能力ice-making capacity热泵用压缩机的供热系数heat-pump compressor coefficient of performance容积效率volumetric efficiency容积输气量vulumetric displacement实际输气量actual displacement理论输气量theoretical displacement冷凝热量condenser heat过冷热量heat of subcooling过热热量superheat运转工况下的制冷量rating under working conditions标准制冷量standard rating名义工况normal conditions试验工况test conditions轴功率brake power效率efficiency指示效率indicated efficiency机械效率mechanical efficiency总效率overall efficiency制冷系数coefficient of performance 〔COP〕制冷压缩机的制冷系数refrigerating compressor coefficient of performance热力完善度thermodynamical perfectness能效比energy efficiency ratio 〔EER〕热泵供热系数heat-pump coefficient of performance空调有效显热制冷量useful sensible heat capacity of air conditioner空调有效潜热〔减湿〕制冷量useful latent heat (dehumidifyying) capacity of air conditioner空调器有效总制冷量useful total capacity of air conditioner制冷剂循环量circulating mass of refrigerant制冷剂循环容积circulating volume of refrigerant 单位压缩功compress work per mass示功图indicator diagram指示功indicated work摩擦功frictional work功率power摩擦功率frictional power指示功率indicated power理论功率idea power制冷量refrigerating capacity总制冷量gross refrigerating capacity净制冷量net refrigerating capacity单位制冷量refrigerating capacity per weighing单位容积制冷量refrigerating capacity per unit of swept volume制冷系统制冷量system refrigerating capacity单位轴功率制冷量refrigerating effect per shaft power压缩冷凝机组制冷量compressor condensing unit refrigerating capacity制冷压缩机制冷量refrigerant compressor capacity 蒸发器净制冷量net cooler refrigerating capacity制冷装置制冷装置refrigerating installation,refrigerating plant工业制冷装置industrial refrigerating plant商业制冷装置commercial refrigerating plant中心站房central station成套机组self-contained system标准安装code installation制冷回路refrigerating circuit热平衡heat balance货物负荷product load操作负荷service load设计负荷design load负荷系数load factor制冷装置试验与操作试运转commissioning吹污flush气密性试验gas-tight test,air-right test密闭容器closed container漏气air infiltration放气air vent检漏leak hunting,leak detection检漏仪leak detector卤素灯halide torch电子检漏仪electronic leak detector真空试验vacuum test试验压力test pressure工作压力operating pressure,working pressure最高工作压力highest operating pressure气密试验压力gas-tight test pressure设计压力design pressure平衡压力balance pressure充气aerate,gas charging制冷剂充注refrigerant charging首次充注initial charge保护充注holding charge,service charge制冷剂缺乏lack of refrigerant,under-charge,gas shortage缺液starveling充灌台charging board充灌量charge充注过多overcharge供液过多overfeeding制冷剂抽空pump down of refrigerant降温试验pull down test制冷[功能]试验refrigeration test卸载起动no-load starting,unloaded start卸载机构unloader闪发flash vaporization,instantaneous vaporization 闪发气体flash gas不凝性气体non condensable gas气体排除gas purging,degassing,gasoff阀针跳动hammering,needle hammer阀振荡hunting of a valve阀片跳动valve flutter,valve bounce短期循环short-cycling异常温升overheating 泄漏leak气蚀cavitation制冷剂瓶refrigerant cylinder,gas bottle检修用瓶service cylinder,gas bottle紧急泄放阀emergency-relief valve检修阀service valve平安阀pressure relief valve抽空阀pump out valve加油阀oil charge valve放油阀oil drain valve放空阀purge valve充灌阀charging valve喷液阀liquid injection valve润滑油润滑油lubricant oil冷冻机油refrigeration oil冷冻油refrigerant oil凝点condensation point闪点flash point浊点cloud point絮凝点flock point流动点pour point起泡foaming皂化saponify油泥sludge结碳carbonization制冷剂制冷剂〔制冷工质〕refrigerant高温制冷剂high temperature refrigerant低压制冷剂low pressure refrigerant中温制冷剂medium temperature refrigerant 中压制冷剂medium pressure refrigerant低温制冷剂low temperature refrigerant高压制冷剂high pressure refrigerant氟利昂freon卤化碳制冷剂halocarbo refrigerant氟利昂11 freon 11氟利昂12 freon 12氟利昂13 freon 13氟利昂14 freon 14氟利昂22 freon 22氟利昂113 freon 113氟利昂125 freon 125氟利昂134a freon 134a氟利昂152a freon 152a碳氢化合物制冷剂hydrocarbon refrigerant甲烷methane乙烷ethane丙烷propane丁烷butane异丁烷isobutane乙烯ethylene无机化合物制冷剂inorganic compund refrigerant 氨ammonia二氧化碳carbon dioxide二氧化硫sulphur dioxide干冰dry ice共沸制冷剂azeotropic mixture refrigerant氟里昂500 freon 500氟里昂501 freon 501氟里昂502 freon 502氟里昂503 freon 503氟里昂504 freon 504近共沸溶液制冷剂near azeotropic mixture refrigerant非共沸溶液制冷剂nonazeotropic mixture refrigerant蒸发器壳盘管式蒸发器shell-and-coil evaporator壳管式蒸发器shell-and-tube evaporator喷淋式蒸发器spray-type evaporator立管式蒸发器vertical-type evaporator平行管蒸发器receway coil螺旋管式蒸发器spiral tube evaporator“V〞型管蒸发器herringbone type evaporator沉浸式盘管蒸发器submerged evaporator板式蒸发器plate-type evaporator螺旋板式蒸发器spiral sheet evaporator平板式蒸发器plate-type evaporator,tube-in-sheet evaporator管板式蒸发器tube-on-sheet evaporator凹凸板式蒸发器embossed-plate evaporator吹胀式蒸发器roll-bond evaporator压焊板式蒸发器roll-bond evaporator制冰块器的蒸发器ice cube maker evaporator结冰式蒸发器ice-bank evaporator蓄冰式蒸发器ice-bank evaporator结霜蒸发器frosting evaporator除霜蒸发器defrosting evaporator无霜蒸发器nonfrosting evaporator强制通风蒸发器forced circulation evaporator 冷液式蒸发器liquid cooling evaporator封套式蒸发器wrap-round evaporator蒸发器evaporator直接冷却式蒸发器direct evaporator直接式蒸发器direct evaporator间接冷却式蒸发器indirect cooled evaporator间接式蒸发器indirect evaporator干式蒸发器dry expansion evaporator满液式蒸发器flooded evaporator再循环式蒸发器recirculation-type evaporator强制循环式蒸发器pump-feed evaporator冷凝器英语冷凝器condenser冷凝液condensate空冷式冷凝器air-cooled condenser风冷式冷凝器air-cooled condenser自然对流空冷式冷凝器natural convecton air-cooled condenser强制通风式冷凝器forced draught condenser冷凝风机condensate fan线绕式冷凝器wire and tube condenser水冷式冷凝器water-cooled condenser沉浸式盘管冷凝器submerged coil condenser套管式冷凝器double pipe condenser壳管式冷凝器shell and tube condenser组合式冷凝器multishell condenser卧式壳管式冷凝器closed shell and tube condenser 卧式冷凝器closed condenser立式壳管式冷凝器open shell and tube condenser 立式冷凝器open condenser,vertical condenser 壳盘管式冷凝器shell and coil condenser分隔式冷凝器split condenser淋激式冷凝器atmospheric condenser溢流式冷凝器bleeder-type condenser蒸发式冷凝器evaporative condenser板式冷凝器plate-type condenser空冷板式冷凝器air-cooled plate-type condenser 水冷板式冷凝器water-cooled plate-type condenser焊接板式冷凝器welded sheet condenser螺旋板式冷凝器spiral sheet condenser冷凝-贮液器condenser-receiver混合式冷凝器barometric condenser液化器liquefier冷凝水泵condensate pump冷凝器梳condensate comb。
精馏

127 3.2DistillationSven Steinigeweg and Jürgen Gmehling3.2.1IntroductionA typical chemical process can be roughly divided in preparation, reaction, and separation steps. Although the reaction is the heart of the chemical process, the separation step often accounts for about 60–80% of the total costs.The separation step most commonly used in industrial practice is distillation. Although distillation and evaporation are rather mature technologies, which have been used by humankind for about 2000 years, recent developments have contri-buted to enhanced distillation processes with regard to consumption of resources.The principle of distillation is the use of differences in volatilities of the compo-nents to be separated. Distillation processes are usually carried out in countercur-rent mode in multistage units. The differences that can be obtained in concentra-tions of the components in the vapor and liquid phases are determined by the va-por–liquid equilibrium (VLE). Until the 1970s reliable data for vapor–liquid equili-bria could only be obtained by measurement, which, for a mixture containing more than two components, required a large number of time-consuming measure-ments. Advances in chemical thermodynamics have resulted in methods activity coefficient models (g E models or equations of state) for the calculation of the phase-equilibrium behavior of multicomponent mixtures on the basis of binary sub-systems. In the case that no information about the binary subsystems is available, predictive methods (group contribution methods) are available to allow estimationof the required phase equilibria.According to the second law of thermodynamics, separating a mixture is a less favored process than mixing. The main costs of distillation units are usually ener-gy costs. Hence, the most important focus for designing sustainable distillation processes is the minimization of energy consumption. The most important ad-vantage of distillation in comparison with several other thermal separation tech-nologies (e.g. absorption, adsorption, extraction) is the use of energy as the agentfor separation, since energy can easily be added or be removed from the system. Other techniques, such as extraction, use a mass separating agent. This requires Green Separation Processes. Edited by C.A.M. Afonso and J.G. CrespoCopyright © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN 3-527-30985-33.2Distillation128the addition of a further component (e.g. a solvent), which has to be regenerated.A further advantage of distillation is that the density of the involved f luid phasesare very different. Nowadays, synthesis and design of separation processes are usu-ally carried out not only according to economic factors but also taking environ-mental considerations into account (Kheawhom and Hirao, 2004).3.2.2Phase EquilibriaAccording to the twelve principles of Green Chemistry introduced by Anastas et al.(1998) minimizing waste and optimizing energy requirements are essential for a sustainable development of chemical processes. This leads to a demand for a dis-tinct knowledge and reliable calculation of the VLE. The principle of distillation and evaporation is that the most volatile component is enriched in the vapor pha-se. Reliable calculation of the VLE behavior is therefore a crucial step for the design and optimization of distillation processes. Calculating the phase equilibrium me-ans to answer the question: What are the concentrations and the pressure in the va-por phase at given liquid phase concentrations and temperature under the condi-tion that both phases are in equilibrium? The number of phases is not limited to two. In cases of hetero-azeotropic mixtures there will be two liquid phases besides the vapor phase.3.2.2.1Calculation of Vapor-liquid EquilibriaCalculation of phase equilibria is based on thermodynamics of mixtures (Gmeh-ling and Kolbe, 1992; Gmehling and Brehm, 1996; Gmehling et al., 2004). Accor-ding to Gibbs, two or more phases are in equilibrium when the chemical potenti-als are the same in all phases. Lewis proposed to use fugacities instead of chemical potentials. Fugacities correspond to partial pressures for non-associating mixtures at low pressures. Phase equilibrium exists when the fugacities of the different components are the same in the different phases. This means that for VLE the fol-lowing conditions have to be fulfilled:f i V= f i L(1)T V= T L(2) P V= P L(3) For the calculation of VLE it is necessary to relate the fugacity to measurable pa-rameters, such as concentration, temperature and pressure. Therefore auxiliary quantities are introduced: the fugacity coefficient ϕi and the activity coefficient γi which are defined for liquid and vapor phase as follows:129(4)(5)The activity coefficient is defined as:(6)f i 0is the standard fugacity which can be chosen arbitrarily. Combining the defi-nitions of the activity coefficient and the fugacity coefficient with the phase-equili-brium condition leads to two routes for the calculation of VLE:Route Ax i ϕi L = y i ϕi V (7)Route B x i γi f i 0= y i ϕi V P(8)Experimental data necessary to describe this behavior are available in large com-puterized data bases (e.g. Dortmund Data Bank, DDB). A small part of the data is also published in data collections (Gmehling et al ., 1977; Sørensen et al., 1979;Gmehling et al., 1986; Gmehling et al., 1988; Gmehling et al., 2004;). Both routes allow the calculation of VLE (see Chapter 3.2.2.1, Sections 3.2.2.1.1 and 3.2.2.1.2)for multicomponent systems when the behavior of the binary subsystems is known.Route A requires an equation of state and sophisticated mixing rules for calcula-ting the fugacity coefficient for both the vapor and the liquid phase. The advantage of using equations of state is that other information (e.g. molar heat capacities, den-sities, enthalpies, heats of vaporization), which is necessary for designing and op-timizing a sustainable distillation process, is also obtained at the same time.Besides the standard fugacity, Route B needs a model for calculating the activity coefficient. The fugacity of the pure liquid at system pressure and system tempe-rature is usually chosen as the standard fugacity. Therefore, standard fugacity is de-fined as(9)This requires a knowledge of the saturation vapor pressure, which is usually cal-culated from the Antoine equation with the Antoine constants A, B and C and the absolute temperature T :(10)Antoine constants (A ,B ,C ) for a few thousand compounds can be found in com-prehensive databases (e.g. the DDB). In order to account for the pressure depen-dence of the standard fugacity and the resulting deviations between system pres-sure and vapor pressure the Poynting correction Poy i is introduced:log s P A BT C =−+f f i i i 0==⋅s s s P ϕi γi ii i f x f ≡0ϕi i i ii f y f p V V V ≡=P ϕi i i f x L ≡L P3.2.2Phase equilibria130(11)Hence the VLE is given by:(12)Under the condition that system pressure and saturation pressure are of the sa-me order of magnitude the Poynting factor Poy i is close to unity and can be ne-glected. Furthermore, for compounds that do not associate strongly the fugacity coefficient in the vapor phase is nearly identical with the saturation fugacity coef-ficient.This leads to the simplified equation for VLE calculations:(13)Neglecting the activity coefficient and hence assuming ideal behavior of the mix-ture leads to Raoult’s law.According to Eqs. (7), (8) and (13), partition coefficients K i and separation factors αij can be calculated from the following equations:Route A (14)Route B (15)3.2.2.1.1Using Activity-Coefficient ModelsIn addition to calculation of the saturation vapor pressure, a model for calculating the activity coefficient is required. The activity coefficient depends on concentra-tion, and also on pressure and temperature. These dependences can be related to partial molar excess enthalpies and partial molar excess volumes:(16)(17)For distillation processes the pressure dependence can usually be neglected whe-reas the temperature dependence has to be taken into account to develop and opti-mize sustainable and resource-saving processes.It is nearly impossible to find experimental VLE data for multicomponent sys-tems. Most published data relates to binary systems. Therefore, it is most impor-tant to calculate the activity coefficient for multicomponent systems from know-∂γln E i T x i P v RT ⎛⎝⎜⎞⎠⎟=,∂γ∂ln ()E i P x i T h R1/,⎛⎝⎜⎞⎠⎟=K P P K K i i i ij i j =≡γαs i ii i i i j K y x K K ≡=≡L V ϕϕαij x P y P i i i i γs =x P y P i i i i i i i γϕϕs s V Poy =f P P v P P RT P i i i i i i i i 0s s L s s s exp Poy ()()=−=ϕϕ3.2Distillation131ledge of the binary subsystems. The concept of local composition introduced by Wilson (Wilson, 1964) leads to a number of models, which allow the calculation of activity coefficients for multicomponent systems using only binary parameters.The most commonly used methods are the Wilson (Wilson, 1964), NRTL (Renon and Prausnitz, 1968), or UNIQUAC (Abrams and Prausnitz, 1975) models. All the-se models only need two binary interaction parameters, which are obtained by fit-ting them to experimental VLE data. The NRTL equation uses a non-randomness parameter as a further adjustable parameter. In addition, Wilson and UNIQUAC equations require pure component data (respectively molar volumes and relative van der Waals properties). In contrast to the Wilson model, UNIQUAC and NRTL methods are also applicable to liquid–liquid equilibria. Details about the equations can be found in literature (Gmehling and Brehm, 1996; Gmehling and Kolbe,1992). If no experimental data are available, the required activity coefficients can be predicted by so-called group contribution methods. The great advantage of these methods is that the number of different functional groups is much smaller than the number of different molecules. In group contribution methods a molecule is divided into several functional groups as can be seen in Fig. 3.2-1 (e.g. ethanol can be subdivided into a CH 3group, an OH group and a CH 2group).Group interaction parameters are determined by fitting them to a large number of experimental phase equilibrium data. The required activity coefficients can then be predicted by dividing the molecules into their functional groups and calculating the required activity coefficients via group interaction parameters. Examples for group contribution methods, which are applied widely are ASOG (Kojima and To-chigi, 1979) or UNIFAC (Fredenslund et al., 1977). However, for highly diluted mix-tures, asymmetric systems and heats of mixing UNIFAC did not show satisfactory results. This is not surprising since the group interaction parameters are obtained by fitting experimental VLE data in a concentration range between 5 and 95%. To overcome these limitations, temperature-dependent group interaction parameters and a modified combinatorial part was introduced leading to modified UNIFAC (Weidlich and Gmehling, 1987; Gmehling et al ., 2002). Parameters for modified3.2.2Phase equilibria Fig. 3.2-1Group contribution concept.132UNIFAC are obtained by fitting them simultaneously to all consistent data stored in the DDB database (VLE, h E , γ∞, …).3.2.2.1.2Using Equations of State (EOS) for VLE CalculationsAs mentioned above, the use of equations of state for VLE calculations has distinct advantages compared to the alternative route. However, an equation of state has to be used that is able to describe the PVT behavior for both the liquid and the vapor phase.Most commonly used are further developments of the cubic van der Waals EOS.This EOS for the first time allowed the description of different phenomena,such as condensation, vaporization, occurrence of the two-phase region and criti-cal phenomena, using only two parameters a and b which take into account the interaction forces between the molecules and the volume of the molecules. The in-troduction of a further parameter, the acentric factor ω, which can be derived from vapor pressure data, leads to a more reliable description of the saturation vapor pressures.In practice, the most commonly used EOSs are the Soave–Redlich–Kwong equa-tion and the Peng–Robinson equation. These equations were developed for pure components only. Applying these models to multicomponent systems requires mi-xing rules for the calculation of the parameters a and b in the mixture. These para-meters have to be calculated from the pure component parameters a ii and b i .Simple empirical mixing and combination rules often used are given in Eqs.