八年级数学下册:6.3《特殊的平行四边形》导学案(3)
平行四边形导学案
温水镇中学“高效课堂”八年级数学(下)导学案主备人:_____ 审核人:_____ 班级:______ ; 姓名:________ 课型:新授课重点、难点:重点:平行四边形的判定方法及应用.难点:平行四边形的判定定理与性质定理的灵活应用.学法指导:知识链接:1、三角形全等的证明。
2、平行四边形的性质。
【学习流程】一、课前预习:1独立看书127~129页2、 独立完成下列预习作业:(1)、回顾:什么叫平行四边形,它有哪些性质?(2)、思考:如何判别一个四边形是否是平行四边形呢?二、互动探究:活动1:将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.转动这个四边形,使它形状改变,在图形变化的过程中,它一直是一个平行四边形吗? 你能说出你的理由吗?(如图1)尝试证明: 图1活动2、将两根细木条AC 、BD 的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD . 转动两根木条,四边形ABCD 一直是一个平行四边形吗?你能说出你的理由吗?(如图2) 动手操作 观察分析 猜想证明 总结归纳 迁移应用尝试证明:图2三、合作交流:通过上面的两个问题的探究,你得出除了平行四边形的定义之外,还可怎样来判定一个四边形是平行四边形?归纳总结:平行四边形判定方法:方法1 :两组对边___________的四边形是平行四边形。
如图:∵_________ ∴四边形ABCD是平行四边形方法2 :对角线_________的四边形是平行四边形。
如图:∵_________ ∴四边形ABCD是平行四边四、实践应用:1、已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.2、已知:如图,A′B′∥BA,B′C′∥CB, C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′(2) △ABC的顶点分别是△B′C′A′各边的中点.五、课堂小结:平行四边形判定方法:(1)____________________________;(2) ___________________________;(3)____________________________。
认识平行四边形.导学案
底
底
底
3、填一填
①两组对边( )的四边形叫平行四边形。
②从平行四边形一条边上的一点到它的对边的( )是平行四边形的( )。
③平行四边形有( )的特性。三角形具有( )的特性
4、判断。
(1)平行四边形是长方形。 ( )
(2)平行四边形只有一条高。 ( )
(3)两个完全相同的三角形能拼成一个平行四边形。 ( )
7、从平行四边形一条边上的一点到它的对边的( )是平行四边形的高。
这条对边是平行四边形的( )。
8、你能再做两条这样的高吗?
平行四边形的高有( )条
9、平行四边形有什么特性? ( )
10、生活中哪些地方用到这一特性?
二、练习
1、下面图形中,是平行四边形的在( )中打“√”
( ) ( ) ( )
( ) ( )
导学案
学习内容
认识平行四边形
学习目标
1、经历在对简单图形分类、观察、比较、交流的活动过程,认识平行四边形。
2、学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。
3、在学习中感受数学与生活的联系。
学习重点难点
认识平行四边形,探究平行四边形的基本特征及认识平行四边形的高,能够画出并测量平行四边形的高
三、 提升练习
1、给下面图形加一条线段使其变成一个平行四边形和一个三角形
2、 在两条平行线之间画出两个等底等高的平行四边形
四、总结 通过学习知道了:
什么特征?”
长方形和正方形的对边()且();四个角都是()角。
2、平行四边形也有( )条边,特征是( )
《6.3特殊的平行四边形》作业设计方案-初中数学青岛版12八年级下册
《特殊的平行四边形》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对特殊平行四边形概念的理解,掌握特殊平行四边形的性质及其在实际生活中的应用,提高学生分析问题和解决问题的能力。
二、作业内容本次作业包括以下内容:1. 概念复习:学生需复习特殊平行四边形的定义及其类型(如矩形、菱形等),理解各类特殊平行四边形的性质特点。
2. 题目练习:通过典型例题和练习题,巩固对特殊平行四边形性质的运用。
例如,让学生通过图形的拼接、翻折或旋转等方式,找出特殊的平行四边形并证明其性质。
3. 思考探究:要求学生分析并尝试解答日常生活中遇到的特殊平行四边形问题,如建筑物的窗户设计、桥梁的构造等。
三、作业要求1. 作业量适中:本课时作业量不宜过大,以避免学生因疲劳而影响学习效果。
同时,也要保证学生有足够的思考时间。
2. 内容清晰:作业中涉及的知识点要明确,每一题的目标和解题步骤要清晰,以便学生能够明确解题思路。
3. 难度递进:题目设置应遵循由易到难的原则,先让学生掌握基础知识点,再逐步提高难度,引导学生深入思考。
4. 格式规范:要求学生按照规范的格式完成作业,如题目编号、解题步骤、答案等,以方便教师批改。
四、作业评价教师将根据以下标准对作业进行评价:1. 正确性:答案是否准确无误,是否完全符合题目要求。
2. 解题思路:学生的解题思路是否清晰,是否有创新性。
3. 书写规范:学生书写是否工整,格式是否规范。
4. 独立思考能力:学生在解决问题过程中是否能够独立思考,并运用所学知识解决实际问题。
五、作业反馈1. 及时批改:教师将及时批改作业,并对学生的答题情况进行统计和分析。
2. 反馈形式:教师将通过课堂讲解、小组讨论等形式,对学生在作业中出现的错误进行纠正,对优秀答案进行表扬和分享。
3. 个性化指导:针对学生在作业中表现出的不同特点和问题,教师将给予个性化的指导和建议,帮助学生更好地掌握知识和技能。
