二次函数yax2的图象

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数y=ax2的图象

教学设计示例1

课题:二次函数的图象

教学目标:

1、会用描点法画出二次函数的图象;

2、根据图象观察、分析出二次函数的性质;

3、进一步理解二次函数和抛物线的有关知识

4、渗透由非凡到一般的辩证唯物主义观点;

5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力;

6、培养学生勇于探索创创新及实事求是的科学精神.

教学重点:根据图象,观察、分析出二次函数的性质

教学难点:渗透数形结合的数学思想方法

教学用具:直尺、微机

教学方法:谈话、探究式

教学过程:

1、列表、描点画出函数与的图象,引入新课

例:画出函数与的图象

解:列两个表

x

4

3

1 0 1

2

3

4 8

2

2

8 x 2

1

1

2

8

2

2

8

分别描点画图

2、根据图象发现问题,由学生探索出新知识.

提问:你能从图象中发现抛物线是哪些性质?这两个函数图象有何异同?

这两个函数的图象都关于y轴对称.这一点可以从刚才的列表中可以看出, 时所对应的y值分别相等,如等.这样的两个点关于y轴对称.由这些点构成的抛物线也关于y轴对称.从解析式中也可以得出这个结论:互为相反数的两个数的平方数相等,因此,这两个函数的图象都是关于y轴对称

从图中可以看出,x可取x轴上的任意一点,而y对应的是大于、等于零的数.即抛物线有最低点.这一点可以从解析式中得到很好的解释, 可取

任意实数. 图象开口向上.这也说明数与形是数学中的两条线索,它们是互相对应的,反映了数形结合的思想.

从图中也可以看出抛物线不同于我们以前学过的正比例函数和一次函数,这两个函数的图象都是直线,而抛物线是曲线,有一个拐弯,函数的图象都在最低点拐了一个弯.这样它们的性质几发生了变化.在y轴的左侧,从左向右呈下坡趋势,即y随x的增大而减小;在y轴的右侧,从左向右,呈上坡趋势,即y随x的增大而增大.这一变化趋势也可以从列表中看出.

这两个图象除以上相同之处外,还有不同的地方.如: 离y轴近, 离y轴远.从列表中可以看出:如过点,而过点也就是说,当x=2时, 的图象所对应的点高于所对应的点.因此会有上述的结论.

3、画出函数的图象

与中的a都是正数,当a0时,抛物线的开口向上,当a<0时,抛物线的开口向下,a的绝对值越大,图象越靠近y 轴.

6、小结:这一节课,从始至中都是结合图象观察、归纳

总结出二次函数的性质,体现了数与形的结合.函数图象是解决函数问题的有利工具,希望大家能自觉地应用.

7、作业:习题组1、2B组1、2

教学设计示例2

课题:二次函数的图象

第一课时

一、素质教育目标

知识教学点

1.使学生知道二次函数的意义;

2.使学生会用描点法画出二次函数的图像,并结合的图像,初步理解抛物线及其有关概念。

能力练习点

1.进一步培养学生用描点法画函数图像的能力;

2.向学生进行数形结合的数学思想方法的教育。

德育渗透点

通过对几个非凡的二次函数的讲解,向学生进行一般与非凡的辩证唯物主义教育。

美育渗透点

通过本节课的教学,渗透二次函数图像的对称美,曲线的平滑美。

二、学法引导

教师采用引导发现法,观察法,讲解法

本节的主要内容是理解二次函数的定义,知道二次函数解析式中字母的意思,在画的图像时,要知道图形是抛物线,是轴对称图形、列表时,自变量x的值的选取,应以0为中心,对称地选取两对互为相反数,最好x取整数值。

三、重点·难点·疑点及解决办法

1.教学重点:二次函数的意义及二次函数的图像的画法。因为它们是研究二次函数的重要基础。

2.教学难点:正确画出二次函数的图像。因为它的图像是一条曲线,画起来较复杂,而且学生在画图之前,尚不清楚二次函数的图像的具体外形和变化趋势,所以不易把握。

3.教学疑点: ; 的图像的反性质。

4.解决办法:关于二次函数的定义,关键要注重:自变量的最高次数定义,二次项系数 ; 的图像和性质,不可死记硬背,要结合图像理解和把握二次函数的几个主要特征,如开口方向,顶点坐标,对称轴,最大值最小值等。

四、教学步骤

教学过程

首先,我们来看两个实验问题:

1.圆的半径是R,它的面积为S,你能否写出S与R之间的函数关系式?

这个问题由学生举手回答,可找层次较低的学生完成,培养他们的参与意识和自信心。然后把答案写在黑板上留

用。

2.已知一个矩形场地的周长是60,一边长为l,请你写出这个矩形场地的面积S与这条边长之间的函数关系式。

这个问题其实就是中的例1,可由学生得出结论,若学生给出的是 ,再继续提问:你能否把函数关系式中的括号去掉?然后把所得的结论写在黑板上。

提问:比较与这两个函数,都是用自变量的几次式来表示的?

用这个问题,引出二次函数,在学生回答之后,教师加以总结,板书:

一般地,假如 ,那么,y叫做x的二次函数。

提问:1.上述概念中的a为什么不能是0?

2.对于二次函数中的b和c可否为0?若b和c其一为0或均为0,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?

3.由问题1和2,你能否总结:一个函数是否是二次函数,关键看什么?

由这三个问题加深学生对二次函数意义的理解,也同时给出了二次函数的三个特例: ; ; ,使学生深刻理解:看一个函数是否是二次函数的关键是看二次项的系数是否为0.

4.二次函数的解析式,与我们所学过的什么知识相类似?

相关文档
最新文档