(18)–(20):(18)(19)with (20)The required parameters k ij are fitted to experimental binary VLE data. However,problems with this empirical mixing rules arise for highly polar or associating mix-tures. g E mixing rules as introduced by Huron and Vidal (1979) lead to an impro-ved description of these systems. These types of mixing rules include g E , which can be calculated from a g E model like UNIQUAC.The group contribution concept was combined with cubic EOSs leading to a group contribution equation of state which is capable of predicting the VLE beha-vior of systems with sub- and supercritical compounds. The PSRK model (predic-tive Soave–Redlich–Kwong) developed by Holderbaum and Gmehling (1991) uses a g E mixing rule with original UNIFAC for calculating the required g E -values. Alt-hough PSRK provides good results, some weaknesses caused by the Soave–Red-lich–Kwong equation and original UNIFAC are left. The introduction of a volume-translated group contribution equation of state based on the Peng–Robinson mo-del (VTPR) in combination with g E mixing rules based on modified UNIFAC leadsa a a k ij ii jj ij =−()1a z z a i j ij j i =∑∑b z b i i =∑3.2Distillation133to a highly sophisticated model which has been successfully applied to a wide va-riety of systems including polymers and electrolytes (Ahlers and Gmehling, 2001).Figure 3.2-2 shows a comparison of experimental and predicted data for alkane–ke-tone systems for different phase equilibrium data and excess properties (VLE, SLE,h E , azeotropic data, γ∞) using VTPR and modified UNIFAC.3.2.2.1.3AzeotropyOwing to the non-ideality of binary or multicomponent mixtures, the liquid phase composition is often identical with the vapor phase composition. This point is cal-led an azeotrope and the corresponding composition is called the azeotropic com-position. An azeotrope can not be circumvented by conventional distillation since no enrichment of the low-boiling component can be achieved in the vapor phase.Separating azeotropic mixtures therefore requires special processes, e.g. azeotropic or extractive distillation or pressure swing distillation. Azeotropic information is available in literature (Gmehling et al., 2004).For a better understanding of the separation of multicomponent mixtures, the application of residue curves is helpful. Residue curves were introduced by Schrei-nemakers in 1901 (Schreinemakers, 1901a, 1901b) and are applied to distillation processes by Doherty and coworkers (Doherty and Malone, 2001). Residue curves describe the change of composition in the reboiler over time for open vaporization.3.2.2Phase equilibria Fig. 3.2-2Typical results for modified UNIFAC (- - - -) and theVTPR- model (⎯⎯) for different alkane–ketone systems.134They can be calculated by integration of the differential equations taking into ac-count the vapor–liquid equilibrium behavior. Details can be found in Doherty andMalone (2001). Residue curves can be related to the composition profile along a dis-tillation column working at infinite ref lux and can therefore be used to estimate if the desired purities can be achieved. Residue curve maps can also be used to iden-tify different bottom and top products depending on the feed composition, and hence are valuable tools for designing separation processes. Figure 3.2-3 shows the residue curve maps for two ternary systems. Whereas the system benzene–N -me-thyl pyrrolidone (NMP)–cyclohexane shows only one binary and no ternary azeo-trope the system chloroform–acetone–methanol shows strongly non-ideal behavior with four azeotropes, three binary and one ternary, and separation boundaries that cannot be circumvented by ordinary distillation. The direction of the residue cur-ves, indicated by the arrows, points to the heavy boiler (the bottom product of a dis-tillation column).3.2.2.2Calculation of Distillation ProcessesDeveloping distillation processes that require a minimum in energy, provide a ma-ximum in safety and lead to products with high purity, which is mandatory for a green process, requires detailed calculations of the distillation columns.Industrial-scale distillation processes are carried out in distillation columns. The main parts of the columns are “internals”, contacting devices that ensure an in-tense contact between liquid and vapor phase. In practice two different contacting devices are used: trays and packings. Usually one separation stage as realized in an evaporation process is not enough to reach the desired purity. Distillation columns combine several separation stages. On each theoretical stage of a distillation co-lumn VLE is reached. The vapor phase will be condensed on the stage above. The best separation will be realized when liquid and vapor phase f low countercurrent-ly inside the column. Therefore a part of the distillate has to be recycled into the co-3.2DistillationFig. 3.2-3Distillation lines for two selected ternary systems.135lumn (ref lux) to ensure a liquid f low inside the column. The ref lux ratio is defi-ned as the ratio of the amount of liquid recycled and the amount of distillate:(21)The VLE (K -factor as the. separation factor) has the most important inf luence on the number of separation stages required.Calculating the profiles in a distillation column means to solve the so-called MESH equations. These equations combine the m aterial balance, e quilibrium con-dition, s ummation condition and h eat balance which have to be solved numerical-ly:(22)(23)(24)(25)(26)In the case of reactive distillation, the MESH equations also have to account for chemical reaction (heat of reaction, change of the mole numbers by chemical reac-tion).By solving the MESH equations the required quantities (compositions in the li-quid and vapor phases, temperatures, amount of liquid and vapor f low) for every theoretical stage can be calculated.Owing to the availability of high-speed computers, short cut methods for desi-gning distillation processes (e.g. McCabe–Thiele and Ponchon–Savarit for binary systems or the equations of Fenske, Underwood and Gilliland for multicomponent mixtures, see Gmehling and Brehm, 1996 and Sattler, 2001 for details) are no lon-ger required.Modern process simulators (e.g. Aspen-Plus from AspenTech or ChemCad from Chemstations) simultaneously solve the MESH equations using algorithms based on Newton–Raphson methods (Gmehling and Brehm, 1996). However, for highly non-ideal or complex systems, modifications have been developed to enhance con-vergence behavior.Nowadays, modern computers enable the process engineer to design and opti-mize separation processes with rigorous models. Often, the main bottleneck re-maining is the availability of parameters for calculating the VLE behavior reliably.The importance of reliable parameters cannot be overemphasized. According to a recent analysis performed by Kister (2002) one of the main reasons for errors bet-ween simulations during process development and the real behavior of the distil-H j j j L j j j F j j j j L j j jj L h V h F h L S h V S h Q =++−+−++++−−˙˙˙(˙˙)(˙˙)˙,1111V L V V S x j i j x ,,=−∑1S y j i j y ,,=−∑1E i j i j i j i j y K x ,,,,=−M i j j i j j i j j i j j j i j j i jL x V y F z L S x V S y ,,,,,,˙˙˙(˙˙)(˙˙)=++−+−−++−−1111L V v L D R =˙˙ 3.2.2Phase equilibria3.2Distillation136lation column is the usage of wrong or inaccurate models and parameters for the description of the VLE behavior.The main assumption of the concept is that phase equilibrium will be reached on each separation stage. However, in distillation columns the residence time of the components is not sufficient to reach an enrichment as predicted by the VLE calculation. Kinetic aspects have to be taken into account. This can be achieved by introducing empirical factors like the Murphree efficiency (Sattler, 2001). Since the Murphree efficiency may depend on the operating conditions, a more sophistica-ted model should be used if transport effects cannot be neglected. A rate-based ap-proach allows for differences in transport coefficients for the different compo-nents. This requires detailed knowledge about the diffusivities, which can only be estimated roughly for multicomponent mixtures (Taylor and Krishna, 1993). The resulting model for calculating the column is much more complex. A rate-based approach is often used when packings are applied as contacting devices. Packings are continuous contacting devices and separation takes place along the packing height. Nevertheless, it is possible to model these columns assuming a number of theoretical stages. One meter of packing height is equivalent to a certain number of theoretical stages (NTSM value: number of theoretical stages per meter). The NTSM value depends on the operating conditions and on the components to be se-parated. The packing vendors usually supply this information, which is necessary for column design.3.2.3Distillation Processes3.2.3.1Separating Azeotropic MixturesThe most widely used technologies for separating azeotropic mixtures are extracti-ve distillation, azeotropic distillation and pressure swing distillation.Pressure swing distillation takes advantage of the pressure dependence of the azeotropic composition. Two columns operating at different pressures are used. It is readily apparent that applying pressure swing distillation demands in-depth knowledge of the VLE of the system to be separated. Since azeotropic behavior is directly related to the non-ideality of the mixture, a sophisticated model for calcu-lating activity or fugacity coefficients as well as consistent experimental data are re-quired to describe the pressure dependence of the azeotropic compositions. But the separation factor is often still close to unity indicating that a large number of theoretical stages are necessary and the need for both vacuum and higher pressu-re will demand high expenditure from the equipment point of view. Since pressu-re swing distillation requires a strongly pressure-dependent azeotropic composi-tion, the temperature dependence of the saturation vapor pressures of the compo-nents should be different as is the case of systems with organic compounds andwater. The temperature dependence of the saturation vapor pressure can be calcu-lated using the Clausius–Clapeyron equation:(27)In a case of azeotropic distillation an additional component is introduced that forms a lower boiling binary or ternary azeotrope (e.g. a hetero-azeotrope), which is easier to separate than the original azeotrope.Extractive distillation uses a selective solvent (entrainer). Here the entrainer in-f luences the ratio of the activity coefficients of the components in order to alter the separation factor far from unity. Often about 70% of the liquid phase inside the co-lumn consist of the entrainer. A typical extractive distillation process for separating aromatics (benzene) from aliphatics (cyclohexane) is show in Fig. 3.2-4.A good indication of whether or not a certain component is a suitable entrainer from the thermodynamic point of view is the selectivity at infinite dilution. On the other hand, from the point of view of green separation processes, the amount of entrainer needed has to be minimized. Hence, the entrainer should combine a high selectivity with a high capacity. To classify selectivity and capacity of an ent-rainer the selectivity and capacity at infinite dilution, S ∞ij and k i are used. The selec-tivity at infinite dilution S ∞i,j is defined as the ratio of the activity coefficients at in-finite dilution γi ∞. It can be shown that the capacity k i is also related to γi ∞:(28)S i j ij ,∞∞∞=γγd d s V L P T h T v v V =−∆()Fig. 3.2-4Extractive distillation process for the separation ofbenzene from cyclohexane using aniline as an entrainer.(29)Entrainers with high selectivities usually suffer from a low capacity and vice ver-sa, so, mixtures of entrainers are often used in industrial practice. Adding a small amount of water to N -methyl pyrrolidone (NMP) for separating aromatics from ali-phatics increases the performance of the entrainer. Water shows a good selectivity but a poor capacity whereas NMP combines a moderate selectivity with a modera-te capacity.Extractive distillation is most widely used in industrial scale for separating aro-matics from aliphatics. These processes typically use nitrogen-heterocycles as ent-rainers, such as NMP or N -formylmorpholine (NFM). Finding a suitable entrainer is a very difficult task since the inf luence of the entrainer on the activity coeffi-cients of the components to be separated has to be calculated accurately. For a rough estimation of suitable entrainers some rules of thumb have been published (Matsuyama und Nishimura, 1977). Nowadays, computer programs connected to a large electronic database and group contribution methods are available to calcula-te the inf luence of the entrainer on the activity coefficients for a large number of potential entrainers within minutes (Gmehling and Möllmann, 1998).Ionic liquids are a class of novel solvents with a melting point below 100°C and a negligible vapor pressure, which are interesting entrainers for extractive distilla-tion. Examples of ionic liquids that have been investigated with respect to their po-tential as entrainers are 1-R-3-methyl-imidazolium-bis(trif luoromethyl-sulfonyl)-imides ([RMIM]+[CF 3SO 2]2N –).This class of solvents can be regarded as designer solvents since the anions and cations can be chosen nearly independently of each other. Therefore the best pro-perties can be combined. Unfortunately, so far no thermodynamic model is availa-ble that is capable of describing the properties reliably enough. Experimental data needed to develop these models are scarce. Nevertheless, various ionic liquids ha-ve been investigated and interesting results have been published (Krummen et al .,2002).Figure 3.2-5 shows separation factors at infinite dilution αij∞with NMP and NMP–water mixtures and with various ionic liquids as possible entrainers for the separation of benzene–cyclohexane mixtures. It can be seen that the ionic liquid shows much better performance than NMP. Hence less theoretical stages are nee-ded for the separation, leading to lower energy consumption and lower demand in equipment. Conventional extractive distillation processes require an additional co-lumn for regenerating the entrainer.Except for pressure swing distillation, which makes use of the pressure depen-dence of the azeotropic composition, all technologies require an entrainer to sepa-rate azeotropic mixtures. For some systems the azeotrope vanishes at certain pres-sures. This means that ordinary distillation at a different pressure (pressure or va-cuum distillation) may circumvent the azeotrope. Although pressure swing distil-lation does not require an additional component in the process, it is not necessarily environmentally advantageous when compared to the alternatives, since additionalk i i =∞1γ。
利用数值模拟方法分析静电-旋流耦合除雾器的分离性能

利用数值模拟方法分析静电-旋流耦合除雾器的 分离性能
袁惠新1,2,*,姜水林1,2,付双成1,2,周发戚1,2,朱星茼1,2
1. 常州大学机械工程学院,常州 213000 2. 江苏省绿色过程装备重点实验室,常州 213164
第一作者:袁惠新 (1957—),男,博士,教授。研究方向:多相流与机械分离净化技术与设备。 E-mail:yuanhuixin2000@ *通信作者
()
∇ j = ∇ jp + ji = 0
(5)
式中:j 为总电流密度,A·m−2; jp为带电尘粒电流密度,A·m−2; ji为离子电流密度,A·m−2。
假设电晕放电稳定,电流连续性方程见式 (6)。联立式 (4) 和式 (6) 求解电场强度分布。而 Fluent
毛细管内气液两相流动的CFD模拟_梁晓光

2010 年 6 月 Journal of Chemical Engineering of Chinese Universities June 2010文章编号:1003-9015(2010)03-0370-06毛细管内气液两相流动的CFD模拟梁晓光, 郑扬, 许松林(天津大学化工学院制药工程系, 天津 300072)摘要:毛细管精馏是一种分离共沸物系的新型分离技术,它利用毛细管的固-液相互作用来改变液体混合物的汽液平衡。
毛细管通道内的气液两相流型在低气速时以泰勒流为主,今使用计算流体力学方法,对毛细管内泰勒流的多种影响因素,如:壁面作用、气液速率以及流体物性等进行了研究。
首先考察壁面作用的影响,发现壁面粗糙度能改变气液柱形状和流场,粗糙度增大使通道内气液两相流型由泰勒流向泡状流转变,流动状态由层流向涡流转变。
模拟不同接触角下的气液流动,发现壁面吸附作用在一定程度上影响气液柱长度和气液界面间的形状。
通过模拟不同气液速率下的气液流动,观察气液柱长度与气液速率之间的关系。
对模拟气液柱长度进行量纲分析,得到了泰勒流的气液柱长度的关联式,将该式与文献测定值进行比较,发现在一定范围内吻合较好。