4. 家长沟通:教师将与家长保持沟通,及时反馈学生的学习情况,以便家长更好地配合学校的教育工作。
八年级数学下册 18.2.3 特殊的平行四边形导学案 (新版)新人教版
八年级数学下册 18.2.3 特殊的平行四边形导学案 (新版)新人教版18、2、3 特殊的平行四边形预习案一、学习目标(1)掌握菱形的概念、性质(2)在对菱形特殊性质的探索过程中,理解特殊与一般的关系、二、预习内容预习课本相关内容。
菱形的性质:。
根据概念进行判断。
菱形的两条对角线长分别为6和8,则菱形的周长是()A、40B、24C、20D、10菱形的性质:。
根据概念进行判断。
如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,cosA=4/5,则下列结论中正确的个数为()① D E=3cm;②EB=1cm;③S菱形ABCD=15cm2A、3个B、2个C、1个D、0个三、预习检测1、菱形具有一般平行四边形不具有的性质是()A、两组对边分别平行B、对角线互相平分C、两组对边分别相等D、一组邻边相等2已知菱形的周长等于40cm,两对角线的比为3:4,则对角线的长分别是()A、12cm,16cmB、6cm,8cmC、3cm,4cmD、24cm,32cm3、菱形的对角线长为8cm和6cm,则该菱形面积为()A、48cm2B、24cm2C、25cm2D、14cm2探究案一、合作探究(15min)上面的图案我们在生活中经常遇到,图中有很多四边形,它们是平行四边形吗?是矩形吗?它们有什么特点?【定义】XXXXX:有一组邻边相等的平行四边形叫做菱形。
日常生活中具有菱形形象的离子:【菱形的性质】1、菱形是特殊的平行四边形,它具有平行四边形的一切性质。
2、菱形的特殊性质:边:菱形的四条边都_________;对角线:菱形的两条对角线互相__________,并且每一条对角线______一组对角;对称性:菱形是轴对称图形,它的对称轴就是___________所在的直线。
如图,根据菱形的性质,在菱形ABCD 中:(1) AB=BC=CD=DA(2)AC⊥BD,且AO=CO,BO=DO;∠ABO=∠CBO,∠BCO=∠DCO∠CDO=∠ADO,∠DAO=∠BAO想一想:如何证明菱形的性质呢?菱形的性质:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角、已知:如图,四边形ABCD 是菱形、求证: AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ADC和∠ABC、3、菱形的面积例、如图,菱形花坛ABCD的边长为20m,∠ABC=60,沿着菱形的对角线修建了两条小路AC和BD、求两条小路的长(结果保留小数点后两位)和花坛的面积(结果保留小数点后一位)、总结:菱形的面积公式:__________________________________________二、小组展示(规定出小组展示的时间或方案)每小组口头或利用投影仪展示, 一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)交流内容展示小组(随机)点评小组(随机)____________第______组第______组____________第______组第______组三、归纳总结菱形的性质:1、具有平行四边形的一切性质;2、菱形的四条边都相等;3、菱形的两条对角线相互垂直平分,并且每一条对角线平分一组对角。
八年级数学下册 第6章 平行四边形 6.3 特殊的平行四边形作业设计 (新版)青岛版
6.3 特殊的平行四边形一.选择题(共5小题)1.如图,在△ABC中,∠ABC=90°,分别以△ABC的边向外作正方形,连接EC、BF,过点B 作BM⊥FG于M,交AC于N,下列结论:①△ABF≌△AEC;②S四边形ABDE=2S△AEC;③S四边形AFMN=2S△ABF;④S正方形ABDE=S四边形AFMN,其中正确的是()(第1题图)A.①②B.①②③C.①D.①②③④2.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是()(第2题图)A.1个B.2个C.3个D.4个3.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF 交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论,其中正确结论的个数是()①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④S△AOE:S△BCF=2:3.(第3题图)A.1个B.2个C.3个D.4个4.下列说法中正确的是()A.对角线相等且有一个角是直角的平行四边形是正方形B.对角线互相垂直且一组邻边相等的平行四边形是正方形C.四个角都相等的菱形是正方形D.对角线互相垂直平分且有一组邻边相等的四边形是正方形5.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()(第5题图)A.67.5°B.22.5°C.30°D.45°二.填空题(共5小题)6.如图,在菱形ABCD中,AB=4,AE⊥BC于点E,点F,G分别是AB,AD的中点,连接EF,FG,若∠EFG=90°,则FG的长为.(第6题图)7.已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.(第7题图)8.菱形ABCD的边长为6,∠ABC=60°,则较长对角线BD的长是.9.如图,已知某广场菱形花坛ABCD的周长是24米,∠ABC=120”,则花坛对角线AC的长等于.(第9题图)10.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠DEF=度.(第10题图)三.解答题(共5小题)11.