《分式的乘除法》教案

合集下载

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。

2. 培养学生运用分式的乘除法解决实际问题的能力。

3. 提高学生对分式运算的兴趣和自信心。

二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。

三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。

四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。

五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。

【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。

2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。

3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。

5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。

7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

8. 总结:让学生总结分式的乘除法运算规则,加深印象。

9. 课堂小测:进行课堂小测,了解学生掌握情况。

10. 课后作业:布置课后作业,让学生巩固所学知识。

六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。

2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。

3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。

七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。

2. 分析学生的学习困难,针对性地调整教学内容和策略。

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

分式的乘除法教学设计课型:新授 教师姓名:教学目标: 1、理解分式的乘除运算法则2、会进行简单的分式的乘除法运算教学重点:分式的乘除法运算教学难点:1、分式的乘除法法则的理解2、分子与分母是多项式的分式乘除法运算一、复习回顾1、化简:(1)bc a ac 22142- (2)aa a 2422+- 设计意图:当分子与分母是单项式的时候,可以直接进行约分化简;但当分子与分母是多项式的时候,就要先进行因式分解,然后再约去公因式化简,所以设计这一题考查学生对约分的定义的理解,约分一定要求在分子与分母是乘法的状态下才能进行。

2、计算:(1),10932⨯ (2)211075÷ 3、思考:(1)说出分数的乘除法的法则;分数乘以分数,用分子的积做积的分子,分母的积做积的分母;分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)试一试计算:猜一猜:=⨯c d a b;=÷cd a b 你能总结分式乘除法的法则吗?与同伴交流。

c bd a c d b a ⨯⨯=⨯, db c a d c b a c d b a ⨯⨯=⨯=÷ 二、小组讨论与归纳通过类比分数的乘除法的法则,你能得到分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.设计意图:通过分数的乘除法运算,帮助学生回顾分数的乘除法法则,让学生体会一下类比的数学思想,从而讨论归纳出分式的乘除法法则。

三、例题学习,计算:例题1:(1)226283a y y a⋅ 例题2(1)x y xy 2262÷ 注意:计算结果一定要化为最简分式四、巩固练习,计算:化简:(1)2a b b a⋅ (2) )(x y y x x y -⋅÷ (3)xy xy 3232÷- (4))21()3(43x y x y x -⋅-÷ 5、先观察下面分式的分子与分母与第1到第4题有什么不同之处,然后做一做: aa a a 21222+•-+ 尝试之后老师提问:1、按法则来做分子乘以分子,分母乘以分母,你是先做乘法运算吗?2、分子与分母能进行约分吗?3、总结:当分子与分母是多项式的分式的乘除法运算应注意哪些细节?五、例题学习,计算:1、 bb a a b -+•-2239 2、41441222--÷+--a a a a a注意:当分式的分子与分母都是单项式时:(1)乘法运算步骤是,①用分子的积做积的分子,分母的积做积的分母;②约分(2)除法的运算步骤是,把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

《分式的乘除》教案

《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。

2. 掌握分式的乘法和除法运算规则。

3. 能够解决与分式有关的实际问题。

二、教学重点1. 分式的乘法和除法运算规则。

2. 实际问题的解决。

三、教学难点实际问题的解决。

四、教学准备1. 教师准备:课本、黑板、粉笔。

2. 学生准备:课本、笔记。

五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。

2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。

例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。

例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。

广东省汕头市东厦中学人教版八年级数学上册:15.2.1分式的乘除法(教案)

