高三数学经典例题精解分析高考真题(一)常用逻辑用语

合集下载

高考数学讲义常用逻辑用语.板块三.逻辑连接词与量词.教师版1

高考数学讲义常用逻辑用语.板块三.逻辑连接词与量词.教师版1

题型一:逻辑连接词 【例1】 写出下列命题的“p ⌝”命题:(1)正方形的四边相等;(2)平方和为0的两个实数都为0;(3)若ABC ∆是锐角三角形, 则ABC ∆的任何一个内角是锐角;(4)若0abc =,则,,a b c 中至少有一个为0;(5)若(1)(2)0x x --≠,则1x ≠且2x ≠.【考点】逻辑连接词 【难度】1星【题型】解答【关键词】无【解析】 【答案】(1)存在一个正方形的四边不相等.(2)平方和为0的两个实数不都为0.(3)若ABC ∆是锐角三角形, 则ABC ∆的某个内角不是锐角.(4)若0abc =,则,,a b c 中都不为0.(5)若(1)(2)0x x --≠,则1x =或2x =.【例2】 若:{|1},:{0}p N x R x q ⊄∈>-=∅.写出由其构成的“p 或q ”、“p 且q ”、“非p ”形式的新命题,并指出其真假.【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 ,p q 均为假命题.典例分析板块三.逻辑连接词与量词【答案】 “p 或q ”为::{|1}p N x R x ⊄∈>-或:{0}q =∅,是假命题;“p 且q ”为::{|1}p N x R x ⊄∈>-且:{0}q =∅,是假命题;“非p ”为::{|1}p N x R x ⊆∈>-,是真命题.【例3】 用联结词“且”、“或”分别联结下面所给的命题p q ,构成一个新的复合命题,判断它们的真假.⑴p :1是质数;q :1是合数;⑵p :菱形的对角线互相垂直;q :菱形的对角线互相平分;【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 【答案】⑴p 是假命题,q 是假命题,故p q ∨,p q ∧都是假命题;⑵p 是真命题,q 是真命题,故p q ∨是真命题,p q ∧是真命题.【例4】 把下列各组命题,分别用逻辑联结词“且”“或”“非”联结成新命题,并判断其真假.⑴p :梯形有一组对边平行;q :梯形有一组对边相等.⑵p :1是方程2430x x -+=的解;q :3是方程2430x x -+=的解.⑶p :不等式2210x x -+>解集为R ;q :不等式2221x x -+≤解集为∅.⑷p :{0}∅Ü;q :0∈∅.【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 ⑴∵p 真,q 假,∴p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真. ⑵∵p 真,q 真,∴p q ∧为真,p q ∨为真,p ⌝为假,q ⌝为假.⑶∵p 假,q 假,∴p q ∧为假,p q ∨为假,p ⌝为真,q ⌝为真.⑷∵p 真,q 假,∴p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真.【答案】⑴p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真.⑵p q ∧为真,p q ∨为真,p ⌝为假,q ⌝为假.⑶p q ∧为假,p q ∨为假,p ⌝为真,q ⌝为真.⑷p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真.【例5】 判断下面对结论的否定是否正确,如果不正确,请写出正确的否定结论:⑴至少有一个S 是P ;否定:至少有两个或两个以上S 是P ;⑵最多有一个S 是P .否定:最少有一个S 是P ;⑶全部S 都是P .否定:全部的S 都不是P .【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 “集合M 中至少有一个元素m 不具有性质a ”的否定是:集合M 中所有元素都具有性质a .反之亦对.因为“集合M 中至少有一个元素不具有性质a ”,它包含了“M 中有一个元素不具有性质a 、两个元素不具有性质a ……所有元素都不具有性质a ”等各种情形.因此它的否定是“M 中所有元素都具有性质a ”.如“三角形中至少有一个内角大于或等于60︒”的否定是“三角形中所有内角都小于60︒”.注意“都不是”的否定不是“都是”,而是“不都是”,也即“至少有一个是”.如“a 、b 都不是零”的否定是“a ,b 中至少有一个是零”.【答案】⑴不正确,没有一个S 是P .⑵不正确,至少有两个S 是P .⑶不正确,存在一个S 不是P .【例6】 “220a b +≠”的含义为__________;“0ab ≠”的含义为__________.A .a b ,不全为0B .a b ,全不为0C .a b ,至少有一个为0D .a 不为0且b 为0,或b 不为0且a 为0【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 220a b +≠的含义为a b ,不全为0,选A ; 0ab ≠的含义为,a b 全不为0,选B .【答案】A,B【例7】 已知全集R U =,A U ⊆,B U ⊆,如果命题p A B U ,则命题“p ⌝”是( )A AB U B ðC A B ID ()()U U A B I 痧 【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】D ;【例8】 命题“关于x 的方程(0)ax b a =≠的解是唯一的”的结论的否定是( )A .无解B .两解C .至少两解D .无解或至少两解【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】D ;【例9】 若条件:P x A B ∈I ,则P ⌝是( )A .x A ∈且xB ∉ B .x A ∉或x B ∉C .x A ∉且x B ∉D .x A B ∈U【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 x 至少不属于A B ,中的一个. 【答案】B ;【例10】 命题:“若220()R a b a b +=∈,,则“0a b ==”的逆否命题是( ) A .若0()R a b a b ≠≠∈,,则220a b +≠B .若0a ≠且0()R b a b ≠∈,,则220a b +≠C .若0()R a b a b =≠∈,,则220a b +≠D .若0a ≠或0()R b a b ≠∈,,则220a b +≠【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 0a b ==的否定为a b ,至少有一个不为0. 【答案】D ;【例11】 命题“2230ax ax -+>恒成立”是假命题,则实数a 的取值范围是( )A .0a <或3a ≥B .0a ≤或3a ≥C .0a <或3a >D .03a <<【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 0a <时,显然2230ax ax -+>不恒成立;0a =时,恒成立; 0a >时,只需240a ∆=-12a ≥即可,解得3a ≥.【答案】A ;【例12】 命题“p 或q ”是真命题,“p 且q ”是假命题,则( )A .命题p 和命题q 都是假命题B .命题p 和命题q 都是真命题C .命题p 和命题“非q ”的真值不同D .命题p 和命题q 的真值不同【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】D .【例13】 已知命题p :若实数x y ,满足220x y +=,则x y ,全为0;命题q :若a b >,则11a b<,给出下列四个复合命题:①p 且q ②p 或q ③p ⌝④q ⌝,其中真命题的个数为( )A .1B .2C .3D .4【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 p 为真命题,q 为假命题,∴p ⌝为假命题,q ⌝为真命题,②④为真命题. 【答案】B ;【例14】 由下列各组命题构成“p 或q ”为真,“p 且q ”为假,“p ⌝”为真的是( )A .p :0=∅,q :0∈∅B .p :等腰三角形一定是锐角三角形,q :正三角形都相似C .p :{}{}a a b ,躿,q :{}a a b ∈,D .p :53>,q :12是质数【关键词】无【解析】 【答案】B ;【例15】 在下列结论中,正确的是( )①“p q ∧”为真是“p q ∨”为真的充分不必要条件②“p q ∧”为假是“p q ∨”为真的充分不必要条件③“p q ∨”为真是“p ⌝”为假的必要不充分条件④“p ⌝”为真是“p q ∧”为假的必要不充分条件A .①②B .①③C .②④D .③④【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 p q ∧为真,p q ⇒都为真p q ⇒∨为真,反之不成立,①正确; p q ∧为假,可能,p q 都为假,故推不出p q ∨为真,②错误;p ⌝为假,有p 为真,故p q ∨为真;而p q ∨为真,p 可能为假,从而p ⌝可能 为真,③正确;p ⌝为真,说明p 假,从而p q ∧为假,④错误;故选B .【答案】B【例16】 设命题p :2x >是24x >的充要条件,命题q :若22a b c c >,则a b >.则( ) A .“p 或q ”为真 B .“p 且q ”为真C .p 真q 假D .p ,q 均为假命题【考点】逻辑连接词 【难度】2星 【题型】选择【关键词】2008年,北京东城,高考二模【解析】 p 假q 真.【答案】A .【例17】 若命题“p 且q ”为假,且“p ⌝”为假,则 ()A .p 或q 为假B .q 假C .q 真D .p 假【关键词】无【解析】“p∧(且)为假,得q为假⌝”为假,则p为真,而p q【答案】B【例18】若条件:∈I,则PP x A B⌝是()A.x A∉ D. x A B∉且x B∈⋃∈且x B∉ B. x A∉或x B∉ C. x A【考点】逻辑连接词【难度】2星【题型】选择【关键词】无【解析】P∉I,∴x至少不属于,A B中的一个.⌝:x A B【答案】B【例19】设集合{}{}=>=<,那么“x MM x x P x x|2,|3∈I”的∈”是“x M P∈,或x P()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【考点】逻辑连接词【难度】2星【题型】选择【关键词】无【解析】“x M∈I”,反之可以∈”不能推出“x M P∈,或x P【答案】A【例20】p或q”是假命题.其中正确的结论是()A.①③B.②④C.②③D.①④【考点】逻辑连接词【难度】2星【题型】选择【关键词】无【解析】“非p或非q”是假命题⇒“非p”与“非q”均为假命题.【答案】C【例21】 已知命题p 且q 为假命题,则可以肯定 ( )A.p 为真命题B.q 为假命题C.,p q 中至少有一个是假命题D.,p q 都是假命题【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】C【例22】 已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 :12p x ⌝+≤,31x -≤≤,2:56q x x ⌝-≤,2560x x -+≥,3x ≥或2x ≤ 【答案】A【例23】 下列判断正确的是 ( )A.22x y x y ≠⇔≠或x y ≠-B.命题“a 、b 都是偶数,则a b +是偶数” 的逆否命题是“若a b +不是偶数,则a 、b 都不是偶数”C.若“p 或q ”为假命题,则“非p 且非q ”是真命题D.已知,,a b c 是实数,关于x 的不等式20ax bx c ++≤的解集是空集,必有0a >且0∆≤【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无 【解析】 A 不正确,因为“x y ≠或x y ≠-”只要求其中之一成立即行,而22x y ≠需二者都成立;B 不正确,“a 、b 都是偶数”的否定是“a 、b 不都是偶数”;D 不正确,不等式 20ax bx c ++≤的解集是空集还可能是0,0a b c ==> .【答案】C【例24】 在下边的横线上填上真命题或假命题.⑴若命题“p ⌝”与命题“p q ∨”都是真命题,那么p q ∧是______; p q ⌝∧是_____;⑵若命题“p ⌝或q ⌝”是假命题,那么p q ∧是______;p q ∨是_______; p ⌝是_______.【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无 【解析】 ⑴p ⌝真,说明p 为假命题;又p q ∨为真命题,故q 为真命题,从而p q ∧是假命题;p q ⌝∧是真命题;⑵根据“p ⌝或q ⌝”是假命题知,命题p ⌝、q ⌝都是假命题,从而p 、q 都是真命题,故p q ∧ 是真命题;p q ∨是真命题;p ⌝是假命题.【答案】⑴真命题,真命题,⑵真命题,真命题,假命题【例25】 ⑴p q ∨为真命题是p q ∧为真命题的 条件;⑵p ⌝为假命题是p q ∨为真命题的 条件.(填:充分不必要、必要不充分、充要、既不充分也不必要).【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 ⑴p q ∨真⇒p 真或q 真;p q ∧真⇒p 真且q 真,故p q ∨为真命题是p q ∧为真命题的必要不充分条件;⑵p ⌝假则p 真,从而p q ∨真,但p q ∨真时,p 可能假,故推不出p ⌝假,故p ⌝为假命题是p q ∨为真命题的充分不必要条件.【答案】⑴必要不充分,⑵充分不必要【例26】 如在下列说法中:①“p 且q ”为真是“p 或q ”为真的充分不必要条件;②“p 且q ”为假是“p 或q ”为真的充分不必要条件;③“p 或q ”为真是“非p ”为假的必要不充分条件;④“非p ”为真是“p 且q ”为假的必要不充分条件.其中正确的是__________.【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 【答案】①③.【例27】 如果命题“非p 或非q ”是假命题,给出下列四个结论:①命题“p 且q ”是真命题;②命题“p 且q ”是假命题;③命题“p 或q ”是真命题;④命题“用“充分、必要、充要”填空:①p q ∨为真命题是p q ∧为真命题的________________条件;②p ⌝为假命题是p q ∨为真命题的_____________________条件.【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 【答案】必要,必要【例28】 已知命题::p “若1a >,则32a a >”;命题:q “若0a >,则1a a>”.则在“p 或q ”、“p 且q ”、“非p ”、“非q ”四个命题中,真命题是 .【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 p 真,q 假. 【答案】p 或q ,非q【例29】 命题:0p 不是自然数;命题q 是无理数,则在命题“p 或q ”、“p 且q ”、“非p ”、“非q ”中,真命题是 ;假命题是 .【考点】逻辑连接词 【难度】2星 【题型】填空【关键词】无【解析】 p 假,q 真. “p 或q ”为真,只要,p q 中有一个为真即可;“p 且q ”必须,p q中均为真.【答案】 “p 或q ”, “非p ”; “p 且q ”, “非q ”【例30】 命题“对一切非零实数x ,总有12x x+≥”的否定是 ,它是 命题.(填“真”或“假”)【考点】逻辑连接词 【难度】2星 【题型】填空【关键词】无【解析】 例如:2x =-,则1,0,2x R x x x∈≠+<. 【答案】1,0,2x R x x x∃∈≠+<,真命题【例31】 甲、乙两人参加一次竞赛,设命题p 是“甲获奖”,命题q 是“乙获奖”,试用p q,及逻辑联结词“且”、“或”、“非”表示:⑴两人都获奖; ⑵两人都未获奖; ⑶恰有一人获奖; ⑷至少有一人获奖.【考点】逻辑连接词 【难度】2星 【题型】解答【关键词】无【解析】 ⑷也是对⑵中情况的否定,故也可表示为(()())p q ⌝⌝∧⌝,故容易知道(()())p q p q ∨=⌝⌝∧⌝,也即()()()p q p q ⌝∨=⌝∧⌝.【答案】⑴两人都获奖说明两个命题都成立,故为p q ∧;⑵都未获奖说明两个命题都不成立,故为()()p q ⌝∧⌝; ⑶恰有一人获奖说明一个命题成立,另一个命题不成立,故为()()p q p q ⌝∧∨∧⌝;⑷至少有一人获奖说明p 或q 成立,即p q ∨.【例32】 命题p :若R a b ∈,,则1a b +>是1a b +>的充分条件,命题q :函数y 的定义域是(1][3)-∞-+∞U ,,,则( ) A .p 或q 为假 B .p 且q 为真 C .p 真q 假 D .p 假q 真【考点】逻辑连接词 【难度】3星 【题型】选择【关键词】无【解析】 令1,1a b ==-,知命题p 假;由1203x x --⇒≥≥或1x -≤,故命题q 真;【答案】D ;【例33】 已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p s ⌝⌝是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是( )A .①④⑤B .①②④C .②③⑤D .②④⑤【考点】逻辑连接词 【难度】3星 【题型】选择【关键词】2007年,湖北,高考【解析】 由右图易知;qsr p【答案】B ;【例34】 已知p :方程220x mx ++=有两个不等的负根;q :方程244(2)10x m x +-+=无实根.若p q ∨为真,p q ∧为假,则实数m 的取值范围是_______.【考点】逻辑连接词 【难度】3星 【题型】填空【关键词】无【解析】 由题意知,命题p q ,一真一假;p 为真时有:280m m m -<⎧⇒>⎨∆=->⎩q 为真时有:216(2)16013m m ∆=--<⇒<<;p 真q 假时有3m ≥;p 假q 真时有1m <≤(1[3)m ∈+∞U ,; 【答案】(1[3)m ∈+∞U ,【例35】 已知命题p :关于x 的不等式20062008x x a -+->恒成立;命题q :关于x 的函数log (2)a y ax =-在[01],上是减函数.若p 或q 为真命题,p 且q 为假命题,则实数a 的取值范围是_______;【考点】逻辑连接词 【难度】3星 【题型】填空【关键词】无【解析】 由题意知,命题p q ,一真一假;20062008x x -+-的最小值为2,故此不等式恒成立,即p 为真时有2a <;q 为真时log (2)a y ax =-在[01],上是减函数,∵0a >,故内层函数为减函数,从而外层对数函数为增函数,有1a >,又202a a ->⇒<,故12a <<;p 真q 假时1a ≤;p 假q 真时a 不存在,故(1]a ∈-∞,; 【答案】(1]-∞,;【例36】 已知命题p :方程2220a x ax +-=在[11]-,上有解;命题q :只有一个实数满足不等式2220x ax a ++≤.若p q ∨是假命题,求a 的取值范围.【考点】逻辑连接词 【难度】3星 【题型】解答【关键词】无【解析】 由2220a x ax +-=知0a ≠,解此方程得1212x x a a ==-,.∵方程2220a x ax +-=在[11]-,上有解,∴1||1a ≤或2||1a≤,∴||1a ≥.只有一个实数满足不等式2220x ax a ++≤,表明抛物线222y x ax a =++与x 轴只有一个公共点,∴2480a a ∆=-=, ∴0a =或2a =.∴命题p 为假,则11a -<<;命题q 为假,则0a ≠且2a ≠.∴若p q ∨是假命题,则p q ,都是假命题,a 的取值范围是(10)(01)-U ,,. 【答案】(10)(01)-U ,,【例37】 命题:p 方程210x mx ++=有两个不等的正实数根,命题:q 方程244(2)10x m x +++=无实数根.若“p 或q ”为真命题,求m 的取值范围.【考点】逻辑连接词 【难度】3星 【题型】解答【关键词】无【解析】 “p 或q ”为真命题,则p 为真命题,或q 为真命题,或q 和p 都是真命题当p 为真命题时,则2121240010m x x m x x ⎧∆=->⎪+=->⎨⎪=>⎩,得2m <-;当q 为真命题时,则216(2)160m ∆=+-<,得31m -<<- 当q 和p 都是真命题时,得32m -<<- ∴1m <-【答案】1m <-【例38】 已知函数2()(1)lg 2f x x a x a =++++(R a ∈,且2)a ≠-,⑴()f x 能表示成一个奇函数()g x 和一个偶函数()h x 的和,求()g x 和()h x 的解析式;⑵命题p :函数()f x 在区间2[(1))a ++∞,上是增函数;命题q :函数()g x 是减函数.如果命题p 且q 为假,p 或q 为真,求a 的取值范围. ⑶在⑵的条件下,比较(2)f 与3lg2-的大小.【考点】逻辑连接词 【难度】4星 【题型】解答【关键词】无【解析】 ⑴∵()()()f x g x h x =+,()()()()()f x g x h x g x h x -=-+-=-+,∴[]1()()()(1)2g x f x f x a x =--=+,[]21()()()lg 22h x f x f x x a =+-=++; ⑵命题p 为真时有:21(1)2a a +-+≤1a ⇒≥-或32a -≤,命题q 为真时有:101a a +<⇒<-;命题p 且q 为假,p 或q 为真包括:p 真q 假与p 假q 真两种情况;故1a -≥或312a -<<-,即32a >-;⑶(2)42(1)lg 226lg 2f a a a a =++++=+++,(2)(3lg 2)23lg 2lg 2f a a --=++++,32x >-时,20x +>,函数()23lg 2lg 2x x x ϕ=++++在32⎛⎫-+∞ ⎪⎝⎭,上单调递增, 故3()02a ϕϕ⎛⎫>-= ⎪⎝⎭,即在⑵的条件下,(2)3lg2f >-.【答案】⑴()(1)g x a x =+,2()lg 2h x x a =++, ⑵32a >-,⑶(2)3lg2f >-题型二:全称量词与存在量词【例39】 判断下列命题是全称命题,还是存在性命题.⑴平面四边形都存在外接圆;⑵有些直线没有斜率; ⑶三角形的内角和等于π; ⑷有一些向量方向不定; ⑸所有的有理数都是整数; ⑹实数的平方是非负的.【考点】全称量词与存在量词 【难度】1星 【题型】解答【关键词】无【解析】 .【答案】⑴全称命题;⑵存在性命题;⑶全称命题,意思是所有的三角形都有内角和等于π;⑷存在性命题;⑸全称命题;⑹全称命题【例40】 判断下列命题是全称命题还是存在性命题.⑴线段的垂直平分线上的点到这条线段两个端点的距离相等;⑵负数的平方是正数;⑶有些三角形不是等腰三角形; ⑷有些菱形是正方形.【考点】全称量词与存在量词 【难度】1星 【题型】解答【关键词】无【解析】【答案】⑴全称命题;⑵全称命题;⑶存在性命题;⑷存在性命题.【例41】 设语句()p x :cos()sin 2πx x +=-,写出“()R p θθ∀∈,”,并判断它是不是真命题.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 R θ∀∈,cos()sin 2πθθ+=-;由诱导公式知,是真命题.【答案】R θ∀∈,cos()sin 2πθθ+=-;真命题【例42】 用量词符号“∀∃,”表示下列命题,并判断下列命题的真假.⑴任意实数x 都有,2210x x ++>; ⑵存在实数x ,2210x x ++<;⑶存在一对实数a b ,,使20a b +<成立; ⑷有理数x 的平方仍为有理数;⑸实数的平方大于0.⑹有一个实数乘以任意一个实数都等于0.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 ⑴R x ∀∈,2210x x ++>;假命题,1x =-时,结论不成立;⑵R x ∃∈,2210x x ++<;假命题,R x ∈时,2221(1)0x x x ++=+≥; ⑶R a b ∃∈,,20a b +<;真命题,如12a b ==-,; ⑷Q x ∀∈,2Q x ∈;真命题; ⑸R x ∀∈,20x >;假命题,200=.⑹R a ∃∈,R x ∀∈,有0ax =;真命题,0a =即满足.【答案】⑴R x ∀∈,2210x x ++>;假命题⑵R x ∃∈,2210x x ++<;假命题 ⑶R a b ∃∈,,20a b +<;真命题 ⑷Q x ∀∈,2Q x ∈;真命题⑸R x ∀∈,20x >;假命题,200=. ⑹R a ∃∈,R x ∀∈,有0ax =;真命题【例43】判断下列命题是全称命题还是存在性命题,并判断真假.⑴所有的素数是奇数;⑵一切实数x,有2(1)0x->;⑶对于正实数x,12xx+≥;⑷1sin2sinRx xx∀∈+,≥;⑸一定有实数x满足2230x x--=;⑹至少有一个整数x能被2和3整除;⑺存在两个相交平面垂直于同一条直线;⑻{|x x x∃∈是无理数},2x是无理数.【考点】全称量词与存在量词【难度】2星【题型】解答【关键词】无【解析】【答案】⑴⑵⑶⑷是全称命题,⑸⑹⑺⑻是存在性命题,⑴⑵⑷⑺是假命题,⑶⑸⑹⑻是真命题.【例44】判断下列命题是全称命题还是存在性命题,并判断真假.⑴21x+是整数(Rx∈);⑵对所有的实数x,3x>;⑶对任意一个整数x,221x+为奇数;⑷末位是0的整数,可以被2整除;⑸角平分线上的点到这个角的两边的距离相等;⑹正四面体中两侧面的夹角相等;⑺有的实数是无限不循环小数;⑻有些三角形不是等腰三角形;⑼有的菱形是正方形.【考点】全称量词与存在量词【难度】2星【题型】解答【关键词】无【解析】⑴~⑹是全称命题,⑺~⑼是存在性命题,⑶~⑼是真命题,⑴⑵是假命题.【答案】⑴~⑹是全称命题,⑺~⑼是存在性命题,⑶~⑼是真命题,⑴⑵是假命题【例45】 写出下列命题p 的否定形式,并判断p 与p ⌝的真假.⑴平行四边形的对边相等; ⑵不等式22210x x ++≤有实数解. ⑶R x ∀∈,210x x ++>; ⑷R x ∃∈,21x x +<; ⑸有些实数的绝对值是正数.⑹不是每个质数都是偶数.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 ⑴p ⌝:存在对边不相等的平行四边形;p 真,p ⌝假;⑵p ⌝:不等式22210x x ++≤无实数解;p 假,p ⌝真; ⑶p ⌝:R x ∃∈,210x x ++≤;p 真,p ⌝假; ⑷p ⌝:R x ∀∈,21x x +≥;p 假,p ⌝真;⑸p ⌝:任意实数的绝对值都不是正数(或:,0R x x ∀∈≤);p 真,p ⌝假. ⑹p ⌝:每个质数都是偶数;p 真,p ⌝假.【答案】⑴p 真,p ⌝假;⑵p 假,p ⌝真;⑶p 真,p ⌝假;⑷p 假,p ⌝真;⑸p 真,p ⌝假;⑹p 真,p ⌝假.【例46】 判断下列命题的真假:(1)对任意的,x y 都有222x y xy +≥; (2)所有四边形的两条对角线都互相平分; (3)∃实数2a ≠且1b ≠-使22425a b a b +-+≤-;(4)存在实数x 使函数4()(0)f x x x x=+>取得最小值4.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 (1)是真命题,因为对任意实数,x y ,都有2222()0x y xy x y +-=-≥,∴222x y xy +≥.(2)是假命题,只有平行四边形才满足两条对角线互相平分,如梯形就不满足这个条件.(3)是假命题,因为2222425(2)(1)0a b a b a b +-++=-++≥,当且仅当2,1a b ==-时等号成立, 所以不存在实数对,a b ,使22(2)(1)0a b -++<,不存在即实数2a ≠且1b ≠-使22425a b a b +-+≤-.(4)是真命题,因为存在实数20x =>,使函数4()(0)f x x x x=+>取得最小值4.【答案】(1)是真命题,(2)是假命题,(3)是假命题,(4)是真命题。