关键词:毛细管精馏,气液两相流动,泰勒流,计算流体力学中图分类号:TQ021.1 文献标识码:ACFD Modelling for Gas-liquid Two Phases Taylor Flow in CapillaryLIANG Xiao-guang, ZHEN Yang, XU Song-lin(Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, TianjinUniversity, Tianjin 300072, China )Abstract: Capillary distillation is a new technology mainly used for the separation of the binary azeotropic liquid mixtures. It utilizes the solid-liquid interfacial forces to change vapor-liquid equilibrium inside the capillary porous media. Under low gas velocity, the flow pattern in a capillary channel is typically the so-called Taylor flow regime. A computational fluid dynamics package FLUENT was adopted for simulation of the effects including wall function, fluid velocities and physical properties on gas-liquid two-phase Taylor flow in a Y-junction capillary. Firstly, wall roughness was found to be able to change the shape of slugs and flow field in the capillary. With the increase of wall roughness, gas-liquid two-phase flow regimes in the capillary change from Taylor flow into bubble flow, and the flow field from laminar flow into turbulent flow. Then by calculating gas-liquid flow under various contact angles, it can be found that wall surface adhesion can affect slug length and the shape of gas-liquid interface to a certain degree. Meanwhile, by calculating gas-liquid two phases flow under various gas and liquid velocities, the relationship between slug length and gas/liquid superficial velocities was obtained. Finally, using dimensional analysis and regression calculation to deal with gas and liquid slug lengths of the Taylor flow, a correlation was developed, which has a good agreement with the experimental data from the literature in a wide range.Key words: capillary distillation; gas-liquid tow-phase flow; Taylor flow;computational fluid dynamic (CFD)1 引言毛细管精馏[1]主要是利用多孔毛细结构的塔板或填料与液体混合物各组分分子的相互作用,改变液收稿日期:2009-07-02,修订日期:2009-12-16。
化学专业英语词汇

前沿讲座 Seminar专业英语 Professional English现代分析化学 Modern analytical chemistry 生物分析技术 Bioanalytical techniques高分子进展 Advances in polymers功能高分子进展 Advances in functional polym ers有机硅高分子研究进展 Progresses in organosi licon polymers高分子科学实验方法 Scientific experimental methods of polymers高分子设计与合成 The design and synthesis o f polymers反应性高分子专论 Instructions to reactive p olymers网络化学与化工信息检索 Internet Searching f or Chemistry & Chemical Engineering information有序分子组合体概论 Introduction to Organize d Molecular Assembilies两亲分子聚集体化学 Chemistry of amphiphilic aggregates表面活性剂体系研究新方法 New Method for stu dying Surfactant System微纳米材料化学 Chemistry of Micro-NanoMater ials 分散体系研究新方法 New Method for studying dispersion分散体系相行为 The Phase Behavior of Aqueou s Dispersions溶液-凝胶材料 Sol-Gel Materials高等量子化学 Advanced Quantum Chemistry 分子反应动力学 Molecular Reaction Dynamic 计算量子化学 Computational Quantum Chemistr y群论 Group Theory分子模拟理论及软件应用 Theory and Software of Molecular Modelling & Application价键理论方法 Valence Bond Theory量子化学软件及其应用 Software of Quantum Ch emistry & its Application分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics药物化学 Medicinal Chemistry统计热力学 Statistic Thermodynamics液-液体系专论 Discussion on Liquid-Liquid S ystem配位化学进展 Progress in Coordination Chemi stry无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry 相平衡 Phase Equilibrium现代无机化学 Today's Inorganic Chemistry 无机化学前沿领域导论 Introduction to Forwar d Field in Inorganic Chemistry量子化学 Quantum Chemistry分子材料 Molecular Material固体酸碱理论 Solid Acid-Base Theory萃取过程物理化学 Physical Chemistry in Extr action表面电化学 Surface Electrochemistry电化学进展 Advances on Electrochemistry 现代电化学实验技术 Modern Experimental Tech niques of Electrochemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications叶立德化学:理论和应用 Ylides Chemistry: The ory and Application立体化学与手性合成 Stereochemistry and Chir al Synthesis杂环化学 Heterocyclic Chemistry有机硅化学 Organosilicon Chemistry药物设计及合成 Pharmaceutical Design and Sy nthesis超分子化学 Supramolecular Chemistry 分子设计与组合化学 Molecular Design and Com binatorial Chemistry纳米材料化学前沿领域导论 Introduction to Na no-materials Chemistry纳米材料控制合成与自组装 Controlled-synthes is and Self-assembly of Nano-materials前沿讲座 Leading Front Forum专业英语 Professional English超分子化学基础 Basics of Supramolecular Che mistry液晶材料基础 Basics of Liquid Crystal Mater ials现代实验技术 Modern analytical testing tech niques色谱及联用技术 Chromatography and Technolog y of tandem发光分析及其研究法 Luminescence analysis an d Research methods胶束酶学 Micellar Enzymology分析化学中的配位化合物 Complex in Analytica l Chemistry电分析化学 Electroanalytical chemistry生物分析化学 Bioanalytical chemistry分析化学 Analytical chemistry仪器分析 Instrument analysis高分子合成化学 Polymers synthetic chemistry高聚物结构与性能 Structures and properties of polymers有机硅化学 Organosilicon chemistry功能高分子 Functional polymers有机硅高分子 Organosilicon polymers高分子现代实验技术 Advanced experimental te chnology of polymers高分子合成新方法 New synthetic methods of p olymers液晶与液晶高分子 Liquid crystals and liquid crystal polymers大分子反应 Macromolecules reaction水溶性高分子 Water-soluble polymers聚合物加工基础 The basic process of polymer s聚合物复合材料 Composite materials高等化工与热力学 Advanced Chemical Engineer ing and Thermodynamics高等反应工程学 Advanced Reaction Engineerin g高等有机化学 Advanced Organic Chemistry 高等有机合成 Advanced Organic synthesis 有机化学中光谱分析 Spectrum Analysis in Org anic Chemistry催化作用原理 Principle of Catalysis染料化学 Dye Chemistry 中间体化学与工艺学 Intermediate Chemistry a nd Technology化学动力学 Chemical Kinetics表面活性剂合成与工艺 Synthesis and Technolo gy of Surfactants环境化学 Environmental Chemistry化工企业清洁生产 Chemical Enterprise Clean Production化工污染及防治 Chemical Pollution and Contr ol动量热量质量传递 Momentum, Heat and Mass Tr ansmission化工分离工程专题 Separation Engineering 耐蚀材料 Corrosion Resisting Material网络化学与化工信息检索 Internet Searching f or Chemistry & Chemical Engineering informa tion新型功能材料的模板组装 Templated Assembly o f Novel Advanced Materials胶体与界面 Colloid and Interface纳米材料的胶体化学制备方法 Colloid Chemical Methods for Preparing Nano-materials脂质体化学 Chemistry of liposome表面活性剂物理化学 Physico-chemistry of sur factants高分子溶液与微乳液 Polymer Solutions and Mi croemulsions两亲分子的溶液化学 Chemistry of Amphiphilic Molecules in solution介孔材料化学 Mesoporous Chemistry超细颗粒化学 Chemistry of ultrafine powder 分散体系流变学 The Rheolgy of Aqueous Dispe rsions量子化学 Quantum Chemistry统计热力学 Statistic Thermodynamics群论 Group Theory分子模拟 Molecular Modelling高等量子化学 Advanced Quantum Chemistry价键理论方法 Valence Bond Theory量子化学软件及其应用 Software of Quantum Ch emistry & its Application计算量子化学 Computational Quantum Chemistr y分子模拟软件及其应用 Software of Molecular Modelling & its Application分子反应动力学 Molecular Reaction Dynamic 分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics腐蚀电化学 Corrosion Electrochemistry物理化学 Physical Chemistry结构化学 structural Chemistry 现代分析与测试技术(试验为主) Modern Analysi s and Testing Technology(experimetally)高等无机化学 Advanced Inorganic Chemistry 近代无机物研究方法 Modern Research Methods for Inorganic Compounds萃取化学研究方法 Research Methods for Extra ction Chemistry单晶培养 Crystal Culture固态化学 Chemistry of Solid Substance液-液体系专论 Discussion on Liquid-Liquid S ystem配位化学进展 Progress in Coordination Chemi stry卟啉酞箐化学 Chemistry of Porphyrine and Ph thalocyanine无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry 相平衡 Phase Equilibrium生物化学的应用 Application of Biologic Chem istry生物无机化学 Bio-Inorganic Chemistry绿色化学 Green Chemistry金属有机化合物在均相催化中的应用 Applied Ho mogeneous Catalysis with Organometallic Compounds功能性食品化学 Functionalized Food Chemistr y无机药物化学 Inorganic Pharmaceutical Chemi stry电极过程动力学 Kinetics on Electrode Proces s电化学研究方法 Electrochemical Research Met hods生物物理化学 Biological Physical Chemistry 波谱与现代检测技术 Spectroscopy and Modern Testing Technology理论有机化学 theoretical Organic Chemistry 合成化学 Synthesis Chemistry有机合成新方法 New Methods for Organic Synt hesis生物有机化学 Bio-organic Chemistry药物化学 Pharmaceutical Chemistry金属有机化学 Organometallic Chemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications分子构效与模拟 Molecular Structure-Activity and Simulation过程装置数值计算 Data Calculation of Proces s Devices石油化工典型设备 Common Equipment of Petroc hemical Industry 化工流态化工程 Fluidization in Chemical Ind ustry化工装置模拟与优化 Analogue and Optimizatio n of Chemical Devices化工分离工程 Separation Engineering化工系统与优化 Chemical System and Optimiza tion高等化工热力学 Advanced Chemical Engineerin g and Thermodynamics超临界流体技术及应用 Super Cratical Liguid Technegues and Applications膜分离技术 Membrane Separation Technegues溶剂萃取原理和应用 Theory and Application o f Solvent Extraction树脂吸附理论 Theory of Resin Adsorption 中药材化学 Chemistry of Chinese Medicine 生物资源有效成分分析与鉴定 Analysis and Det ection of Bio-materials相平衡理论与应用 Theory and Application o f Phase Equilibrium计算机在化学工程中的应用 Application of Com puter in Chemical Engineering微乳液和高分子溶液 Micro-emulsion and High Molecular Solution传递过程 Transmision Process反应工程分析 Reaction Engineering Analysis腐蚀电化学原理与应用 Principle and Applicat ion of Corrosion Electrochemistry腐蚀电化学测试方法与应用 Measurement Method and Application of Corrosion Elect rochemistry耐蚀表面工程 Surface Techniques of Anti-cor rosion缓蚀剂技术 Inhabitor Techniques腐蚀失效分析 Analysis of Corrosion Destroy 材料表面研究方法 Method of Studying Materia l Surfacc分离与纯化技术 Separation and Purification Technology现代精细有机合成 Modern Fine Organic Synthe sis化学工艺与设备 Chemical Technology and Appa ratuas功能材料概论 Functional Materials Conspectu s油田化学 Oilfield Chemistry精细化学品研究 Study of Fine Chemicals催化剂合成与应用 Synthesis and Application of Catalyzer低维材料制备 Preparation of Low-Dimension M aterials手性药物化学 Symmetrical Pharmaceutical Che mistry 光敏高分子材料化学 Photosensitive Polymer M aterials Chemistry纳米材料制备与表征 Preparation and Characte rization of Nanostructured materials溶胶凝胶化学 Sol-gel Chemistry纳米材料化学进展 Proceeding of Nano-materia ls Chemistry●化学常用词汇汉英对照表1●氨 ammonia氨基酸 amino acid铵盐 ammonium salt饱和链烃saturated aliphatic hydrocarbon苯 benzene变性 denaturation不饱和烃unsaturated hydrocarbon超导材料superconductive material臭氧 ozone醇 alcohol次氯酸钾potassium hypochlorite醋酸钠sodium acetate蛋白质 protein氮族元素nitrogen group element碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀 electrochemical corrosion电解质 electrolyte电离平衡ionization equilibrium电子云electron cloud淀粉 starch淀粉碘化钾试纸starch potassium iodide paper二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃 arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂 soap分馏fractional distillation酚 phenol复合材料 composite干电池 dry cell干馏dry distillation甘油 glycerol高分子化合物 polymer共价键covalent bond官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素 nuclide化学电源chemical power source化学反应速率chemical reaction rate化学键chemical bond化学平衡chemical equilibrium还原剂reducing agent磺化反应sulfonation reaction霍尔槽 Hull Cell极性分子polar molecule极性键 polar bond加成反应addition reaction加聚反应addition polymerization甲烷 methane碱金属alkali metal碱石灰 soda lime结构式structural formula聚合反应 po1ymerization可逆反应reversible reaction空气污染指数 air pollution index勒夏特列原理Le Chatelier's principle离子反应ionic reaction离子方程式ionic equation离子键 ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide两性氧化物amphoteric oxide裂化 cracking裂解 pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron (III) chloride氯水chlorine water麦芽糖 maltose煤 coal酶 enzyme摩尔 mole摩尔质量molar mass品红magenta或fuchsine葡萄糖 glucose气体摩尔体积 molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitution reaction醛 aldehyde炔烃 alkyne燃料电池 fuel cell弱电解质weak electrolyte石油 Petroleum水解反应hydrolysis reaction四氯化碳carbon tetrachloride塑料 plastic塑料的降解plastic degradation塑料的老化plastic ageing酸碱中和滴定acid-base neutralization titration酸雨 acid rain羧酸carboxylic acid碳酸钠 sodium carbonate碳酸氢铵 ammonium bicarbonate碳酸氢钠 sodium bicarbonate糖类 carbohydrate烃 hydrocarbon烃的衍生物derivative of hydrocarbon烃基 hydrocarbonyl同分异构体 isomer同素异形体 allotrope同位素 isotope同系物 homo1og涂料 coating烷烃 alkane物质的量 amount of substance物质的量浓度 amount-of-substance concentration of B烯烃 alkene洗涤剂 detergent纤维素 cellulose相对分子质量relative molecular mass相对原子质量 relative atomic mass消去反应 elimination reaction硝化反应 nitratlon reaction硝酸钡 barium nitrate硝酸银 silver nitrate溴的四氯化碳溶液solution of bromine in carbon tetrachloride溴化钠 sodium bromide溴水 bromine water溴水 bromine water盐类的水解 hydrolysis of salts盐析 salting-out焰色反应 flame test氧化剂 oxidizing agent氧化铝 aluminium oxide氧化铁 iron (III) oxide乙醇 ethanol乙醛 ethana1乙炔 ethyne乙酸 ethanoic acid乙酸乙酯 ethyl acetate乙烯 ethene银镜反应silver mirror reaction硬脂酸 stearic acid油脂 oils and fats有机化合物 organic compound元素周期表periodic table of elements元素周期律 periodic law of elements原电池 primary battery原子序数 atomic number皂化反应 saponification粘合剂 adhesive蔗糖 sucrose指示剂 Indicator酯 ester酯化反应 esterification周期 period族 group(主族:main group)Bunsen burner 本生灯product 化学反应产物flask 烧瓶apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸graduate, graduated flask 量筒,量杯reagent 试剂 test tube 试管burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵crucible pot, melting pot 坩埚 pipette 吸液管filter 滤管stirring rod 搅拌棒element 元素body 物体compound 化合物atom 原子gram atom 克原子atomic weight 原子量atomic number 原子数atomic mass 原子质量molecule 分子electrolyte 电解质ion 离子anion 阴离子cation 阳离子electron 电子isotope 同位素isomer 同分异物现象polymer 聚合物symbol 复合radical 基structural formula 分子式valence, valency 价monovalent 单价bivalent 二价halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物series 系列acid 酸hydrochloric acid 盐酸sulphuric acid 硫酸nitric acid 硝酸aqua fortis 王水fatty acid 脂肪酸organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫alkali 碱,强碱ammonia 氨base 碱 hydrate 水合物hydroxide 氢氧化物,羟化物hydracid 氢酸hydrocarbon 碳氢化合物,羟anhydride 酐alkaloid 生物碱aldehyde 醛oxide 氧化物phosphate 磷酸盐acetate 醋酸盐methane 甲烷,沼气butane 丁烷salt 盐potassium carbonate 碳酸钾soda 苏打sodium carbonate 碳酸钠caustic potash 苛性钾caustic soda 苛性钠ester 酯gel 凝胶体analysis 分解fractionation 分馏endothermic reaction 吸热反应 exothermic reaction 放热反应 precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化 to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics 热力学第一定律10. Heat and Work 热与功11. Endothermic and Exothermic Processes 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalystsi. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product Constant Ksp 溶度积常数49. Precipitation and separation of Ions 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-Reduction Equations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons 电子的波动性63. Bohr’s Model of The Hydrogen Atom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, and Mass Numbers 同位素,原子数,质量数77. Periodic Properties of the Elements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers, and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations in Octahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planar Complexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium, Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon, Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide, Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates and Carbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation of Silicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus, Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, Phosphoric Acid 氨,硝酸,磷酸143. Phosphorates, phosphorus Halides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur, Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine, Bromine, Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision 精密度188. relative standard deviation 相对标准偏差(RSD)189. coefficient variation 变异系数(CV)190. confidence level 置信水平191. confidence interval置信区间192. significant test显著性检验193. significant figure 有效数字194. standard solution 标准溶液195. titration 滴定196. stoichiometric point 化学计量点197. end point 滴定终点198. titration error滴定误差199. primary standard 基准物质200. amount of substance 物质的量201. standardization 标定202. chemical reaction 化学反应203. concentration 浓度204. chemical equilibrium 化学平衡205. titer 滴定度206. general equation for a chemical reaction 化学反应的通式207. proton theory of acid-base酸碱质子理论208. acid-base titration酸碱滴定法209. dissociation constant解离常数210. conjugate acid-base pair共轭酸碱对211. acetic acid 乙酸212. hydronium ion 水合氢离子213. electrolyte 电解质214. ion-product constant of water水的离子积215. ionization电离216. proton condition 质子平衡217. zero level 零水准218. buffer solution缓冲溶液219. methyl orange甲基橙220. acid-base indicator酸碱指示剂221. phenolphthalein 酚酞222. coordination compound配位化合物223. center ion中心离子224. cumulative stability constant累积稳定常数225. alpha coefficient酸效应系数226. overall stability constant总稳定常数227. ligand 配位体228. ethylenediamine tetraacetic acid乙二胺四乙酸229. side reaction coefficient副反应系数230. coordination atom配位原子231. coordination number 配位数232. lone pair electron孤对电子233. chelate compound 螯合物234. metal indicator 金属指示剂235. chelating agent 螯合剂236. masking 掩蔽237. demasking 解蔽238. electron 电子239. catalysis催化240. oxidation 氧化241. catalyst 催化剂242. reduction还原243. catalytic reaction催化反应244. reaction rate反应速率245. electrode potential电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry 碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD) 255. dissolved oxygen 溶解氧(DO) 256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions 多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve 标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell 吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution 双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t 316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e 326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction 单分子消除反应336. unimolecular nucleophilic substitution 单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物。
simulation and design of reactive distillation processes

2A↔B+C C A
B
Cape Forum
February 01
Reactive distillation design
The question • Simulation vs. design
Design involves finding equipment sizes, configurations and operating conditions that will allow for an economical operation, only by specifying the state of the feed and the targets on the output streams of a system
?