广东省汕头市东厦中学人教版八年级数学上册:15.2.1分式的乘除法(教案)
三、教学难点与重点
1.教学重点
(1)分式乘法法则:掌握分式相乘的计算方法,包括分子与分子相乘、分母与分母相乘,以及结果的简化。
举例:对于分式$\frac{a}{b} \times \frac{c}{d}$,重点讲解$ac$为分子乘积,$bd$为分母乘积,以及如何对结果进行约分。
(2)分式除法法则:理解分式相除的计算过程,即乘以倒数,并掌握结果的化简方法。
(3)混合运算中的分式处理:在含有整数和分式的混合运算中,正确处理分式的运算。
难点举例:面对表达式$3 + \frac{2}{x} \times (x - 2)$,指导学生如何先将括号内的乘法运算完成,然后再与整数3进行加法运算。
(4)实际应用题的建模:将现实生活中的问题转化为分式乘除问题,建立数学模型。
3.乘除混合运算法则:讲解在含有多个分式的乘除运算中,如何按照运算顺序进行计算,并简化结果。
4.应用示例:通过典型例题,使学生学会在实际问题中运用分式的乘除法,提高解题能力。
二、核心素养目标
1.培养学生的数学运算能力,使其掌握分式乘除法的基本法则,能够熟练进行相关运算,提高解题效率。
2.培养学生的逻辑思维和推理能力,通过分析分式乘除运算的规律,培养学生运用数学语言进行严谨推理的能力。
其次,在新课讲授环节,我尽量用简洁明了的语言解释分式乘除法的概念和规则。从学生的反应来看,大部分同学能够跟上我的讲解,但对于一些基础较弱的学生,可能还是存在一定的难度。在今后的教学中,我可以适当放慢讲解速度,重点强调关键步骤,并增加一些互动环节,让学生更多地参与到课堂讨论中。
再来说说实践活动,分组讨论和实验操作对于巩固学生的知识点非常有帮助。但在实际操作中,我发现有些小组的讨论并不充分,可能是因为时间安排不够合理。在以后的教学中,我需要更加注意时间的分配,确保每个小组都有足够的时间进行充分的讨论和操作。

5.2.分式的乘除法(教案)

5.2.分式的乘除法(教案)
在讲授过程中,我特别强调了分式乘除法则,并且用了一些具体的案例来说明。但是,从学生们的反馈来看,可能还需要更多不同类型的例题来帮助他们更好地理解和消化这些规则。
小组讨论的环节,我发现学生们在交流中能够互补不足,互相学习。但是,也有个别小组在讨论时偏离了主题,这提醒我在今后的教学中,需要更加明确讨论的目标和范围,确保讨论的有效性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除法的基本概念。分式乘除法是指对两个或多个分式进行乘法或除法运算的方法。它在数学运算中非常重要,可以帮助我们解决生活中的许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两个物体的速度比,我们可以通过分式乘除法来得到答案。这个案例展示了分式乘除法在实际中的应用,以及它如何帮助我们解决问题。
5.2.分式的乘除法(教案)
一、教学内容
本节课选自教材第五章第二节“分式的乘除法”。主要内容包括:
1.掌握分式乘法的法则,能够正确进行分式的乘法运算。
-分式乘法法则:a/b × c/d = ac/bd(b、d不为0)
2.掌握分式除法的法则,能够正确进行分式的除法运算。
-分式除法法则:a/b ÷ c/d = a/b × d/c(b、c、d不为0)
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式乘除混合运算的顺序和符号处理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除法相关的实际问题,如计算购物打折后的价格。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用代数式的分式乘除法来计算几何图形的面积比。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案教案:分式的乘除法教学目标:1. 理解分式的乘法和除法的概念。