2024年新高考版数学专题1_1.2 常用逻辑用语(分层集训)

2024年新高考版数学专题1_1.2 常用逻辑用语(分层集训)

2.(2023届福建龙岩一中月考,3)下列命题中,错误的命题是 ( ) A.函数f(x)=x与g(x)=( x )2不是同一个函数 B.命题“∃x∈[0,1],x2+x≥1”的否定为“∀x∈[0,1],x2+x<1”
C.设函数f(x)=
2x 2x , x
2,
x 0,
0,
则f(x)在R上单调递增
2.(2022福建龙岩一模,1)已知a∈R,若集合M={1,a},N={-1,0,1},则“M ⊆N”是“a=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 B
3.(2020天津,2,5分)设a∈R,则“a>1”是“a2>a”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A
A.∀x∈R,∃n∈N*,使得n<x2 B.∀x∈R,∀n∈N*,使得n<x2 C.∃x∈R,∃n∈N*,使得n<x2 D.∃x∈R,∀n∈N*,使得n<x2 答案 D
2.(2015课标Ⅰ,3,5分)设命题p:∃n∈N,n2>2n,则¬p为 ( ) A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 答案 C
4.(2021山东淄博模拟,5)已知a,b∈R,则“ab≠0”的一个必要条件是
()
A.a+b≠0 B.a2+b2≠0
C.a3+b3≠0 答案 B
D. 1 + 1 ≠0
ab
5.(多选)(2021辽宁省实验中学二模,4)下列四个选项中,q是p的充分必要 条件的是 ( )
A.p:

高中数学,常用逻辑用语题型归纳(解析版)

高中数学,常用逻辑用语题型归纳(解析版)

第一章常用逻辑用语第一节:简单命题‖知识梳理‖1.命题的概念一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.1.1.对于命题概念的理解(1)并不是任何语句都是命题,一个语句是命题应具备两个条件:①该语句是陈述句;②能够判断真假。