– number of reactive stages – number of non-reactive stages – column diameter – catalyst concentrations – liquid (reactive) hold-ups
Cape Forum
February 01
Cape Forum
February 01
Contents
• Process intensification
– the reactive distillation case
• Reactive distillation simulation
– the equilibrium model – the non-equilibrium model
February 01
Reactive distillation design
The question • Simulation vs. design
Edwards nXDS干式滚动吸力机产品介绍说明书

EDWARDSTHE PARTNER OF CHOICEEdwards is a world leader in the design, technology and manufacture of vacuum pumps with over 95 years’ history and more than 75 years’ manufacturing experience.Edwards believes in delivering results that bring value to our customers by using our breadth of industry experience to identify and apply solutions to your problems. Using the most innovative and up-to-date modelling techniques, we can optimise the pumping configuration for customers to provide a system design giving the maximum performance in the most reliable and cost-effective way.THE INTELLIGENT CHOICEEdwards nXDS is the great new shape of dry vacuum pumpingThe nXDS has taken scroll vacuum technology to the next level. Improved performance, exceptional pumping capability, quiet operation and extended service intervals make nXDS the ultimate dry choice.Quiet operationBetter working environmentHermetically sealed for a lubricant-free vacuum environmentContamination free process and no oil to dispose ofLow power consumptionLow cost of ownershipIntelligent and easy to use controlsFlexibility of operationSuperior vapour handlingWider range of applicationsLong service intervalsMaximised up-timeApplicationsYou can be assured Edwards has the application expertise and the RV pump or integrated systemsolution to meet your needs.Mass spectrometry• GCMS, LCMS, ICPMS, MALDI, RGA, surface science, leak detectorsElectron microscopy• TEM, SEM, sample coatersSample preparation• Gel dryers, glove boxes, rotary evaporators, centrifugesResearch and development• Chamber evacuation, coating systems, turbopump backing High energy physics• Beam lines, accelerators, mobile pump carts, turbopump backing, laser evacuationIndustrial• Gas recovery and recirculation, glove boxes, brake line and air conditioning evacuation, coating systems, freeze drying, gas bottle filling/emptying, refrigeration system manufacture, degassing/curing(oil, epoxy resin)Chemical• Gel dryers, glove boxes, rotary evaporators, centrifuges, solvent recovery, distillation/extraction/ filtrationOptimum bearing placement for long lifetime and easy replacement low power consumptionWide range voltage input with automatic selection for simple operation Standby speed control buttons for efficient processtuningUSB port for service use onlyRemote control interface for convenience of operationEasy to use manual control buttonsnXDS scroll pump sectional viewOptimised scroll profiles for each model to maximise performanceHermetic bellows sealing for contamination free vacuumAdvanced tip-seal technology for long service lifetimeThermally controlled fan for reduced noiseQuiet runningThe modern laboratory is often a busy place with many other appliances running, all contributing to the background noise. With its low noise power level of 52 dB(A), the nXDS pump makes only a very small contribution to the total noise. This level is up to twenty times less than those of competitor products. nXDS is available in four sizes:• nXDS6i• nXDS10i• nXDS15i• nXDS20i Other variantsFor more aggressive applications, ‘C’ Variants are available which feature Chemraz® internal valves and stainless steel fittings for extra protection from the pumped media.R variants are available for specialist applications such as gas recirculation, rare gas pumping and recovery or other applications where the dilution of the pumped gas is undesirable, or where sealing is integral to minimising potential gas loss.PerformancenXDS has been designed to combine the latest advances in scroll technology with an intelligent drive coupled with the long established, truly dry, hermetically sealed mechanism of the XDS series.Class leading pumping speeds are an improvement over existing XDS models and, with the drive, are of course consistent worldwide. Likewise, ultimate vacuum pressures which are below 10-2 mbar are now comparable with those of oil-sealed rotary vane pumps – without the inconvenience of oil.Hermetic sealing ensures that the vacuum environment is not contaminated by bearing lubricant and, conversely, the bearings are not contaminated by any process gas being pumped.Summary of pump speedsSummary of input powersPump controllerThe advanced controller allows for several modes of control:ManualPush button START, STOP and STANDBY. Accurate speed control of 1% of maximum running speed.Parallel remoteFrom your own control system via the 15 way d-sub connector giving the same START, STOP and STANDBY with the option of analogue speed control.Serial communication remoteOption of either RS232 or RS485 with a choice of Edwards’ proprietary ‘DX’ protocol or industry standard Modbus protocol. A USB port has been included for service use only.The pump controller is able to accept voltages from 100-127 and 200-240V (+/- 10%) without the need for intervention.Technical data* Typical. See graphs on page 6.** For low fan speed, typical at ultimate end when load/ambient conditions allow.Pumping speed and power curvesDimensionsAll variants are the same Dimensions in mm (in)Spares and accessoriesControllersThe TIC (Turbo and Instrument Controller) automatically recognises the nXDS pump when connected to the backing pump connector as the controller adopts serial communications mode when connected to the nXDS. There is no need to use a relay box to interface to nXDS.Speed control and pump run hours etc can be readily accessed from the display. The TIC can also control an nEXT turbopump plus, up to three gauges at the same time as a nXDS pump.Customers already owning a TIC can upgradetheir software to enable interfacing to nXDS.Ordering informationServiceYour business success depends on maximum equipment uptime and minimum total cost of ownership, andwe constantly strive to support those objectives. As a global leader in vacuum technology and processes, we understand how vacuum pumps and systems perform in real life. Our wide portfolio of services is designed with you in mind: to help keep your processes and equipment running in the most economical and environmentally efficient manner.Services include:• Overhaul and repair using genuine Edwards OEM parts• OEM spares and kits available for immediate despatch• Remanufactured products available for cost-effective expansion and backups• Global network of expert field service engineers available to respond quickly to unexpectedequipment failures• Extended warranty, to help manage the cost of the unexpectedOur Expert Advantage Service Plans provide you with the on-going support necessary to continuously improve your operational efficiency and meet your business objectives. As service offerings may vary slightly from product toproduct, please contact your Edwards representative to discuss your specific requirements.EDWARDS nXDS Dry Scroll PumpEMEAUK+44 1444 253 000(localrate************ Belgium+32 2 300 0730 France+33 1 4121 1256 Germany 0800 000 1456 Italy+ 39 02 48 4471 Israel+ 972 8 681 0633ASIA PACIFICChina+86 400 111 9618 India+91 20 4075 2222 Japan+81 47 458 8836 Korea+82 31 716 7070 Singapore+65 6546 8408 Taiwan +886 3758 1000 AMERICASUSA+1 800 848 9800 Brazil+55 11 3952 5000Publication Number: 3601 0086 01© Edwards Limited 2016. All rights reservedEdwards and the Edwards logo are trademarks ofEdwards LimitedWhilst we make every effort to ensure that weaccurately describe our products and services,we give no guarantee as to the accuracy orcompleteness of any information provided inthis brochure.Edwards Ltd, registered in England and WalesNo. 6124750, registered office: Innovation Drive,Burgess Hill, West Sussex, RH15 9TW, UK.GLOBAL CONTACTSEDWARDS nXDS Dry Scroll Pump Part of the Atlas Copco Group。
一体化溴化锂吸收式空调英文版

BROAD X Absorption Chiller Model Selection & Design Manual■Functioncooling, heating, hot water■Application●To Provide chilled/heating water forlarge-scale buildings●To Produce chilled water over 3°Cand heating water below 95°C●Area coverage: 200m2-300,000 m2(air-conditioned area)/unit■Energy sources●Natural gas, town gas, biogas,diesel,waste oil or waste heat from gas/oilpower generator or industrial wastestreams (steam, hot water, exhaust, etc),gas & waste heat hybrid (multi-energychiller)●The electric demand of waterdistribution system is less than 3% of thecooling capacity.■Cooling capacity23~11630kW(2~1000 104kcal /h)■ENERGY-SAVING●Non-eletric chiller applys directly to primary energy likenature gas and etc. It could save more than over 1 timeprimary energy compared with eletric chiller.●Non-electric chiller also can apply to waster heat,comsuming almost no energy input.● Zero water resistance design enables 60%+ electricity savingcompared with conventional water distribution systems.Inverter control further reduces the operating electricityconsumption by 50% of the rated power demand.■CENTRAL AIR CONDITIONINGINDUSTRIALIZATION● Quick installationInstallation time is 10% of that needed for conventionalprojects.●Cost and space savingOne-time investment solves all problems: design,purchaseinstallation, commissioning and 50% footprint reduction.● Worry-free & CarefreeWhole system factory made and tested. Customers’manage-ment cost saved.All European/US safety certificates secured.Central air conditioning industrialization materialized.● Complete bacteria killingAuto chemical dosing device charges biocide to the cooling wa-ter system automatically to eradicate legionnaire’s diseases.2008.06 EnglishC O N T E N T SPackaged Non-electric Chiller(non-electric chiller + water distribution system)The Absorption Principle 1Packaged Direct-fired Chiller PerformanceData & Price 3HTG Enlarged Models PerformanceData & Price 4Performance Curves 5Model Selection & Ordering 6Supply List 7Delivery/ Construction/ Installation Scope 8Packaged Non-electric Steam ChillerPerformance Data & Price 9Packaged Waste Heat ChillerPerformance Data & Price 11Villa air conditioning(micro gas air conditioning, BCT)Introduction 17Performance data & price 18Model selection & ordering 19Performance curves 19 Design & Construction tipsDimensions 20P&I diagram 30Machine room construction 36Piping system 37Control system 38List of control system installation 39Exterior wiring diagram 40Delivery guide 41Lifting and leveling tips 421The input heat energy heats LiBr solution to generate vapor, then vapor can be condensed into water. When the water enters evaporator (in high vacuum conditions), the temperature goes down immediately. And it is sprayed over the tube to make cooling. When the water absorbs heat from air conditioning system it can evaporate and then can be absorbed by concentrated LiBr solution. The cooling water removes the heat and release into the air. Diluted solution is pumped to HTG, LTG separately to be heated again, generate vapor contimuously…that’s the cooling cycle. The cooling principle The absorption principlePackaged non-electric chiller (non-electric chiller + water distribution system)high temperature generator (HTG)low temperature generator (LTG)condenser absorber evaporator high temperature heat exchanger low temperature heat exchangerchilled water 7/14℃hot water 80/60℃heat source or fuel cooling waterwater softner chilled water pump cooling water pump hot water pump auto chemical dosing2Input energy heats the LiBr solution. The vapor produced by the solution heats the heating water in tubes, while condensate returns to the solution to be heated and the cycle repeats.If “separate heating” is utilized, the heating cycle of the DFA chiller/heater becomes very simple, just like a vacuum boiler.A separate heat exchanger can provide dedicated hot water while cooling operation and heating operation are stopped.The heating principlechilled water 65/55℃hot water 80/60℃hot water pumpchilled water pumphigh temperature generator (HTG)heat source or fuel3HTG Enlarged Models Performance Data & PriceModel BYZ2050751001251502002503004005006008001000 chiller cooling capacity kW233582872116314541745232629083489465258156978930411630 104kcal/h2050751001251502002503004005006008001000 heating capacity kW1794496728971121134917912245268735824489538571768967hot water capacity kW80200300400500600800100012001600////chilled waterflow rate m3/h28.5 71.3 107 142 178 214 285 356 427 570 712 854 1139 1429pressure drop kPa3030303030404050505060606060cooling water flow rate m3/h48 120 180 240 300 360 480 600 720 960 1200 1440 1920 2400pressure drop kPa5050505050505060606070707070chilled/heating waterflow rate m3/h15.3 38.5 57.9 77.1 96.4 116 154 193 231 309 386 463 617 771pressure drop kPa2020202020203030404050506060hot waterflow rate m3/h 3.4 8.6 12.9 17.2 21.5 25.8 34.4 43.0 51.6 68.8 ////pressure drop kPa20202020202030304040////nature gas consumptioncooling m3/h17.142.764.185.5107128171214257342427513684855heating m3/h19.448.572.697121146194243290387485582776970hot water m3/h8.8223344556688110132176////power demand kW 2.5 5.8 6.1 9.8 9.8 11.6 16.7 16.721.7 25.231.9 40.7 49.9 63.3solution weight t 1.1 2.6 3.253.9 4.9 5.68911.713.51721.628.734.7unit ship. wt.t47.1911.213.114.619.223.5//////main shell ship. wt.t// 5.478.39.21214.516.321.325.929.938.337.5operation weight t 5.29.812.8 16.1 19.4 22.0 29.9 35.5 42.4 52.9 63.4 76.5 97.1 113.2 pump set chilled water pumpexternal head mH2O1919202022222222222226262626power demand kW4111515223037446060110110150180cooling water pumpexternal head mH2O1010101010101010101010101010 power demand kW37.5151522223744446090110150180hot water pumpexternal head mH2O10101212121212121212//// power demand kW0.390.58 2.233 4.4 4.4 4.466////operation weight t914.3 3.8 3.8 4.2 4.37.17.48.19.7 5.9/8.6 6.1/8.6 6.1/9.89.6/9.8pump set powerdemand kW7.3919.0832.2334756.478.492.4110126200220300360cooling tower cooling tower powerdemand kW 5.511111515152237374455.57488110 operation weight t/ 5.1 5.77.312.312.314.620.220.224.230.340.448.460.4machine room lighting, ventilation powerdemand kW0.30.3 1.0 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 3.0 3.0 3.0 weight t// 5.6 5.6 6.5 6.58.69.410.511.418.419.224.225.8electricity consumption of water distribution system total power demand kW15.7 36.2 50.359.3 73.384.5 118.6148.1 170.7 197.2 289.4 337.7 440.9536.3 electricity consumptionfor cooling kW15.335.649.656.372.181.8118.8148.3167.8195.6291.6343.9449540 electricity consumptionfor heating kW512.81919.528.33848.5567476.2126137182212 electricity consumptionfor hot water kW1.42.4 6.27.59.312.415.916.42022.2//// waterconsumpti o n(cool i n g) t/h0.6 1.5233.84.567.591215182430price chiller Eurol1,000761531892212582863564104695766707589641164 pump set Eurol1,000192644607181108128144170203238295345cooling tower Eurol1,000915////////////machine room Eurol1,00034111115151823232335354551total Eurol1,000107198244292344382482561636769908103113041560Fuels: natural gas, biogas, diesel or gas/oil41. Rated chilled W. outlet/inlet temp.: 7°C/14°C 2. Rated cooling W. outlet/inlet temp.: 37°C/30°C 3. Rated heating W. outlet/inlet temp.: 65°C/55°C 4. Rated hot W. outlet/inlet temp.: 80°C/60°C 5. Lowest permitted outlet temperature for chilled water:5°C (except special order) 6. Highest permitted outlet temperature for heating/hot water: 95°C 7. Lowest permitted inlet temperature for cooling water: 10°C 8. Adjustable chilled water flowrate: 50%~120% Adjustable heating/hot water flowrate: 65%~120%9. Pressure limit for chilled W., cooling W., heating W., hot W. 0.8MPa (800kPa) (except special order)10.Adjustable load: 5%~115%11.Fouling factor for chilled W., cooling W., heating W., hot W.:0.086m 2·K/kW 12.Natural gas consumption is calculated per low heating value : 10kWh/m 3(8600kcal/m 3), if heating value of other gases or diesel oil is available, please calculate accordingly 13.Standard natural gas pressure is from 16~50kPa (1600~5000mmH 2O), lower or higher pressure can be accommodated to special orders 14.LiBr Solution concentration: 52% unit ship, wt. including solution 15.Rated exhaust temp. for cooling: 160°C Rated exhaust temp. for heating: 145°C 16.Machine room temperature: 5~43°C, humidity≤85%17.Standard climate conditions for cooling operation:temp.36°C,relative humidity 50% (wet bulb 27°C)18. Heating capacity and hot water capacity refer to the capacity during separate operation, which is adjustable within this range 19. the PUMP SET operation weight of BYZ20 includes chiller,pump set, cooling tower, machine room the PUMP SET operation weight of BYZ50 includes chiller, pump set, machine room the PUMP SET operation weight of BYZ500-1000 includes chiller, pump set, cooling tower pump set 20. power demand of cooling, heating,hot W. is under rated working condition.21. Rated direct-fired cooling COP: 1.36 Rated direct-fired heating COP0.9322. Designed lifespan: 25 years Note: 1.price are vilid from July 1, 2008- December 31, 2008(the price is 5% less before July 1) 2.Technical specification is based upon Japanese Industry Standard JIS B 8622 "Absorption Chiller" General Conditions:Model BZ Enlarged Models Heating capacity NG Consumption Power demand OperationweightkW m 3/h kW t20 H 121523.2 2.5 5.2H 225127.8 2.5 5.2H 328733.4 2.5 5.3H 432340.0 2.5 5.650H 153858.2 5.89.8H 262869.8 5.89.8H 371783.8 5.89.7H 4807100 5.81075H 180787.1 6.112.8H 29421057.613.6H 310761257.613.8H 412111517.614.6100H 110761169.816.7H 212551399.818H 314351679.818H 416142009.819.2125H 113451459.821.1H 2156917011.622.1H 3179319411.622.2H 4201825111.623.4150H 1161417511.624.2H 2188320413.325.5H 3215223313.325.5H 4242130213.327.3200H 1215223216.733H 2251127120.234.7H 3286931020.234.7H 4322840120.236.8250H 1269029116.737.7H 2313834020.240.1H 3358738820.240.1H 4403550320.245300H 1322834821.743.1H 2376640723.744.9H 3430446523.744.9H 4484260123.748.4400H 1430446525.256H 2502154227.458.2H 3573961927.458.2500H 1538058231.972H 2627769831.974HTG enlarged modelsPerformance Data & PriceH 2 40% more heating capacity (20% more for H 1 and 60%more for H 3) the price of pump set, cooling tower andmachine room is the same.5Performance curvesNote:The integrated part load value (IPLV)reflects chiller's actual COP inoperation.COPRated COP:1.36IPLV COP:1.56LoadCOP Factor Result A 100%1.3600.010.014B 75%1.5690.420.659C 50%1.6190.450.729D 25% 1.3080.120.157Environmental Protection FeaturesCO/CO 2≤0.02% NOx ≤46ppm (O 2=5%)Model BYZ20~5075~200≥250DFA≤57≤58≤60PUMP SET≤57≤57≤59COOLING TOWER ≤62≤64≤66Operating Noise dB(A)Nomenclature H 1 20% more heating capacity (40% more for H 2 and 60% more for H 3) Functions : k cooling-heating type, d cooling only, without code indicates heating, cooling and hot water Fuel type : B -oil C-LPG D- natural gas E-town gas BROAD non-electric chiller design code(X indicates Roman number 10 )Cooling capacity: 104kcal/hChiller type: Z-direct-firedProduct: BY-BROAD packaged BY Z 100 X D-k-H 16 Model selection and orderingFunction selection● BROAD chillers are classified as standard type (cooling-heating-hot water),A/C type (cooling-heating) and cooling only type.