2. 掌握分式的乘法和除法的运算方法。

3. 能够解决与分式乘除法相关的问题。

教学准备:1. 讲义或教材2. 小黑板/白板和彩色粉笔/白板笔教学过程:步骤一:复习回顾分式的概念和基本运算规则。

步骤二:引入分式的乘法1. 结合例子解释分式的乘法是什么意思。

例如:$\frac{a}{b} \times \frac{c}{d}$表示把两个分式相乘。

2. 解释如何进行分式的乘法运算。

例如:将分子与分子相乘,分母与分母相乘,再将结果化简。

步骤三:练习分式的乘法请学生做一些练习题,以巩固分式的乘法运算。

步骤四:引入分式的除法1. 结合例子解释分式的除法是什么意思。

例如:$\frac{a}{b} \div \frac{c}{d}$表示把两个分式相除。

2. 解释如何进行分式的除法运算。

例如:将除数转化为倒数,再与被除数进行乘法运算。

步骤五:练习分式的除法请学生做一些练习题,以巩固分式的除法运算。

步骤六:综合乘除法的练习请学生做一些综合乘除法的练习题,以加强对分式乘除法的掌握。

步骤七:总结总结分式的乘法和除法的运算规则,并检查学生的理解。

课堂扩展活动:1. 给学生一些应用题,例如:购物时打了九折,原价100元,问打折后的价格是多少?2. 让学生自己设计一道分式的乘法或除法题目,与同学们进行交流。

评估方式:1. 教师观察学生的参与情况,是否能正确进行分式的乘法和除法运算。

2. 教师布置习题,检查学生的掌握程度。

七年级数学下册《分式的乘除》教案、教学设计

七年级数学下册《分式的乘除》教案、教学设计
-练习题分为基础题、提高题和拓展题,满足不同层次学生的需求。
4.归纳总结,提炼方法:引导学生对分式乘除法则进行归纳总结,提炼解题方法,培养学生的逻辑思维能力。
-教师与学生一起总结分式乘除法则的要点,强调注意事项。
5.互动反馈,查漏补缺:通过课堂提问、作业批改等方式,了解学生的学习情况,针对性地进行辅导和讲解。
-对学生在计算过程中出现的问题进行分类总结,找出共性问题进行讲解。
6.跨学科整合,拓展思维:将分式乘除与物理、化学等学科知识相结合,让学生体会数学在其他学科中的应用。
-例如,结合速度、密度等概念,让学生运用分式乘除解决实际问题。
7.情感态度与价值观的培养:关注学生在学习过程中的情感态度,营造轻松、愉快的学习氛围,提高学生的学习积极性。
3.拓展思维题:布置一些具有一定难度的题目,引导学生深入思考,培养学生的逻辑思维和创新能力。
-例如:已知$a=\frac{2}{3}$,$b=\frac{3}{4}$,求$\frac{1}{a}+\frac{1}{b}-\frac{ab}{a+b}$的值。
4.小组合作题:鼓励学生进行小组合作,共同完成一些需要团队协作的题目,培养学生的团队精神和沟通能力。
在练习过程中,我会巡回指导,解答学生的疑问。针对学生在计算过程中出现的问题,我会进行分类总结,找出共性问题,并在课堂上进行讲解。此外,我还会及时给予学生反馈,让他们了解自己的学习情况,调整学习策略。
(五)总结归纳,500字
在课堂练习结束后,我会引导学生对所学知识进行总结归纳。首先,我会让学生回顾分式乘除的法则,总结运算技巧。然后,我会强调分式乘除与整式乘除的联系与区别,提高学生的知识迁移能力。
七年级数学下册《分式的乘除》教案、教学设计

分式的乘除法(精选7篇)

分式的乘除法(精选7篇)

分式的乘除法(精选7篇)分式的乘除法篇1一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇2一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇3一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇4第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.第 1 2 页分式的乘除法篇5第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇6一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇7各位评委:午安!今日我说课的题目是《分式的乘除法(第1课时)》,所选用是人教版的教材。

人教版八年级上册数学教案15.2 分式的运算(5课时)

人教版八年级上册数学教案15.2 分式的运算(5课时)