一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有字母变量的语句,根据字母的取值范围,若能判断真假,则是命题;若不能判断真假,则不是命题.2.命题的分类判断为真的语句为真命题,判断为假的语句为假命题.3.命题的结构命题的结构形式是“若p,则q”,其中p是条件,q是结论.(1)在数学中,一般用小写字母p,q,r,…等表示命题.如命题p:2是无理数;命题q:π是有理数.(2)常见的命题形式为:“若p,则q”,其中p称为命题的条件,q称为命题的结论.当一个命题不是“若p,则q”的形式时,为了找出命题的条件和结论,可以对命题改写为“若p,则q”的形式.如命题“菱形的对角线互相垂直且平分”,可以改写为:“若一个四边形是菱形,则它的对角线互相垂直且平分”.‖题型归纳‖题型一命题及其真假的判断例题1、判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)垂直于同一直线的两条直线必平行吗?(2)x 2+4x +5>0(x ∈R ); (3)x 2+3x -2=0;(4)一个数不是正数就是负数; (5)4是集合{1,2,3,4}中的元素; (6)求证y =sin 2x 的最小正周期为π. 【解】(1)是疑问句,不是命题.(2)是命题.因为当x ∈R 时,x 2+4x +5=(x +2)2+1>0恒成立,可判断真假,所以是命题,而且是真命题.(3)不是命题.因为语句中含有变量x ,在没给定x 的值之前,无法判断语句的真假,所以不是命题. (4)是命题.因为数0既不是正数也不是负数,所以是假命题. (5)是命题.因为4∈{1,2,3,4},且是真命题. (6)是祈使句,不是命题.练习1、下面命题中是真命题的是( )A .函数y =sin 2x 的最小正周期是2π B .等差数列一定是单调数列 C .直线y =ax +a 过定点(-1,0)D .在△ABC 中,若AB →·BC →>0,则角B 为锐角解析:A 中,y =sin 2x =12-12cos 2x ,周期T =π,A 为假命题;B 中,当公差为0时,等差数列为常数列,B 为假命题;D 中,若AB →·BC →>0,则AB →与BC →的夹角为锐角,角B 为钝角,D 为假命题,故C 正确. 答案:C题型二 命题的结构形式例题2、把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)ac >bc ⇒a >b ;(2)当x 2-2x -3=0时,x =-1或x =3;(3)有两个内角之和大于90°的三角形是锐角三角形; (4)实数的平方是非负数;(5)平行于同一平面的两条直线互相平行. 【解】(1)若ac >bc ,则a >b ,是假命题.(2)若x 2-2x -3=0,则x =-1或x =3,是真命题.(3)若一个三角形中,有两个内角之和大于90°,则这个三角形是锐角三角形,是假命题. (4)若一个数是实数,则它的平方是非负数,是真命题.(5)若两条直线平行于同一个平面,则它们互相平行,是假命题.练习2、把下列命题改写成“若p,则q”的形式,并判断其真假.(1)能被9整除的数是偶数;(2)当x2+(y-1)2=0时,有x=0,y=1;(3)如果a>1, 那么函数f(x)=(a-1)x是增函数.解:(1)若一个数能被9整除,则这个数是偶数,是假命题.(2)若x2+(y-1)2=0,则x=0,y=1,是真命题.(3)若a>1,则函数f(x)=(a-1)x是增函数,是假命题.‖随堂练习‖1.下列语句为命题的个数有( )①一个数不是正数就是负数;②梯形是不是平面图形呢?③22 019是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.A.1个B.2个C.3个D.4个解析:①④是命题,故选B.答案:B2.下列命题中是假命题的是( )A.若a·b=0,则a⊥b(a≠0,b≠0)B.若|a|=|b|,则a=bC.若ac2>bc2,则a>bD.5>3解析:B中两个向量模相等,方向不一定相同,故B为假命题.答案:B3.已知α,β是两个不同平面,m,n,l是三条不同直线,则下列命题正确的是( ) A.若m∥α,n⊥β且m⊥n,则α⊥βB.若m⊂α,n⊂α,l⊥n,l⊥m,则l⊥αC.若m∥α,n⊥β且α⊥β,则m⊥nD.若l⊥α且l⊥β,则α∥β解析:A中,α与β有可能平行,A错;B中,m与n不一定相交,B错;C中,m与n的关系不确定,C错;D中,垂直于同一条直线的两个平面互相平行,D正确.故选D.答案:D4.指出下列命题中的条件p和结论q.(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分. 解:(1)条件p :整数a 能被2整除,结论q :整数a 是偶数.(2)条件p :四边形是菱形,结论q :四边形的对角线互相垂直且平分. 5.把下列命题改写为“若p ,则q ”的形式,并判断其真假.(1)函数y =x 3是奇函数; (2)奇数不能被2整除;(3)与同一直线平行的两个平面平行;(4)已知x ,y 是正整数,当y =x +1时,y =3,x =2. 解:(1)若一个函数是y =x 3,则它是奇函数,它是真命题.(2)若一个数是奇数,则它不能被2整除,它是真命题.(3)若两个平面都与同一直线平行,则这两个平面平行,它是假命题. (4)已知x ,y 是正整数,若y =x +1,则y =3,x =2,它是假命题. 6.已知函数f (x )=cos x -|sin x |,那么下列命题中假命题是( )A .f (x )是偶函数B .f (x )在[-π,0]上恰有一个零点C .f (x )是周期函数D .f (x )在[-π,0]上是单调函数解析:∵f (-x )=cos(-x )-|sin(-x )|=cos x -|sin x |=f (x ),∴f (x )为偶函数,A 正确;由f (x )=cos x -|sin x |=0,x ∈[-π,0]时,可得cos x =-sin x ,∴x =-π4,即f (x )在[-π,0]上恰有一个零点,B 正确;∵f (x +2π)=cos(x +2π)-|sin(x +2π)|=cos x -|sin x |=f (x ),∴f (x )为周期函数,C 正确;当x ∈[-π,0]f (x )=cos x +sin x =2sin ⎝⎛⎭⎪⎫x +π4,f (x )在[-π,0]上不单调,D 为假命题,故选D. 答案:D四种命题及其相互关系‖知识梳理‖1.四种命题的概念2.四种命题的相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.4.命题的真假判断一个命题要么是真命题,要么是假命题,不能既真又假,也不能模棱两可,无法判断其真假.判断一个命题为真命题,需要逻辑推理(证明),判断一个命题是假命题,只需举出一个反例即可.在四种命题中,互为逆否的两个命题同真或同假,称为等价命题.原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题中真假命题的个数一定为偶数个.‖题型归纳‖题型一四种命题的概念例题1、写出下列命题的逆命题、否命题、逆否命题.(1)若a<1,则方程x2+2x+a=0有实根;(2)若ab是正整数,则a,b都是正整数;(3)若a+5是有理数,则a是无理数.【解】(1)原命题的逆命题为:若方程x2+2x+a=0有实根,则a<1.否命题为:若a≥1,则方程x2+2x+a=0没有实根.逆否命题为:若方程x2+2x+a=0没有实根,则a≥1.(2)原命题的逆命题为:若a,b都是正整数,则ab是正整数;否命题为:若ab不是正整数,则a,b不都是正整数;逆否命题为:若a,b不都是正整数,则ab不是正整数.(3)原命题的逆命题为:若a是无理数,则a+5是有理数.否命题为:若a+ 5 不是有理数,则a不是无理数.逆否命题为:若a不是无理数,则a+5不是有理数.练习1、“若a≥2,则a2≥4”的否命题是( )A.若a≤2,则a2≤4B.若a≥2,则a2≤4C.若a<2,则a2<4D.若a≥2,则a2<4解析:否命题既否定条件,又否定结论,所以“若a≥2,则a2≥4”的否命题为“若a<2,则a2<4”,故选C.答案:C题型二四种命题的相互关系例题2、下列说法中,不正确的是( )A.“若p,则q”与“若q,则p”互为逆命题B.“若﹁p,则﹁q”与“若q,则p”互为逆否命题C.“若﹁p,则﹁q”是“若p,则q”的逆否命题D.“若﹁p,则﹁q”与“若p,则q”互为否命题【解析】根据四种命题的概念知,A、B、D正确;C错误.【答案】 C练习2、若命题A的否命题为B,命题A的逆否命题为C,则B与C的关系是( )A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确解析:设命题A为:“若p,则q”,依题意得,命题B为:“若﹁p,则﹁q”,命题C为:“若﹁q,则﹁p”,所以B与C为互逆命题.答案:A题型三四种命题的真假判断例题3、有下列四个命题:①“若b2=ac,则a,b,c成等比数列”的否命题;②“若m=2,则直线x+y=0与直线2x+my+1=0平行”的逆命题;③“已知a,b是非零向量,若a·b>0,则a与b方向相同”的逆否命题;④“若x≤3,则x2-x-6>0”的逆否命题.其中为真命题的个数是( )A.1 B.2C.3 D.4【解析】命题“若b2=ac,则a,b,c成等比数列”的逆命题为:“若a,b,c成等比数列,则b2=ac”,是真命题.因为逆命题与否命题等价,所以①正确;因为②中原命题的逆命题为:“若直线x+y=0与直线2x+my+1=0平行,则m=2”,是真命题,故②正确;对于③可考虑原命题.设a=(0,1),b=(1,1),则a·b=1>0,但a与b不同向,所以原命题为假命题,故③为假命题;④中命题“若x≤3,则x2-x+6>0”的逆否命题为:“若x2-x+6≤0,则x>3”,是假命题,故④为假命题.【答案】 B练习3、下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题解析:A中,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,为真命题;B中,命题“若x>1,则x2>1”的逆命题为“若x2>1,则x>1”,为假命题,所以其否命题为假命题;C中,命题的逆命题为“若x2+x-2=0,则x=1”,为假命题,所以其否命题为假命题;D中,命题“若x2>1,则x>1”为假命题,则逆否命题为假命题,故选A.答案:A题型四、等价命题的应用例题4、判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,则a ≥1”的逆否命题的真假.【解】 解法一:原命题的逆否命题:已知a ,x 为实数,若a <1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.真假判断过程如下:抛物线y =x 2+(2a +1)x +a 2+2开口向上,Δ=(2a +1)2-4(a 2+2)=4a -7. 若a <1,则4a -7<0.所以抛物线y =x 2+(2a +1)x +a 2+2与x 轴无交点.所以关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.故逆否命题为真命题. 解法二:判断原命题的真假.已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集, 则Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,得a ≥74,从而a ≥1成立.所以原命题为真命题.又因为原命题与其逆否命题等价,所以逆否命题为真命题.练习4、已知奇函数f (x )是定义在R 上的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0. 证明:原命题的逆否命题是:若a +b <0,则f (a )+f (b )<0.∵a +b <0,∴a <-b . 又∵f (x )在R 上为增函数, ∴f (a )<f (-b ).又f (x )为奇函数,∴f (-b )=-f (b ). ∴f (a )<-f (b ),即f (a )+f (b )<0. ∴原命题的逆否命题为真命题. 故原命题成立.‖随堂练习‖1.命题“若a >b ,则a -1>b -1”的否命题是( )A .若a >b ,则a -1≤b -1B .若a >b ,则a -1<b -1C .若a ≤b ,则a -1≤b -1D .若a <b ,则a -1<b -1 解析:否命题应同时否定条件和结论. 答案:C2.命题“若p 不正确,则q 不正确”的逆命题的等价命题是( )A .若q 不正确,则p 不正确B .若q 不正确,则p 正确C .若p 正确,则q 不正确D .若p 正确,则q 正确解析:由于原命题的逆命题与否命题互为等价命题,故D 正确. 答案:D3.下列有关命题的说法正确的是( )A .命题“若xy =0,则x =0”的否命题为“若xy =0,则x ≠0”B .“若sin α=12,则α=π6”的逆否命题为真命题C .“若x +y =0,则x ,y 互为相反数”的逆命题为真命题D .命题“若cos x =cos y ,则x =y ”的逆否命题为真命题解析:C 中,原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,是真命题. 答案:C 4.下列命题中:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有____________;互为否命题的有____________;互为逆否命题的有____________. 解析:命题③可以改写为:若一个四边形是正方形,则它的四条边相等;命题④可以改写为:若一个四边形是圆内接四边形,则它的对角互补;命题⑤可以改写为:若一个四边形的对角不互补,则它不内接于圆.其中②和④,③和⑥互为逆命题;①和⑥,②和⑤互为否命题;①和③,④和⑤互为逆否命题. 答案:②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤5.写出命题“如果|x -2|+(y -1)2=0,则x =2且y =1”的逆命题、否命题、逆否命题,并判断它们的真假.解:逆命题:如果x =2且y =1,则|x -2|+(y -1)2=0.真命题.否命题:如果|x -2|+(y -1)2≠0,则x ≠2或y ≠1.真命题. 逆否命题:如果x ≠2或y ≠1,则|x -2|+(y -1)2≠0.真命题.6.设△ABC 的三边分别为a ,b ,c ,在命题“若a 2+b 2≠c 2,则△ABC 不是直角三角形”及其逆命题中( )A .原命题真,逆命题假B .原命题假,逆命题真C .两个命题都真D .两个命题都假解析:原命题“若a 2+b 2≠c 2,则△ABC 不是直角三角形”是假命题,而逆命题“若△ABC 不是直角三角形,则a 2+b 2≠c 2”是真命题.故选B.充分条件与必要条件‖知识梳理‖1.推出关系一般地,命题“若p,则q”为真,可记作“p⇒q”;“若p,则q”为假,可记作p⇒q2.充分条件与必要条件一般地,如果p⇒q,那么称p是q的充分条件,同时称q是p的必要条件.若p⇒q,则说p是q的充分条件,所谓“充分”,即要使q成立,有p成立就足够了;q是p的必要条件,所谓“必要”,即q是p成立的必不可少的条件,缺其不可.3.充要条件如果p⇒q且q⇒p,那么称p是q的充分必要条件,简称p是q的充要条件,记作p⇔q.同时q也是p 的充要条件.若p⇒q,同时q⇒p,则称p与q互为充要条件,可以表示为p⇔q(p与q等价),它的同义词还有:“当且仅当”、“必须只需”、“…,反过来也成立”.准确地理解和使用数学语言,对理解和运用数学知识是十分重要的.4.充分条件和必要条件的判断①若p⇒q,则称p是q的充分条件,q是p的必要条件.②若p⇒q,且q p,则称p是q的充分不必要条件.③若p q,且q⇒p,则称p是q的必要不充分条件.④若p⇒q,且q⇒p,则称p是q的充要条件.⑤若p q,且q p,则称p是q的既不充分也不必要条件.4.从集合与集合之间的关系看充分条件、必要条件:‖题型归纳‖题型一充分条件、必要条件的判定例题1、指出下列各题中,p是q的什么条件(在充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件中选出一种作答).(1)在△ABC中,p:∠A>∠B;q:BC>AC;(2)设x,y∈R,p:x+y≠8;q:x≠2或y≠6;(3)已知x,y∈R,p:(x-1)(y-2)=0;q:(x-1)2+(y-2)2=0;(4)在△ABC中,p:sin A>sin B;q:tan A>tan B.【解】(1)在△ABC中,有∠A>∠B⇔BC>AC,即p⇔q,所以p是q的充要条件.(2)由已知得﹁p:x+y=8;﹁q:x=2且y=6.易知﹁q⇒﹁p,但﹁p﹁q,等价于p⇒q,且q p,所以p是q的充分不必要条件.(3)由已知得p:A={(x,y)|x=1或y=2};q:B={(1,2)},易知q⇒p,且p q,所以p是q 的必要不充分条件.(4)在△ABC中,取∠A=120°,∠B=30°,则p q;又取∠A=30°,∠B=120°,则q p.所以p是q的既不充分也不必要条件.练习1—1、“a=1”是“直线a2x-y+3=0与x+ay-2=0垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件练习1-2、“a=4”是“y=x2-ax+1在(2,+∞)上是增函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:(1)若直线a2x-y+3=0与x+ay-2=0垂直,则a2-a=0,则a=0或a=1,故“a=1”是“直线a2x-y+3=0与x+ay-2=0垂直”的充分不必要条件.(2)若函数y=x2-ax+1在(2,+∞)上是增函数,则a2≤2,即a≤4,故“a=4”是“y=x2-ax+1在(2,+∞)上是增函数”的充分不必要条件.答案:(1)A (2)A题型二充分条件、必要条件的应用例题2、已知命题p:对数log a(-2t2+7t-5)(a>0,a≠1)有意义;命题q:实数t满足不等式t2-(a+3)t+(a+2)<0.(1)若命题p为真命题,求实数t的取值范围;(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.【解】 (1)由对数式有意义,得-2t 2+7t -5>0,解得1<t <52,∴若命题p 为真命题,则实数t 的取值范围是⎝ ⎛⎭⎪⎫1,52. (2)不等式t 2-(a +3)t +(a +2)<0, 可化为(t -1)(t -a -2)<0.若p 是q 的充分不必要条件,则1<t <52是不等式解集的真子集.则a +2>52,∴a >12.∴实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.练习2、已知函数f (x )=x 2-x +a ,集合A ={x |-1≤x ≤1},集合B ={x |f (x )≤0},若x ∈A 是x ∈B 的充分不必要条件,求a 的取值范围. 解:∵x ∈A 是x ∈B 的充分不必要条件,则f (x )≤0,x ∈[-1,1]恒成立, 即x 2-x +a ≤0,x ∈[-1,1]恒成立, 即f (x )max ≤0恒成立,∴⎩⎪⎨⎪⎧1+1+a ≤0,1-1+a ≤0,即a ≤-2.∴a 的取值范围为(-∞,-2].题型三 充要条件的证明例题3、已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.【证明】 证法一:①充分性:由xy >0,及x >y ,得x xy >y xy ,即1y >1x ,即1x <1y. ②必要性:由1x <1y,得1x -1y<0, 即y -xxy<0. ∵x >y ,∴y -x <0,∴xy >0. 由①②知,1x <1y的充要条件是xy >0.证法二:1x <1y ⇔1x -1y <0⇔y -xxy<0.由条件x >y ⇔y -x <0.故y -xxy <0⇔xy >0. ∴1x <1y ⇔xy >0.即1x <1y的充要条件是xy >0.练习3、求证:关于x 的方程ax 2+bx +c =0有一个根为-1的充要条件是a -b +c =0. 证明:①充分性:∵a -b +c =0,∴a (-1)2+b (-1)+c =0,∴-1是方程ax 2+bx +c =0的一个根. ②必要性:∵ax 2+bx +c =0有一个根是-1, ∴a (-1)2+b (-1)+c =0, 即a -b +c =0.由①②知,方程ax 2+bx +c =0有一根为-1的充要条件是a -b +c =0.题型四 充要条件的探求例题4、设集合A ={x |-2≤x ≤a },B ={y |y =2x +3,x ∈A },M ={z |z =x 2,x ∈A },求使M ⊆B 的充要条件.【解】 ∵A ={x |-2≤x ≤a }.∴B ={y |y =2x +3,x ∈A }={y |-1≤y ≤2a +3}. 当-2≤a <0时,M ={z |a 2≤z ≤4}; 当0≤a ≤2时,M ={z |0≤z ≤4}; 当a >2时,M ={z |0≤z ≤a 2}. 故当-2≤a ≤2时,M ⊆B , 得2a +3≥4,即a ≥12.∴12≤a ≤2. 当a >2时,M ⊆B ,得 2a +3≥a 2,解得-1≤a ≤3. ∴2<a ≤3.综上知,M ⊆B 的充要条件为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪12≤a ≤3.练习4、直线x +y +m =0与圆(x -1)2+(y -1)2=2相切的充要条件是________. 解析:∵直线x +y +m =0与圆(x -1)2+(y -1)2=2相切,∴圆心(1,1)到直线x +y +m =0的距离等于2,∴|1+1+m |2=2,∴m =-4或m =0. 当m =-4或m =0时,直线与圆相切. 答案:m =-4或m =0‖随堂练习‖1.设a >0,b >0,则“a 2+b 2≥1”是“a +b ≥ab +1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由a +b ≥ab +1,得a -1+b -ab ≥0,即(a -1)(1-b )≥0,∴⎩⎪⎨⎪⎧a ≥1,0<b ≤1或⎩⎪⎨⎪⎧0<a ≤1,b ≥1,∴a 2+b2≥1,即a +b ≥ab +1⇒a 2+b 2≥1,但当a =b =2时,有a 2+b 2≥1,而a +b <ab +1.∴“a 2+b 2≥1”是“a +b ≥ab +1”的必要不充分条件,故选B. 答案:B2.已知命题p :函数f (x )=|x +a |在(-∞,-1)上是单调函数,命题q :函数g (x )=log a (x +1)(a >0,且a ≠1)在(-1,+∞)上是增函数,则﹁p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由p 成立,得a ≤1;由q 成立,得a >1,∴当﹁p 成立时,a >1,∴﹁p 是q 的充要条件. 答案:C3.若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若m ⊥α,l ⊥m ,则l ∥α或l ⊂α,反之,若m ⊥α,l ∥α,则l ⊥m ,∴“l ⊥m ”是“l ∥α”的必要不充分条件,故选B. 答案:B4.已知p :函数f (x )=|x -a |在(2,+∞)上是增函数,q :函数f (x )=a x(a >0,且a ≠1)是减函数,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:若p 为真,则a ≤2;若q 为真,则0<a <1.则q ⇒p ,pq ,∴p 是q 的必要不充分条件,故选A. 答案:A5.已知p :x 2-8x -20≤0,q :1-m ≤x ≤1+m (m >0),且p 是q 的充分不必要条件,求实数m 的取值范围.解:由x 2-8x -20≤0,得-2≤x ≤10,又p 是q 的充分不必要条件,∴⎩⎪⎨⎪⎧1+m ≥10,1-m ≤-2,m >0,(等号不能同时成立),解得m ≥9.∴实数m 的取值范围是[9,+∞).6.设x ∈R ,则“0<x <5”是“|x -1|<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:由|x -1|<1,得0<x <2,∴“0<x <5”是“0<x <2”的必要而不充分条件,故选B. 答案:B简单的逻辑联结词‖知识梳理‖1.逻辑联结词把两个命题联结而成新命题的常用逻辑联结词有“且”、“或”、“非”.2.简单命题与复合命题(1)不含逻辑联结词的命题叫做简单命题.(2)由简单命题和逻辑联结词构成的命题叫做复合命题.复合命题一般有三种类型:①p且q;②p或q;③非p.(3)复合命题的真假①p且q同真才真,其他均假;②p或q同假才假,其他均真;③非p与p真假相反.3.对逻辑联结词“或”的理解“或”与日常生活用语中的“或”意义不同,日常生活用语中的“或”带有“不可兼有”的意思,如工作或休息;而逻辑联结词中“或”含有“同时兼有”的意思,如x<-1或x>2.因此“p或q”的含义有三层意思:①p成立q不成立;②p不成立q成立;③p与q同时成立.4.对逻辑联结词“非”的理解“非”是否定的意思,如“3是非偶数”是对命题“3是偶数”进行否定而得出的新命题.一般地,写一个命题的否定,往往需要对正面叙述的词语进行否定,常用的正面叙述的词语与它的否定如下表:5.逻辑联结词与集合的运算集合中的“交”、“并”、“补”与逻辑联结词“且”、“或”、“非”有密切关系,设集合A={x|p(x)},B={x|q(x)},可有如下关系:A∩B={x|x∈A且x∈B}={x|p∧q};A∪B={x|x∈A或x∈B}={x|p∨q};∁U A={x|x∈U且x∉A}={x|﹁p}.6.命题的否定形式与否命题的关系:命题的否定与否命题都是对关键词进行否定,但有如下区别:(1)定义不同命题的否定是直接对命题的结论进行否定;而否命题则是对命题的条件和结论都否定后组成的新命题.(2)构成形式不同对于“若p,则q”形式的命题,其否定形式为“若p,则﹁q”,即不改变条件,只否定结论;而其否命题的形式为“若﹁p,则﹁q”,即对命题的条件和结论都否定.(3)与原命题的真假关系命题的否定的真假与原命题的真假总是相对的,即一真一假;而否命题的真假与原命题的真假没有必然联系.(4)“p或q”的否定是“非p且非q”,“p且q”的否定是“非p或非q”.‖题型归纳‖题型一命题的构成例题1、分别写出由下列命题构成的“p∧q”,“p∨q”,“﹁p”形式的命题:(1)p:π是无理数,q:e不是无理数;(2)p:12是3的倍数,q:12是4的倍数;(3)p:方程x2-3x+2=0的根是x=1,q:方程x2-3x+2=0的根是x=2.【解】(1)“p∧q”:π是无理数且e不是无理数;“p∨q”:π是无理数或e不是无理数;“﹁p”:π不是无理数.(2)“p∧q”:12是3的倍数且是4的倍数;“p∨q”:12是3的倍数或是4的倍数;“﹁p”:12不是3的倍数.(3)“p∧q”:方程x2-3x+2=0的根是x=1且方程x2-3x+2=0的根是x=2;“p∨q”:方程x2-3x+2=0的根是x=1或方程x2-3x+2=0的根是x=2;“﹁p”:方程x2-3x+2=0的根不是x=1.练习1、试写出下列命题中的p ,q .(1)梯形有一组对边平行且相等;(2)方程x 2+2x +1=0有两个相等的实数根或两根的绝对值相等; (3)一元二次方程至少有三个根. 解:(1)是p 且q 形式的命题.p :梯形有一组对边平行; q :梯形有一组对边相等.(2)是p 或q 形式的命题.p :方程x 2+2x +1=0有两个相等的实数根; q :方程x 2+2x +1=0的两根的绝对值相等.(3)是﹁p 的形式.p :一元二次方程最多有两个根.题型二 复合命题的真假判断例题2、分别指出由下列各组命题构成的“p ∧q ”“p ∨q ”“﹁p ”形式的命题的真假:(1)p :π>3,q :π<2;(2)p :若x ≠0,则xy ≠0,q :若y ≠0,则xy ≠0;(3)p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边; (4)p :函数y =x 12的定义域为R ,q :函数y =x 2是偶函数.【解】 (1)∵p 是真命题,q 是假命题,∴p ∧q 是假命题,p ∨q 是真命题,﹁p 是假命题.(2)∵p 是假命题,q 是假命题,∴p ∧q 是假命题,p ∨q 是假命题,﹁p 是真命题. (3)∵p 是真命题,q 是真命题,∴p ∧q 是真命题,p ∨q 是真命题,﹁p 是假命题. (4)∵p 是假命题,q 是真命题,∴p ∧q 是假命题,p ∨q 是真命题,﹁p 是真命题.练习2—1、命题p :若ac 2>bc 2,则a >b ,命题q :在△ABC 中,若A ≠B ,则sin A ≠sin B ,下列选项正确的是( )A .p 假q 真B .p 真q 假C .“p 或q ”为假D .“p 且q ”为真练习2—2、已知命题p :不等式-x 2+2x <0的解集是{x |x <0或x >2},命题q :在△ABC 中,A >B 是sin A >sinB 的充要条件,则( )A .p 真q 假B .p ∨q 假C .p ∧q 真D .p 假q 真解析:(1)p 为真命题,q 为真命题,∴p 且q 为真,故选D.(2)由-x 2+2x <0,得x >2或x <0,故p 为真命题,在△ABC 中,A >B ⇔sin A >sin B ,故q 为真命题,所以p ∧q 为真,故选C. 答案:(1)D (2)C题型三 命题的否定与否命题例题3、写出下列命题的否定与否命题,并判断真假.(1)若abc =0,则a ,b ,c 中至少有一个为0; (2)若x 2+y 2=0,则x ,y 全为0; (3)等腰三角形有两个内角相等.【解】 (1)命题的否定:若abc =0,则a ,b ,c 中都不为0,为假命题;否命题:若abc ≠0,则a ,b ,c 都不为0,为真命题.(2)命题的否定:若x 2+y 2=0,则x ,y 中至少有一个不为0,为假命题; 否命题:若x 2+y 2≠0,则x ,y 中至少有一个不为0,为真命题. (3)命题的否定:等腰三角形的任意两个内角都不相等,为假命题; 否命题:不是等腰三角形的三角形中任意两个角都不相等,为真命题.练习3、“末位数字是1或3的整数不能被8整除”的否定形式是___________;否命题是___________. 解析:命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,因此否命题是:末位数字不是1且不是3的整数能被8整除. 答案:末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除题型四 逻辑联结词“或”“且”“非”的应用例题4、设命题p :ln a <0;命题q :函数y =ax 2-x +a 的定义域为R .(1)若命题q 是真命题,求实数a 的取值范围;(2)若命题p 或q 是真命题,命题p 且q 是假命题,求实数a 的取值范围. 【解】 (1)对于命题q :函数的定义域为R 的充要条件是ax 2-x +a ≥0恒成立.当a =0时,不等式为-x ≥0,解得x ≤0,显然不成立; 当a ≠0时,不等式恒成立的条件是@⎩⎪⎨⎪⎧a >0,Δ=(-1)2-4a ×a ≤0,解得a ≥12.所以命题q 为真命题时,a 的取值集合为Q =⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥12.(2)若命题p 为真,则0<a <1,由“p 或q 是真命题,p 且q 是假命题”可知,命题p ,q 一真一假,当p 真q 假时,由⎩⎪⎨⎪⎧0<a <1,a <12,得0<a <12;当p 假q 真时,由⎩⎪⎨⎪⎧a ≤0或a ≥1,a ≥12,得a ≥1.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫0,12∪[1,+∞).练习4、已知a >0,a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :二次函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∧q 为假命题,p ∨q 为真命题,求a 的取值范围. 解:若函数y =log a (x +1)在(0,+∞)内单调递减,则0<a <1,∴p :0<a <1.若曲线y =x 2+(2a -3)x +1与x 轴交于两点, 则(2a -3)2-4>0,即a <12或a >52.∴q :a <12或a >52.若p ∧q 为假命题,p ∨q 为真命题,则p 与q 一真一假,若p 真q 假,由⎩⎪⎨⎪⎧0<a <1,12≤a ≤52,a >0且a ≠1,得a ∈⎣⎢⎡⎭⎪⎫12,1.若p 假q 真,由⎩⎪⎨⎪⎧a ≤0或a ≥1,a <12或a >52,a >0且a ≠1,得a ∈⎝ ⎛⎭⎪⎫52,+∞.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫12,1∪⎝ ⎛⎭⎪⎫52,+∞.‖随堂练习‖1.已知命题p :x ∈A ∪B ,则﹁p 是( )A .x ∉A ∪B B .x ∉A 或x ∉BC .x ∉A 且x ∉BD .x ∈A ∩B解析:由x ∈A ∪B ,知x ∈A 或x ∈B .﹁p 是:x ∉A 且x ∉B .故选C. 答案:C2.已知p :|x +1|>2,q :x >a ,则﹁p 是﹁q 的充分不必要条件,则a 的取值范围是( )A.a≥1 B.a≤1C.a≥-3 D.a≤-3解析:由|x+1|>2,得x<-3或x>1,∵﹁p是﹁q的充分不必要条件,∴﹁p⇒﹁q,∴q⇒p,∴a≥1,故选A.答案:A3.设p,q是两个命题,若﹁(p∨q)是真命题,那么( )A.p是真命题且q是假命题B.p是真命题且q是真命题C.p是假命题且q是真命题D.p是假命题且q是假命题解析:﹁(p∨q)是真命题,则p∨q是假命题,故p,q均为假命题.答案:D4.下列三个结论:①命题“若x-sin x=0,则x=0”的逆否命题为“若x≠0,则x-sin x≠0”;②若p是q的充分不必要条件,则﹁q是﹁p的充分不必要条件;③命题“p∧q为真”是命题“p∨q为真”的必要不充分条件.其中正确结论的个数是( )A.0个B.1个C.2个D.3个解析:命题“若x-sin x=0,则x=0”的逆否命题为“若x≠0,则x-sin x≠0”,即①正确;由p是q的充分不必要条件,可得由p能推出q,但是q不能推出p,所以﹁q能推出﹁p,﹁p不能推出﹁q,故﹁q是﹁p的充分不必要条件,即②正确;若p∧q为真,则p,q都为真,所以p∨q为真;若p∨q为真,则p,q至少有一个为真,所以“p∧q为真”是命题“p∨q为真”的充分不必要条件,即③错误.故选C. 答案:C5.已知命题p:若a>b,则a2>b2,命题q:若a<b,则ac2<bc2,下列命题为真命题的是( ) A.p∧q B.p∧(﹁q)C.p∨(﹁q) D.p∨q解析:若a=-1,b=-2,满足a>b,但a2<b2,∴p为假命题,当c=0,a<b时,但ac2=bc2,q为假命题.∴p∧q为假,p∧(﹁q)为假,p∨q为假,p∨(﹁q)为真,故选C.答案:C6.已知命题p:α,β是第一象限角,则α>β是sin α>sin β的充要条件,命题q:若S n为等差数列{a n}的前n项和,则S m,S2m,S3m(m∈N*)成等差数列,下列命题为真命题的个数是( )①p∨(﹁q) ②(﹁p)∧q③(﹁p)∨(﹁q) ④p∧qA.1个B.2个C.3个D.4个解析:∵p为假命题,q为假命题,∴p∨(﹁q)为真命题,(﹁p)∧q为假命题,(﹁p)∨(﹁q)为真命题,p∧q为假命题.故选B. 答案:B全称量词与存在量词‖知识梳理‖1.全称量词和全称命题2.存在量词和特称命题3.全称命题与特称命题的辨析同一个全称命题或特称命题,由于自然语言的不同,可以有不同的表述方法,在实际应用中可以灵活地选择.有的命题省略全称量词,但仍是全称命题.例如:“实数的绝对值是非负数”,省略了全称量词“任意”.但它仍然是全称命题.因此,要判定一个命题是否是全称命题,除看它是否含有全称量词外,还要结合具体意义去判断.4.全称命题与特称命题的真假要判定一个全称命题是真命题,必须对限定集合M中的每一个元素x验证p(x)成立;但要判定一个全称命题是假命题,却只需找出集合M中的一个x0,使得p(x0)不成立即可(这就是我们常说的“举出一个反例”).要判定一个特称命题为真命题,只要在限定集合M中,至少能找到一个x0,使得p(x0)成立即可;否则,这一特称命题就是假命题.。