如图,将一张边长为8cm,一角为72°的菱形纸片,剪三剪,用四种不同的剪法(剪得的四个等腰三角形一致,视为同一剪法)使之成四个等腰三角形纸片,并写出每个等腰三角形的顶角度数.(第11题图)12.如图,AD∥BC,AC平分∠BAD,BD平分∠ABC,DE⊥BD交BC的延长线于点E.(1)求证:四边形ABCD是菱形;(2)请直接写出与△CED面积相等的三角形.(第12题图)13.如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作BE的垂线交BE 于点F,交BC于点G,连接EG,求证:四边形ABGE是菱形.(第13题图)14.如图,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CF的平分线交于点G,∠BEF、∠DFE的平分线交于点H.求证:四边形EGFH是矩形.(第14题图)15.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A 停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.(第15题图)参考答案一.1.D 2.C 3.B 4.C 5.B二.6.2 7. 8.6 9.6 10.50 三.11.解:如答图.(第11题答图)12.(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB=∠CBD,∴AB=AD.设AC、BD相交于点O,又∵AC平分∠BAD,∴BO=DO,AC⊥BD,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵DE⊥BD,AC⊥BD,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形,∴BC=AD=CE,∴图中所有与△CDE 面积相等的三角形有△BCD,△ABD,△ACD,△ABC.(第12题答图)13.证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形∴AD∥BC且AD=BC,∴∠CBE=∠AEB,∴∠ABE=∠AEB=∠CBE,∴AB=AE,∵AF⊥BE,∴∠AFB=∠GFB=90°,在△ABF和△GBF中,,∴△ABF≌△GBF(ASA),∴AB=GB,∴AE=GB,又∵AD∥BC,∴四边形ABGE是平行四边形,又∵AB=GB,∴四边形ABGE是菱形;14.证明:∵EH平分∠BEF,∴∠FEH=∠BEF,∵FH平分∠DFE,∴∠EFH=∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°∴四边形EGFH是矩形;15.解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10(cm),则周长为4×10cm=40(cm);面积为10cm×8cm=80(cm2).。
初中数学8年级下册《特殊的平行四边形》导学案
课题 19.2 特殊的平行四边形课时:五课时第一课时 19.2.1 矩形的性质【学习目标】1.掌握矩形的性质定理及推论。
2.能熟练应用矩形的性质进行有关证明和计算。
【重点难点】重点:掌握矩形的性质定理。
难点:利用矩形的性质进行证明和计算。
【导学指导】阅读教材P94-P96相关内容,思考、讨论、合作交流后完成下列问题:1.什么是矩形?2.矩形是特殊的平行四边形,平行四边形具有的性质它有没有?平行四边形的边有什么性质?角呢?对角线呢?那么它特殊在什么地方?所以它有什么性质?如何记住它呢?3.矩形的一条对角线把它分成了两个什么三角形?由矩形的性质,你可以得到这个三角形的什么性质?【课堂练习】1.教材P95练习第1,2,3题。
2.Rt△ABC中,两条直角边分别为6和8,则斜边上的中线长为。
【要点归纳】今天你有什么收获?与同伴交流一下。
【拓展训练】1. 将矩形纸片ABCD 沿对角线BD 对折,再折叠使AD 与对角线BD 重合,得折痕DG ,若AB=8,BC=6,求AG 的长。
2. 在四边形ABCD 中,∠ABC=∠ADC=90°,E 是AC 的中点,EF 平分∠BED 交BD 于点F 。
(1) 猜想:EF 与BD 具有怎样的关系?(2) 试证明你的猜想。
ABD第二课时矩形的判定【学习目标】1.理解并掌握矩形的判定方法。
2.能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养分析能力。
【重点难点】重点:矩形的判定定理及推论。
难点:定理的证明方法及运用。
【导学指导】复习旧知:1.什么是平行四边形?什么是矩形?2.矩形有哪些性质?你能猜想如何判定矩形吗?学习新知:阅读教材P95-P96相关内容,思考、讨论、合作交流后完成下列问题:1.利用矩形的定义可以判定一个平行四边形是矩形,由此你发现什么?2.还有哪些方法可以证明一个四边形是矩形?如何证明?试一试。
【课堂练习】1.教材P96练习第1,2题。
八年级数学下册平行四边形特殊的平行四边形菱形菱形的性质教案新版新人教版
18.2.2菱形的性质一、学生起点分析学生知识技能基础:学生刚刚学习过平行四边形、矩形,对平行四边形有直观的感知和认识。
学生活动经验基础:在学习平行四边形的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。
二、学习任务分析菱形和矩形一样,也是一类特殊的平行四边形,在学习平行四边形的基础上,学生学会进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索菱形的性质并培养学生的探索意识。
教学目标:1.知识与技能:掌握菱形的性质,并能运用菱形的性质进行有关的证明和计算。
2.过程与方法:经历菱形的定义和性质的探究过程,培养学生动手实验、观察、归纳、推理的意识,发展学生的形象思维和逻辑推理能力。