15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。

分式乘除法教案

分式乘除法教案

16.2.1 分式的乘除(1)■ 教学目标知识目标:会简单的分式乘除运算,具有一定的化归技能,学会解决一 些实际问题。

能力目标:经历探索分式乘除运算法则的过程,并能结合具体情境,掌握其合理性 的计算方法。

情感目标:通过师生共同交流,探讨使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。

■ 教学方法:讲练结合 ■ 学习方法:合作交流探究■ 教学重点:掌握分式乘除的法则及其应用。

■ 教学难点:正确运用分式的约分。

■ 教学练过程: 一、创境激趣问题1:一个长方体容器的容积为V ,底面的长为a ,宽为b ,当容器内的水占容积的nm 时,水高为多少? 想一想:长方体容器的高为 ,水高为 (填算式)教师板书课题:分式的乘除二、自学指导 1、分解因式 ①5223129z xy z y x-②224b a-③229124y xy x+-2、观察2910452515321553==⨯⨯=⨯252756155231525321553==⨯⨯=⨯=÷ 由上面的算式,请写出分数的乘除法法则。

乘法法则: 除法法则:3、自学书P14~16内容。

三、探究交流1、例题探究 例1:计算①3234xyy x ⋅②cdb ac ab 4522223-÷分析:(1)应用分式乘法法则得到 ,然后找出分子、分母的最大公因式 ,即xyx xy 23222⋅⋅,再约分得232x ,这里最好不要各自字母约各自字母,容易漏约或丢失。

(2)将除法转化为乘法,注意确定符号。

教学札记 例题2411244222--⋅+-+-a a a a a a (2)mm m 7149122-÷-思考:分子分母是多项式时,先便于约分。

2、“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)米的正方形,两块试验田的小麦都收获了500千克。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标1. 理解分式乘除法的概念和运算规则。

2. 能够运用分式乘除法解决实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容1. 分式乘法的概念和运算规则。

2. 分式除法的概念和运算规则。

3. 分式乘除法的实际应用。

三、教学重点与难点1. 重点:分式乘除法的概念和运算规则。

2. 难点:分式乘除法在实际问题中的应用。

四、教学方法1. 采用讲解法,讲解分式乘除法的概念和运算规则。

2. 采用案例分析法,分析分式乘除法在实际问题中的应用。

3. 采用练习法,让学生通过练习巩固所学知识。

五、教学准备1. 教案、PPT、教学素材。

2. 计算器、黑板、粉笔。

3. 练习题。

教学过程:一、导入(5分钟)1. 复习分式的概念和基本性质。

2. 引导学生思考分式乘除法的意义和必要性。

二、讲解(20分钟)1. 讲解分式乘法的概念和运算规则。

2. 讲解分式除法的概念和运算规则。

3. 通过PPT展示典型例题,讲解分式乘除法的应用。

三、案例分析(15分钟)1. 分析分式乘除法在实际问题中的应用。

2. 让学生尝试解决实际问题,巩固所学知识。

四、练习(15分钟)1. 让学生独立完成练习题。

2. 讲解练习题的答案,解析解题思路。

五、总结(5分钟)1. 回顾本节课所学内容,总结分式乘除法的概念和运算规则。

2. 强调分式乘除法在实际问题中的应用。

教学反思:通过本节课的教学,发现部分学生在理解分式乘除法时存在困难。

在今后的教学中,可以结合更多实际例子,让学生在实践中掌握分式乘除法的应用。

加强对学生的个别辅导,提高他们的学习兴趣和自信心。

六、教学拓展1. 引导学生探索分式乘除法的运算规律。

2. 介绍分式乘除法在数学竞赛中的应用。

3. 引导学生思考分式乘除法在其他学科中的应用。

七、课堂小结1. 回顾本节课所学内容,总结分式乘除法的概念和运算规则。

2. 强调分式乘除法在实际问题中的应用。

3. 提醒学生注意分式乘除法在运算过程中的符号判断。

《分式的乘法与除法》教案

《分式的乘法与除法》教案

分式的乘法与除法一、教材分析分式的乘法与除法是初中数学教学重要内容之一。

本节内容是在学习了分式的基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘法与除法。

本节内容既是前面知识的深化与应用,又是今后学习分式加减法和分式方程等知识奠定了基础。

因此,本节课在初中数学中有着承上启下的过渡作用。

二、学情分析1.认知基础:通过前面的学习,学生已经掌握了分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,加快知识的学习。