高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)

高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)

高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。

高中数学必修一第一章集合与常用逻辑用语经典大题例题

高中数学必修一第一章集合与常用逻辑用语经典大题例题

(每日一练)高中数学必修一第一章集合与常用逻辑用语经典大题例题单选题1、已知集合A={x|−1<x≤2},B={−2,−1,0,2,4},则(∁R A)∩B=()A.∅B.{−1,2}C.{−2,4}D.{−2,−1,4}答案:D分析:利用补集定义求出∁R A,利用交集定义能求出(∁R A)∩B.解:集合A={x|−1<x≤2},B={−2,−1,0,2,4},则∁R A={x|x≤−1或x>2},∴(∁R A)∩B={−2,−1,4}.故选:D2、已知集合A={−1,1,2,4},B={x||x−1|≤1},则A∩B=()A.{−1,2}B.{1,2}C.{1,4}D.{−1,4}答案:B分析:方法一:求出集合B后可求A∩B.[方法一]:直接法因为B={x|0≤x≤2},故A∩B={1,2},故选:B.[方法二]:【最优解】代入排除法x=−1代入集合B={x||x−1|≤1},可得2≤1,不满足,排除A、D;x=4代入集合B={x||x−1|≤1},可得3≤1,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.3、已知集合A={−1,0,1,2},B={x|x2≤1},则A∩B=()A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}答案:A分析:先计算集合B里的不等式,将B所代表的区间计算出来,再根据交集的定义计算即可. 不等式x2≤1,即−1≤x≤1,B=[−1,1],A={−1,0,1,2},B={x|−1≤x≤1},所以A∩B={−1,0,1};故选:A.4、设集合A={2,a2−a+2,1−a},若4∈A,则a的值为().A.−1,2B.−3C.−1,−3,2D.−3,2答案:D分析:由集合中元素确定性得到:a=−1,a=2或a=−3,通过检验,排除掉a=−1.由集合中元素的确定性知a2−a+2=4或1−a=4.当a2−a+2=4时,a=−1或a=2;当1−a=4时,a=−3.当a=−1时,A={2,4,2}不满足集合中元素的互异性,故a=−1舍去;当a=2时,A={2,4,−1}满足集合中元素的互异性,故a=2满足要求;当a=−3时,A={2,14,4}满足集合中元素的互异性,故a=−3满足要求.综上,a=2或a=−3.5、已知非空集合A 、B 、C 满足:A ∩B ⊆C ,A ∩C ⊆B .则( ).A .B =C B .A ⊆(B ∪C )C .(B ∩C )⊆AD .A ∩B =A ∩C答案:C分析:作出符合题意的三个集合之间关系的venn 图即可判断.解:因为非空集合A 、B 、C 满足:A ∩B ⊆C ,A ∩C ⊆B ,作出符合题意的三个集合之间关系的venn 图,如图所示,所以A ∩B =A ∩C .故选:D .6、已知“命题p:∃x ∈R,使得ax 2+2x +1<0成立”为真命题,则实数a 满足( )A .[0,1)B .(-∞,1)C .[1,+∞)D .(-∞,1]答案:B分析:讨论a =0或a ≠0,当a =0时,解得x <−12,成立;当a ≠0时,只需{a >0Δ>0或a <0即可. 若a =0时,不等式ax 2+2x +1<0等价为2x +1<0,解得x <−12,结论成立.当a ≠0时,令y =ax 2+2x +1,要使ax 2+2x +1<0成立,则满足{a >0Δ>0或a <0,解得0<a <1或a <0,综上a <1,小提示:本题考查了根据特称命题的真假求参数的取值范围,考查了分类讨论的思想,属于基础题.7、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.8、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可. 根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.9、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N⊈P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n-2与3p+1都是表示同一类数,6m-5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m-56,m∈Z},x=m-56=6m-56=6(m-1)+16,对于集合N={x|x=n2-13,n∈Z},x=n2-13=3n-26=3(n-1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n-1)+1与3p+1表示的数都是3的倍数加1,6(m-1)+1表示的数是6的倍数加1,所以6(m-1)+1表示的数的集合是前者表示的数的集合的子集,所以M∈N=P.故选:B.10、已知集合A={x|ax2+2x+1=0,a∈R}只有一个元素,则a的取值集合为()A.{1}B.{0}C.{0,−1,1}D.{0,1}答案:D分析:对参数分类讨论,结合判别式法得到结果.解:①当a=0时,A={−12},此时满足条件;②当a≠0时,A中只有一个元素的话,∆=4−4a=0,解得a=1,综上,a的取值集合为{0,1}.故选:D.多选题11、下列四个选项中正确的是()A.{∅}⊆{a,b}B.{(a,b)}={a,b}C.{a,b}⊆{b,a}D.∅⊆{0}答案:CD分析:注意到空集和由空集构成的集合的不同,可以判定AD;注意到集合元素的无序性,可以判定C;注意到集合的元素的属性不同,可以否定B.对于A选项,集合{∅}的元素是∅,集合{a,b}的元素是a,b,故没有包含关系,A选项错误;对于B选项,集合{(a,b)}的元素是点,集合{a,b}的元素是a,b,故两个集合不相等,B选项错误;对于C选项,由集合的元素的无序性可知两个集合是相等的集合,故C选项正确;对于D选项,空集是任何集合的子集,故D选项正确.故选:CD.12、对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},并称A⊕B为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是()A.若A,B⊆R且A⊕B=B,则A=∅B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆BD.存在A,B⊆R,使得A⊕B=∁R A⊕∁R BE.存在A,B⊆R,使得A⊕B≠B⊕A答案:ABD解析:根据新定义判断.根据定义A⊕B=[(∁R A)∩B]∪[A∩(∁R B)],A.若A⊕B=B,则∁R A∩B=B,A∩∁R B=∅,∁R A∩B=B⇒B⊆∁R A,A∩∁R B=∅⇒A⊆B,∴A=∅,A正确;B.若A⊕B=∅,则∁R A∩B=∅,A∩∁R B=∅,A∩B=A=B,B正确;C. 若A⊕B⊆A,则∁R A∩B=∅,A∩∁R B⊆A,则B⊆A,C错;D.A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确;E.由定义,A⊕B=[(∁R A)∩B]∪[A∩(∁R B)]=B⊕A,E错.故选:ABD.小提示:本题考查新定义,解题关键是新定义的理解,把新定义转化为集合的交并补运算.13、(多选)下列命题的否定中,是全称量词命题且为真命题的是()A.∃x∈R,x2−x+14<0B.所有的正方形都是矩形C.∃x∈R,x2+2x+2=0D.至少有一个实数x,使x3+1=0答案:AC分析:AC.原命题的否定是全称量词命题,原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;D. 原命题的否定不是真命题,所以该选项不符合题意.A.原命题的否定为:∀x∈R,x2−x+14≥0,是全称量词命题;因为x2−x+14=(x−12)2≥0,所以原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;C. 原命题为存在量词命题,所以其否定为全称量词命题,对于方程x2+2x+2=0,Δ=22−8=−4<0,所以x2+2x+2>0,所以原命题为假命题,即其否定为真命题,所以该选项符合题意;.D. 原命题的否定为:对于任意实数x,都有x3+1≠0,如x=−1时,x3+1=0,所以原命题的否定不是真命题,所以该选项不符合题意.故选:AC14、已知关于x 的方程x 2+(m −3)x +m =0,下列结论正确的是( )A .方程x 2+(m −3)x +m =0有实数根的充要条件是m ∈{m|m <1或m >9}B .方程x 2+(m −3)x +m =0有一正一负根的充要条件是m ∈{m ∣0<m ≤1}C .方程x 2+(m −3)x +m =0有两正实数根的充要条件是m ∈{m ∣0<m ≤1}D .方程x 2+(m −3)x +m =0无实数根的必要条件是m ∈{m|m >1}答案:CD解析:根据充分条件和必要条件的定义对选项逐一判断即可.在A 中,二次方程有实数根,等价于判别式Δ=(m −3)2−4m ≥0,解得m ≤1或m ≥9,即二次方程有实数根的充要条件是m ∈{m|m ≤1或m ≥9},故A 错误;在B 中,二次方程有一正一负根,等价于{(m −3)2−4m >0m <0,解得m <0, 方程有一正一负根的充要条件是m ∈{m |m <0 },故B 错误;在C 中,方程有两正实数根,等价于{Δ=(m −3)2−4m ≥03−m >0,m >0,解得0<m ≤1,故方程有两正实数根的充要条件是m ∈{m ∣0<m ≤1},故C 正确;在D 中,方程无实数根,等价于Δ=(m −3)2−4m <0得1<m <9,而{m |1<m <9 }⊆{m |m >1 },故m ∈{m|m >1}是方程无实数根的必要条件,故D 正确;故选:CD .小提示:名师点评关于充分条件和必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的充分条件,则p 可推出q ,即p 对应集合是q 对应集合的子集;(2)若p 是q 的必要条件,则q 可推出p ,即q 对应集合是p 对应集合的子集;(3)若p 是q 的充要条件,则p ,q 可互推,即p 对应集合与q 对应集合相等.15、下列四个条件中可以作为方程ax 2−x +1=0有实根的充分不必要条件是( )A .a =0B .a ≤14C .a =−1D .a ≠0答案:AC分析:先化简方程ax 2−x +1=0有实根得到a ≤14,再利用集合的关系判断得解.当a =0时,方程ax 2−x +1=0有实根x =1;当a ≠0时,方程ax 2−x +1=0有实根即Δ=1−4a ≥0,∴a ≤14. 所以a ≤14且a ≠0.综合得a ≤14.设选项对应的集合为A , 集合B =(−∞,14],由题得集合A 是集合B 的真子集,所以只能选AC.所以答案是:AC小提示:方法点睛:充分条件必要条件的判定,常用的方法有:(1)定义法;(2)集合法;(3)转化法. 要根据已知条件灵活选择方法求解.16、设A ={x |x 2−9x +14=0 },B ={x |ax −1=0 },若A ∩B =B ,则实数a 的值可以为( )A .2B .12C .17D .0答案:BCD分析:先求出集合A ,再由A ∩B =B 可知B ⊆A ,由此讨论集合B 中元素的可能性,即可判断出答案. 集合A ={x|x 2−9x +14=0}={2,7},B ={x|ax −1=0},又A ∩B =B ,所以B ⊆A ,当a =0时,B =∅,符合题意,当a ≠0时,则B ={1a },所以1a =2或1a=7, 解得a =12或a =17,综上所述,a =0或12或17,故选:BCD17、已知全集为U ,A ,B 是U 的非空子集且A ⊆∁U B ,则下列关系一定正确的是( )A .∃x ∈U ,x ∉A 且x ∈B B .∀x ∈A ,x ∉BC .∀x ∈U ,x ∈A 或x ∈BD .∃x ∈U ,x ∈A 且x ∈B答案:AB分析:根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答. 全集为U ,A ,B 是U 的非空子集且A ⊆∁U B ,则A ,B ,U 的关系用韦恩图表示如图,观察图形知,∃x ∈U ,x ∉A 且x ∈B ,A 正确;因A ∩B =∅,必有∀x ∈A ,x ∉B ,B 正确;若A∁U B ,则(∁U A)∩(∁U B)≠∅,此时∃x ∈U ,x ∈[(∁U A)∩(∁U B)],即x ∉A 且x ∉B ,C 不正确; 因A ∩B =∅,则不存在x ∈U 满足x ∈A 且x ∈B ,D 不正确.故选:AB18、下列“若p ,则q ”形式的命题中,p 是q 的必要条件的是( )A .若x 2>y 2,则x >yB .若x >5,则x >10C .若ac =bc ,则a =bD .若2x +1=2y +1,则x =y答案:BCD分析:利用必要条件的定义、特殊值法判断可得出合适的选项.对于A 选项,取x =1,y =−1,则x >y ,但x 2=y 2,即“x 2>y 2”不是“x >y ”的必要条件;对于B 选项,若x >10,则x >5,即“x >5”是“x >10”的必要条件;对于C 选项,若a =b ,则ac =bc ,即“ac =bc ”是“a =b ”的必要条件;对于D 选项,若x =y ,则2x +1=2y +1,即“2x +1=2y +1”是“x =y ”的必要条件.故选:BCD.19、已知集合A ={x|x 2−x −6=0},B ={x|mx −1=0}, A ∩B =B ,则实数m 取值为()A .13B .−12C .−13D .0答案:ABD解析:先求集合A ,由A ∩B =B 得B ⊆A ,然后分B =∅和B ≠∅两种情况求解即可解:由x 2−x −6=0,得x =−2或x =3,所以A ={−2,3},因为A ∩B =B ,所以B ⊆A ,当B =∅时,方程mx −1=0无解,则m =0,当B ≠∅时,即m ≠0,方程mx −1=0的解为x =1m ,因为B ⊆A ,所以1m =−2或1m =3,解得m =−12或m =13,综上m =0,或m =−12,或m =13,故选:ABD小提示:此题考查集合的交集的性质,考查由集合间的包含关系求参数的值,属于基础题20、下列四个命题中正确的是()A.∅={0}3所组成的集合最多含2个元素B.由实数x,-x,|x|,√x2,−√x3C.集合{x|x2−2x+1=0}中只有一个元素∈N}是有限集D.集合{x∈N|5x答案:BCD分析:根据集合的定义和性质逐项判断可得答案.对于A,空集不含任何元素,集合{0}有一个元素0,所以∅={0}不正确;3=−x,且在x,-x,|x|中,当x>0时,|x|=x,当x<0时,|x|=−x,当对于B,由于√x2=|x|,−√x3x=0时,|x|=x=−x=0,三者中至少有两个相等,所以由集合中元素的互异性可知,该集合中最多含2个元素,故B正确;对于C,{x|x2−2x+1=0}={1},故该集合中只有一个元素,故C正确;∈N}={1,5}是有限集,故D正确.对于D,集合{x∈N|5x故选:BCD.填空题21、已知[x]表示不超过x的最大整数.例如[2.1]=2,[−1.3]=−2,[0]=0,若A={y∣y=x−[x]},B={y∣0≤y≤m},y∈A是y∈B的充分不必要条件,则m的取值范围是______.答案:[1,+∞)分析:由题可得A={y∣y=x−[x]}=[0,1),然后利用充分不必要条件的定义及集合的包含关系即求.∵[x]表示不超过x的最大整数,∴[x]≤x,0≤x−[x]<1,即A={y∣y=x−[x]}=[0,1),又y∈A是y∈B的充分不必要条件,B={y∣0≤y≤m},∴A⊊B,故m≥1,即m的取值范围是[1,+∞).所以答案是:[1,+∞).22、已知集合A=(−3,3),集合B={0,1,2,3,4,5},则A∩B=_______.答案:{0,1,2}分析:根据集合交集运算求解.因为集合A=(−3,3),集合B={0,1,2,3,4,5},所以A∩B={0,1,2}.所以答案是:{0,1,2}23、满足{1}⊆A{1,2,3}的所有集合A是___________.答案:{1}或{1,2}或{1,3}分析:由题意可得集合A中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 因为{1}⊆A{1,2,3},所以集合A中至少有一个元素1,且为集合{1,2,3}的真子集,所以集合A是{1}或{1,2}或{1,3},所以答案是:{1}或{1,2}或{1,3}。