3.情感与态度:在探究菱形性质的过程和应用性质的过程中,培养学生独立思考的习惯和成功的体验。
通过菱形性质的应用,进一步认识数学与生活的密切联系。
教学重点:菱形性质的探究与应用教学难点:菱形性质的探究教学方法:探索归纳法三、教学过程设计:本节课分6个环节:第一环节:创设情境激趣导入第二环节:自主探究合作归纳第三环节:基础训练提升能力第四环节:变式训练探索发现第五环节:评价反思概括总结第一环节:创设情境激趣导入(感知菱形):活动一:内容:课件演示,四边形如何变化得平行四边形和矩形,flash动画演示,将短边沿着长边平移,得特殊的平行四边形,目的:引导学生回顾矩形和平行四边形的联系,进一步明确矩形是具有特殊性的平行四边形,让学生进一步体会并理解三种平行四边形的区别与联系,引入新课,得菱形的定义:一组邻边相等的平行四边形是菱形。
教师进一步强调,菱形中的两个条件:①平行四边形,②一组邻边相等,表示:菱形ABCD活动二:内容: 生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。
《平行四边形的性质(边角特征)》精品导学案 人教版八年级数学下册导学案(精品)
18.1.1 平行四边形的性质第1课时平行四边形的边、角特征学习目标:1.能熟练复述平行四边形的对边相等、对角相等的两条性质.2.会根据平行四边形的性质进行简单的计算和证明.学习重点:掌握平行四边形的对边相等、对角相等的两条性质.自主研习一、课前检测二、温故知新举例说明生活中平行四边形的例子三、预习导航〔预习教材41-43页, 标出你认为重要的关键词〕1.什么叫做平行四边形?如何表示右图中的平行四边形?文字语言:符号语言:文字语言:符号语言:4.________________________________________叫做这两条平行线之间的距离.四、自学自测1.如图, DC∥GH ∥AB, DA∥EF∥CB, 图中的平行四边形有多少个?将它们表示出来.2.在上题的条件下, 从图中找出三组相等的线段和角.五、我的疑惑〔反思〕探究点拨一、要点探究探究点1:平行四边形的边、角的特征量一量1.根据平行四边形的定义,请画一个平行四边形ABCD.用尺子等工具度量它的四条边, 并记录下数据, 你能发现AB与DC, AD与BC之间的数量关系吗?2.再用量角器等工具度量它的四个角, 并记录下数据, 你能发现∠A与∠C, ∠B与∠D之间的数量关系吗?思考你发现了什么规律?证一证:四边形ABCD是平行四边形.求证:AD=BC,AB=CD,∠BAD=∠BCD,∠ABC=∠ADC.证明:如图, 连接AC.∵四边形ABCD是平行四边形,∴AD___BC, AB___CD,∴∠1___∠2, ∠3___∠4.又∵AC是△ABC和△CDA的公共边,∴△ABC____△CDA,∴AD___BC, AB___CD, ∠ABC___∠ADC.∵∠BAD=∠1+∠4, ∠BCD=∠2+∠3,∴∠BAD___∠BCD.思考不添加辅助线, 你能否直接运用平行四边形的定义, 证明其对角相等?要点归纳:平行四边形的对边___________;平行四边形的对角___________.几何语言表示:即学即练:□ABCD中,∠A:∠B=2:3,求各角的度数.□ABCD的周长为28cm,AB:BC=3:4,求各边的长度.探究点2:平行线间的距离想一想:如图,假设m // n,作 AB // CD // EF, 分别交 m于A、C、E, 交 n于B、D、F.由________________________易知四边形ABDC, CDFE均为__________________.由平行四边形的性质得AB______CD_______EF.填一填:如图, 在□ABCD中, DE⊥AB, BF⊥CD, 垂足分别是E, F.求证:DE=BF.证明:∵四边形ABCD是平行四边形,∴∠A_____∠C, AD______CB.又∠AED= ∠CFB=90°,∴△ADE____△CBF〔_____〕,∴DE_____BF.要点归纳:1.两条平行线之间的任何平行线段都__________.2.两条平行线间的距离:两条平行线中, 一条直线上任意一点到另一条直线的__________________.3.两条平行线间的距离__________.=12cm2, 求△ABD中AB边上即学即练:3.如图, AB∥CD, BC⊥AB, 假设AB=4cm, S△ABC的高.二、精讲点拨例1如图, 在□ABCD中.〔1〕假设∠BAD =32°,求其余三个角的度数.〔2〕连接AC, □ABCD的周长等于20 cm, AC=7cm, 求△ABC的周长.例2如图, 在□ABCD中,E, F是对角线AC上的两点, 并且BE∥DF.求证: BE=DF.方法总结:三、变式训练1.如图, 在□ABCD中, 假设AE平分∠DAB, AD=5cm,AB=9cm,那么EC=_______.2.剪两张对边平行的纸条随意交叉叠放在一起, 重合局部构成了一个四边形,转动其中一张纸条, 线段AD和BC的长度有什么关系?为什么?四、课堂小结平行四边形内容定义性质其它结论星级达标★1.判断题:(1)平行四边形的两组对边分别平行且相等 ( )(2)平行四边形的四个内角都相等 ( )(3)平行四边形的相邻两个内角的和等于180° ( )(4)如果平行四边形相邻两边长分别是2cm和3cm, 那么周长是10cm ( )(5)在平行四边形ABCD中, 如果∠A=35°, 那么∠C=145°( )★2.在□ABCD 中, M 是BC 延长线上的一点, 假设∠A=135°, 那么∠MCD 的度数是〔 〕A .45°B . 55°C . 65°D . 75°★3.DE ∥AC,DF ∥BC,EF ∥AB, 那么图中有____个平行四边形. ★4.如图, 直线AE//BD,点C 在BD 上,假设AE=5, BD=8,△ABD 的面积为16, 那么△ACE 的面积为_________.★★5.:如图, 在□ABCD 中, ∠ABC 的平分线BE 交AD 于点E, ∠ADC 的平分线DF 交BC 于点F .