2.心理特点:八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强。

3.不足之处:八年级学生计算和演绎推理能力不够强,面对较为复杂的问题,学生理解和计算起来还是比较困难的。

三、教学目标及重难点(一)教学目标根据以上教材的分析以及对学情的把握,我制定了如下三个目标:1.知识技能方面:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算能解决一些与分式乘除有关的实际问题。

2.过程与方法方面:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

3.情感与价值观方面:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验,增强学生的自信心。

(二)重难点重点:运用分式乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算四、教法学法(一)教法针对八年级学生在学习中的优缺点,我在本节课的教学过程中采用了启发式、引导式、讨论式以及讲练结合的教学方法,由浅入深的引导学生发现问题,解决问题,充分调动学生学习积极性。

(二)学法引导学生独立思考,观察分析,归纳总结,使学生真正成为知识的发现者、探究者。

另外,在教学过程中,我将采用多媒体辅助教学,以直观呈现教学素材,从而更好的激发学生学习兴趣,增大教学容量,提高教学提高教学质量。

五、教学过程围绕本节课的教学目标,我将教学过程分为以下六个环节,下面我将阐述具体的教学过程。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标1. 知识与技能:(1)理解分式乘除法的概念和运算规则;(2)能够正确进行分式的乘除运算;(3)掌握分式乘除法在实际问题中的应用。

2. 过程与方法:(1)通过实例演示和练习,培养学生运用分式乘除法解决实际问题的能力;(2)引导学生运用转化思想,将分式乘除法问题转化为整式乘除法问题进行求解。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和自信心;(2)培养学生勇于探索、合作交流的良好学习习惯。

二、教学重点与难点1. 教学重点:(1)分式乘除法的概念和运算规则;(2)分式乘除法在实际问题中的应用。

2. 教学难点:(1)分式乘除法运算的灵活运用;(2)将分式乘除法问题转化为整式乘除法问题进行求解。

三、教学准备1. 教学工具:黑板、粉笔、多媒体教学设备;2. 教学素材:分式乘除法的例题和练习题。

四、教学过程1. 导入新课:(1)复习相关知识点,如分式的基本概念、分式的加减法;(2)提问:分式乘除法与整式乘除法有何区别?2. 知识讲解:(1)讲解分式乘法法则;(2)讲解分式除法法则;(3)举例说明分式乘除法在实际问题中的应用。

3. 课堂练习:(1)让学生独立完成分式乘除法的练习题;(2)引导学生运用转化思想,将分式乘除法问题转化为整式乘除法问题进行求解。

(1)回顾本节课所学内容,让学生梳理知识体系;(2)强调分式乘除法在实际问题中的应用。

五、课后作业1. 请学生完成课后练习题,巩固分式乘除法的运算规则;2. 选取一些实际问题,让学生运用分式乘除法进行求解;3. 鼓励学生进行自主学习,探索分式乘除法的更多应用。

六、教学拓展1. 对比分式乘除法与整式乘除法的差异,分析各自的优缺点;2. 探讨分式乘除法在实际生活中的应用,如概率、统计等领域;3. 介绍分式乘除法的相关数学史,让学生了解其发展过程。

七、课堂小结1. 回顾本节课所学内容,让学生梳理知识体系;2. 强调分式乘除法在实际问题中的应用,激发学生学习兴趣;3. 提醒学生注意分式乘除法中的易错点,如约分、通分等。

15.2.1分式的乘除(第一课时)教案

15.2.1分式的乘除(第一课时)教案

课堂解决方案教学详案15.2.1分式的乘除(第1课时)【设计说明】本节课从生活中的问题引入,让学生感受到学习分式乘除运算是生产和生活的实际需要,从而激发学生的学习兴趣。