● An extra boiler is to be equipped to meet the excessive heating requirement when heating load exceeds 1.3 times of cooling load.Fuel selection● Different fuels matches different burners.● Fuels apply to a DFA can be: natural gas, town gas, LPG, bio-gas, industrial waste oil, waste foodstuff oil, and light oil.● Natural gas and waste heat are of priority.● Apply to dual fuel of oil and gas (for special order) Load selection● If equipped with low position indoor units (fan coils), suggested cooling load as follows: Residences, hotels and office buildings: 40-70 W/m2 Shopping malls, restaurants and campuses: 80-130 W/m2Theaters, exhibition halls and airports: 130-210 W/m2● Model selection is mainly determined by required cooling load. If heating load is not enough to meet requirement, an oversized HTG should be selected.Quantity● The fewer units, the lower initial investment and operation cost (as the chiller’s COP will be higher and water system’s electric consumption will be lower at part load).● 2 sets are recommended for one system (the sum equals to required load).no need to have standby unit. One unit for buildings that allow chiller stop once a year.Flowrate selection● BROAD water distribution system adopts a large temperature difference and low flowrate design so as to save greatly the power consumption.● BROAD designs the water head according to experiences of numbers of installation.● If the water head is proved to be insufficient, BROAD will enlarge the pump free of charge.Pressure selection● The rated pressure limit for chilled/heating water is 0.8MPa, 0.81-1.2 MPa for high-pressure type, and three categories for extra high-pressure type:1.21-1.6MPa, 1.61-2.0MPa, and 2.01-2.4MPa.● System of pressure limit 0.81-1.2MPa adopts high-pressure type, and for system of pressure limit 1.21-1.6MPa, economical and technical consideration should be taken to decide if to adopts the extra high-pressure type or secondary heat-exchange instead.● For extra high building, users need to calculate the pressure of cooling water system and chilled water system separately.Split shipment● If limited by access of customers’ machine room (or limited by container transportation), you can choose split shipment.● The chiller normally will be divided into two pieces as Main Sell and HTG. BROAD technicians will connect 3 pipes at the job site. Customers need to prepare welding equipment, nitrogen and provide necessary cooperation.Control● The standard BROAD chiller and its water distribution system are equipped with complete control function, enabling internet monitoring.● If a building automation system (BAS) has been used, the BAS control interface should be selected optionally. If the BAS interface is not ordered along with the chiller, it can be purchased later.● BROAD BAS (building automation system) is highly recommended.Machine room location● On the floor or on building top.● If limited by facilities, the chiller and the pump set can be installed in basement while cooling tower on the floor, on stilt or on building top.● Metal machine room does not apply to basement installation. The chiller and pump set are installed in the same machine room so as to reduce pipe lines.Shipment time≤BYZ150: 2-6 monthsBYZ200-BYZ400: 4-8 months≥BYZ500: 8-12 monthsPrice termBROAD insists on fair and open price policy, the prices stated in this catalog are the standard prices. Discount will be granted for big order (including accumulated quantity of the same buyer), details is per “BROAD price principle” and specific price list. these are available upon request or internet searching.MaintenanceFree warranty is to cover 24 months from commissioning or 30 months from ex-work shipment.BROAD provides paid service for the whole life span, service prices list is available upon request.7Packaged Direct-fired Chiller Supply ListType ItemSpecifications Main shell bodyIncludes LTG, condenser, evaporator, absorber Auto purge/vent systemIncludes falling head auto purge device, auto vent device Canned pumpIncludes generator pump, refrigerat pump, completely welded canned pump Low temp. heat exchangerPlate heat exchanger HTG bodyIncludes HTG shell, front/rear flue chamber, etc. Water heaterHeating, hot water High temp. heat exchangerPlate heat exchanger BurnerIncludes gas valve trains, filter and safety devices Cooling/heating switch valveNot available for cooling only type Cold/heat insulationHTG heat insulation can be removable LiBr solutionIncludes corrosion inhibitor and energy enhancer. Chilled water pumpTwo pumps (BY20, BY50 only one pump) Cooling water pumpTwo pumps Hot water pumpTwo pumps. Not available for cooling only and cooling-heating types. Piping of pumps Includes zero resistance filter, zero resistance check valve,soft connectors, valves and vibration absorber Machine room piping *Includes all pipings within the system to the external package connections Piping accessories in machine room Includes flow rate sensor, vent valve and base and soft connector. Motorized drain valve When water quality becomes poor, this valve automatically flushes the cooling water; auto cooling water blowdown to avoid freeze in winter. cooling/heating switch Not available for cooling only type Chilled water check valve Not available for cooling only type Flow meter Includes gas, chilled W.,cooling W.,hot W. flow meter. Measure the load accurately Water softener device soft hard water Auto biocide and anti-sludging distributor Automatically distributes biocide and anti-sludging to the cooling water Cooling tower low drift loss, low noise level Cooling fan Low speed fan Cooling tower Piping *Includes piping from cooling tower to machine room, water make -up/drain pipes and valves, regulating butterfly valves Chiller control cabinet Includes low voltage components, special circuit board, microprocessor or PLC Components outside chiller control cabinet Includes temperature sensors, pressure sensors, flow sensors, solution level probes and actuators Inverters Controls the frequency of solution pump, refrigerant pump, cooling water pump and cooling fan. Control cabinet for water system Includes inverter and soft starter. Fan and inverter are not available if cooling tower is not ordered.Electric wires*Includes wires, cables, cable conduit, cable supporters Installed in control room Internet interface Used to connect with the internet for network monitoring Centralized control (optional)Multiple chillers centrally controlled. Automatically operates chiller sequence, quantities and time versus load change.Metal machine room Aluminum-galvanized zinc shell with lighting and ventilation devices. Machine room heat insulationFor extremely cold environmentsNotes: 1. * means only standard size is available. For any size changes, please specify it in the order.2. High temperature generator is the main difference between waste heat recovery chiller and direct fired chiller,supply list will be provided separately when the order is placed.M a i n s h e l l P u m p s e tC o n t r o l s y s t e m C o o l i n g t o w e r s y s t e mO t h e rDelivery / Construction / Installation Scope Item BROAD Customer Remarkstransportation and location factory to port√BROAD can arrange transportation upon request. Port to jobsite(main shell, pump set,cooling tower)√BROAD can provide free guidance for handling andpositioning the equipment.joint (for split shipment)√welding machine and nitrogen to be provided bycustomers .electrical engineering Power supply to machine room√ 3 phase, 4 wiresInternet connection √Network cable to the machine room is to be providedby the userGrounding√Place special grounding terminal with groundingresistance≤4Ω near water system control cabinet inthe machine roomconstruction & installation plinth√machine room should be constructed after plinth Installation of metal machineroom(includes lighting andventilation)√Cooling tower installation √Pipe connection between chillerand pump set√Above BY400 model, a crane must be provided bycustomerPipe connection between chillerand cooling tower√External piping installation√Includes chilled/heating water pipes, hot water pipes,water make-up and drain pipes, heat source pipes. chiller insulations√factory-mountedPiping insulation in machine room√pipeline insulation√Antifreezing√water anti-freezing treatment is recommended whenthe ambient temp. is below 0°C.commissioning jobsite chiller commissioning√user provides energy and air conditioning loadoperation & maintenance training for users’ operator√regular maintenance √service contract needs to be signed after thewarranty period.Packaged steam chiller Performance date and pricemodel BYS 2050751001251502002503004005006008001000chillercooling capacity kW233582872116314541745232629083489465258156978930411630 104kcal/h2050751001251502002503004005006008001000chilled w.flowrate m 3/h 28.5 71.3 107 142 178 214 285 356 427 570 712 854 1139 1429pressure drop kPa 3030303030404050505060606060cooling W. flowrate m 3/h 48.8 122 183 244 305 366 488 610 733 977 1221 1465 1953 2442 pressure drop kPa 5050505050505060606070707070steam consumption kg/h 251 628 941 1255 1569 1883 2511 3138 37665201 6276 7532 10042 12550power demand kW 1.7 4.3 4.6 6.8 6.8 6.8 10.2 10.211.713.217.720.725.934.9solution weightt0.8 1.94 2.63 3.04 4.11 4.56 6.77.529.8911.1614.617.522.728.2unit ship. wt t 3.3 5.878.910.511.915.219.321.5/////chiller ship. Wt t // 5.478.39.21214.516.321.325.929.938.337.5operation weight t4.38.110.513.015.8 17.7 24.2 29.234.043.452.561.281.488.8pump set chilled w. pumpexternal head mH 2O 1919202022222222222226262626power demand kW4111515223037446060110110150180cooling w. pump external head mH 2O 1010101010101010101010101010power demand kW 37.5151522223744446090110150180operation weight t 5.8 10.2 2.83 3.2 3.4 4.3 4.4 5.4 6.3 4.4/8.6 6.1/8.6 6.1/9.89.6/9.8total powerkW 718.5303044527488104120200220300360cooling tower power demand kW 5.511111515152237374455.57488110operation weightt /5.1 5.77.312.312.314.620.220.224.230.340.448.460.4machine roomlighting, ventilation power demand k W 0.30.31.01.51.51.51.52.02.02.02.03.03.03.0weightt // 5.6 5.6 6.5 6.58.69.410.511.418.419.224.225.8electricity comsup-tion total power kW14.534.146.653.367.375.3107.7137.2154.7179.2275.2317.7416.9507.9water demand for cooling t/h 0.6 1.523 3.8 4.567.591215182430pricechiller Eurol1,00059121153176201221266306358430506569716851pump set Eurol1,000192643597080108126142168213250310363totalEurol1,0007814719623527130137243250059871981910261214steam from power generation and industrial waste steam1. rated saturated steam pressure 0.8 Mpa, rated condensate Temp. 95°C2. Rated chilled W. outlet/inlet temp.: 7°C/14°C3. Rated cooling W. outlet/inlet temp.: 37°C/30°C4. Lowest permitted outlet temperature for chilled water: 5°C (except special order)5. Lowest permitted inlet temperature for cooling water: 10°C6. steam pressure upper limit 110%7. Adjustable chilled water flowrate: 50%~120% 8. pressure limit for chilled /cooling W. :0.8Mpa 9. Adjustable load: 5%~115%10. Fouling factor for chilled W., cooling W.,:0.086 m 2·K/kW11.LiBr Solution concentration: 52%12.Machine room temperature: 5~43°C,humidity≤85%General Conditions:13.Standard climate conditions for cooling operation:temp.36°C,relative humidity 50% (wet bulb 27°C)14. the PUMP SET operation weight of BYZ20 includes chiller,pump set, cooling tower, machine room the PUMP SET operation weight of BYZ50 includes chiller,pump set, machine roomthe PUMP SET operation weight of BYZ500-1000 includes chiller, pump set, cooling tower pump set 15.Rated direct-fired cooling COP: 1.4116. Designed lifespan: 25 yearsNote: 1. price are vilid from July 1, 2008- December 31,2008(the price is 5% less before July 1)2. steam pressure 0.6Mpa also can be chosen. the cooling capacity of 0.6Mpa is a the same as that of 0.8Mpa. But the price is 4%more.Model selection and orderingSteam confirmationPlease specify saturated steam pressure and temperature. The temperature ofoverheated steam should be ≤180°C (except special order)Other factorsLoad selection, quantity selection, flow rate assurance, pressure requirement, separate shipment, control model, machine room addressing, order period, order prices, and maintenance is the same as packageddirect fired chiller. Please refer to the page 6 for details.Operating Noise dB(A)Model BYS 20~5075~200≥250STEAM CHILLER ≤52≤53≤53PUMP SET ≤57≤57≤59COOLING TOWER≤62≤64≤66NomenclaturePerformance curvesthe same as packaged direct fired chiller. Please refer to the page 5 for details.steam inlet pressure:0.8 MPaBROAD non-electric chiller design code (X indicates Roman number 10 )Cooling capacity: 104kcal/h Chiller type: S (steam type)Product: BY-BROAD packagedBY S 100 X 0.8Note:The integrated part load value (IPLV)reflects chiller's actual COP in operation.COPRated COP:1.41IPLV COP:1.62 Load COP Factor Result A 100% 1.4100.010.014B 75% 1.6270.420.683C 50% 1.6790.450.756D 25%1.3560.120.163General Conditions:codemodel cooling capacity chilled w.cooling W.hot water cons-umptionpower demand solution weight unit ship. wt. chiller ship. Wt.unit operation weight priceflowrate pressure drop flowrate pressure dropkWm 3/h kPa m 3/h kPa m 3/h kW t t t t Eurol1,000two-stage hot water chiller BH hot water 180°C2023328.5 3048.8 5010.3 1.7 0.98 3.3/ 4.7 655058271.3 30122 5025.7 4.3 2.2 5.8/8.7 133******** 30183 5038.5 4.6 2.87 5.411.1 1681001163142 30244 5051.4 6.8 3.49.3713.7 1951251454178 30305 5064.2 6.8 4.410.78.316.1 2211501745214 40366 5077.1 6.8 4.911.99.218.6 2442002326285 40488 5010310.27.115.21224.7 2932502908356 50610 6012810.27.819.314.531.6 3363003489427 50733 6015411.710.621.516.336.7 3944004652570 50977 6020613.212.1/21.346.6 4735005815712 601221 7025717.714.8/25.953.3 5566006978854 601465 7030820.718.1/29.964.7 62680093041139 601953 7041125.924.2/38.381.4 7881000116301429 602442 7051434.930.5/37.597.0 936single-stage hot water chiller BDH hot water 98°C2020525.1 2561.7 5023.2 2.5 0.8 2.9/ 3.8 555051262.7 25154 5057.9 2.5 1.65 4.9/7.0 1117576793.9 25231 6086.8 5.3 2.15 6.3/9.3 1431001023125 25308 60116 5.7 2.428.0/11.5 1681251279157 25385 60145 5.7 3.29.4/14.4 1891501535188 30462 60174 5.7 3.5210.8/16.1 2082002046251 30616 702328.6 5.514.5/22.3 2492502558313 40771 7028910.1 6.017.7/26.1 2893003069376 40925 7034710.1 8.2519.8/30.5 3344004092501 401233 7046313.9 8.9226.3/39.8 4015005115626 501541 9057913.8 11.730.8/48.3 4756006138752 501849 9069517.5 14.536.3/56.5 53380081841002 502466 9092627.3 19.745.8/75.5 6681000102301253503082100115827.324.146.5/82.8795packaged waste heat chiller(hot water chiller) Performance date and price1. Rated hot W. inlet/outlet temp.:Two-stage hot W. chiller:180°C/165°C Single-stage hot W. chiller: 98°C/88°C2. Rated chilled W. outlet/inlet temp.: 7°C/14°C3. Rated cooling W. outlet/inlet temp.: 37°C/30°C4. Lowest permitted outlet temperature for chilled water: 5°C (except special order)5. Lowest permitted inlet temperature for cooling water: 10°C6. Adjustable chilled water flowrate: 50%~120%7. pressure limit for chilled/cooling W.:0.8mpa8. Adjustable load: 5%~115%9. Fouling factor for chilled W., cooling W.,:0.086 m2·K/kW10. LiBr Solution concentration: 52%11. Machine room temperature: 5~43°C,humidity≤85%12. Rated COP:two-stage hot W. chiller:1.41 single-stage hot W. chiller:0.7613. Designed lifespan: 25 yearsNote: 1.price are vilid from July 1, 2008- December 31,2008(the price is 5% less before July 1)2.pumpset price for packaged single-stage hot W. chiller is 28%(pump set, cooling tower, machine room’s data and price as the same as DFA)jacket water from generator and industrial waste hot water。
菜籽油皂脚中游离脂肪酸分子蒸馏分离模拟

沸点下呈液态时的摩尔体积,m3·mol-1; a ——溶剂的 缔合常数,取为 1。 3.4 液体黏度估算 对于纯液体,根据已知一定温度下黏度查用数据手册 中图表而得。
有必要对其进行预处理,简化其中组分,使其适合作为 分子蒸馏模拟的原料。 2.1 酸化油制备 在 1000 mL 磨口三口烧瓶中,进行皂脚(安徽丰大油 脂厂提供)酸化反应。浓硫酸/原料:5/100 mL/g,酸化温 度 90℃,水加入量:50/100 mL/g ,待反应时间进行到 1.5 h 停止,并用蒸馏水洗涤和冷冻干燥,得到的物质被 定义为游离脂肪酸和甘油酯混合物(MFT, mixture of FFA and TAG),作为分子蒸馏模拟操作和具体试验的原料。 2.2 游离脂肪酸和甘油酯分析
[10-12] [7] [8] [9]
1
模型方程的建立
分子蒸馏包括一个蒸发器圆柱面和一个与蒸发器同
。以上研究者基本停留在分子蒸馏传质传热模型的
建立,而关于分子蒸馏模型在实际问题中的应用的研究 报道甚少。 皂脚是油脂碱炼过程中产生的副产物,脂肪酸钠盐 含量达 30%以上, 三甘油酯约为 20%和较少的二甘油酯, 其余大部分为水
收稿日期:2006-04-14 目(No.06013046A) 作者简介:邵 平(1980-) ,男,主要从事天然产物有效成分提取分离工 修订日期: 2007-12-26
ρC p ∂y 2
∂ 2 C ef ∂y 2
(1)
基金项目:国家科技支撑计划(2006BAD05A12);安徽省“十一五”攻关项
浓度方程:
Uy ∂C ef ∂y +Uz ∂C ef ∂z =D
(2)
作。合肥 合肥工业大学生物与食品工程学院,230009。 Email: pingshao325@
Reactive distillation

Reactive distillation in methyl acetate synthesis
Setup
• Typically, reactive
distillation equipment comprises a reactive column, with the feed input, with directly attached stripping and enriching columns with the outputs.
Reactive distillation
CME 566
Advance separation
Fangzhou Ma
Outline
• • • • • • •
Introduction
Setup Principle Benefits Difficulties Application Status and Future
• Sakuth, Michael, Dieter Reusch, and Ralf Janowsky.
"Reactive distillation." Ullmann's Encyclopedia of Industrial Chemistry (2008).
Question?
• Reactive distillation can also be seen as the frontrunner in the field of process intensification.