求证:ED=BF .★★6.有一块形状如下图的玻璃, 不小心把EDF 局部打碎了, 现在只测得AE=60cm, BC=80cm, ∠B=60°且AE ∥BC 、AB ∥CF,你能根据测得的数据计算出DE 的长度和∠D 的度数吗?★★★7.如图, 在□ABCD 中,点E 是BC 边的中点, 连接AE 并延长与DC 的延长线交于F.〔1〕求证:CF=CD.〔2〕假设AF 平分∠BAD,连接DE, 试判断DE 与AF 的位置关系, 并说明理由. 我的反思〔收获, 缺乏〕 分层作业必做(教材 智慧学习 配套) 选做参考答案:即学即练:1.试题分析:根据平行四边形的边和角的性质解答.详解:在□ABCD 中,AD ∥BC, ∴∠A+∠B=180°,又∵∠A:∠B=2:3,∴∠A=52×180°=72°, ∠B=53×180°=108°. :根据平行四边形的边的性质解答.详解:在□ABCD 中,AD=BC, AB=CD.∵□ABCD 的周长为28cm,∴AB+BC=14cm,又∵AB:BC=3:4,∴AB=CD=73×14=6cm, BC=AD=74×14=8cm. :根据三角形的面积求出ABC △的边AB 上的高BC , 再根据平行线间的距离相等解答.第2题图 第3题图 第4题图详解:1141222ABCS AB BC BC=⋅=⨯⋅=,解得:6BC=,∵AB∥CD, ∴点D到AB边的距离等于BC的长度,∴ABD△中AB边上的高等于6cm.例1 试题分析:根据平行四边形的边和角的性质解答.详解:〔1〕在□ABCD中, ∠BAD=∠BCD,∠B=∠D.∵∠BAD =32°,∴∠BCD =32°.∵AD∥BC, ∴∠BAD +∠B=180°,∴∠B=∠D=148°.〔2〕在□ABCD中,AD=BC, AB=CD.∵□ABCD的周长为20cm,∴AB+BC=10cm,∴△ABC的周长=AB+BC+AC=10+7=17cm.例2 试题分析:先证BC=AD, ∠ACB=∠DAC, ∠CEB=∠AFD, 根据AAS证出△BEC≌△DFA, 从而得出BE=DF.证明:∵四边形ABCD是平行四边形,∴BC=AD, BC∥AD,∴∠ACB=∠DAC,∵BE∥DF, ∴∠BEC=∠AFD,∴△CBE≌△ADF, ∴BE=DF.变式训练:1.解:如图, 在平行四边形ABCD中, 那么AB∥CD, AB=CD.∴∠2=∠3,又AE平分∠BAD, 即∠1=∠3, ∴∠1=∠2, 即DE=AD,又AD=5cm, AB=9cm,∴EC=CD-DE=9-5=4cm.:首先可判断重叠局部为平行四边形, 然后由平行四边形的性质来进行判断.详解:∵四边形ABCD是用两张对边平行的纸条交叉重叠地放在一起而组成的图形,即AB∥CD, AD∥BC, ∴四边形ABCD是平行四边形.∴AD=BC.星级达标:1、〔1〕√〔2〕×〔3〕√〔4〕√〔5〕×2、试题分析:此题考查平行四边形的性质、邻补角定义等知识, 根据平行四边形对角相等, 求出∠BCD, 再根据邻补角的定义求出∠MCD 即可. 详解:∵四边形ABCD 是平行四边形, ∴∠A=∠BCD=135°,∴∠MCD=180°-∠BCD =180°-135°=45°.应选:A .3、试题解析:图中的平行四边形有□ADFE , □BDEF , □C EDF , 共三个, 故答案为3.4、试题分析:过点A 作AF ⊥BD 于点F, 由△ABD 的面积为16可求出AF 的长, 再由AE ∥BD 可知AF 为△ACE 的高, 由三角形的面积公式即可得出结论. 详解:过点A 作AF ⊥BD 于点F, ∵△ABD 的面积为16, BD=8, ∴12BD•AF=12×8×AF=16, 解得AF=4, ∵AE ∥BD,∴AF 的长是△ACE 的高, ∴S △ACE =12×AE×4=12×5×4=10.故答案为:10. 5、试题分析:根据平行四边形的性质及角平分线定义得到ABE AEB ∠=∠, 进而推出AE=AB, 同理CF CD =, 再根据线段的和差证明即可. 详解:四边形ABCD 是平行四边形, ∴AD ∥BC , AB CD =, AD BC =,AEB CBE ∴∠=∠,BE 平分ABC ∠, ABE CBE ∴∠=∠,ABE AEB ∴∠=∠, AE AB ∴=,同理:CF CD =.AE CF ∴=, AD AE BC CF ∴-=-, ED BF ∴=.6、试题分析:首先利用定义可判断四边形ABCD 为平行四边形, 然后利用平行四边形边和角的性质来进行计算即可.详解:∵AE ∥BC 、AB ∥CF,∴四边形ABCD 为平行四边形.∴AD=BC, ∠D=∠B.又∵AE=60cm, BC=80cm, ∠B=60°, ∴DE=80-60=20cm, ∠D=60°.7、试题分析:〔1〕根据平行四边形的性质可得到AB ∥CD, 从而可得到AB ∥DF, 根据平行线的性质可得到两组内错角相等, 点E 是BC 的中点, 从而可根据AAS 来判定△BAE ≌△CFE, 根据全等三角形的对应边相等可证得AB=CF, 进而得出CF=CD;〔2〕利用全等三角形的判定与性质得出AE=EF, 再利用角平分线的性质以及等角对等边求出DA=DF, 利用等腰三角形的性质求出即可.〔1〕证明:∵四边形ABCD是平行四边形,∴AB∥CD, AB=CD.∵点F为DC的延长线上的一点, ∴AB∥DF,∴∠BAE=∠CFE, ∠ECF=∠EBA,∵E为BC中点, ∴BE=CE,那么在△BAE和△CFE中,,∴△BAE≌△CFE〔AAS〕,∴AB=CF, ∴CF=CD;〔2〕解:DE⊥AF,理由:∵AF平分∠BAD, ∴∠BAF=∠DAF,∵∠BAF=∠F, ∴∠DAF=∠F, ∴DA=DF,∴△ADF为等腰三角形.又由〔1〕知△BAE≌△CFE, ∴AE=EF,∴DE⊥AF.