由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受。

利用表格给出分式的乘除法法则更利于学生的对比和理解;例题采取学生自主运用新知识代替单纯的教师讲授,这是教学方法的一大尝试。

本节课采取把自主权交给学生,遵循“教师为主导,学生为主体”原则。

体现了自主探索,合作学习的新理念,在实际问题解决的过程中培养了学生分析问题和解决问题的能力。

【教学目标】1、理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

2、经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深从特殊到一般的数学思想认识。

3、教学中渗透类比转化的思想,培养学生主动探究,合作交流的能力,使学生在学知识的同时感受探索的乐趣和成功的体验。

【教学重点难点】重点:运用分式的乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算。

【课前准备】课件、多媒体【教学过程】(-)导入新课一、提出问题,引入课题(出示多媒体)活动1:问题1 :一个水平放置的长方体容器器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的时,水面的高度为多少?问题2:大拖拉机m天耕地ahm2,小拖拉机n天耕地b hm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?师生活动:学生根据题意,分别列出问题1、问题2所求的数量关系式为:问题 1:求得容积的高:问题2:大拖拉机的工作效率是小拖拉机的倍教师引导学生观察分析以上两式的特点得出它们分别是分式的乘法和分式的除法。

从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们本节课要学习的内容。

.教师板书课题。

(二)探究新知活动2 :类比联想,探究新知计算下式:类比分数的乘除法则猜想分式的乘除法则本环节的任务:让学生从分数的乘除法法则类比探究得出分式的乘除法法则。

《分式的乘除法》教案

《分式的乘除法》教案

《分式的乘除法》教学设计曹燕一、教学目标:1.学生类比分数的乘除法运算法则归纳分式的乘除法运算法则。

2.学生运用所学的分式的乘除法运算法则准确计算。

3.学生在掌握分式的乘除法运算法则的基础上,能解决简单的实际问题.二、教学重难点:重点:分式的乘除法运算法则.难点:准确熟练地进行分式的乘除法的混合运算.三、教学过程:(一)情境导入1、提出问题,引入课题(是何)问题1:一个长方体容器的容积为V ,地面的长为a ,宽为b ;当容器内的水的高度占容器的m /n 时,求水面的高是多少,(引出分式乘法的学习需要).答案:nm ab v ⋅. 问题2:大拖拉机m 天可耕地a 公顷,小拖拉机n 天可耕地b 公顷,求大拖拉机的工作效率是小拖拉机的工作效率的几倍,(引出分式除法的学习需要).答案:⎪⎭⎫⎝⎛÷n b m a .2、类比联想,探究新知(如何)3、师生活动:首先让学生计算式子 (1) (2)解后反思:(1)式是什么运算?依据是什么?(是何,为何)(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导) (学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则. 引出“类比”是数学学习中常用的一种重要方法.提出问题,让学生大胆去猜想.多媒体显示小学学过的分数运算法则.(二)归纳新知 观察下列运算5432⨯5432÷24243535⨯⨯=⨯ 435245325432⨯⨯=⨯=÷ 1、引导学生运用“数式相通”的类比思想,归纳分式乘除法法则.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(让学生全面参与、独立思考,由自己总结出分式的乘除法法则,培养学生的归纳能力.) 2、乘除法法则运用多媒体示题,理解和巩固分式乘除法法则.强调分式的运算结果要化成最简分式. 例1 计算:注意:按照法则进行分式乘除运算,如果运算结果不是最简分式,一定要进行约分,使运算结果化成最简分式.例2 计算注意:(1)分式的分子,分母都是多项式的分式,除法先转化为乘法,然后把多项式进行因式分解,最后约分,化为最简分式.(2)如果除式是整式,则把它的分母看做”1”.(三)巩固练习完成随堂练习.重点看学生能否正确运用分式乘除法法则,能否利用分式的基本性质约分化简分式.(四) 分式的乘除法的混合运算注意:乘法混合运算可以统一为乘法运算.1.判断正误(为何)2.特别注意,分母不为零(为何)(五) 简单实际应用根据情境列式,运用法则解决简单实际问题即可。