Reference
• Harmsen, G. Jan. "Reactive distillation: the front-runner of
Benefits
化学专业英语词汇

前沿讲座 Seminar专业英语 Professional English现代分析化学 Modern analytical che mistry生物分析技术 Bioanalytical techniques高分子进展 Advances in polymers功能高分子进展 Advances in function al polymers有机硅高分子研究进展 Progresses in organosilicon polymers高分子科学实验方法 Scientific experimental methods of polymers 高分子设计与合成 The design and sy nthesis of polymers反应性高分子专论 Instructions to re active polymers网络化学与化工信息检索 Internet Se arching for Chemistry & Chemical E ngineeringinformation有序分子组合体概论 Introduction to Organized Molecular Assembilies两亲分子聚集体化学 Chemistry of am phiphilic aggregates表面活性剂体系研究新方法 New Meth od for studying Surfactant System 微纳米材料化学 Chemistry of Micro-NanoMaterials分散体系研究新方法 New Method for studying dispersion分散体系相行为 The Phase Behavior of Aqueous Dispersions 溶液-凝胶材料 Sol-Gel Materials高等量子化学 Advanced Quantum Chemistry分子反应动力学 Molecular Reaction Dynamic计算量子化学 Computational QuantumChemistry群论 Group Theory分子模拟理论及软件应用 Theory andSoftware of Molecular Modelling &Application价键理论方法 Valence Bond Theory量子化学软件及其应用Software of Quantum Chemistry & its Application分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics药物化学 Medicinal Chemistry统计热力学 Statistic Thermodynamics液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium现代无机化学 Today's Inorganic Chemistry无机化学前沿领域导论 Introduction to Forward Field in Inorganic Chemistry量子化学 Quantum Chemistry分子材料 Molecular Material固体酸碱理论 Solid Acid-Base Theory萃取过程物理化学 Physical Chemistryin Extraction表面电化学 Surface Electrochemistry电化学进展 Advances on Electrochemistry现代电化学实验技术 Modern Experimental Techniques of Electrochemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications叶立德化学:理论和应用 Ylides Chemistry: Theory and Application立体化学与手性合成 Stereochemistryand Chiral Synthesis杂环化学 Heterocyclic Chemistry有机硅化学 Organosilicon Chemistry药物设计及合成 Pharmaceutical Design and Synthesis超分子化学 Supramolecular Chemistry分子设计与组合化学 Molecular Designand Combinatorial Chemistry纳米材料化学前沿领域导论 Introduction to Nano-materials Chemistry纳米材料控制合成与自组装 Controlled-synthesis and Self-assembly of Nan o-materials前沿讲座 Leading Front Forum专业英语 Professional English超分子化学基础 Basics of Supramolec ular Chemistry液晶材料基础 Basics of Liquid Crysta l Materials现代实验技术 Modern analytical testi ng techniques色谱及联用技术 Chromatography and Technology of tandem发光分析及其研究法 Luminescence an alysis and Research methods胶束酶学 Micellar Enzymology分析化学中的配位化合物 Complex in Analytical Chemistry电分析化学 Electroanalytical chemist ry生物分析化学 Bioanalytical chemistry分析化学 Analytical chemistry仪器分析 Instrument analysis高分子合成化学 Polymers synthetic c hemistry高聚物结构与性能 Structures and pr operties of polymers有机硅化学 Organosilicon chemistry 功能高分子Functional polymers有机硅高分子 Organosilicon polymers 高分子现代实验技术 Advanced experimental technology of polymers高分子合成新方法 New synthetic methods of polymers液晶与液晶高分子 Liquid crystals andliquid crystal polymers大分子反应 Macromolecules reaction水溶性高分子 Water-soluble polymers聚合物加工基础 The basic process ofpolymers聚合物复合材料 Composite materials高等化工与热力学 Advanced ChemicalEngineering and Thermodynamics高等反应工程学 Advanced Reaction Engineering高等有机化学 Advanced Organic Chemistry高等有机合成 Advanced Organic synthesis有机化学中光谱分析 Spectrum Analysis in Organic Chemistry催化作用原理 Principle of Catalysis染料化学 Dye Chemistry中间体化学与工艺学 Intermediate Chemistry and Technology化学动力学 Chemical Kinetics表面活性剂合成与工艺 Synthesis andTechnology of Surfactants环境化学 Environmental Chemistry化工企业清洁生产 Chemical Enterprise Clean Production化工污染及防治 Chemical Pollution and Control动量热量质量传递 Momentum, Heat and Mass Transmission化工分离工程专题 Separation Engineering耐蚀材料 Corrosion Resisting Material网络化学与化工信息检索 Internet Searching for Chemistry & Chemical Engineering information新型功能材料的模板组装 Templated Assembly of Novel Advanced Materials胶体与界面 Colloid and Interface纳米材料的胶体化学制备方法 Colloid Chemical Methods for Preparing Nano-materials脂质体化学 Chemistry of liposome表面活性剂物理化学 Physico-chemistry of surfactants高分子溶液与微乳液 Polymer Solutions and Microemulsions两亲分子的溶液化学 Chemistry of Amphiphilic Molecules in solution介孔材料化学 Mesoporous Chemistry超细颗粒化学 Chemistry of ultrafinepowder分散体系流变学 The Rheolgy of Aqueous Dispersions量子化学 Quantum Chemistry统计热力学 Statistic Thermodynamics群论 Group Theory分子模拟 Molecular Modelling高等量子化学 Advanced Quantum Ch emistry价键理论方法 Valence Bond Theory 量子化学软件及其应用Software of Q uantum Chemistry & its Application计算量子化学 Computational Quantum Chemistry分子模拟软件及其应用Software of M olecular Modelling & its Application分子反应动力学 Molecular Reaction D ynamic分子光谱学 Molecular Spectrum算法语言 Computational Languange 高分子化学 Polymer Chemistry高分子物理 Polymer Physics腐蚀电化学 Corrosion Electrochemist ry物理化学 Physical Chemistry结构化学 structural Chemistry现代分析与测试技术(试验为主) Moder n Analysis and Testing Technology(e xperimetally)高等无机化学 Advanced Inorganic Ch emistry近代无机物研究方法 Modern Research Methods for Inorganic Compounds 萃取化学研究方法 Research Methods for Extraction Chemistry单晶培养 Crystal Culture 固态化学 Chemistry of Solid Substance液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry卟啉酞箐化学 Chemistry of Porphyrine and Phthalocyanine无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium生物化学的应用 Application of Biologic Chemistry生物无机化学 Bio-Inorganic Chemistry绿色化学 Green Chemistry金属有机化合物在均相催化中的应用 Applied Homogeneous Catalysis with Organometallic Compounds功能性食品化学 Functionalized FoodChemistry无机药物化学 Inorganic Pharmaceutical Chemistry电极过程动力学 Kinetics on ElectrodeProcess电化学研究方法 Electrochemical Research Methods生物物理化学 Biological Physical Chemistry波谱与现代检测技术 Spectroscopy and Modern Testing Technology理论有机化学 theoretical Organic Chemistry合成化学 Synthesis Chemistry有机合成新方法 New Methods for Organic Synthesis生物有机化学 Bio-organic Chemistry药物化学 Pharmaceutical Chemistry金属有机化学 Organometallic Chemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications分子构效与模拟 Molecular Structure-Activity and Simulation过程装置数值计算 Data Calculation ofProcess Devices石油化工典型设备 Common Equipmentof Petrochemical Industry化工流态化工程 Fluidization in Chemical Industry化工装置模拟与优化 Analogue and Optimization of Chemical Devices化工分离工程 Separation Engineering化工系统与优化 Chemical System andOptimization高等化工热力学 Advanced Chemical Engineering and Thermodynamics超临界流体技术及应用 Super CraticalLiguid Technegues and Applications膜分离技术 Membrane Separation T echnegues溶剂萃取原理和应用 Theory and Appli cation of Solvent Extraction树脂吸附理论 Theory of Resin Adso rption中药材化学 Chemistry of Chinese Me dicine生物资源有效成分分析与鉴定 Analysis and Detection of Bio-materials相平衡理论与应用 Theory and Applic ation of Phase Equilibrium计算机在化学工程中的应用 Application of Computer in Chemical Engineerin g微乳液和高分子溶液 Micro-emulsion a nd High Molecular Solution传递过程 Transmision Process反应工程分析 Reaction Engineering A nalysis腐蚀电化学原理与应用 Principle and A pplication of Corrosion Electrochem istry腐蚀电化学测试方法与应用 Measureme nt Method and Application of Corro sion Electrochemistry耐蚀表面工程 Surface Techniques of Anti-corrosion缓蚀剂技术 Inhabitor Techniques 腐蚀失效分析 Analysis of Corrosion Destroy材料表面研究方法 Method of Studyin g Material Surfacc分离与纯化技术 Separation and Purification Technology现代精细有机合成 Modern Fine Organic Synthesis化学工艺与设备 Chemical Technologyand Apparatuas功能材料概论 Functional Materials Conspectus油田化学 Oilfield Chemistry精细化学品研究 Study of Fine Chemicals催化剂合成与应用 Synthesis and Application of Catalyzer低维材料制备 Preparation of Low-Dimension Materials手性药物化学 Symmetrical Pharmaceutical Chemistry光敏高分子材料化学 Photosensitive Polymer Materials Chemistry纳米材料制备与表征 Preparation andCharacterization of Nanostructuredmaterials溶胶凝胶化学 Sol-gel Chemistry纳米材料化学进展 Proceeding of Nano-materials Chemistry●化学常用词汇汉英对照表1●氨ammonia氨基酸amino acid铵盐ammonium salt饱和链烃saturated aliphatichydrocarbon苯benzene变性denaturation不饱和烃unsaturatedhydrocarbon超导材料superconductivematerial臭氧ozone醇alcohol次氯酸钾potassiumhypochlorite醋酸钠sodium acetate蛋白质protein氮族元素nitrogen groupelement碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀electrochemicalcorrosion电解质electrolyte电离平衡ionizationequilibrium电子云electron cloud淀粉starch淀粉碘化钾试纸starchpotassium iodide paper二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂soap分馏fractional distillation酚phenol复合材料composite干电池dry cell干馏dry distillation甘油glycerol高分子化合物polymer共价键covalent bond官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素nuclide化学电源chemical powersource化学反应速率chemical reactionrate化学键chemical bond化学平衡chemical equilibrium 还原剂reducing agent磺化反应sulfonation reaction 霍尔槽 Hull Cell极性分子polar molecule极性键polar bond加成反应addition reaction加聚反应addition polymerization甲烷methane碱金属alkali metal碱石灰soda lime结构式structural formula聚合反应po1ymerization可逆反应reversible reaction空气污染指数air pollution index勒夏特列原理Le Chatelier's principle离子反应ionic reaction离子方程式ionic equation离子键ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide两性氧化物amphoteric oxide裂化cracking裂解pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron (III) chloride氯水chlorine water麦芽糖maltose煤coal酶enzyme摩尔mole摩尔质量molar mass品红magenta或fuchsine葡萄糖glucose气体摩尔体积molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitutionreaction醛aldehyde炔烃alkyne燃料电池fuel cell弱电解质weak electrolyte石油Petroleum水解反应hydrolysis reaction四氯化碳carbontetrachloride塑料plastic塑料的降解plasticdegradation塑料的老化plastic ageing酸碱中和滴定acid-baseneutralization titration酸雨acid rain羧酸carboxylic acid碳酸钠 sodium carbonate碳酸氢铵 ammonium bicarbonate碳酸氢钠 sodium bicarbonate糖类 carbohydrate烃 hydrocarbon烃的衍生物 derivative ofhydrocarbon烃基 hydrocarbonyl同分异构体 isomer同素异形体 allotrope同位素 isotope同系物 homo1og涂料 coating烷烃 alkane物质的量amount of substance物质的量浓度 amount-of-substanceconcentration of B烯烃 alkene洗涤剂 detergent纤维素 cellulose相对分子质量 relative molecularmass相对原子质量relative atomic mass消去反应 elimination reaction硝化反应 nitratlon reaction硝酸钡 barium nitrate硝酸银silver nitrate溴的四氯化碳溶液 solution ofbromine in carbon tetrachloride溴化钠 sodium bromide溴水bromine water溴水 bromine water盐类的水解hydrolysis of salts盐析salting-out焰色反应 flame test氧化剂oxidizing agent氧化铝 aluminium oxide氧化铁iron (III) oxide乙醇ethanol乙醛 ethana1乙炔 ethyne乙酸ethanoic acid乙酸乙酯 ethyl acetate乙烯ethene银镜反应silver mirror reaction硬脂酸stearic acid油脂oils and fats有机化合物 organic compound元素周期表 periodic table ofelements元素周期律 periodic law ofelements原电池 primary battery原子序数 atomic number皂化反应 saponification粘合剂 adhesive蔗糖 sucrose指示剂 Indicator酯 ester酯化反应 esterification周期period族group(主族:main group)Bunsen burner 本生灯product 化学反应产物flask 烧瓶apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸graduate, graduated flask 量筒,量杯reagent 试剂test tube 试管burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵crucible pot, melting pot 坩埚pipette 吸液管filter 滤管stirring rod 搅拌棒element 元素body 物体compound 化合物atom 原子gram atom 克原子atomic weight 原子量atomic number 原子数atomic mass 原子质量molecule 分子electrolyte 电解质ion 离子anion 阴离子cation 阳离子electron 电子isotope 同位素isomer 同分异物现象polymer 聚合物symbol 复合radical 基structural formula 分子式valence, valency 价monovalent 单价bivalent 二价halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物series 系列acid 酸hydrochloric acid 盐酸sulphuric acid 硫酸nitric acid 硝酸aqua fortis 王水fatty acid 脂肪酸organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫alkali 碱,强碱ammonia 氨base 碱hydrate 水合物hydroxide 氢氧化物,羟化物hydracid 氢酸hydrocarbon 碳氢化合物,羟anhydride 酐alkaloid 生物碱aldehyde 醛oxide 氧化物phosphate 磷酸盐acetate 醋酸盐methane 甲烷,沼气butane 丁烷salt 盐potassium carbonate 碳酸钾soda 苏打sodium carbonate 碳酸钠caustic potash 苛性钾caustic soda 苛性钠ester 酯gel 凝胶体analysis 分解fractionation 分馏endothermic reaction 吸热反应exothermic reaction 放热反应precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from IdealBehavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics热力学第一定律10. Heat and Work 热与功11. Endothermic and ExothermicProcesses 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalysts i. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product ConstantKsp 溶度积常数49. Precipitation and separation ofIons 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-ReductionEquations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons电子的波动性63. Bohr’s Model of The HydrogenAtom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, andMass Numbers 同位素,原子数,质量数77. Periodic Properties of theElements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers,and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations inOctahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planarComplexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium,Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon,Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide,Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates andCarbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation ofSilicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus,Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, PhosphoricAcid 氨,硝酸,磷酸143. Phosphorates, phosphorusHalides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur,Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine,Bromine, Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision精密度188. relative standard deviation相对标准偏差(RSD)189. coefficient variation变异系数(CV)190. confidence level置信水平191. confidence interval置信区间192. significant test显著性检验193. significant figure有效数字194. standard solution标准溶液195. titration滴定196. stoichiometric point化学计量点197. end point滴定终点198. titration error滴定误差199. primary standard基准物质200. amount of substance物质的量201. standardization标定202. chemical reaction化学反应203. concentration浓度204. chemical equilibrium化学平衡205. titer滴定度206. general equation for a chemicalreaction化学反应的通式207. proton theory of acid-base酸碱质子理论208. acid-base titration酸碱滴定法209. dissociation constant解离常数210. conjugate acid-base pair共轭酸碱对211. acetic acid乙酸212. hydronium ion水合氢离子213. electrolyte电解质214. ion-product constant of water水的离子积215. ionization电离216. proton condition质子平衡217. zero level零水准218. buffer solution缓冲溶液219. methyl orange甲基橙220. acid-base indicator酸碱指示剂221. phenolphthalein酚酞222. coordination compound配位化合物223. center ion中心离子224. cumulative stability constant累积稳定常数225. alpha coefficient酸效应系数226. overall stability constant总稳定常数227. ligand配位体228. ethylenediamine tetraacetic acid 乙二胺四乙酸229. side reaction coefficient副反应系数230. coordination atom配位原子231. coordination number配位数232. lone pair electron孤对电子233. chelate compound螯合物234. metal indicator金属指示剂235. chelating agent螯合剂236. masking 掩蔽237. demasking解蔽238. electron电子239. catalysis催化240. oxidation氧化241. catalyst催化剂242. reduction还原243. catalytic reaction催化反应244. reaction rate反应速率245. electrode potential电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD)255. dissolved oxygen 溶解氧(DO)256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve 标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution 双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n 297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction单分子消除反应336. unimolecular nucleophilicsubstitution 单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂 356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象 362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式 364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应 370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则 378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物ace- 乙(酰基)acet- 醋;醋酸;乙酸acetamido- 乙酰胺基acetenyl- 乙炔基acetoxy- 醋酸基;乙酰氧基acetyl- 乙酰(基)aetio- 初allo- 别allyl- 烯丙(基);CH2=CH-CH2-amido- 酰胺(基)amino- 氨基amyl- ①淀粉②戊(基)amylo- 淀粉andr- 雄andro- 雄anilino- 苯胺基anisoyl- 茴香酰;甲氧苯酰anti- 抗apo- 阿朴;去水aryl- 芳(香)基aspartyl- 门冬氨酰auri- 金(基);(三价)金基aza- 氮(杂)azido- 叠氮azo- 偶氮basi- 碱baso- 碱benxoyl- 苯酰;苯甲酰benzyl- 苄(基);苯甲酰bi- 二;双;重biphenyl- 联苯基biphenylyl- 联苯基bis- 双;二bor- 硼boro- 硼bromo- 溴butenyl- 丁烯基(有1、2、3位三种)butoxyl- 丁氧基butyl- 丁基butyryl- 丁酰caprinoyl- 癸酰caproyl- 己酰calc- 钙calci- 钙calco- 钙capryl- 癸酰capryloyl- 辛酰caprylyl- 辛酰cef- 头孢(头孢菌素族抗生素词首)chlor- ①氯②绿chloro- ①氯②绿ciclo- 环cis- 顺clo- 氯crypto- 隐cycl- 环cyclo- 环de- 去;脱dec- 十;癸deca- 十;癸dehydro- 去氢;去水demethoxy- 去甲氧(基)demethyl- 去甲(基)deoxy- 去氧des- 去;脱desmethyl- 去甲(基)desoxy- 去氧dex- 右旋dextro- 右旋di- 二diamino- 二氨基diazo- 重氮dihydro- 二氢;双氢endo- 桥epi- 表;差向epoxy- 环氧erythro- 红;赤estr- 雌ethinyl- 乙炔(基)ethoxyl- 乙氧(基)ethyl- 乙基etio- 初eu- 优fluor- ①氟②荧光fluoro- ①氟②荧光formyl- 甲酰(基)guanyl- 脒基hepta- 七;庚hetero- 杂hexa- 六;己homo- 高(比原化合物多一个-CH2-)hypo- 次io- 碘indo- 碘iso- 异keto- 酮laevo- 左旋leuco- 白levo- 左旋。
Reaction Modeling(pro2)

PRO/II Reactors
19
PRO/II Training
PRO/II Reactors
20
PRO/II Training
PRO/II Reactors
21
PRO/II Training
Problem 1/2 - Conversion/Equilibrium Reactors
PRO/II Reactors
32
PRO/II Training
Procedure Data
PRO/II Reactors
33
PRO/II Training
Procedure Data
RRATES (1) = PREEXP (1) * e
− ACTIVE (1) RGAS * RTABS
* XLCONC (1) * XLCONC ( 2)
3
PRO/II Training
Reaction Data
Enter reactions in the reaction data section In Reactor units, select which reactions to use
First, Create a Library of Reaction Data Then, Select Reactions for Each Unit
PRO/II Training
Reaction Modeling
Simulation Sciences Inc.