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表: 信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B两种树的混合林, 需要购置这两种树苗2 000棵, 种植A, B两种树苗的相关信息如下表:品种价格(单位:元/棵) 成活率劳务费(单位:元/棵)A1595% 3B2099% 4设购置A种树苗x棵, 造这片树林的总费用为y元, 解答以下问题:(1)写出y与x之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x吨, 这批原材料能用y天, 那么y与x之间的函数表达式为〔〕A.y=100x B.y=C.y=+100D.y=100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m3的圆柱形煤气储存室, 那么储存室的底面积S〔单位:m2〕与其深度d〔单位:m〕的函数图象大致是〔〕A.B.C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热,水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕100 80 60 40 20压强y〔kPa〕60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32 B.x≤32 C.x>32 D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k =〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200 240 250 400销售量y〔双〕30 25 24 1513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100 125 200 250 …镜片与光斑的距离y/m… 1 …m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕400 625 800 1000 (1250)镜片焦距x〔cm〕25 16 10 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg 的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________.10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。
初中数学青岛版八年级下册第6章 平行四边形6.3特殊的平行四边形-章节测试习题(8)
章节测试题1.【题文】如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?【答案】见解答.【分析】首先根据定理:到角两边距离相等的点在角的平分线上,可得到∠DAC=∠CAE,然后证明∠DAC=∠DCA,可得到DA=DC,再根据菱形的判定定理:邻边相等的平行四边形是菱形,进而可得到结论.【解答】是菱形.理由如下:∵PE⊥AB,PF⊥AD,且PE=PF,∴AC是∠DAB的角平分线,∴∠DAC=∠CAE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠DCA=∠CAB,∴∠DAC=∠DCA,∴DA=DC,∴平行四边形ABCD是菱形.【点评】此题主要考查了菱形的判定,证明∠DAC=∠DCA是解此题的关键.2.【题文】如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点.(1)求证:四边形EFGH是平行四边形;(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论.【答案】见解答.【分析】(1)根据中位线的判定GH=EF= AB,EH=FG= CD,所以四边形EFGH是平行四边形.(2)根据菱形的判定,四边都相等的四边形是菱形,只要证明EF=FG=GH=HE就可以了,这就需要AB=CD这个条件.【解答】(1)证明:∵E、F分别是AD,BD的中点,G、H分别中BC,AC的中点,∴EF∥AB,EF= AB;GH∥AB,GH= AB.(2分)∴EF∥GH,EF=GH.∴四边形EFGH是平行四边形.(2分)(2)当AB=CD时,四边形EFGH是菱形.(1分)理由:∵E、F分别是AD,BD的中点,H,G分别是AC,BC的中点,G、F分别是BC,BD的中点,E,H分别是AD,AC的中点,∴EF= AB,HG= AB,FG= CD,EH= CD,又∵AB=CD,∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3分)【点评】此题考查了三个判定:平行四边形的判定、菱形的判定、中位线的判定,牢记这几个判定,解此类问题就轻而易举了.3.【题文】如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作A G∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.【答案】见解答.【分析】(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.【解答】(1)证明:∵四边形ABCD是平行四边形∴AB∥CD且AB=CD,AD∥BC且AD=BCE,F分别为AB,CD的中点,∴BE= AB,DF= CD,∴BE=BF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE= AB=AD,而∠DAB=60°∴△AED是等边三角形,即DE=AE=AD,故DE=BE∴平行四边形DEBF是菱形.(2)解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB∴四边形AGBD是平行四边形由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°故∠ADB=90°∴平行四边形AGBD是矩形.