集合与常用逻辑用语--2023高考真题分类汇编完整版

集合与常用逻辑用语--2023高考真题分类汇编完整版

集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。

(精选试题附答案)高中数学第一章集合与常用逻辑用语常考点

(精选试题附答案)高中数学第一章集合与常用逻辑用语常考点

(名师选题)(精选试题附答案)高中数学第一章集合与常用逻辑用语常考点单选题1、以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③∅∈{0};④{0,1,2}={2,0,1};⑤0∈∅;正确的个数有()A.1个B.2个C.3个D.4个答案:B分析:根据元素与集合以及集合与集合之间的关系表示方法作出判断即可.对于①:是集合与集合的关系,应该是{0}⊆{0,1,2},∴①不对;对于②:空集是任何集合的子集,∅⊆{1,2},∴②对;对于③:∅是一个集合,是集合与集合的关系,∅⊆{0},∴③不对;对于④:根据集合的无序性可知{0,1,2}={2,0,1},∴④对;对于⑤:∅是空集,表示没有任何元素,应该是0∉∅,∴⑤不对;正确的是:②④.故选:B.2、设集合A={−1,0,1,2},B={1,2},C={x|x=ab,a∈A,b∈B},则集合C中元素的个数为()A.5B.6C.7D.8答案:B分析:分别在集合A,B中取a,b,由此可求得x所有可能的取值,进而得到结果.当a=−1,b=1时,ab=−1;当a=−1,b=2时,ab=−2;当a=0,b=1或2时,ab=0;当a=1,b=1时,ab=1;当a=1,b=2或a=2,b=1时,ab=2;当a=2,b=2时,ab=4;∴C={−2,−1,0,1,2,4},故C中元素的个数为6个.故选:B.3、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}. 故选:A.4、下列关系中,正确的是()A.√3∈N B.14∈Z C.0∈{0}D.12∉Q答案:C分析:根据元素与集合的关系求解.根据常见的数集,元素与集合的关系可知,√3∈N,14∈Z,12∉Q不正确,故选:C5、设集合A={2,a2−a+2,1−a},若4∈A,则a的值为().A.−1,2B.−3C.−1,−3,2D.−3,2答案:D分析:由集合中元素确定性得到:a=−1,a=2或a=−3,通过检验,排除掉a=−1. 由集合中元素的确定性知a2−a+2=4或1−a=4.当a2−a+2=4时,a=−1或a=2;当1−a=4时,a=−3.当a=−1时,A={2,4,2}不满足集合中元素的互异性,故a=−1舍去;当a=2时,A={2,4,−1}满足集合中元素的互异性,故a=2满足要求;当a=−3时,A={2,14,4}满足集合中元素的互异性,故a=−3满足要求.综上,a=2或a=−3.故选:D.6、若集合A={x∣|x|≤1,x∈Z},则A的子集个数为()A.3B.4C.7D.8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A={x∥x∣≤1,x∈Z}={−1,0,1},则A的子集个数为23=8个,故选:D.7、对与任意集合A,下列各式①∅∈{∅},②A∩A=A,③A∪∅=A,④N∈R,正确的个数是()A.1B.2C.3D.4答案:C分析:根据集合中元素与集合的关系,集合与集合的关系及交并运算可判断.易知①∅∈{∅},②A∩A=A,③A∪∅=A,正确④N∈R,不正确,应该是N⊆R故选:C.8、命题∃x∈R,x2+1≤0的否定是()A.∀x∈R,x2+1>0B.∃x∈R,x2+1>0C.∀x∈R,x2+1≥0D.∃x∈R,x2+1≥0答案:A分析:根据特称命题的否定形式直接求解.特称命题的否定是全称命题,即命题“∃x∈R,x2+1≤0”的否定是“∀x∈R,x2+1>0”.故选:A9、下列命题中正确的是()①∅与{0}表示同一个集合②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}③方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2}④集合{x∣4<x<5}可以用列举法表示A.只有①和④B.只有②和③C.只有②D.以上都对答案:C分析:由集合的表示方法判断①,④;由集合中元素的特点判断②,③.解:对于①,由于“0”是元素,而“{0}”表示含0元素的集合,而 ϕ 不含任何元素,所以①不正确;对于②,根据集合中元素的无序性,知②正确;对于③,根据集合元素的互异性,知③错误;对于④,由于该集合为无限集、且无明显的规律性,所以不能用列举法表示,所以④不正确.综上可得只有②正确.故选:C.10、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.填空题11、设集合A={−1,1,3},B={a+2,a2+4},A∩B={3}.则实数a=_______.答案:1分析:由A∩B={3}可得3∈A,3∈B,从而得到a+2=3,即可得到答案.因为A∩B={3},所以3∈A,3∈B,显然a2+4≠3,所以a+2=3,解得:a=1.所以答案是:1.小提示:本题考查利用集合的基本运算求参数值,考查逻辑推理能力和运算求解能力,属于基础题.12、若命题“∃x0∈[−1,2],x0−a>0”为假命题,则实数a的最小值为_______.答案:2分析:根据命题为假得到∀x∈[−1,2],x−a≤0恒成立,简单计算,可得答案.命题“∃x0∈R,x02−2x0−a=0”为假命题,故∀x∈[−1,2],x−a≤0恒成立.所以∀x∈[−1,2],a≥x恒成立,故a≥2所以实数a的最小值为2所以答案是:2.小提示:本题考查了根据命题的真假求参数,掌握等价转化的思想,化繁为简,意在考查学生的推断能力,属基础题.13、已知集合A={x|ax2﹣3x+1=0,a∈R},若集合A中至多只有一个元素,则a的取值范围是 _____.,+∞).答案:{0}∪[94分析:分类讨论方程解的个数,从而确定a的取值范围.当a=0时,方程可化为﹣3x+1=0,,故成立;解得x=13当a≠0时,Δ=9﹣4a≤0,解得a≥9;4,+∞).综上所述,a的取值范围是{0}∪[94所以答案是:{0}∪[9,+∞).414、已知集合A={x|x≥4或x<−5},B={x|a+1≤x≤a+3},若B⊆A,则实数a的取值范围_________.答案:{a|a<−8或a≥3}分析:根据B⊆A,利用数轴,列出不等式组,即可求出实数a的取值范围.用数轴表示两集合的位置关系,如上图所示,或要使B⊆A,只需a+3<−5或a+1≥4,解得a<−8或a≥3.所以实数a的取值范围{a|a<−8或a≥3}.所以答案是:{a|a<−8或a≥3}15、命题“所有无理数的平方都是有理数”的否定是__________.答案:存在一个无理数,它的平方不是有理数分析:根据全称命题的否定形式,即可求解结论.存在一个无理数,它的平方不是有理数,全称性命题的否定是先改变量词,然后否定结论,故所求的否定是“存在一个无理数,它的平方不是有理数”.所以答案是:存在一个无理数,它的平方不是有理数小提示:本题考查命题的否定形式,要注意量词之间的转化,属于基础题.解答题16、若集合A ={x |x 2+ax +b =0 },B ={x |x 2+cx +6=0 },是否存在实数a 、b ,c ,使A ∩B ={2}且A ∪B =B ,若存在,求出a 、b ,c 的值;若不存在,说明理由.答案:存在,a =−4,b =4,c =−5分析:由A ∩B ={2},得到2∈B ,求得c =−5,再由A ∪B =B ,求得A ={2},进而列出方程组{2+2=−a 2×2=b,即可求解,得到答案.由题意,集合A ={x |x 2+ax +b =0 },B ={x |x 2+cx +6=0 },因为A ∩B ={2},所以2∈B ,可得4+2c +6=0,c =−5,即B ={2,3}.又因为A ∪B =B ,所以A ⊊B 且2∈A ,得A ={2}.当A ={2}时,则满足{2+2=−a 2×2=b,解得a =−4,b =4, 所以存在实数a =−4,b =4,c =−5,使A ∪B =B 且A ∩B ={2}.小提示:本题主要考查了根据集合的运算求解参数问题,其中解答中熟记的交集和并集的概念及运算,以及正确运用元素与集合的关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.17、已知A ={x |−3≤x −2≤1},B ={x |a −1≤x ≤a +2},a ∈R .(1)当a =1时,求A ∩B ;(2)若A ∪B =A ,求实数a 的取值范围.答案:(1)A ∩B ={x |0≤x ≤3}(2){a |0≤a ≤1}分析:(1)解不等式,求出A,B ,进而求出交集;(2)根据条件得到B ⊆A ,比较端点,列出不等式组,求出实数a 的取值范围.(1)−3≤x −2≤1,解得−1≤x ≤3,故A ={x |−1≤x ≤3},当a =1时,B ={x |0≤x ≤3},所以A ∩B ={x |0≤x ≤3};(2)因为A ∪B =A ,所以B ⊆A ,因为a −1<a +2,所以B ≠∅,所以{a −1≥−1a +2≤3, 解得:0≤a ≤1,所以实数a 的取值范围为{a |0≤a ≤1}18、已知全集U ={小于10的正整数},A ⊆U ,B ⊆U ,且(∁U A )∩B ={1,8},A ∩B ={2,3},(∁U A )∩(∁U B )={4,6,9}.(1)求集合A 与B ;(2)求(∁R U )∪[∁Z (A ∩B)](其中R 为实数集,Z 为整数集).答案:(1)A ={2,3,5,7},B ={1,2,3,8};(2)(∁R U )∪[∁Z (A ∩B)]={x ∈R |x ≠2,x ≠3 }.分析:(1)作出韦恩图,分析各集合中的元素,可求得集合A 与B ;(2)利用交集、补集和并集的定义可求得集合(∁R U )∪[∁Z (A ∩B)].(1)由(∁U A )∩B ={1,8},知1∈B ,8∈B 且1∉A ,8∉B .由(∁U A )∩(∁U B )={4,6,9},知4、6、9∉A 且4、6、9∉B .由A ∩B ={2,3},知2、3是集合A 与B 的公共元素.因为U ={1,2,3,4,5,6,7,8,9},所以5、7∈A .画出Venn 图,如图所示.由图可知A={2,3,5,7},B={1,2,3,8};(2)由补集的定义可得∁Z(A∩B)={1,4,5,6,7,8,9},由并集的定义可得(∁R U)∪[∁Z(A∩B)]={x∈R|x≠2,x≠3}.小提示:本题考查利用韦恩图求解集合,同时也考查了交集、并集和补集的混合运算,考查计算能力以及数形结合思想的应用,属于中等题.19、已知集合{a,ba,1}与集合{a2,a+b,0}是两个相等的集合,求a2020+b2020的值.答案:a2020+b2020=1分析:先由集合相等及集合中元素的互异性求出a、b,代入求值即可.由a,ba ,1组成一个集合,可知a≠0,a≠1,由题意可得ba=0,即b=0,此时两集合中的元素分别为a,0,1和a2,a,0,因此a2=1,解得a=-1(a=1不满足集合中元素的互异性,舍去),因此a=-1,且b=0,所以a2020+b2020=(-1)2020+0=1.。

高考数学真题题型分类解析专题01 集合与常用逻辑用语

高考数学真题题型分类解析专题01 集合与常用逻辑用语

高考数学真题题型分类解析高考数学真题题型分类解析 专题01集合与常用逻辑用语集合与常用逻辑用语命题解读考向 考查统计1.高考对集合的考查,重点是集合间的基本运算,主要考查集合的交、并、补运算,常与一元二次不等式解法、一元一次不等式解法、分式不等式解法、指数、对数不等式解法结合.2.高考对常用逻辑用语的考查重点关注如下两点:(1)集合与充分必要条件相结合问题的解题方法;(2)全称命题与存在命题的否定和以全称命题与存在命题为条件,求参数的范围问题. 交集的运算2022·新高考Ⅰ卷,12023·新高考Ⅰ卷,1 2024·新高考Ⅰ卷,1 2022·新高考Ⅱ卷,1根据集合的包含关系求参数 2023·新高考Ⅱ卷,2 充分必要条件的判定2023·新高考Ⅰ卷,7全称、存在量词命题真假的判断 2024·新高考Ⅱ卷,2命题分析2024年高考新高考Ⅱ卷未考查集合,Ⅰ卷依旧考查了集合的交集运算,常用逻辑用语在新高考Ⅱ卷中考查了全称、存在量词命题真假的判断,这也说明了现在新高考“考无定题”,以前常考的现在不一定考了,抓住知识点和数学核心素养是关键!集合和常用逻辑用语考查应关注:(1)集合的基本运算和充要条件;(2)集合与简单的不等式、函数的定义域、值域的联系。

预计2025年高考还是主要考查集合的基本运算。

试题精讲1.(2024新高考Ⅰ卷·1)已知集合{}355,{3,1,0,2,3}A xx B =−<<=−−∣,则A B =∩( ) A .{1,0}− B .{2,3} C .{3,1,0}−− D .{1,0,2}−【答案答案】】A2.(2024新高考Ⅱ卷·2)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ¬和q 都是真命题 C .p 和q ¬都是真命题D .p ¬和q ¬都是真命题1.(2022新高考Ⅰ卷·1)若集合{4},{31}M x N x x =<=≥∣,则M N ∩=( ) A .{}02x x ≤<B .123x x≤<C .{}316x x ≤<D .1163x x≤<A .{}2,1,0,1−−B .{}0,1,2C .{}2−D .{}2A .{1,2}−B .{1,2}C .{1,4}D .{1,4}−4.(2023新高考Ⅱ卷·2)设集合,,若,则().A .2B .1C .23D .1−【答案答案】】B【分析分析】】根据包含关系分20a −=和220a −=两种情况讨论,运算求解即可. 【详解详解】】因为A B ⊆,则有则有::若20a −=,解得2a =,此时{}0,2A =−,{}1,0,2B =,不符合题意不符合题意;; 若220a −=,解得1a =,此时{}0,1A =−,{}1,1,0B =−,符合题意符合题意;; 综上所述综上所述::1a =. 故选故选::B. 5.(2023新高考Ⅰ卷·7)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件一、元素与集合1、集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2、集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关. 3、元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 4、集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图). 5、常用数集的表示数集 自然数集 正整数集 整数集 有理数集 实数集 符号N*N 或N +ZQR二、集合间的基本关系(1)子集:一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作A B Ü(或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”. (3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (4)空集:把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ∩,即{}|A B x x A x B ∩=∈∈且.(2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ∪,即{}|A B x x A x B ∪=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.四、集合的运算性质(1),,A B B A =∩∩,A B A ∩⊆,A B B ∩⊆. (2)A A A =∪,A A ∅=∪,A B B A =∪∪,A A B ⊆∪,B A B ⊆∪. (3),()U A C A U =∪,()U U C C A A =. (4)U UU A B A A B B A B B A A B ∩=⇔∪=⇔⊆⇔⊆⇔∩=∅痧?A A A =∩A ∅=∅∩()U A C A =∅∩【集合常用结论集合常用结论】】(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n −个,非空子集有21n −个,非空真子集有22n −个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆∩∪. (4)()()()U U U C A B C A C B =∩∪,()()()U U U C A B C A C B =∪∩.五、充分条件充分条件、、必要条件必要条件、、充要条件1、定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件. 2、从逻辑推理关系上看(1)若p q ⇒且q p ¿,则p 是q 的充分不必要条件; (2)若p q ¿且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价); (4)若p q ¿且q p ¿,则p 不是q 的充分条件,也不是q 的必要条件.六、全称量词与存在量词(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题). 七、含有一个量词的命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ¬为0x M ∃∈,0()p x ¬. (2)存在量词命题00:,()p x M p x ∃∈的否定p ¬为,()x M p x ∀∈¬. 注:全称、存在量词命题的否定是高考常见考点之一. 【常用逻辑用语常用结论常用逻辑用语常用结论】】 1、从集合与集合之间的关系上看设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B 躡,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ¿; 注:关于数集间的充分必要条件满足:“小⇒大”. (2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件;(3)若A B =,则p 与q 互为充要条件.集合三模题一、单选题1.(2024·河南·三模)命题“20,10x x x ∃>+−>”的否定是( ) A .20,10x x x ∀>+−> B .20,10x x x ∀>+−≤ C .20,10x x x ∃≤+−>D .20,10x x x ∃≤+−≤【答案答案】】B【分析分析】】根据存在量词命题的否定形式根据存在量词命题的否定形式,,即可求解. 【详解详解】】根据存在量词命题的否定为全称量词命题根据存在量词命题的否定为全称量词命题,, 即命题“20,10x x x ∃>+−>”的否定为“20,10x x x ∀>+−≤”. 故选故选::B. 2.(2024·湖南长沙·三模)已知集合{}2,{|ln 1}M x x N x x ==<∣…,则M N ∩=( ) A .[)2,eB .[]2,1−C .[)0,2D .(]0,2【答案答案】】D【分析分析】】由对数函数单调性解不等式由对数函数单调性解不等式,,化简N ,根据交集运算求解即可. 【详解详解】】因为[]()2,2,0,e M N =−=, 所以(]0,2M N =∩. 故选故选::D. 3.(2024·河北衡水·三模)已知集合{}()11,2,3,4,51lg 12A B x x==−≤−≤,,则A B =∩( ) A .11510x x≤≤B .{2,3,4}C .{2,3}D .11310x x≤≤4.(2024·陕西·三模)已知集合A =A .RB .(]0,2【答案答案】】D【分析分析】】先解一元二次不等式求出集合【详解详解】】由230x x −+>,解得03x <<所以3|}1{A B x x ∪=−≤<,所以A 故选故选::D. 5.(2024·安徽·三模)已知集合A x=为( )A .{}21x x −≤≤ C .{}52x x −≤≤−6.(2024·湖南长沙·三模)已知直线使点P 在圆O 内”的( ) A .充分不必要条件 C .充要条件【答案答案】】B【分析分析】】由直线与圆相交可求得1−<【详解详解】】由直线l 上存在点P ,使点解得11k −<<,即()1,1k ∈−,因为1k <不一定能得到11k −<<,而11k −<<可推出1k <,所以“k <1”是“直线l 上存在点P ,使点P 在圆O 内”的必要不充分条件. 故选故选::B 7.(2024·湖北荆州·三模)已知集合{}220A x x x =−≤,B A =R ð,其中R 是实数集,集合(],1C ∞=−,则B C ∩=( )A .(],0−∞B .(]0,1C .(),0∞−D .()0,18.(2024·北京·三模)已知集合ln 1A x x =<,若a A ∉,则a 可能是() A .1eB .1C .2D .3【答案答案】】D【分析分析】】解对数不等式化简集合A ,进而求出a 的取值集合即得.【详解详解】】由ln 1x <,得0e x <<,则{|0e}A x x =<<,R {|0A x x =≤ð或e}≥, 由a A ∉,得R a A ∈ð,显然选项ABC 不满足不满足,,D 满足. 故选故选::D 9.(2024·河北衡水·三模)已知函数()()22sin x xf x m x −=+⋅,则“21m =”是“函数()f x 是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案答案】】B【分析分析】】由函数()f x 是奇函数是奇函数,,可求得1m =,可得结论. 【详解详解】】若函数()f x 是奇函数是奇函数,,则()()()()()22sin 22sin (1)22sin 0x x x x x xf x f x m x m x m x −−−+−=+⋅−+⋅=−−=恒成立恒成立,,即1m =,而21m =,得1m =±.故“21m =”是“函数()f x 是奇函数”的必要不充分条件的必要不充分条件.. 故选故选::B .10.(2024·内蒙古·三模)设α,β是两个不同的平面,m ,l 是两条不同的直线,且l αβ=∩则“//m l ”是“//m β且//m α”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件【答案答案】】C【分析分析】】根据题意根据题意,,利用线面平行的判定定理与性质定理利用线面平行的判定定理与性质定理,,结合充分条件结合充分条件、、必要条件的判定方法必要条件的判定方法,,即可求解.【详解详解】】当//m l 时,m 可能在α内或者β内,故不能推出//m β且//m α,所以充分性不成立所以充分性不成立;; 当//m β且//m α时,设存在直线n ⊂α,n β⊄,且//n m ,因为//m β,所以//n β,根据直线与平面平行的性质定理根据直线与平面平行的性质定理,,可知//n l , 所以//m l ,即必要性成立即必要性成立,,故“//m l ”是“//m β且//m α”的必要不充的必要不充分条件分条件. 故选故选::C. 11.(2024·北京·三模)已知(){}2log 11A x x =−≤,{}32B x x =−>,则A B =∩( )A .空集B .{3x x ≤或}5x >C .{3x x ≤或5x >且}1x ≠D .以上都不对A .∅B .{}0C .{}0,2,3,5D .{}0,3A .(1,4)−B .1,14C .1,12D .1,22A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件有下列两个结论:①存在a和b,使得集合B中恰有5个元素;②存在a和b,使得集合B中恰有4个元素.则下列判断正确的是()A.①②都正确B.①②都错误C.①错误,②正确D.①正确,②错误二、多选题16.(2024·江西南昌·三模)下列结论正确的是()A .若{}{}300x x x x a +>∩−<=∅,则a 的取值范围是3a <−B .若{}{}300x x x x a +>∩−<=∅,则a 的取值范围是3a ≤−C .若{}{}300x x x x a +>∪−<=R ,则a 的取值范围是3a ≥−D .若{}{}300x x x x a +>∪−<=R ,则a 的取值范围是3a >−17.(2024·辽宁·三模)已知12max ,,,n x x x 表示12,,,n x x x 这个数中最大的数.能说明命题“,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题的对应的一组整数a ,b ,c ,d 值的选项有( )A .1,2,3,4B .3−,1−,7,5C .8,1−,2−,3−D .5,3,0,1−【答案答案】】BC【分析分析】】根据{}12max ,,,n x x x 的含义说明AD 不符合题意,举出具体情况说明BC ,符合题意即可.【详解详解】】对于A ,D ,从其中任取两个数作为一组从其中任取两个数作为一组,,剩下的两数作为另一组剩下的两数作为另一组,,由于这两组数中的最大的数都不是负数由于这两组数中的最大的数都不是负数,,其中一组中的最大数即为这四个数中的最大值其中一组中的最大数即为这四个数中的最大值,,故都能使得命题“,,,R a b c d ∀∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”成立成立;;对于B ,当{}{}{}max ,max 3,11,max 7,57a b =−−=−=时,而{}max 3,1,7,57−−=,此时177−+<,即命题“,,a b c ∀,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题是假命题;; 对于C ,当{}{}{}max ,max 8,18,max 2,32a b =−=−−=−时,而{}max 8,1,2,38−−−=,此时288−+<,即命题“,,a b c ∀,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题是假命题;; 故选故选::BC 18.(2024·重庆·三模)命题“存在0x >,使得2210mx x +−>”为真命题的一个充分不必要条件是()A .2m >−B .1m >−C .0m >D .1m >A .11a b <B .|2||2|a b −>−C .22a b ab a b −>−D .()()22ln 1ln 1a b +>+有且仅有3个不同元素,则实数m 的值可以为( )A .0B .1C .2D .3三、填空题21.(2024·湖南长沙·三模)已知集合{}1,2,4A =,{}2,B a a =,若A B A ∪=,则=a .【答案答案】】{}0,1【分析分析】】把集合中的元素代入不等式331x x −≤检验可求得{0,1}A B =∩.【详解详解】】当0x =时,303001−×=≤,所以0B ∈,当1x =时,313121−×=−≤,所以1B ∈,当2x =时,323221−×=>,所以2∉B ,所以{0,1}A B =∩.23.(2024·湖南衡阳·三模)已知集合{},1A a a =+,集合{}2N 20|B x x x =∈−−≤,若A B ⊆,则=a .25.(2024·安徽·三模)已知集合,2,1,,A B yy x x A λ=−==∈∣,若A B ∪的所有元素之和为12,则实数λ=. 【答案答案】】3−【分析分析】】分类讨论λ是否为1,2−,进而可得集合B ,结合题意分析求解.【详解详解】】由题意可知由题意可知::1λ≠−且2λ≠,当x λ=,则2y λ=;当2x =,则4y =;当=1x −,则1y =;若1λ=,则{}1,4B =,此时A B ∪的所有元素之和为6,不符合题意不符合题意,,舍去舍去;;若2λ=−,则{}1,4B =,此时A B ∪的所有元素之和为4,不符合题意不符合题意,,舍去舍去;;若1λ≠且2λ≠−,则{}21,4,B λ=,故2612λλ++=,解得3λ=−或2λ=(舍去舍去););综上所述综上所述::3λ=−.26.(2024·山东聊城·三模)已知集合{}{}21,5,,1,32A a B a ==+,且A B A ∪=,则实数a 的值为.C 的个数为.A B ∪=.。