Copyright © 1996 Simulation Sciences Inc. All Rights Reserved
动力学模拟超临界流体从香椿叶中萃取黄酮类化合物

动力学模拟超临界流体从香椿叶中萃取黄酮类化合物Kinetic Modeling of Supercritical Fluid Extraction ofFlavonoid Compounds from Cedrela Sinensis Leaves动力学模拟超临界流体从香椿叶中萃取黄酮类化合物Abstract : The paper firstly introduces three different approachesfor the kinetic modeling of supercritical fluid extraction (SFE) (empirical models , models based on the heat transfer analogy , and models based on differential mass balance) , and then models kinetic process of the SFE of flavonoid compounds from Cedrela sinensis leaves in the presence of ultrasonic , at last shows the defects existed in most of the contemporary kinetic models through the example.摘要:首先介绍了三种动力学模拟超临界流体萃取的模型(经验模型、基于热传递类推的模型以及基于微分质量平衡的模型) ,然后模拟了在超声存在的条件下超临界流体从香椿叶中萃取黄酮类化合物的动力学过程,最后通过该例子展示了现有大多数动力学模型的缺点。
Over the last 25 years, there has been an intense interest in the applications of supercritical fluid in extraction science. The wide range of applications has motivated researchers to develop models that could describe the various processes and provide a tool for evaluatingthe performance of supercritical fluid extraction (SFE) and optimize operating conditions. In the paper, SFE modeling refers to kinetic models, and three different approaches have been proposed for thekinetic modeling of SFE: empirical models, models based on the heat transfer analogy and models based on differential mass balance.Cedrela sinensis is an annual and perennial plant, being adapted to the warm and wet climate. Cedrela sinensis leaves are used in medicine and food. They containabundant nutriments and have lots of important physical and medical functions. For example, flavonoid compounds obviously enlarges blood vessel, improves blood circle, decreases blood lipid , and enhances physical immunity.1 Kinetic modeling1. 1 Empirical models(EM)The simple empirical equation proposed by Naiket al represents the extraction yield as a function of extraction time in terms of a Langmuir gas adsorption isotherm, and is applied to fit SFE curves: Where : e is the specific amount of solute (kg extract/kg solute-free feed)should extracted at time t(s) , e?is the e value for infinite extraction time. e?presumably depend only on the material being extracted , since it is equal to the initial solute content of this material. In terms of the model e?/b is the initial slope of a plotof e versus t. From t he definition of e, this initial slope should in turn be an increasingfunction of the initial loading of the solute in the extract phase and t he mass flow rate of the solvent per unit mass of bed. By implication, therefore, b may be a function ofmass flow rate, temperature and pressure.The variation of yield with extraction time predicted by this simple model is similar in form to the variation of mass adsorbed with adsorbate pressure given by the Langmuir isotherm. The equation is an empirical one and does not take explicit account of interactions between the solute and the solid matrix, nor can it take account of solute fractionation during the extraction process. The adjustable parameters of the model.1. 2 Models based on heat transfer analogyIn this case, the SFE is treated as a heat transfer phenomenon. Each particle of the solute is considered as a hot sphere cooling in a uniform medium.It is assumed t hat the solute is extracted from a particulate bed composed of porous inert spheres ,all the spheres having the same size , all the particles in the bed being at the same stage of extraction and that the compounds to be extracted are uniformly distributed inside the particles and move b y a process‘similar to diffusion’through the particles and a particulate bed of spherical particlesat the same stage of extraction. Implicit in the boundary conditions forthe equations used is also the assumption that the rate of flow of the solvent past t he particles is fast enough for the concentration of the extracted material in the solvent stream to be close to zero. If the resistance in the supercritical fluid is neglected, the extracted solute at time t is only afunction of D.By applying Fick’s second law of diffusion, the heat transfer analogy and theFourier transforms, the material balance across an internal surface of the particle can be solved analytically, giving:Where: n is an integer , r is the radius of the sphere (m) , D isthe effective2 -1diffusion coefficient of the solute in the sphere (m?s ) , t is the extraction time(s) ,-3, is t he concentration of the solute remaining in t he sp here ( kg?m ) , and m is m0-3the initial concentration of the extractable material (kg?m ) .1. 3 Models based on differential mass balanceSome hypotheses are made to model the extraction system. These are listed in the following:(a) Several components are generally involved in the extraction. However , we suppose that their behaviors with respect to the mass transfer phenomena are similar enough to be described by a single pseudo component , which will be called the“solute”.(b) The commonly accepted continuous description of the extraction bed has been assumed, with the implicit hypothesis that the relevant concentration gradients in the fluid phase develop at larger scales than the particle size. The solute concentration in the fluid phase depends only on time, t, and on t he axial coordinate, z. It s value, y, is given in terms of solid mass per unit of solvent mass.(c) The solvent flow rate, with interstitial velocity, u, is uniformly distributed inevery section of the extractor. The pressure drop can be neglected, as well as temperature gradient s with in the column. Axial dispersion is negligible.(d) The solute concentration in the solid, x, is expressed in terms of solute massper unit mass of nonsoluble solid. The value of x is an averagevalue within theparticle and depends on t and z. Concentration gradients within the particles are not resolved in this model.(e) The volume fraction of the fluid ,ε, is not affected by the reduction of thesolid mass during the extraction; in other words , the solids do not change their volume during the extraction process.According to the above hypotheses, the following mass balance equations are derived:- 3Where :ρ is the solvent density (kg?m ) ,εis t he void fraction in the bed , y fis the solute concentration in the fluid phase ( kg solute/ kg CO ) , x is the solute 2concentration in the solid phase ( kg solute/ kg solute free-feed) , u is the solvent- 1- 3velocity (m?s ) ,ρs is the solid density ( kg?m) , t is the extraction time (s) , z isthe length of the bed (m) ,and J ( x , y) is the solute exchangerate between the phases. The expression of J (x, y) is strongly dependent on the structure and the processing operations performed onthe natural extraction matrix. 2 Kinetic modeling theultrasonically2enhanced SFE( USFE) of flavonoidcompounds from Cedrela sinensis leavesThe kinetic models based on differential mass balance are most commonly used in the modeling of SFE. Because they are relatively in agreement with practice.EY=2. 1 Expression of kinetic modeling the SFEWhere : EY is t he extraction rate (%) , M is the material massbefore extraction 0( g) , xis the flavonoid compound content of material beforeextraction (%) , F is the 03 - 1supercritical CO volume rate (m?s) , K is the solvent-phasemass transfer 2f- 12- 3coefficient (m?s) ,αis the specific surfa ce of the bed(m?m) , R is the diameterof t he bed (m) , L is the length of the bed (m) , K is thedistribution coefficient ,Q is 0the initial content of the flavonoid compounds in the solid phase (%) , d is thediameter of the raw material particles (m) , Ds is the diffusion coefficient of the2-1flavonoid compounds in the solid phase (m?s) , c is thesaturation concentration sep- 3 in the separating condition(g?m) , t is the extraction time (h) .2. 2 Proof test of the kinetic modelUse the expression of kinetic modeling the SFE above and the experimental parameters in the Table1, we can calculate the parameters needed for the kinetic modelingof SFE of flavonoid compounds from Cedrela snensis leaves ( Table 2) .Tab. 1 Experimental parameters of SFEExtraction Temperature Pressure CO2 flow Concentration of Power Frequency– 1 – 1 Method ? Mpa rate/ L?h entrainer/g?mL W kHzSFE 50 20 2.0 1.0 0Tab. 2 Parameters used for simulating experimental resultsExt raction Q m0 w0 R L ρ d– 1 met hod L?h g % cm cm g?m- 3 mm KSFE 2.0 60 7.087 2.4 53 26732.16 0.17 0.017Based on the parameters (Table 1 and Table 2) ,we can simulate the kinetic model of SFE of flavonoid compounds from Cedrela sinensis leaves. Results areshowed below (Table3 , Fig 1) . From the results we can know easily that the kinetic model can simulate the process of the SFE of flavonoid compounds from Cedrelasinensis leaves.3 ConclusionsKinetic models enable us to generalize the experimental results,which can be applied to new process:Conditions and to materials other than those studied. Moreover, they are useful in the development of scaling-up procedures from laboratoryto pilot andindustrial scale and the design of the whole process to reduce investment risk and exploring experiments of research on SFE.However, kinetic modeling of the major features of the process isstill in its initial stages. For example, most of kinetic models are complicated and the scope of their applications are too much limited. From the kinetic modeling the ultrasonically-enhanced SFE of flavonoid compounds from Cedrela sinensis leaves,we can obviously know these. Thus, much research is still needed in all aspects related to t he kinetic modeling of supercritical fluid extraction.。
智能响应型聚合物微粒及其与细胞的相互作用-浙江大学高分子系

2
响应型载体 微粒 及 作用原理
随着 高 分 子 领域 的 逐 渐 发展 和 完 善 , 人 们 已 经 从 新
型聚 合物材料的 研发转为 开 发功能 性和 智 能 型 材料 。 因 此 智 能 响 应 型 材料 近 年 来 引 起 科 研 工 作 者 广 泛 的 兴趣 , 相关 的 文 章 和 报 道 也 较 为 全 面 和 丰 富 。 本 节 对 传 统 的 响 应 型 材料 仅 作 简 要 介 绍 , 更 关 注 于 近 年 来新 兴 的 响 应 型 材料 如氧 化 还 原 响 应 、 葡萄 糖 响 应 、 酶 响 应 型 材料 。 2. 1 2. 1. 1 单一响应 物理信号响应 温 度 响 应 型 材料 研究 较 多 的是具有 最 低 温度响应
ZHANG Wenjing ,GAO Changyou
( MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Department of Polymer Science and Engineering,Zhejiang University,Hangzhou 310027 ,China)
。
产 生特 定 的 响 应 , 可用 于基 因 和 药 物 控 制 的 定 点和 定 时 。
[45 ]
聚 甲 基 丙 烯 酸 ( PMAA) 及 其共 聚 物 制备 的纳米微粒 是其 中 很 重 要 的 一 类 。 在 胃 液酸 性( pH = 1 3) 的环 境 中 , 该 纳米粒子 紧 缩 ; 在 通过 胃 部 以后 ,纳米粒子由 于 pH 的 升 高 发 生 溶 胀 从 而 实 现药 物的 可 控 释放 。 研究 表明 , 装 载 了 胰 岛 素 的 甲 基 丙 烯 酸 和 乙 二 醇 共 聚 物 PMAAPEG 纳米粒子 在 pH = 7. 4 时 ,2 h 即 可 实 现 90% 的 胰岛 素 的 释放 ; 而在 相 同 的 时间 内 , pH = 1. 2 的 环境 中 ,纳米 微 粒 大 约 只 有 10% 的 胰 岛 素 释 放 。 此 外 , MAA 与 丙 烯 酸 甲酯 ( MA ) 或 者丙 烯 酸乙 酯 ( EA ) 的共 聚 物由于具 备 pH 响 应 性, 可用 于 肠 道不同 部位 的 药 物 释 55 是 一种 商 品 化 的 MAA 与 EA 放 。 例 如 , Eudragit L100的共 聚 物, 当 pH > 5. 5 时 可以发 生 溶解 , 从 而可用 于 十 二 指 肠 部位 的 药 物 释放 可用 于 回 肠 的 药 物 释放 氧 化 还 原 响应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*Corresponding author.Tel.:#31-20-525-7007;fax:#31-20-525-5604.E-mail address:krishna @its.chem.uva.nl (R.Krishna).Chemical Engineering Science 55(2000)5183}5229ReviewModelling reactive distillationR.Taylor ,R.Krishna *Department of Chemical Engineering,Clarkson Uni v ersity,Potsdam,NY 13699-5705,USA Department of Chemical Technology,Uni v ersity of Twente,7500AE Enschede,The NetherlandsDepartment of Chemical Engineering,Uni v ersity of Amsterdam,Nieuwe Achtergracht 166,1018WV Amsterdam,The NetherlandsReceived 8October 1999;accepted 12April 2000AbstractThe design and operation issues for reactive distillation systems are considerably more complex than those involved for either conventional reactors or conventional distillation columns.The introduction of an in situ separation function within the reaction zone leads to complex interactions between vapor }liquid equilibrium,vapor }liquid mass transfer,intra-catalyst di !usion (for heterogen-eously catalysed processes)and chemical kinetics.Such interactions have been shown to lead to the phenomenon of multiple steady-states and complex dynamics,which have been veri "ed in experimental laboratory and pilot plant units.We trace the development of models that have been used for design of reactive distillation columns and suggest future research directions. 2000Elsevier Science Ltd.All rights reserved.Keywords:Reactive distillation;Equilibrium stage model;Non-equilibrium stage model;Multiple steady-states;Maxwell }Stefan equationsContents1.Introduction .............................................................51841.1.Why RD?..........................................................51851.2.The constraints and di $culties in RD implementation ........................51871.3.The complexity of RD .................................................51881.4.Practical design considerations ..........................................51881.4.1.Installation,containment and removal of the catalyst ...................51881.4.2.E $cient contacting of liquid with catalyst particles .....................51891.4.3.Good vapor/liquid contacting in the reactive zone .....................51891.4.4.&&Low ''pressure drop through the catalytically packed reactive section ......51891.4.5.Su $cient liquid hold-up in the reactive section ........................51891.4.6.Designing for catalyst deactivation .................................51891.5.Hardware aspects ....................................................51891.5.1.Catalytically packed RD columns ..................................51901.5.2.Trays or downcomers to hold catalyst particles .......................51932.Thermodynamics of reactive distillation ........................................51943.Equilibrium (EQ)stage models ..............................................51963.1.The EQ stage model ..................................................51963.2.Steady-state algorithms and applications ..................................51973.3.Multiple steady-states with the EQ model.................................52000009-2509/00/$-see front matter 2000Elsevier Science Ltd.All rights reserved.PII:S 0009-2509(00)00120-23.4.Primarily dynamic models and applications (5201)3.5.Batch reactive distillationm (5203)3.6.Primarily experimental papers (5203)e of e$ciencies in RD models (5205)4.Mass transfer (5205)5.Non-equilibrium(NEQ)stage modelling (5208)5.1.The conventional NEQ model (5208)5.2.NEQ modelling of RD (5209)5.3.NEQ models (5209)5.4.NEQ cell model (5212)5.5.Pseudo-homogeneous vs.heterogeneous NEQ modelling (5213)5.6.Dynamics NEQ models (5214)6.Reactive distillation design (5216)6.1.Conceptual design (5216)6.2.Graphical design methods (5218)6.3.Design via optimisation methods (5218)6.4.From conceptual design to column design (5218)6.5.RD design in industrial practice (5219)7.Concluding remarks (5219)Notation (5220)Acknowledgements (5221)References (5221)1.IntroductionThe versatility of the fractionating column in the dual role of continuous reactor and separator as applied to chemical processing is well established.Berman,Isbenjian,Sedo!and Othmer(1948a) The quote with which we begin this review appeared in print more than"ve decades ago!It provides an interest-ing historical perspective because in more recent times we have seen an explosion of interest in the subject of react-ive distillation,and a veritable plethora of papers have appeared in the last12years alone.The recent interest in this process can be attributed in part to the growing commercial importance of reactive distillation, and in part to a keynote paper by Doherty and Buzad (1992),who reviewed the literature to that time.More than half of the over300references cited in this review have appeared after1992.Thus,one of the objectives of this article is to provide an up-date to their work with a review of more recent developments in reactive distillation.The term catalytic distillation is also used for such systems where a catalyst(homogeneous or heterogen-eous)is used to accelerate the reaction.In this review we use the generic name reactive distillation,with the acro-nym RD,to cover both catalysed or uncatalysed reac-tions systems.The"rst patents date back to the1920s(Backhaus, 1921,1922,1923a,b).Early journal articles are by Keyes (1932),Leyes and Othmer(1945a,b),Schniep,Dunning and Lathrop(1945),Berman,Melnychuk&Othmer (1948b)and Berman et al.(1948a).The"rst publications deal mainly with homogeneous self-catalysed reactions such as esteri"cations,trans-esteri"cations,and hydroly-sis.Heterogeneous catalysis in RD is a more recent development and was"rst described by Spes(1966). The main focus of this review is on the modelling of RD processes.We have tried to be comprehensive in our coverage,but it would be nearly impossible to cite every paper even in this fairly well-de"ned niche.This review does not attempt quite such comprehensive coverage of the literature devoted more to RD catalysis and kinetics studies,although some of the works in these sub-"elds necessarily are included in our review to some extent. Descriptions of speci"c RD processes also are largely beyond our scope(see,for example,Sharma(1985),Stich-lmair and Frey(1999)for reviews and Bart and Resil (1997)discuss an unusual application).Introductory overviews of RD and RD design and equipment are by5184R.Taylor,R.Krishna/Chemical Engineering Science55(2000)5183}5229Fig.1.Processing schemes for a reaction sequence A #B &C #D where C and D are both desired products.(a)Typical con "guration of a conventional process consisting of a reactor followed by a distillation train.(b)The reactive distillation con "guration.The components A,C,D and B have increasing boiling points.The reactive sections are indicated by grid lines.Adapted from Stichlmair and Frey (1999).Fair (1998),Hauan and Hildebrandt (1999),and by Towler and Frey (2000).The non-English language liter-ature also is less well served here.Fortunately,many of the papers in the German and Russian literature have been translated into English.Overviews of parts of the extensive Russian literature on RD (in English)are by Sera "mov,Pisarenko and Timofeev (1993),Sera "mov,Pisarenko and Kardona (1999a),and Timofeev,Sera "mov and Solokhin (1994).A short section on RD thermodynamics is followed by a much longer one on equilibrium (EQ)stage modelling.A brief discussion on e $ciencies in RD leads to an outline of mass transfer considerations and an overview of non-equilibrium (NEQ)modelling of RD processes.We end with some comments on RD design methods.We begin,however,with an appreciation of the bene "ts of RD.1.1.Why RD?Let us begin by considering a reversible reaction scheme:A #B &C #D where the boiling points of the components follow the sequence A,C,D and B.The traditional #ow-sheet for this process consists of a reac-tor followed by a sequence of distillation columns;see Fig.1(a).The mixture of A and B is fed to the reactor,where the reaction takes place in the presence of a cata-lyst and reaches equilibrium.A distillation train is re-quired to produce pure products C and D.The unreacted components,A and B,are recycled back to the reactor.In practice the distillation train could be much more com-plex than the one portrayed in Fig.1(a)if one or more azeotropes are formed in the mixture.The alternative RD con "guration is shown in Fig.1(b).The RD column consists of a reactive section in the middle with non-reactive rectifying and stripping sections at the top and bottom.The task of the rectifying section is to recover reactant B from the product stream C.In the stripping section,the reactant A is stripped from the product stream D.In the reactive section the products are separ-ated in situ,driving the equilibrium to the right and preven-ting any undesired side reactions between the reactants A (or B)with the product C (or D).For a properly designed RD column,virtually 100%conversion can be achieved.The most spectacular example of the bene "ts of RD is in the production of methyl acetate.The acid catalysed reaction MeOH #AcOH &MeOAc #HO was tradi-tionally carried out using the processing scheme shown in Fig.2(a),which consists of one reactor and a train of nine distillation columns.In the RD implementation (see Fig.2(b))only one column is required and nearly 100%conversion of the reactant is achieved.The capital and operating costs are signi "cantly reduced (Siirola,1995).For the acid catalysed reaction between iso -butene and methanol to form methyl tert -butyl ether:iso -butene #MeOH &MTBE,the traditional reactor-fol-lowed-by-distillation concept is particularly complex for this case because the reaction mixture leaving the reactor forms three minimum boiling azeotropes.The RD imple-mentation requires only one column to which the butenes feed (consisting of a mixture of n -butene,which isR.Taylor,R.Krishna /Chemical Engineering Science 55(2000)5183}52295185Fig. 2.Processing schemes for the esteri "cation reaction MeOH #AcOH &MeOAc #HO.