分式的乘除法教学设计

分式的乘除法教学设计

分式的乘除法教学设计哎呀,今天咱们来聊聊分式的乘除法,听起来可能有点复杂,但其实没那么难。

分式嘛,就是一种有分子和分母的表达式,感觉就像一碗泡面,上面是面条,下面是汤。

咱们要做的,就是把这碗泡面做好,让它更加美味可口。

首先啊,乘法就像是把两碗泡面合在一起,变成一大碗,大家都能吃饱的那种。

你看,分式乘法就是把分子和分母分别相乘,简单吧?比如说,两个分式 A/B 和 C/D,咱们把它们一合,变成(A×C)/(B×D),然后就完成了。

这里面其实没什么特别复杂的,只要记得“分子乘分子,分母乘分母”就行。

别紧张,咱们来个简单的例子,假设你有 2/3 和 4/5,乘起来就是(2×4)/(3×5) 等于 8/15,哇,听上去是不是很美味?不过,分式的除法就有点像给你的泡面加上调料,稍微需要点技巧。

想象一下,你有一个分式 A/B,要除以另一个分式 C/D。

这时候,咱们得把除号变成乘号,别慌,这是分式的“秘制配方”。

把 C/D 颠倒过来,变成 D/C,然后就可以按照之前的方法进行乘法了。

再举个例子,2/3 除以 4/5,首先颠倒 4/5 变成 5/4,然后变成(2/3) × (5/4),这样就成了(2×5)/(3×4),最终得到 10/12,哎呀,化简一下,变成 5/6。