通用版高中数学必修一常用逻辑用语典型例题

通用版高中数学必修一常用逻辑用语典型例题

(每日一练)通用版高中数学必修一常用逻辑用语典型例题单选题1、已知命题p:“∀x∈R,ax2+bx+c>0”,则¬p为()A.∀x∈R,ax2+bx+c≤0B.∃x0∈R,ax2+bx+c≥0C.∃x0∈R,ax2+bx+c≤0D.∀x∈R,ax2+bx+c<0答案:C解析:由全称命题的否定可得出结论.命题p为全称命题,该命题的否定为¬p:∃x0∈R,ax2+bx+c≤0.故选:C.2、设曲线C是双曲线,则“C的方程为y28−x24=1”是“C的渐近线方程为y=±√2x”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案:B解析:根据C的方程为y 28−x24=1,则渐近线为y=±√2x;若渐近线方程为y=±√2x,则双曲线方程为x2−y22=λ(λ≠0)即可得答案.解:若C的方程为y 28−x24=1,则a=2√2,b=2,渐近线方程为y=±abx,即为y =±√2x ,充分性成立;若渐近线方程为y =±√2x ,则双曲线方程为x 2−y 22=λ(λ≠0), ∴“C 的方程为y 28−x 24=1”是“C 的渐近线方程为y =±√2x ”的充分而不必要条件.故选:B.小提示: 本题通过圆锥曲线的方程主要考查充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试p ⇒q,q ⇒p .对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.3、已知实数x 、y ,则“|x |+|y |≤1”是“{|x |≤1|y |≤1.”的( )条件 A .充要B .充分不必要C .必要不充分D .既不充分也不必要答案:B解析:根据充分必要条件的定义判断.若|x |+|y |≤1,则|x |≤1且|y |≤1,否则|x |+|y |≤1不成立,是充分的,若|x |≤1且|y |≤1,|x |+|y |≤1不一定成立,如x =y =1,满足已知,但|x |+|y |>1,因此不必要. ∴就是充分不必要条件,故选:B .解答题4、已知p:关于x 的方程x 2−2ax +a 2+a −2=0有实数根,q:m −1≤a ≤m +3.(1)若命题¬p是真命题,求实数a的取值范围;(2)若p是q的必要不充分条件,求实数m的取值范围.答案:(1){a|a>2};(2){m|m≤−1}.解析:(1)根据题意得到p是假命题,结合一元二次方程的性质,列出不等式,即可求解;(2)由p是q的必要不充分条件,得到{a|m−1≤a≤m+3}⊊{a|a≤2},即可求解.(1)因为命题¬p是真命题,所以p是假命题,所以对于方程x2−2ax+a2+a−2=0,有Δ=(−2a)2−4(a2+a−2)<0,即4a−8>0,解得a>2,所以实数a的取值范围是{a|a>2}.(2)由命题p为真命题,根据(1)可得{a|a≤2},又由p是q的必要不充分条件,可得那么q能推出p,但由p不能推出q,可得{a|m−1≤a≤m+3}⊊{a|a≤2},则m+3≤2,解得m≤−1,所以实数m的取值范围是{m|m≤−1}.5、设f(x)=ax2+(1-a)x+a-2.(1)若命题“对任意实数x,f(x)≥-2”为真命题,求实数a的取值范围;(2)解关于x的不等式f(x)<a-1(a∈R).答案:(1)a≥13(2)答案见解析解析:(1)根据“对任意实数x,f(x)≥-2”为真命题,知ax2+(1-a)x+a-2≥-2,即ax2+(1-a)x+a≥0,此时对a进行分类讨论,再结合判别式Δ即可求出a的范围.(2)由f(x)<a-1得ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0,对a进行分类讨论,即可求出不等式f(x)<a-1的解集.(1)∵命题“对任意实数x,f(x)≥-2”为真命题,∴ax2+(1-a)x+a-2≥-2恒成立,即ax2+(1-a)x+a≥0恒成立.当a=0时,x≥0,不满足题意;当a≠0时,知{a>0,Δ≤0,即{a>0,(1-a)2-4a2≤0,解得a≥13.故实数a的取值范围为a≥13.(2)∵f(x)<a-1(a∈R),∴ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0.当a=0时,x<1,∴不等式的解集为{x|x<1};当a>0时,ax2+(1-a)x-1<0⇒(ax+1)(x-1)<0,此时方程(ax+1)(x-1)=0的解分别为-1a,1,∵-1a <1,∴不等式的解集为{ x|-1a<x<1},当a<0时,不等式可化为(ax+1)(x-1)<0,①当a=-1时,-1a=1,∴不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,此时不等式的解集为{ x|x>−1a或x<1};③当a<-1时,-1a <1,此时不等式的解集为{ x|x>1或x<−1a}。

高三数学常用逻辑用语试题答案及解析

高三数学常用逻辑用语试题答案及解析

高三数学常用逻辑用语试题答案及解析1.若“”是“”的充分不必要条件,则实数的取值范围是( )A.B.C.D.【答案】A【解析】依题意,∴,∴.【考点】充分必要条件.2.下列给出的四个命题中,说法正确的是()A.命题“若,则”的否命题是“若,则”;B.“”是“”的必要不充分条件;C.命题“存在,使得”的否定是“对任意,均有”;D.命题“若,则”的逆否命题为真.【答案】D【解析】本题考查命题的相关概念. 选项,“若,则”的否命题为:“若,则”;可以推出,反之不成立,故“”是“”的充分不必要条件,故选项错;命题“存在,使得”的否定应为:“对任意,均有”,故选项错,正确答案为.【考点】1.四种命题及其关系;2.充分与必要条件;3.全程量词与存在量词.3.已知命题:函数的最小正周期为;命题:若函数为偶函数,则关于对称.则下列命题是真命题的是()A.B.C.D.【答案】B【解析】函数的最小正周期为知命题为假命题;若函数为偶函数,则,所以关于对称,据此可知命题为真命题,根据真值表可得为真命题.【考点】真值表等基础知识.4.下列命题中,真命题的个数有()①;②;③“”是“”的充要条件;④是奇函数.A.1个B.2个C.3个D.4个【答案】C【解析】由知①是真命题;当时,知②是真命题;若则,而若且则知“”是“”的必要不充分条件,所以③是假命题;令,显然,则知“是奇函数”是真命题.【考点】真假命题的判断.5.已知命题函数在上单调递增;命题不等式的解集是.若且为真命题,则实数的取值范围是______.【答案】【解析】为真命题是真命题, 是真命题,是真命题, ②是真命题所以为真命题【考点】命题,基本逻辑联结词,一次函数单调性,二次不等式.6.下列命题中,是的充要条件的是()①或;有两个不同的零点;②是偶函数;③;④。

A.①②B.②③C.③④D.①④【答案】D【解析】①有两个不同的零点,由得或.因此①正确;②是偶函数,则不成立;③,但是无意义;④;所以④正确,因此是的充要条件的是①④.【考点】1.充要条件;2.函数的零点;3.奇偶函数的定义等.7.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【答案】A【解析】若p⇒q为真命题,则命题p是命题q的充分条件;“好货不便宜”,其条件是:此货是好货,结论是此货不便宜,由条件⇒结论.故“好货”是“不便宜”的充分条件.【考点】必要条件、充分条件与充要条件的判断点评:本题考查了必要条件、充分条件与充要条件的判断,属于基础题8.若集合,集合,则是“”( )A充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若,则,,即“”;若,则,即“”,所以是“” 必要不充分条件。

高中数学三年高考(2016-2018)数学(理)分类解析《常用逻辑用语》

高中数学三年高考(2016-2018)数学(理)分类解析《常用逻辑用语》

专题二常用逻辑用语考纲解读分析解读1.本节主要考查充分必要条件的推理判断及四种命题间的相互关系问题.2.本部分内容在高考试题中多以选择题或填空题的形式出现,考查四种命题的真假判断以及充分条件、必要条件的判定和应用,考查学生的逻辑推理能力.3.会判断含有一个量词的全称命题或特称命题的真假,能正确地对含有一个量词的命题进行否定.4.能用逻辑联结词“或”“且”“非”正确地表达相关的数学内容.5.本节内容在高考中约为5分,属中低档题.2018年高考展示1.【2018年浙江卷】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.2.【2018年理数天津卷】设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.3.【2018年理北京卷】设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.2017年高考展示1.【2017天津,理4】设θ∈R,则“ππ||1212θ-<”是“1sin2θ<”的()(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】A【解析】πππ||012126θθ-<⇔<<1sin2θ⇒<,但10,sin2θθ=<,不满足ππ||1212θ-<,所以是充分不必要条件,选A. 【考点】 充要条件【名师点睛】本题考查充要条件的判断,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分不必要条件,若B 是A 的真子集,则A 是B 的必要不充分条件.2.【2017山东,理3】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是( )(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q 【答案】B【解析】试题分析:由0x >时11,ln(1)x x +>+有意义,知p 是真命题,由222221,21;12,(1)(2)>>->--<-可知q 是假命题,即⌝,p q 均是真命题,故选B.【考点】1.简易逻辑联结词.2.全称命题.【名师点睛】解答简易逻辑联结词相关问题,关键是要首先明确各命题的真假,利用或、且、非真值表,进一步作出判断.3.【2017北京,理13】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一) 【解析】试题分析:()123,1233->->--+-=->-相矛盾,所以验证是假命题. 【考点】不等式的性质【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一2016年高考展示1.【2016浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D 【解析】试题分析: ∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 考点:全称命题与特称命题的否定.【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定. 2.【2016山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A 【解析】 试题分析:“直线a 和直线b 相交”⇒“平面α和平面β相交”,但“平面α和平面β相交”⇒“直线a 和直线b 相交”,所以“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件,故选A . 考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.3. 【2016天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p是q的充分条件.2.等价法:利用p⇒q与非q⇒非p,q⇒p与非p⇒非q,p⇔q与非q⇔非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.Welcome To Download欢迎您的下载,资料仅供参考!。

2020届山东省新高考高三优质数学试卷分项解析 专题01 集合,常用逻辑用语(解析版)

2020届山东省新高考高三优质数学试卷分项解析 专题01 集合,常用逻辑用语(解析版)