(a)Conventional processingscheme consisting of one reactor followed by nine distillation columns.(b)The reactive distillation con "guration.The reactive sections are indicated by grid lines.Adapted from Siirola(1995).Fig.3.(a)Reactive distillation concept for synthesis of MTBE from the acid-catalysed reaction between MeOH and iso-butene.The butene feed is a mixture of reactive iso-butene and non-reactive n -butene.(b)Reactive distillation concept for the hydration of ethylene oxide to ethylene glycol.(c)Reactive distillation concept for reaction between benzene and propene to form cumene.(d)Reactive distillation concept for reaction production of propylene oxide from propylene chlorohyd-rin and lime.The reactive sections are indicated by grid lines.non-reactive,and iso -butene which is reactive)and meth-anol are fed near the bottom of the reactive section.The RD concept shown in Fig.3(a)is capable of achieving close to 100%conversion of iso -butene and methanol,along with suppression of the formation of the unwanted dimethyl ether (Sundmacher,1995).Also,some of the azeotropes in the mixture are `reacted away a (Doherty &Buzad,1992).For the hydration of ethylene oxide to mono-ethylene glycol:EO #HO P EG,the RD concept,shown inFig.3(b)is advantageous for two reasons (Ciric &Gu,1994).Firstly,the side reaction EO #EG P DEG is sup-pressed because the concentration of EO in the liquid-phase is kept low because of its high volatility.Secondly,the high heat of reaction is utilised to vaporise the liquid-phase mixtures on the trays.To achieve the same selectivity to EG in a conventional liquid-phase plug-#ow reactor would require the use of 60%excess water (Ciric &Gu,1994).Similar bene "ts are also realised for the hydration of iso -butene to tert -butanol (Velo,Puig-janer &Recasens,1988)and hydration of 2-methyl-2-butene to tert -amyl alcohol (Gonzalez &Fair,1997).Several alkylation reactions,aromatic #ole "n &al-kyl aromatic,are best carried out using the RD concept not only because of the shift in the reaction equilibrium due to in situ separation but also due to the fact that the undesirable side reaction,alkyl aromatic #ole "n &di-alkyl aromatic,is suppressed.The reaction of propene with benzene to form cumene,benzene #propene &Cumene (Shoemaker &Jones,1987;see Fig.3(c)),is advantageously carried out in a RD column because not only is the formation of the undesirable di-isopropylben-zene suppressed,but also the problems posed by high exothermicity of the reaction for operation in a conven-tional packed-bed reactor are avoided.Hot spots and runaway problems are alleviated in the RD concept where liquid vaporisation acts as a thermal #ywheel.The alkylation of iso -butane to iso -octane,iso -butane #n -butene &iso -octane,is another reaction that bene "ts from a RD implementation because in situ separation of the product prevents further alkylation:iso -octane #n -butene &C H(Doherty &Buzad,1992).The reaction between propylene chlorohydrin (PCH)and Ca(OH)to produce propylene oxide (PO)is bestimplemented in an RD column,see Fig.3(d).Here the desired product PO is stripped from the liquid-phase by use of live steam,suppressing hydrolysis to propylene glycol (Bezzo,Bertucco,Forlin &Barolo,1999).Co-current gas }liquid down #ow trickle-bed reactors are widely applied for hydroprocessing of heavy oils.This co-current mode of operation is disadvantageous in most hydroprocesses (Krishna &Sie,1994),and counter-cur-rent #ow of gas and liquid would be much more desirable (cf.Fig.4).This is because reactions such as hydrodesul-phurisation and hydrogenation are inhibited by hydro-gen sulphide formed,even when using the so-called sulphur-tolerant catalyst of the mixed sulphide type.The removal of sulphur from heavy oil generally follows sec-ond-order kinetics in sulphur concentration,which is a re #ection of the presence of a variety of sulphur con-taining compounds with di !erent reactivities.The sec-ond-order kinetics imply that a relatively large proportion of sulphur is removed in an early stage of the process (due to conversion of the bulk of reactive5186R.Taylor,R.Krishna /Chemical Engineering Science 55(2000)5183}5229Fig.4.Hydrodesulphurisation of gas oil carried out in (a)co-current trickle-bed reactor and (b)counter-current RD unit.molecules)while removal of the remaining sulphur takes place much more slowly in later stages.This means that the bulk of the HS is generated in a small inlet part ofthe bed and that this HS exerts its inhibiting in #uence inthe remaining part of the bed.Fig.4(a)shows the partial pressure of HS in the gas phase.It can be seen that inco-current operation the larger part of the bed operates under a HS-rich regime.The situation is clearly morefavourable in the counter-current mode of operation since in this case the major part of the bed operates in the HS lean regime.The co-current mode of operation is particularly unfavourable since the inhibiting e !ect is strongest in the region where the refractory compounds have to be converted,which calls for the highest activity.A similar situation exists in hydrocracking.The by-prod-uct of conversion of nitrogen containing organic com-pounds,viz.,ammonia,is a very strong inhibitor for hydrogenation and particularly for hydrocracking reac-tions.For the hydrogenation of aromatics too the co-current operation is unfavourable.This is not only so from a kinetic point of view (inhibition by HS andNH),but also because of thermodynamics (Trambouze,1990).Deep removal of aromatics from an oil fraction generally is limited by thermodynamic equilibrium.In the co-current mode of operation the partial pressure of Hat the exit end of the reactor is lowest because of the combined e !ects of pressure drop,hydrogen consump-tion and build up of gaseous components other than H(H S,NH ,HO,light hydrocarbons).The counter-current reactor shown in Fig.4(b)is es-sentially a RD column wherein the HS is stripped fromthe liquid-phase at the bottom and carried to the top.The quantitative advantages of the RD implementation for hydroprocessing are brought out in a design study carried out by Van Hasselt (1999).For a 20,000bbl/d hydrodesulphurisation unit with a target conversion of 98%conversion of sulphur compounds,the catalyst vol-ume required for a conventional trickle-bed reactor isabout 600m .For counter-current RD implementation the catalyst volume is reduced to about 450m .From the foregoing examples,the bene "ts of RD can be summarised as follows:(a)Simpli "cation or elimination of the separation sys-tem can lead to signi "cant capital savings.(b)Improved conversion of reactant approaching100%.This increase in conversion gives a bene "t in reduced recycle costs.(c)Improved selectivity.Removing one of the productsfrom the reaction mixture or maintaining a low con-centration of one of the reagents can lead to reduc-tion of the rates of side reactions and hence improved selectivity for the desired products.(d)Signi "cantly reduced catalyst requirement for thesame degree of conversion.(e)Avoidance of azeotropes.RD is particularly advant-ageous when the reactor product is a mixture of species that can form several azeotropes with each other.RD conditions can allow the azeotropes to be `reacted away a in a single vessel.(f)Reduced by-product formation.(g)Heat integration bene "ts.If the reaction is exother-mic,the heat of reaction can be used to provide the heat of vaporisation and reduce the reboiler duty.(h)Avoidance of hot spots and runaways using liquidvaporisation as thermal #y wheel.1.2.The constraints and di z culties in RD implementation Against the above-mentioned advantages of RD,there are several constraints and foreseen di $culties (Towler &Frey,2000):(a)Volatility constraints.The reagents and productsmust have suitable volatility to maintain high con-centrations of reactants and low concentrations of products in the reaction zone.R.Taylor,R.Krishna /Chemical Engineering Science 55(2000)5183}52295187Fig. 5.Transport processes in RD.(a)homogeneous liquid-phase reaction,and(b)heterogeneous catalysed reactions.Adapted from Sundmacher(1995).Fig.6.Length and time scales in RD.Adapted from Sundmacher (1995).(b)Residence time requirement.If the residence time forthe reaction is long,a large column size and large tray hold-ups will be needed and it may be more economic to use a reactor-separator arrangement.(c)Scale up to large#ows.It is di$cult to design RDprocesses for very large#ow rates because of liquid distribution problems in packed RD columns. (d)Process conditions mismatch.In some processes theoptimum conditions of temperature and pressure for distillation may be far from optimal for reaction and vice versa.1.3.The complexity of RDThe design and operation issues for RD systems are considerably more complex than those involved for either conventional reactors or conventional distillation columns.The introduction of an in situ separation func-tion within the reaction zone leads to complex interac-tions between vapor}liquid equilibrium,vapor}liquid mass transfer,intra-catalyst di!usion(for heterogeneous-ly catalysed processes)and chemical kinetics.Fig.5 shows the various transfer processes in homogeneousand heterogeneous RD.In heterogeneous RD the prob-lem is exacerbated by the fact that these transfer pro-cesses occur at length scales varying from1nm(pore diameter in gels,say)to say a few meters(column dimen-sions);see Fig.6.The time scales vary from1ms(di!u-sion within gels)to say a few hours(column dynamics). The phenomena at di!erent scales interact with each other.Such interactions,along with the strong non-linearities introduced by the coupling between di!usion and chemical kinetics in counter-current contacting,have been shown to lead to the phenomenon of multiple steady-states and complex dynamics,which have been veri"ed in experimental laboratory and pilot plant units (Bravo,Pyhalathi&Jaervelin,1993;Mohl et al.,1999; Rapmund,Sundmacher&Ho!mann,1998).Successful commercialisation of RD technology requires careful at-tention to the modelling aspects,including column dy-namics,even at the conceptual design stage(Doherty &Buzad,1992;Roat,Downs,Vogel&Doss,1986).As will be shown later many of the reactor and distillation paradigms do not translate easily to RD.The potential advantages of RD could be nulli"ed by improper choice of feed stage,re#ux,amount of catalyst,boilup rate,etc. Thus,it is possible to decrease conversion by increasing the amount of catalyst under certain circumstances (Higler,Taylor&Krishna,1999b).Increased separation capability could decrease process performance(Sneesby, Tade,Datta&Smith,1998a).1.4.Practical design considerationsTowler and Frey(2000)have highlighted some of the practical issues in implementing a large-scale RD ap-plication.These are discussed below.1.4.1.Installation,containment and remo v al of the catalyst It is important to allow easy installation and removal of the RD equipment and catalyst.If the catalyst under-goes deactivation,the regeneration is most conveniently done ex situ and so there must be provision for easy removal and installation of catalyst particles.Reactive5188R.Taylor,R.Krishna/Chemical Engineering Science55(2000)5183}5229Fig.7.Counter-current vapor }liquid contacting in trayed columns.Animations of CFD simulations of #ows on the tray can be viewed on our web site:http://ct-cr4.chem.uva.nl/sievetrayCFD.distillation is often passed over as a processing option because the catalyst life would require frequent shut-downs.An RD device that allowed on-stream removal of catalyst would answer this concern.1.4.2.E z cient contacting of liquid with catalyst particles The hardware design must ensure that the following `wish-list a is met.(a)Good liquid distribution and avoidance of channell-ing.Liquid maldistribution can be expected to have a more severe e !ect in RD than in conventional distillation (Podrebarac,Ng &Rempel,1998a,b).(b)Good radial dispersion of liquid through the catalystbed.This is required in order to avoid reactor hot-spots and runaways and allow even catalyst ageing.The requirement of good radial mixing has an im-pact on the choice of the packing con "guration and geometry.For example,frequent criss-crossing mix-ing patterns may be desirable,as is realised in some hardware con "gurations discussed in Section 1.5.1.4.3.Good v apor /liquid contacting in the reacti v e zone If the reaction rate is fast and the reaction is equilib-rium-limited then the required size of the reactive zone is strongly in #uenced by the e !ectiveness of the vapor }liquid contacting.Vapor }liquid contacting becomes less important for slower monly used devices for good vapor }liquid contacting are the same as for conventional distillation and include structured packing,random packing and distillation trays.1.4.4.`Low a pressure drop through the catalytically packed reacti v e sectionThis problem arises because of the need to use small catalyst particles in the 1}3mm range in order to avoid intra-particle di !usional limitations.Counter-current operation in catalyst beds packed with such small-sized particles has to be specially con "gured in order to avoid problems of excessive pressure drop and `#ooding a .These con "gurations are discussed in Section 1.5.1.4.5.Su z cient liquid hold-up in the reacti v e section The liquid hold-up,mean residence time,and liquid residence time distribution are all important in determin-ing the conversion and selectivity of RD.This is in sharp contrast with conventional distillation where liquid hold-up and RTD are often irrelevant as the vapor }liquid mass transfer is usually `controlled a by the vapor side resistance.For trayed RD columns the preferred regime of operation would be the froth regime whereas for conventional distillation we usually adopt the spray regime.1.4.6.Designing for catalyst deacti v ationEven though,as discussed in Section 1.4.1,it is desir-able to allow on-line catalyst removal and regeneration,such devices have not been commercialised as yet.Cata-lyst deactivation is therefore accounted for in the design stage by use of excess catalyst.Besides adding excess catalyst,the reaction severity can be increased by (a)increasing re #ux,leading to increased residence time and (b)increasing reaction temperature (by increase of col-umn pressure)1.5.Hardware aspectsBefore modelling aspects can be considered,careful attention needs to be paid to hardware design aspects.Towler and Frey (2000)have presented an excellent sum-mary of hardware design aspects of RD columns.Some of the important issues are discussed below.For homogeneous RD processes,counter-current va-por }liquid contacting,with su $cient degree of staging in the vapor and liquid-phases,can be achieved in a multi-tray column (cf.Fig.7)or a column with random or structured packings (cf.Fig.8).The hardware design information can be found in the standard sources for conventional distillation design (Lockett,1986;Stich-lmair &Fair,1998).The Hatta number for most RD applications is expected to be smaller than about unity (Sundmacher,Rihko &Ho !mann,1994)and the froth regime is usually to be preferred on the trays (cf.Fig.9)because of the desire to maintain high liquid hold-up on the trays.High liquid hold-ups could be realised by use of bubble caps,reverse #ow trays with additional sumps to provide ample tray residence time.In the Eastman pro-cess for methyl acetate manufacture specially designed high liquid hold-up trays are used (Agreda,Partin &Heise,1990).R.Taylor,R.Krishna /Chemical Engineering Science 55(2000)5183}52295189Fig.8.Counter-current vapor}liquid contacting in packedcolumns.Fig.9.Flow regimes on trays.1.5.1.Catalytically packed RD columnsFor heterogeneously catalysed processes,hardware de-sign poses considerable challenges.The catalyst particle sizes used in such operations are usually in the1}3mm rger particle sizes lead to intra-particle di!usion limitations.To overcome the limitations of#ooding the catalyst particles have to be enveloped within wire gauze envelopes.Most commonly the catalyst envelopes are packed inside the column.Almost every conceivable shape of these catalyst envelopes has been patented;some basic shapes are shown in Figs.10}14.These structures are:1.Porous spheres"lled with catalyst inside them(Buch-holz,Pinaire&Ulowetz,1995;Johnson,1993);see Fig.10(a).2.Cylindrical shaped envelopes with catalyst insidethem(Johnson,1993);see Fig.10(b).3.Wire gauze envelopes with various shapes:spheres,tablets,doughnuts,etc.(Smith,1984);see Fig.10(c).4.Horizontally disposed wire-mesh`gutters a,"lled withcatalyst(Van Hasselt,1999);see Fig.11(a).5.Horizontally disposed wire-mesh tubes containingcatalyst(Buchholz et al.,1995;Groten,Booker& Crossland,1998;Hearn,1993);see Fig.11(b).6.Catalyst particles enclosed in cloth wrapped in theform of bales(Johnson&Dallas,1994;Smith,1985).This is the con"guration used by Chemical Research and Licensing in their RD technology for etheri"ca-tion,hydrogenation and alkylation of aromatic com-pounds(Shoemaker&Jones,1987).The catalyst is held together by"breglass cloth.Pockets are sewn into a folded cloth and then solid catalyst is loaded into the pockets.The pockets are sewn shut after loading the catalyst and the resulting belt or`catalyst quilt a is rolled with alternating layers of steel mesh to form a cylinder of`catalyst bales a as shown in Fig.12.The steel mesh creates void volume to allow for vapor tra$c and vapor/liquid contacting.Scores of these bales are installed in the reactive zone of a typical commercial RD column.Bales are piled on top of each other to give the required height necessary to achieve the desired extent of reaction.When the catalyst is spent the column is shut down and the bales are manually removed and replaced with bales containing fresh catalyst.Improvements to the catalyst bale con-cept have been made over the years(Johnson,1993;Crossland,Gildert&Hearn,1995).The hydrodynam-ics,kinetics,and mass transfer characteristics of bale-type packings have recently been published in the open literature(Subawalla,Gonzalez,Seibert&Fair, 1997;Xu,Zhao&Tian,1997,1999).5190R.Taylor,R.Krishna/Chemical Engineering Science55(2000)5183}5229。