怎么样,是不是感觉像一碗调味得刚刚好的泡面?听到这里,可能有的小伙伴觉得“哎呀,我怎么总是搞混乘法和除法啊”,没关系,咱们平常生活中也会有这样的事情。

就像炒菜的时候,有时候盐和糖搞混,那可是大事儿。

要想记住分式的乘除法,最重要的就是练习,动手动脚,心里多念叨几遍。

分式的运算其实和日常生活中的做法是一样的。

就像你每天吃饭,要先洗菜,再切菜,最后才能炒菜。

先分清楚分子和分母,才能做出好吃的分式。

想象一下,你把一块蛋糕切成几份,吃的时候一定要把每一份都拿好,才能享受到这美味。

哎,别忘了,学习分式还得有个好心态,不能因为一两道题卡住了,就觉得整个世界都要崩溃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分式的乘除法》教案1
教学目标:
知识目标:经历探索分式的乘除法运算法则的过程,并能结合具体情境说明其合理性.
能力目标:会进行简单分式的乘除运算,具有一定的代数化归能力,能解决一些实际问题.
情感目标:培养学生的观察、类比、归纳的能力和与同伴合作交流的情感,进一步体会数学知识的实际价值.
教学重难点:
难点:理解分式乘除法法则的意义及法则运用.
重点:运算结果应是最简分式.
教学过程:
(一)情境导入
1、提出问题,引入课题
问题1:一个长方体容器的容积为V ,地面的长为a ,宽为b ;当容器内的水的高度占容器的m /n 时,求水面的高是多少,(引出分式乘法的学习需要). 答案:n
m ab v ⋅. 问题2:大拖拉机m 天可耕地a 公顷,小拖拉机n 天可耕地b 公顷,求大拖拉机的工作效率是小拖拉机的工作效率的几倍,(引出分式除法的学习需要). 答案:⎪⎭
⎫ ⎝⎛÷n b m a . 2、类比联想,探究新知
师生活动:首先让学生计算式子(1)21553⨯ (2)2
1553÷ 解后反思:(1)式是什么运算?依据是什么?
(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导) (学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则. 引出“类比”是数学学习中常用的一种重要方法.提出问题,让学生大胆去猜想.多媒体显示小学学过的分数运算和猜想问题.
观察下列运算
24243535
⨯⨯=⨯52527979=⨯⨯⨯
435245325432⨯⨯=⨯=÷2
79529759275⨯⨯=⨯=÷ (二)解读探究
1、学生回答猜想后,多媒体显示过程,然后引导学生运用“数式相通”的类比思想,归纳分式乘除法法则.
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
(让学生全面参与、独立思考,由自己总结出分式的乘除法法则,培养学生的归纳、创造能力.)
2、乘法法则运用
多媒体示题并解答.学习例1,理解和巩固分式乘法法则.并强调分式的运算结果通常要化成最简分式和整式.
例1 计算:
2232143();⋅a y y a 222243()().⋅-ab c c a b 22223232(1)43432a y a a y y a y a a
⨯⨯==⨯; 222222246343()().⋅⋅-=-=-⋅ab c ab c b c a a b c a b
注意:按照法则进行分式乘除运算,如果运算结果不是最简分式,一定要进行约分,使运算结果化成最简分式.
3、除法法则运用
学习例2,多媒体示题和答案.巩固分式乘除法法则的运用,通过提示语,突破难点,解决疑点,使学生能正确找出分子和分母的公因式.
例2 计算 (1)x y xy 22
63÷;222()()();-÷a a b b 23223().⋅÷x x x y y y 222
2222631(1)33662y x xy x xy xy x x y y ⋅÷=⋅==; 22222
2222222()()()=()();-÷-÷=-⋅=-=-⋅a a a a a b b b b b b a a b b b a
2222
32322322().⋅÷=⋅⋅=x x x x x y x y y x y y y y
(三)巩固练习
完成随堂练习.重点看学生能否正确运用分式乘除法法则,能否利用分式的基本性质约分化简分式,学生可以看书.
(四)学习小结
(1)内容总结
1.分式乘除法的法则与分数乘除法的法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘.
2.从法则中可以看出,分式的乘除运算可以统一成乘法.将除法转化为乘法时,不要忘记把除式的分子分母颠倒位置.
(2)方法归纳
在本节课的学习过程中,你有什么体会?
《分式的乘除法》教案2
教学目标:
知识与技能:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题.
过程与方法:通过由分数的乘除法运算类比得出分式的乘除法运算,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识.
情感态度与价值观:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验.
教学重、难点:
教学重点:分式乘除法的法则及应用.
教学难点:分子分母是多项式的分式的乘除法运算.
教学过程:
1、分式的乘除法法则
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
用式子表示为:
a c a c
b d b d ⋅⋅=⋅a
c b
d ÷a d b c =⋅a d b c
⋅=⋅ 3、例题分析,应用新知
例3.计算: 解:222250110;-⋅-()x y x y xy x y 2211224
;--÷--()a a a a 222242322).-+÷+++()(x y x y x xy y x y 2222225050511010==;--⋅⋅-+-+()()()x y x y x y x y xy xy x y xy x y x y x y 222211141222224212111
===;-----+-+÷⋅⋅-----+-+()()()()()a a a a a a a a a a a a a a a a
2222222
222
222
4232422222222)==.-+÷+++-+÷++++-+⋅++-+()(()()()()()=()()x y x y x xy y x y
x y x y x xy y x y x y x y x y x y x y x y x y
小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.
②当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.
4、练习巩固,培养能力
课堂练习:(1)()2233y x xy ⋅-;(2)2
31649a b b a ⋅ (3)y x a xy 28512÷(4)()x
y xy 3232÷- (5)x y x y x y x y +-⋅-+(6)2322332510a b a b ab a b
-⋅- (7)2211497m m m ÷--(8)xy
x y x y xy x y x 2222422222++÷++- 师生活动:教师出示问题,参与并指导,学生独立思考解答,并让学生板演或投影展示学生的解题过程.
做一做:
通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都d ,已知球的体积公式为33
4R v π=
(其中R 为球的半径,)那么: 西瓜瓤与整个西瓜的体积各是多少?
西瓜瓤与整个西瓜的体积的比是多少?
买大西瓜合算还是买小西瓜合算?
5、课堂小结,回扣目标
(1)本节课我们学习了哪些知识?
(2)在知识应用过程中需要注意什么?
(3)你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流.
设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆.。

相关文档
最新文档