专题1 集合,常用逻辑用语1.集合的运算.高考对集合基本运算的考查,集合由描述法呈现,转向由离散元素呈现.解决这类问题的关键在于正确理解集合中元素所具有属性的,明确集合中含有的元素,进一步进行交、并、补等运算.常见选择题.2. 充要条件.高考对命题及其关系和充分条件、必要条件的考查,主要命题形式是选择题.由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要集中在以函数、方程、不等式、立体几何线面关系、数列等为背景的充分条件和必要条件的判定.3.关于存在性命题与全称命题,一般考查命题的否定. 预测2020年将保持稳定,必考且难度不会太大.一、单选题1.(2020届山东省潍坊市高三上期中)已知集合{}220A x x x =-≥,{}03B x x =<<,则A B =I ( )A .()1,3-B .(]0,2C .[)2,3D .()2,3【答案】C 【解析】{|0A x x =≤Q 或2}x ≥,{|03}B x x =<<, [2,3)A B ∴⋂=.故选:C.2.(2020届山东省烟台市高三上期末)命题“2x ,10R x x ∀∈-+>”的否定是( )A .2x ,10R x x ∀∈-+≤B .2x ,10R x x ∀∈-+<C .2000x ,10R x x ∃∈-+≤D .2000x ,10R x x ∃∈-+<【答案】C 【解析】全称命题的否定“20,10x R x x ∃∈-+≤”,故选C.3.(2020届山东省日照市高三上期末联考)若集合 A={﹣2,﹣1,0,1,2},B={x|x 2>1},则 A∩B=( ) A .{x|x <﹣1或x >1}B .{﹣2,2} C .{2}D .{0}【答案】B 【解析】由B 中不等式解得:x >1或x <﹣1,即B={x|x >1或x <﹣1}, ∵A={﹣2,﹣1,0,1,2}, ∴A∩B={﹣2,2}, 故选B .4.(2020届山东省枣庄市高三上学期统考)已知集合{}04A x Z x =∈<<,()(){}120B x x x =+-<,则A B =I ( ) A .()0,2 B .()1,2-C .{}0,1D .{}1【答案】D 【解析】由题意,集合{}{}041,2,3A x Z x =∈<<=, ()(){}{}12012B x x x x x =+-<=-<<, 所以{}1A B ⋂=. 故选D .5.(2020·云南省玉溪第一中学高二期末(理))“1x =”是“2210x x -+=”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 【答案】A 【解析】1x =时,2210x x -+=成立,故是充分的,又当2210x x -+=时,即2(1)0x -=,1x =,故是必要的的,因此是充要条件.故选A .6.(2020届山东省泰安市高三上期末)若全集U =R ,集合2{|16}A x Z x =∈<,{|10}B x x =-≤,则()U A B ⋂=ð( ) A .{|14}x x <„ B .{|14}x x << C .{1,2,3} D .{2,3}【答案】D 【解析】{|44}{3,2,1,0,1,2,3}A x x =∈-<<=---Z , {|1}U B x x =>ð,(){2,3}U A B =I ð.故选:D7.(2020届山东省烟台市高三上期末)已知集合{}2|20A x x x =--≤,{|B x y ==,则A B =U ( )A .{}1|2x x -≤≤B .{}|02x x ≤≤C .{}1|x x ≥-D .{}|0x x ≥【答案】C 【解析】由题,因为220x x --≤,则()()210x x -+≤,解得12x -≤≤,即{}|12A x x =-≤≤; 因为0x ≥,则{}|0B x x =≥, 所以{}|1A B x x ⋃=≥- 故选:C8.(2020届山东省潍坊市高三上期中)m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】//m α,则存在l α⊂有//m l .而由//m n 可得//n l ,从而有//n α.反之则不一定成立,,m n 可能相交,平行或异面.所以//m n 是//n α的充分不必要条件,故选A9.(2020届山东省泰安市高三上期末)“1a <-”是“0x ∃∈R ,0sin 10+<a x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】必要性:设()sin 1f x a x =+,当0a >时,()[]1,1f x a a ∈-+,所以10a -<,即1a >;当0a <时,()[]1,1f x a a ∈+-,所以10a +<,即1a <-.故1a >或1a <-. 充分性:取02x π=,当1a <-时,0sin 10a x +<成立.答案选A10.(2020届山东省枣庄、滕州市高三上期末)已知集合{|11}A x x =-≤≤,则A N ⋂=( ) A .{1} B .{0,1} C .{}1- D .{0,1}-【答案】B 【解析】由题意{0,1}A N =I . 故选:B.11.(2020届山东省九校高三上学期联考)已知集合{}|21xA x =≤,(){}|lg 1B x y x ==-,则()R A C B =I ( ) A .∅ B .(0,1) C .(,1]-∞ D .(,0]-∞【答案】D 【解析】由题:{|21}{0}xA x x x =≤=≤,(){|lg 1}{|1}B x y x x x ==-=>, {1}RC B x x =≤,()(,0]R A C B =-∞I故选:D12.(2020届山东省日照市高三上期末联考)设,a b r r 是非零向量,则2a b =r r是a a bb =r r rr 成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 【解析】由2a b =v v 可知:a b v v , 方向相同,a b a bvv v v , 表示 a b v v , 方向上的单位向量所以a ba b=v v v v 成立;反之不成立.故选B13.(2020届山东省德州市高三上期末)已知全集U =R ,{}2|9A x x =<,{}|24B x x =-<<,则()R A B I ð等于( )A .{}|32x x -<<-B .{}|34x x <<C .{}|23x x -<<D .{}|32x x -<≤-【答案】D 【解析】{}{}2933A x x x x =<=-<<Q ,{}24B x x =-<<,则{2U B x x =≤-ð或}4x ≥,因此,(){}32R A B x x ⋂=-<≤-ð. 故选:D.14.(2020届山东省滨州市三校高三上学期联考)设集合{2,1,0,1,2}P =--,{}2|20Q x x x =+-<,P Q =I ( )A .{1,0}-B .{1,0,1}-C .{0,1}D .{0,1,2}【答案】C 【解析】{}{}2|20|21Q x x x x x =+-<=-<<,所以P Q =I {0,1}, 故选:C.15.(2020·全国高三专题练习(文))“[]1,2x ∀∈,210ax +≤”为真命题的充分必要条件是( ) A .1a ≤- B .14a -≤ C .2a ≤- D .0a ≤【答案】A 【解析】Q “[]1,2x ∀∈,210ax +≤”为真命题,21a x ∴≤-对任意的[]1,2x ∈恒成立,由于函数21y x=-在区间[]1,2上单调递增,则min 1y =-,1a ∴≤-. 故选:A.16.(2020届山东省滨州市三校高三上学期联考)命题“对任意x ∈R ,都有221x x +<”的否定是( ) A .对任意x ∈R ,都有221x x +> B .对任意x ∈R ,都有221x x +≥ C .存在x ∈R ,使得221x x +> D .存在x ∈R ,使得221x x +≥【答案】D 【解析】命题“对任意x ∈R ,都有221x x +<”的否定是存在x ∈R ,使得221x x +≥. 故选:D.17.(2020·山东省淄博实验中学高三上期末)“0x <”是“ln(1)0x +<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】由题意得,ln(1)001110x x x +<⇔<+<⇔-<<,故是必要不充分条件,故选B .18.(2020届山东师范大学附中高三月考)已知集合{}2230A x x x =--<,{}22B x x =-<<,若A B =I ( )A .(2,2)-B .(2,1)-C .(1,3)-D .(1,2)-【答案】D 【解析】由(3)(1)0x x -+<得13x -<<,(1,3)A ∴=-,又(2,2)B =-Q ,(1,2)A B ∴=-I , 故选:D.19.(2020届山东师范大学附中高三月考)已知命题:p “,10x x R e x ∃∈--≤”,则命题:p ⌝( )A .,10x x R e x ∀∈-->B .,10x x R e x ∀∉-->C .,10x x R e x ∀∈--≥D .,10x x R e x ∃∈-->【答案】A 【解析】因为命题“,p q ∃”的否定为:,p q ∀⌝,因此命题:p “,10xx R e x ∃∈--≤”的否定为:,10xx R e x ∀∈-->,选A.20.(2020届山东师范大学附中高三月考)函数()log (0,1)a f x x a a =>≠是增函数的一个充分不必要条件是( ) A .102a <<B .01a <<C .1a >D .24a <<【答案】D 【解析】∵1a >时,()log (0,1)a f x x a a =>≠是增函数,∴函数()log (0,1)a f x x a a =>≠是增函数的一个充分不必要条件是(1,)∈+∞a 的一个子集,又(2,4)(1,)⊂+∞,故选:D.21.(2020届山东省潍坊市高三上期末)已知集合{}{}2230,21A x x x B x x x Z =--≤=-≤<∈且,则A B =I ( )A .{}2,1--B .{}1,0-C .{}2,0-D .{}1,1-【答案】B 【解析】2230x x --≤解得:13x -≤≤ ,{}13A x x ∴=-≤≤,{}2,1,0B =--, {}1,0A B ∴=-I .故选:B22.(2020·山东省淄博实验中学高三上期末)已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =I ,则实数a 的取值范围为( )A .(),0-∞B .(],0-∞C .()1,+∞D .[)1,+∞ 【答案】A 【解析】(){}|1001A x x x x =-≤⇒≤≤ (){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A23.(2020届山东省济宁市高三上期末)设集合{|11}M x x =-≤≤,{|124}xN x =<<,则M N =IA .{|10}x x -≤<B .{|01}x x <≤C .{|12}x x ≤<D .{|12}x x -≤<【答案】B 【解析】因为{|11}M x x =-≤≤,{}|124{|02}xN x x x =<<=<<,所以{|01}M N x x ⋂=<≤,故选B.24.(2020届山东省枣庄、滕州市高三上期末)已知a R ∈,则“01a <<”是“,x R ∀∈2210ax ax ++>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】∵,x R ∀∈2210ax ax ++>,∴0a =或2440a a a >⎧⎨∆=-<⎩,即0a =或01a <<,∴01a ≤<.∴“01a <<”是“,x R ∀∈2210ax ax ++>”的充分不必要条件. 故选:A.25.(2020届山东省临沂市高三上期末)设集合()(){}160A x x x =-->,{}20B x x =->,则A B =I ( ) A .{}6x x > B .{}12x x <<C .{}1x x <D .{}26x x <<【答案】C【解析】()(){}{1601A x x x x x =-->=<Q 或}6x >,{}{}202B x x x x =->=<,因此,{}1A B x x ⋂=<. 故选:C.26.(2020届山东省潍坊市高三上学期统考)设集合{}|1A x x =<,(){}|30B x x x =-<,则A B =U ( ) A .()1,0- B .()0,1C .()1,3D .()1,3-【答案】D 【解析】集合A ={x||x|<1}={x|﹣1<x <1}, B ={x|x (x ﹣3)<0}={x|0<x <3}, 则A ∪B ={x|﹣1<x <3}=(﹣1,3). 故选:D .27.(2020届山东省滨州市高三上期末)已知{}|13A x x =-≤<,{}0,2,4,6B =,则A B =I ( ) A .{}0,2 B .{}1,0,2-C .{}|02x x ≤≤D .{}1|2x x -≤≤【答案】A 【解析】因为{}|13A x x =-≤<,{}0,2,4,6B =, 所以{}0,2A B =I . 故选:A.28.(2020届山东省临沂市高三上期末)“游客甲在烟台市”是“游客甲在山东省”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】因为烟台是山东省的一个地级市,所以如果甲在烟台市,那么甲必在山东省,反之不成立,故“游客甲在烟台市”是“游客甲在山东省”的充分不必要条件 故选:A .29.(2020届山东实验中学高三上期中)命题:“(),0,34xxx ∀∈-∞≥”的否定为( )A .[)0000,,34xx x ∃∈+∞<B .[)0000,,34xx x ∃∈+∞≤C .()000,0,34xx x ∃∈-∞<D .()000,0,34xxx ∃∈-∞≤【答案】C 【解析】命题“(),0,34xxx ∀∈-∞≥”是全称命题,则命题的否定是特称命题即()000,0,34xxx ∃∈-∞<,故选:C .30.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】由121x⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“0x <”,反之,不能推出; 因此“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的必要不充分条件. 故选:B.31.(2020届山东省济宁市高三上期末)已知A ,B ,C 为不共线的三点,则“AB AC AB AC +=-u u u r u u u r u u u r u u u r”是“ABC∆为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若AB AC AB AC +=-u u u r u u u r u u u r u u u r ,两边平方得到222222AB AC AB AC AB AC AB AC ++⋅=+-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,0AB AC ∴⋅=u u u r u u u r ,即AB AC ⊥u u u r u u u r 故ABC ∆为直角三角形,充分性;若ABC ∆为直角三角形,当B Ð或C ∠为直角时,AB AC AB AC +≠-u u u r u u u r u u u r u u u r ,不必要;故选:A32.(2020届山东实验中学高三上期中)设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集个数有A .2B .3C .4D .8【答案】D【解析】 {}2|8150{3,5}A x x x =-+==,因为A B B =I ,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 二、多选题33.(2020届山东省济宁市高三上期末)下列命题中的真命题是( )A .1,20x x R -∀∈>B .()2,10x N x *∀∈->C .00,lg 1x R x ∃∈<D .00,tan 2x R x ∃∈= 【答案】ACD【解析】A. 1,20x x R -∀∈>,根据指数函数值域知A 正确;B. ()2,10x N x *∀∈->,取1x =,计算知()210x -=,B 错误;C. 00,lg 1x R x ∃∈<,取01x =,计算0lg 01x =<,故C 正确;D. 00,tan 2x R x ∃∈=,tan y x =的值域为R ,故D 正确;故选:ACD34.(2020届山东省潍坊市高三上学期统考)下列判断正确的是( )A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件;C .若随机变量ξ服从二项分布:414,B ξ⎛⎫~ ⎪⎝⎭,则()1E ξ=; D .22am bm >是a b >的充分不必要条件.【答案】ABCD【解析】A .已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.79,则曲线关于x =1对称,可得P (ξ>4)=1﹣0.79=0.21,P (ξ≤﹣2)=P (ξ>4)=0.21,故A 正确;B .若α∥β,∵直线l ⊥平面α,∴直线l ⊥β,∵m ∥β,∴l ⊥m 成立.若l ⊥m ,当m ∥β时,则l 与β的位置关系不确定,∴无法得到α∥β.∴“α∥β”是“l ⊥m ”的充分不必要条件.故B 对;C .由于随机变量ξ服从二项分布:ξ~B (4,14),则Eξ=4×0.25=1,故C 对; D .“am 2>bm 2”可推出“a >b ”,但“a >b ”推不出“am 2>bm 2”,比如m =0,故D 对;故选:ABCD .35.(2019·山东高三月考)下列判断正确的是( )A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件;C .若随机变量ξ服从二项分布:414,B ξ⎛⎫~ ⎪⎝⎭,则()1E ξ=; D .22am bm >是a b >的充分不必要条件.【答案】ABCD【解析】A .已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.79,则曲线关于x =1对称,可得P (ξ>4)=1﹣0.79=0.21,P (ξ≤﹣2)=P (ξ>4)=0.21,故A 正确;B .若α∥β,∵直线l ⊥平面α,∴直线l ⊥β,∵m ∥β,∴l ⊥m 成立.若l ⊥m ,当m ∥β时,则l 与β的位置关系不确定,∴无法得到α∥β.∴“α∥β”是“l ⊥m ”的充分不必要条件.故B 对;C .由于随机变量ξ服从二项分布:ξ~B (4,14),则Eξ=4×0.25=1,故C 对; D .“am 2>bm 2”可推出“a >b ”,但“a >b ”推不出“am 2>bm 2”,比如m =0,故D 对;故选:ABCD .三、填空题36.(2020届山东省潍坊市高三上期中)“x R ∃∈,220x x a --<” 为假命题,则实数a 的最大值为__________.【答案】1-【解析】由“x R ∃∈,220x x a --<”为假命题,可知,“x R ∀∈,220x x a --≥”为真命题,22a x x ∴≤-恒成立,由二次函数的性质可知,221x x -≥-,则实数1a ≤-,即a 的最大值为1-.故答案为:1-.37.(2020届山东实验中学高三上期中)设命题21:01x p x -<-,命题()()2:2110q x a x a a -+++≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________. 【答案】10,2⎡⎤⎢⎥⎣⎦【解析】 由题意得,21:01x p x -<-,解得112x <<,所以1:12p x <<,由()()2:2110q x a x a a -+++?,解得1a x a ≤≤+,即:1q a x a ≤≤+,要使得p 是q 的充分不必要条件,则11{12a a +≥≤,解得102a ≤≤,所以实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦. 四、解答题38.(2020届山东省枣庄市高三上学期统考)非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<(Ⅰ)当3a =时,求A B I ;(Ⅱ)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.【答案】(I ){}|38A B x x =<<I ;(Ⅱ)(]1,11,22⎡⎫⎪⎢⎣⎭U【解析】(I )当3a =时,{}2|10160A x x x =-+<()(){}|280x x x =--< {}|28x x =<<;{}2|14330B x x x =-+<()(){}|3110x x x =--<{}|311x x =<<;故{}|38A B x x =<<I .(Ⅱ)()(){}|2310A x x x a =---<⎡⎤⎣⎦.()(){}2|20B x x a x a ⎡⎤=--+<⎣⎦. ∵22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴22a a +>.∴{}2|2B x a x a =<<+.∵q 是p 的必要条件,∴A B ⊆.①当1a =时,312a -=,A =∅,不符合题意;②当1a >时,312a ->,{}|231A x x a =<<-,要使A B ⊆,需要212312a a a a >⎧⎪≤⎨⎪-≤+⎩∴12a <≤.③当1a <时,312a -<,{}|312A x a x =-<<,要使A B ⊆,需要213122a a a a <⎧⎪≤-⎨⎪≤+⎩ ∴112a ≤<.综上所述,实数a 的范围是(]1,11,22⎡⎫⎪⎢⎣⎭U .。

2023年高考数学真题分训练 常用逻辑用语(含答案含解析)

2023年高考数学真题分训练   常用逻辑用语(含答案含解析)

专题 02 常用逻辑用语年份题号 考点考查内容2011 课标卷 理 10 命题及其关系 平面向量模与夹角、命题真假推断 2023 新课标理 2 命题及其关系 复数的概念与运算、命题真假的判定卷 1 理 9 全称量词与特称量词 二元一次不等式表示的平面地域、全称命题与特称命题 真假的判定2023卷 2文 3 充分条件与必要条件 导数与极值的关系、充要条件的判定 2023 卷 1 理 3 全称量词与特称量词 特称命题的否认 2023卷 1 理 2 命题及其关系 复数的有关概念与运算卷 2 理 7充分条件与必要条件面面平行的判定与性质、充要条件判定2023卷 3文 11 1. 全称量词与特称量词 2. 简单逻辑联结词二元一次不等式表示的平面地域、全称命题与特称命题 真假推断、含逻辑联结词命题的判定 卷 2文理16 简单逻辑联结词 含逻辑联结词命题真假的推断2023 卷 3理 16命题及其关系命题真假的推断,三角函数图象及其性质考点出现频率2023 年预测考点 5 命题及其关系 4/10 考点 6 简单逻辑联结词 2/10 考点 7 全称量词与特称量词 3/10 考点 8 充分条件与必要条件 2/102023 年仍将与其他知识结合,考查命题及其关系、含简单逻辑连接词的敏体真假推断、特称命题与全称命题真假推断及其否认的书写、充要条件的判定,其中充要条件判定为重点.考点 5 命题及其关系1.(2023 新课标 III 理 16)关于函数 f ( x ) = sin x + 1.sin x① f ( x ) 的图像关于 y 轴对称;② f ( x ) 的图像关于原点对称; ③ f ( x ) 的图像关于 x = π对称;④ f ( x ) 的最小值为2 .2 其中全部真命题的序号是.12(答案)②③(解析)(分析)利用特别值法可推断命题①的正误;利用函数奇偶性的定义可推断命题②的正误;利用对称性的 定义可推断命题③的正误;取-π< x < 0 可推断命题④的正误.综合可得出结论.(详解)对于命题①, f ⎛ π⎫ = 1 + 2 = 5, f ⎛ - π⎫ = - 1 - 2 = - 5 ,则 f ⎛ - π⎫≠f ⎛ π⎫ ,6 ⎪ 2 26 ⎪ 2 2 6 ⎪ 6 ⎪ ⎝ ⎭⎝ ⎭ ⎝ ⎭ ⎝ ⎭∴函数 f ( x ) 的图象不关于 y 轴对称,命题①错误; 对于命题②,函数 f ( x ) 的定义域为{x x ≠ k π, k ∈ Z} ,定义域关于原点对称,f (-x ) = sin (-x )+ 1 = - sin x -1 = - ⎛sin x +1 ⎫= - f(x ) , sin (-x ) sin x sin x ⎪⎝ ⎭∴函数 f ( x ) 的图象关于原点对称,命题②正确;f ⎛ π- x ⎫ = sin ⎛ π- x ⎫ +1= cos x + 1对于命题③, 2⎪ 2⎪⎛ π⎫cosx , ⎝⎭⎝⎭ sin ⎝ - x ⎪⎭f⎛π+ x ⎫ = sin ⎛π+ x ⎫ +1= cos x + 1⎛π ⎫ ⎛π ⎫2 ⎪ 2⎪ ⎛π⎫cos x ,则 f - x = f+ x ,⎝ ⎭ ⎝⎭ sin + x2 ⎪ 2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭⎝ ⎭∴函数 f ( x ) 的图象关于直线 x = π对称,命题③正确;对于命题④,当 -π< x < 0 时, sin x < 0 ,则2f ( x ) = sin x +1sin x< 0 < 2 ,命题④错误,故答案为:②③. 2.(2023 新课标Ⅰ)设有下面四个命题p 1 :假设复数 z 满足 z∈ R ,则 z ∈ R ;p :假设复数 z 满足 z 2∈ R ,则 z ∈ R ; p 3 :假设复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ; p 4 :假设复数 z ∈ R ,则 z ∈ R .其中的真命题为 A. p 1 , p 3B. p 1 , p 4C. p 2 , p 3D. p 2 , p 4(答案)B (解析)设 z = a + b i ( a , b ∈ R ),则 1= z 1 = (a + b i) a - b i a 2 + b 2∈ R ,得b = 0 ,所以 z ∈ R , p 1 正222⎭确;z 2 = (a + b i)2 = a 2 - b 2+ 2ab i ∈ R ,则 ab = 0 ,即 a = 0 或b = 0 ,不能确定 z ∈ R ,p 不正确;假设 z ∈ R ,则b = 0 ,此时 z = a - b i = a ∈ R , p 4 正确.选 B .3.(2011 新课标)已知a , b 均为单位向量,其夹角为θ,有以下四个命题p :| a + b |> 1 ⇔ θ∈0, 2π 13 p : | a + b |> 1 ⇔ θ∈ (2π,π] 23p 3 :| a - b |> 1 ⇔ θ∈ π0, )3p 4 : | a - b |> 1 ⇔ θ∈ π( ,π3其中真命题是 A. p 1, p 4B. p 1, p 3C. p 2 , p 3D. p 2 , p 4(答案)A (解析)由 a + b 1 得,cos θ> - 1, 2⇒θ∈ ⎡0, 2π⎫。