【点评】本题考查了矩形的性质、等边三角形的判定及性质、三角形中位线定理等知识,解题的关键是弄清菱形及矩形的判定方法.4.【题文】如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.【答案】见解答.【分析】(1)根据角平分线的性质得出∠FAD=∠B,以及AD∥BC,再利用∠D=∠ACD,证明AC=AD;(2)根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.【解答】证明:(1)∵AB=AC,∴∠B=∠BCA,∵AD平分∠FAC,∴∠FAD=∠DAC= ∠FAC,∵∠B+∠BCA=∠FAC,∴∠B= ∠FAC,∴∠B=∠FAD,∴AD∥BC,∴∠D=∠DCE,∵CD平分∠ACE,∴∠ACD=∠DCE,∴∠D=∠ACD,∴AC=AD;(2)∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键.5.【题文】已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案】见解答.【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相垂直平分,根据对角线互相垂直且平分的四边形是菱形,即可判定四边形AEMF 是菱形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC-BE=DC-DF(等式的性质),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF,∴平行四边形AEMF是菱形.【点评】本题主要考查对正方形的性质,平行四边形的判定,菱形的判定,平行线分线段成比例定理,全等三角形的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.6.【题文】如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.【答案】见解答.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.(3分)∵AC平分∠BAD,∴∠BAC=∠DAC,(4分)又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,(5分)∴AD=DC,(6分)∴四边形AECD是菱形.(8分)【点评】考查了平行四边形和菱形的判定,比较简单.7.【题文】两块完全相同的三角板Ⅰ(△ABC)和Ⅱ(△A 1 B 1 C 1)如图①放置在同一平面上(∠C=∠C 1 =90°,∠ABC=∠A 1 B 1 C 1 =60°),斜边重合.若三角板Ⅱ不动,三角板Ⅰ在三角板Ⅱ所在的平面上向右滑动,图②是滑动过程中的一个位置.(1)在图②中,连接BC 1、B 1 C,求证:△A 1 BC 1≌△AB 1 C;(2)三角板Ⅰ滑到什么位置(点B 1落在AB边的什么位置)时,四边形BCB 1 C 1是菱形?说明理由.【答案】见解答.【分析】利用全等三角形的性质得出一些条件,然后再进行证明.【解答】(1)证明:∵三角板Ⅰ(△ABC)和Ⅱ(△A 1 B 1 C 1)是两块完全相同的三角板,∴AC=A 1 C 1 AB=A 1 B 1∠A=∠A 1∴在图②中A 1 B=AB 1∴△A 1 BC 1≌△AB 1 C.(2)解:点B 1落在AB边的中点.理由如下:如图②所示,由已知条件知BC=B 1 C 1,BC∥B 1 C 1∴四边形BCB 1 C 1是平行四边形.要使四边形BCB 1 C 1是菱形,则BC=CB 1∵∠ABC=∠A 1 B 1 C 1 =60°,∴△BCB 1为等边三角形.∴BB 1 =B 1 C=BC,又∵∠A=30°,在直角三角形ABC中,BC= AB,∴BB 1 = AB,∴点B 1落在AB边的中点.【点评】(1)灵活把握题中隐含的条件是解题的关键.(2)菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.8.【题文】将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图(1);再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图2,证明:四边形AEDF是菱形.【答案】见解答.【分析】第一次折叠,AC落在AB边上,则折痕AD平分∠BAC,∠EAD=∠FAD;第二次折叠,A、D重合,则∠EAF=∠EDF、∠EDA=∠FDA;AE=ED、AF=FD;易证得△AED≌△AFD,得AE=AF、DE=DF,再根据第二次折叠所得到的AE=DE、AF=FD,可证得四边形AEDF的四边相等,由此可判定四边形AEDF是菱形.【解答】证明:由第一次折叠可知:AD为∠CAB的平分线,∴∠1=∠2(2分)由第二次折叠可知:∠CAB=∠EDF,∵AE=ED,AF=FD,∴∠1=∠3,∠2=∠4,∵∠1=∠2,∴∠3=∠4(4分),在△AED与△AFD中1=∠2,AD=AD,∠3=∠4∴△AED≌△AFD(ASA)(6分)∴AE=AF,DE=DF,∴EO=FO,AO=DO,AD⊥EF,故四边形AEDF是菱形.(9分)【点评】此题考查了折叠的性质、全等三角形的判定和性质及菱形的判定方法.9.【题文】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.【答案】见解答.【分析】(1)首先可根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积.【解答】解:(1)四边形OCED是菱形.