(精选试题附答案)高中数学第一章集合与常用逻辑用语知识点汇总

(精选试题附答案)高中数学第一章集合与常用逻辑用语知识点汇总

(名师选题)(精选试题附答案)高中数学第一章集合与常用逻辑用语知识点汇总单选题1、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,则甲是丁的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要答案:A分析:记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,根据题目条件得到集合之间的关系,并推出A D,,所以甲是丁的充分不必要条件.记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,由甲是乙的充分不必要条件得,A B,由乙是丙的充要条件得,B=C,由丁是丙的必要不充分条件得,C D,所以A D,,故甲是丁的充分不必要条件.故选:A.2、已知集合M={x∣x2+x=0},则()A.{0}∈M B.∅∈M C.−1∉M D.−1∈M答案:D分析:先求得集合M,再根据元素与集合的关系,集合与集合的关系可得选项.因为集合M={x∣x2+x=0}={0,−1},所以−1∈M,故选:D.3、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为()A.5B.10C.15D.20答案:C分析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x=y+ 5,因为y max=10,所以x max=10+5=15.故选:C.小提示:关键点点睛:本题考查集合的应用,解题关键是用集合A,B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.4、已知a、b、c、d∈R,则“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的()注:max{p,q}表示p、q之间的较大者.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B分析:利用特殊值法、不等式的基本性质结合充分条件、必要条件的定义判断可得出结论.充分性:取a=d=1,b=c=−1,则max{a,b}+max{c,d}=max{1,−1}+max{−1,1}=1+1>0成立,但max{a+c,b+d}=max{0,0}=0,充分性不成立;必要性:设max{a+c,b+d}=a+c,则max{a,b}≥a,max{c,d}≥c,从而可得max{a,b}+max{c,d}≥a+c>0,必要性成立.因此,“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的必要不充分条件.故选:B.小提示:方法点睛:判断充分条件和必要条件,一般有以下几种方法:(1)定义法;(2)集合法;(3)转化法.5、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C6、已知集合A={x|x≤1},B={x∈Z|0≤x≤4},则A∩B=()A.{x|0<x<1}B.{x|0≤x≤1}C.{x|0<x≤4}D.{0,1}答案:D分析:根据集合的交运算即可求解.由B={x∈Z|0≤x≤4}得B={0,1,2,3,4},所以A∩B={0,1},故选:D7、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值. 求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 8、集合A={x∈N|1≤x<4}的真子集的个数是()A.16B.8C.7D.4答案:C解析:先用列举法写出集合A,再写出其真子集即可.解:∵A={x∈N|1≤x<4}={1,2,3},∴A={x∈N|1≤x<4}的真子集为:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选:C.9、下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为()A.3B.2C.1D.0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x2=2时,只能得到x为±√2,由此可判断;对于③,方程x2+1=0无实数解;对于④,作差可判断.解:x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.10、在数轴上与原点距离不大于3的点表示的数的集合是()A.{x|x≤−3或x≥3}B.{x|−3≤x≤3}C.{x|x≤−3}D.{x|x≥3}答案:B分析:在数轴上与原点距离不大于3的点表示的数的集合为|x|≤3的集合.由题意,满足|x|≤3的集合,可得:{x|−3≤x≤3},故选:B填空题11、若全集U=R,集合A={x|−3≤x≤1},A∪B={x|−3≤x≤2},则B∩∁U A=___________.答案:{x|1<x≤2}##(1,2]分析:由集合A,以及集合A与集合B的并集确定出集合B,以及求出集合A的补集,再根据交集运算即可求出结果.因为A={x|−3≤x≤1},A∪B={x|−3≤x≤2},所以∁U A={x|x<−3或x>1},{x|1<x≤2}⊆B⊆{x|−3≤x≤2},所以B∩∁U A={x|1<x≤2}.所以答案是:{x|1<x≤2}.12、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−313、设集合A={(x,y)|x+y=3,x∈N∗,y∈N∗},则用列举法表示集合A为______.答案:{(1,2),(2,1)}分析:根据题意可得{x>0y=3−x>0,则0<x<3,对x=1,2代入检验,注意集合的元素为坐标.∵x+y=3,x∈N∗,y∈N∗,则可得{x>0y=3−x>0,则0<x<3又∵x∈N∗,则当x=1,y=2成立,当x=2,y=1成立,∴A={(1,2),(2,1)}所以答案是:{(1,2),(2,1)}.14、已知p:−2≤x≤10,q:1−m≤x≤1+m(m>0),且q是p的必要不充分条件,则实数m的取值范围是____________.答案:[9,+∞)分析:设将满足p,q的x的集合即为A,B.已知条件转化为A⊊B,根据集合间的关系列式可解得结果.∵“q是p的必要不充分条件”的等价命题是:p是q的充分不必要条件.设A={x|−2≤x≤10},B={x|1−m≤x≤1+m,m>0}.∵p是q的充分不必要条件,所以A⊊B.∴{m>0,1−m⩽−2,1+m⩾10.(两个等号不能同时取到),∴m≥9.所以答案是:[9,+∞).小提示:本题考查了转化化归思想,考查了充分不必要条件和必要不充分条件,考查了集合间的关系,属于基础题.15、已知集合A={1,3,5,7,9},B={x∈Z|2≤x≤5},则A∩B=_____________.答案:{3,5}分析:首先确定集合B,由交集定义可得结果.∵B={x∈Z|2≤x≤5}={2,3,4,5},∴A∩B={3,5}.所以答案是:{3,5}.解答题16、已知集合A ={x |−3≤x ≤2 },B ={x |2m −1≤x ≤m +3 }.(1)当m =0时,求∁R (A ∩B );(2)若A ∪B =A ,求实数m 的取值范围.答案:(1){x|x <−1或x >2}(2)m >4或m =−1分析:(1)先求交集,再求补集,即可得到答案;(2)由集合间的基本关系可得:B ⊆A ,对集合B 进行讨论,即可得到答案;(1)当m =0时,B ={x ∣−1≤x ≤3},∴ A ∩B ={x ∣−1⩽x ⩽2},∴ ∁R (A ∩B)={x|x <−1或x >2}(2)∵ A ∪B =A ⇒B ⊆A ,当B =∅时,2m −1>m +3⇒m >4;当B ≠∅时,m ⩽4且{2m −1⩾−3m +3⩽2,解得:m =−1, 综上所述:m >4或m =−117、已知A ={x |−3≤x −2≤1},B ={x |a −1≤x ≤a +2},a ∈R .(1)当a =1时,求A ∩B ;(2)若A ∪B =A ,求实数a 的取值范围.答案:(1)A ∩B ={x |0≤x ≤3}(2){a |0≤a ≤1}分析:(1)解不等式,求出A,B ,进而求出交集;(2)根据条件得到B ⊆A ,比较端点,列出不等式组,求出实数a 的取值范围.(1)−3≤x −2≤1,解得−1≤x ≤3,故A ={x |−1≤x ≤3},当a =1时,B ={x |0≤x ≤3},所以A ∩B ={x |0≤x ≤3};(2)因为A ∪B =A ,所以B ⊆A ,因为a −1<a +2,所以B ≠∅,所以{a −1≥−1a +2≤3, 解得:0≤a ≤1,所以实数a 的取值范围为{a |0≤a ≤1}18、已知集合A ={x |3−a ≤x ≤3+a },B ={x |x ≤0 或x ≥4}.(1)当a =1时,求A ∩B ;(2)若a >0,且“x ∈A ”是“x ∈∁R B ”的充分不必要条件,求实数a 的取值范围. 答案:(1)A ∩B ={4}(2)(0,1)分析:(1)首先得到集合A ,再根据交集的定义计算可得;(2)首先求出集合B 的补集,依题意可得A 是∁R B 的真子集,即可得到不等式组,解得即可;(1)解:当a =1时,A ={x |2≤x ≤4 },B ={x|x ≤0或x ≥4},∴A ∩B ={4}.(2)解:∵B ={x|x ≤0或x ≥4},∴∁R B ={x |0<x <4 },∵“x ∈A ”是“x ∈∁R B ”的充分不必要条件,∴A 是∁R B 的真子集,∵a >0,∴A ≠∅,∴{3−a >03+a <4a >0,∴0<a <1,故实数a 的取值范围为(0,1).19、已知集合A ={a ﹣2,2a 2+5a },且﹣3∈A .(1)求a ;(2)写出集合A 的所有真子集.答案:(1)a =−32 ;(2)∅,{−72},{﹣3} .分析:(1)由题意知a ﹣2=﹣3或2a 2+5a =﹣3,分类讨论并检验即可求得a =−32;(2)由真子集的定义直接写出即可.(1)∵A ={a ﹣2,2a 2+5a },且﹣3∈A ,∴a ﹣2=﹣3或2a 2+5a =﹣3,①若a ﹣2=﹣3,a =﹣1,2a 2+5a =﹣3,故不成立,②若2a 2+5a =﹣3,a =﹣1或a =−32,由①知a =﹣1不成立,若a =−32,a ﹣2=−72,2a 2+5a =﹣3,成立,故a =−32;(2)∵A ={−72,−3},∴A 的真子集有∅,{−72} ,{﹣3}.。

全国通用版高中数学第一章集合与常用逻辑用语经典大题例题

全国通用版高中数学第一章集合与常用逻辑用语经典大题例题

(名师选题)全国通用版高中数学第一章集合与常用逻辑用语经典大题例题单选题1、已知集合A={x|x2−2x=0},则下列选项中说法不正确的是()A.∅⊆A B.−2∈A C.{0,2}⊆A D.A⊆{y|y<3}答案:B分析:根据元素与集合的关系判断选项B,根据集合与集合的关系判断选项A、C、D.由题意得,集合A={0,2}.所以−2∉A,B错误;由于空集是任何集合的子集,所以A正确;因为A={0,2},所以C、D中说法正确.故选:B.2、已知a、b、c、d∈R,则“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的()注:max{p,q}表示p、q之间的较大者.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B分析:利用特殊值法、不等式的基本性质结合充分条件、必要条件的定义判断可得出结论.充分性:取a=d=1,b=c=−1,则max{a,b}+max{c,d}=max{1,−1}+max{−1,1}=1+1>0成立,但max{a+c,b+d}=max{0,0}=0,充分性不成立;必要性:设max{a+c,b+d}=a+c,则max{a,b}≥a,max{c,d}≥c,从而可得max{a,b}+max{c,d}≥a+c>0,必要性成立.因此,“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的必要不充分条件.故选:B.小提示:方法点睛:判断充分条件和必要条件,一般有以下几种方法:(1)定义法;(2)集合法;(3)转化法.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、集合A={−1,0,1,2,3},B={0,2,4},则图中阴影部分所表示的集合为()A.{0,2}B.{−1,1,3,4}C.{−1,0,2,4}D.{−1,0,1,2,3,4}答案:B分析:求∁(A∪B)(A∩B)得解.解:图中阴影部分所表示的集合为∁(A∪B)(A∩B)={−1,1,3,4}.故选:B5、已知A={1,x,y},B={1,x2,2y},若A=B,则x−y=()A .2B .1C .14D .23 答案:C分析:由两集合相等,其元素完全一样,则可求出x =0,y =0或x =1,y =0或x =12,y =14,再利用集合中元素的互异性可知x =12,y =14,则可求出答案.若A =B ,则{x =x 2y =2y 或{x =2y y =x 2 ,解得{x =0y =0 或{x =1y =0 或{x =12y =14,由集合中元素的互异性,得{x =12y =14,则x −y =12−14=14,故选:C .6、集合A ={x ∈N|1≤x <4}的真子集的个数是( )A .16B .8C .7D .4答案:C解析:先用列举法写出集合A ,再写出其真子集即可.解:∵A ={x ∈N|1≤x <4}={1,2,3},∴A ={x ∈N|1≤x <4}的真子集为:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选:C .7、若全集U =R ,集合A ={0,1,2,3,4,5,6},B ={x|x <3},则图中阴影部分表示的集合为()A .{3,4,5,6}B .{0,1,2}C .{0,1,2,3}D .{4,5,6}答案:A分析:根据图中阴影部分表示(∁U B)∩A求解即可.由题知:图中阴影部分表示(∁U B)∩A,∁U B={x|x≥3},则(∁U B)∩A={3,4,5,6}.故选:A8、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.9、已知命题p:∃x∃N,e x<0(e为自然对数的底数),则命题p的否定是()A.∃x∃N,e x<0B.∃x∃N,e x>0C.∃x∃N,e x≥0D.∃x∃N,e x≥0答案:D分析:根据命题的否定的定义判断.特称命题的否定是全称命题.命题p的否定是:∃x∃N,e x≥0.故选:D.10、已知集合满足{1,2}⊆A⊆{1,2,3},则集合A可以是()A.{3}B.{1,3}C.{2,3}D.{1,2}答案:D分析:由题可得集合A可以是{1,2},{1,2,3}.∵ {1,2}⊆A ⊆{1,2,3},∴集合A 可以是{1,2},{1,2,3}.故选:D.11、已知A 是由0,m ,m 2﹣3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可答案:B分析:由题意可知m =2或m 2﹣3m +2=2,求出m 再检验即可.∵2∈A ,∴m =2 或 m 2﹣3m +2=2. 当m =2时,m 2﹣3m +2=4﹣6+2=0,不合题意,舍去;当m 2﹣3m +2=2时,m =0或m =3,但m =0不合题意,舍去.综上可知,m =3.故选:B .12、命题“∃x >1,x 2≥1”的否定是( )A .∃x ≤1,x 2≥1B .∃x ≤1,x 2<1C .∀x ≤1,x 2≥1D .∀x >1,x 2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x >1,x 2≥1”的否定是“∀x >1,x 2<1”,故选:D.填空题13、已知集合A ={y|y =x 2−32x +1,x ∈[34,2]},B ={x|x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,则实数m 的取值范围为________.答案:(−∞,−34]∪[34,+∞)分析:求函数的值域求得集合A ,根据“x ∈A ”是“x ∈B ”的充分条件列不等式,由此求得m 的取值范围. 函数y =x 2−32x +1的对称轴为x =34,开口向上, 所以函数y =x 2−32x +1在[34,2]上递增, 当x =34时,y min =716;当x =2时,y max =2.所以A =[716,2].B ={x|x +m 2≥1}={x|x ≥1−m 2},由于“x ∈A ”是“x ∈B ”的充分条件,所以1−m 2≤716,m 2≥916,解得m ≤−34或m ≥34, 所以m 的取值范围是(−∞,−34]∪[34,+∞).所以答案是:(−∞,−34]∪[34,+∞) 14、已知命题p :“∀x ≥3,使得2x −1≥m ”是真命题,则实数m 的最大值是____.答案:分析:根据任意性的定义,结合不等式的性质进行求解即可.当x ≥3时,2x ≥6⇒2x −1≥5,因为“∀x ≥3,使得2x −1≥m ”是真命题,所以m ≤5.所以答案是:515、若a ∈{−1,3,a 3},则实数a 的取值集合为______.答案:{0,1,3}分析:根据元素的确定性和互异性可求实数a 的取值.因为a ∈{−1,3,a 3},故a =−1或a =3或a =a 3,当a =−1时,a 3=−1,与元素的互异性矛盾,舍;当a=3时,a3=27,符合;当a=a3时,a=0或a=±1,根据元素的互异性,a=0,1符合,故a的取值集合为{0,1,3}.所以答案是:{0,1,3}16、若∅是{x|x2≤a,a∈R}的真子集,则实数a的取值范围是_________.答案:[0,+∞)分析:根据题意以及真子集定义分析得出x2≤a有实数解即可得出答案.若∅是{x|x2≤a,a∈R}的真子集,则{x|x2≤a,a∈R}不是空集,即x2≤a有实数解,故a≥0,即实数a 的取值范围是[0,+∞).故答案为:[0,+∞)17、设n∈N∗,一元二次方程x2−4x+n=0有实数根的充要条件是n=__.答案:1或2或3或4分析:由一元二次方程x2−4x+n=0有实数根可得Δ≥0,解得n≤4,结合n∈N∗,即可求出n=1,2,3,4. ∵一元二次方程x2−4x+n=0有实数根,∴Δ=(−4)2−4×1×n=16−4n≥0,解得n≤4,又∵n∈N∗,∴n=1,2,3,4.所以答案是:1或2或3或4.解答题18、已知命题p:∃x∈R,x2−2x+a2=0,命题p为真命题时实数a的取值集合为A.(1)求集合A;(2)设集合B={a|2m−3≤a≤m+1},若x∈B是x∈A的必要不充分条件,求实数m的取值范围.答案:(1)A={a∣−1≤a≤1};(2)0≤m≤1.分析:(1)由一元二次方程有实数解,即判别式不小于0可得结果;(2)将x ∈B 是x ∈A 的必要不充分条件化为A 是B 的真子集后,列式可求出结果.(1)由命题p 为真命题,得Δ=4−4a 2≥0,得−1≤a ≤1∴A ={a ∣−1≤a ≤1}.(2)∵x ∈B 是x ∈A 的必要不充分条件,∴A 是B 的真子集.∴{2m −3≤−11≤m +12m −3<m +1(等号不能同时成立),解得0≤m ≤1.19、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4 },所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].20、已知集合A ={x |2<x <4},集合B ={x |m −1<x <m 2}.(1)若A ∩B =∅;求实数m 的取值范围;(2)命题p:x ∈A ,命题q:x ∈B ,若p 是q 的充分条件,求实数m 的取值集合.答案:(1)−√2≤m ≤√2或m ≥5(2){m |m ≤−2 或2≤m ≤3}分析:(1)讨论B =∅或B ≠∅,根据A ∩B =∅列不等式组即可求解.(2)由题意得出A ⊆B ,再由集合的包含关系列不等式组即可求解.(1)∵A ∩B =∅,∴当B =∅时,m -1≥m 2,解得:m ∈∅.当B≠∅时,m-1≥4或m2≤2,∴−√2≤m≤√2或m≥5. (2)∵x∈A是x∈B的充分条件,∴A⊆B,∴{m−1≤2m2≥4,解得:m≤-2或2≤m≤3.所以实数m的取值集合为{m|m≤−2或2≤m≤3}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章常用逻辑用语
本章归纳整合
高考真题
1.(·陕西高考)设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是 ().A.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|
C.若|a|≠|b|,则a≠-b D.若|a|=|b|,则a=-b
解析原命题的条件是:a=-b,结论是|a|=|b|,所以逆命题是:若|a|=|b|,则a=-b.
答案D
2.(·高考)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是().
A.若a+b+c≠3,则a2+b2+c2<3
B.若a+b+c=3,则a2+b2+c2<3
C.若a+b+c≠3,则a2+b2+c2≥3
D.若a2+b2+c2≥3,则a+b+c=3
解析原命题的条件是:a+b+c=3,结论是:a2+b2+c2≥3,所以否命题是:若a+b +c≠3,则a2+b2+c2<3.
答案A
3.(·全国卷)下面四个条件中,使a>b成立的充分不必要的条件是 ().A.a>b+1 B.a>b-1
C.a2>b2 D.a3>b3
解析a>b+1⇒a>b,a>b a>b+1.
答案A
4.(·湖南高考)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的 ().A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
解析若N⊆M,则需满足a2=1或a2=2.解得a=±1或a=± 2.故“a=1”是“N⊆M”
的充分不必要条件.
答案A
5.(·天津高考)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的 ().
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
解析x≥2,且y≥2⇒x2+y2≥4,x2+y2≥4x≥2,且y≥2,如x=-2,y=1,故“x≥2且y≥2”是“x2+y2≥4”的充分不必要条件.
答案A
6.(·北京高考)若p是真命题,q是假命题,则().A.p∧q是真命题 B.p∨q是假命题
C.綈p是真命题 D.綈q是真命题
解析由于p是真命题,q是假命题,所以綈p是假命题,綈q是真命题,p∧q是假命题,p∨q是真命题.
答案D
7.(·安徽高考)命题“所有能被2整除的整数都是偶数”的否定是 ().A.所有不能被2整除的整数都是偶数
B.所有能被2整除的整数都不是偶数
C.存在一个不能被2整除的整数是偶数
D.存在一个能被2整除的整数不是偶数
解析原命题是全称命题,其否定是:存在一个能被2整除的数不是偶数.
答案D
8.(·辽宁高考)已知命题p:∃n∈N,2n>1 000,则綈p为 ().A.∀n∈N,2n≤1 000 B.∀n∈N,2n>1 000
C.∃n∈N,2n≤1 000 D.∃n∈N,2n<1 000
解析命题p的否定为:∀n∈N,2n≤1 000.
答案A。

相关文档
最新文档