(2分)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,(3分)又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(4分)(2)连接OE.由菱形OCED得:CD⊥OE,(5分)又∵BC⊥CD,∴OE∥BC(在同一平面内,垂直于同一条直线的两直线平行),又∵CE∥BD,∴四边形BCEO是平行四边形;∴OE=BC=8(7分)∴S 四边形OCED = OE•CD=×8×6=24.(8分)【点评】本题主要考查矩形的性质,平行四边形、菱形的判定,菱形面积的求法;菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.10.【题文】如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E、F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.【答案】见解答.【分析】(1)四边形ABCD是平行四边形,则BC∥AF,可得同位角∠BPE=∠F;在等腰△BEP中,∠E=∠BPE,等量代换后即可证得所求的结论;(2)由EF∥BD,可得同位角∠ABD=∠E,∠ADB=∠F;由(1)知∠E=∠F,等量代换后可证得∠ABD=∠ADB,即AB=AD,根据一组邻边相等的平行四边形是菱形即可判定四边形ABCD是菱形.【解答】证明:(1)在▱ABCD中,BC∥AF,∴∠1=∠F,∵BE=BP,∴∠E=∠1,∴∠E=∠F;(2)∵BD∥EF,∴∠2=∠E,∠3=∠F,∵∠E=∠F,∴∠2=∠3,∴AB=AD,∴▱ABCD是菱形.【点评】此题主要考查了平行四边形的性质及菱形的判定:一组邻边相等的平行四边形是菱形.11.【题文】如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.【答案】见解答.【分析】要证明四边形AEOF是菱形,可根据“四条边相等的四边形是菱形”或“一组邻边相等的平行四边形是菱形”进行证明.【解答】证明:∵点E,F分别为AB,AD的中点∴AE= AB,AF= AD (2分),又∵四边形ABCD是菱形,∴AB=AD,∴AE=AF (4分),又∵菱形ABCD的对角线AC与BD相交于点O∴O为BD的中点,∴OE,OF是△ABD的中位线.(6分)∴OE∥AD,OF∥AB,∴四边形AEOF是平行四边形(8分),∵AE=AF,∴四边形AEOF是菱形.【点评】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.12.【题文】某同学用两个完全相同有一个角为60°的直角三角尺重叠在一起(如图)固定△ABC不动,将△DEF沿线段AB向右平移,当D移至AB中点时(如图②).(1)求证:△ACD≌△DFB;(2)猜想四边形CDBF的形状,并说明理由.【答案】见解答.【分析】(1)根据已知可以得出∠CAB=∠FDE,AC=DF,BD=AD,即可得出△ACD≌△DFB;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;【解答】(1)证明:∵两个完全相同有一个角为60°的直角三角尺重叠在一起(如图②)固定△ABC不动,将△DEF沿线段AB向右平移,∴∠CAB=∠FDE=60°,AC=DF,∵D移至AB中点时,∴BD=AD,∴在△ACD与△DFB中,,∴△ACD≌△DFB;(2)菱形.理由:∵在直角三角形ABC中,AD=BD,∴CD=AD=BD,根据平移的性质,图形平移前后对应线段相等,对应点平移距离相等,得到CF=BD,BF=CD,∴CF=BD=BF=CD,∴四边形CDBF是菱形;【点评】此题主要考查了菱形的判定,综合运用直角三角形的性质和平移的性质进行分析计算,考查学生综合运用数学知识的能力.13.【题文】如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.【答案】见解答.【分析】(1)由CE、BF的内错角相等,可得出△CED和△BFD的两组对应角相等;已知D是BC的中点,即BD=DC,由AAS即可证得两三角形全等;(2)若AB=AC,则△ABC是等腰三角形,而D是底边BC的中点,根据等腰三角形三线合一的性质可证得AD⊥BC;由(1)的全等三角形,易证得四边形BFCE的对角线互相平分;根据对角线互相垂直平分的四边形是菱形即可判定四边形BFCE是菱形.【解答】证明:(1)∵CE∥BF,∴∠ECD=∠FBD,∠DEC=∠DFB;又∵D是BC的中点,即BD=DC,∴△BDF≌△CDE;(AAS)(2)∵AB=AC,∴△ABC是等腰三角形;又∵BD=DC,∴AD⊥BC(三线合一),由(1)知:△BDF≌△CDE,则DE=DF,DB=DC;∴四边形BFCE是菱形(对角线互相平分且互相垂直的四边形为菱形).【点评】此题主要考查的是全等三角形的判定和性质、等腰三角形的性质及菱形的判定方法.14.【题文】如图,在梯形ABCD中,AC平分∠BAD,在底边AB上截AE=CD.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.【答案】见解答.【分析】(1)根据四边形ABCD是梯形得到AB∥DC,从而得到∠DCA=∠EAC,利用EC平分∠BAD,得到∠BAC=∠DAC,从而∠DAC=∠DCA,所以AD=CD,利用邻边相等的平行四边形是菱形判定四边形AECD是菱形;(2)利用若点E是AB的中点,得到AE=BE,根据CE=AE,得到CE=BE,从而得到△ABC为直角三角形.【解答】(1)证明:∵四边形ABCD是梯形,∴AB∥DC,又∵AE=CD,∴四边形AECD是平行四边形.∴∠DCA=∠EAC,∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠DAC=∠DCA,∴AD=CD,∴四边形AECD是菱形;(2)解:∵若点E是AB的中点,∴AE=BE,∵CE=AE,∴CE=BE,∴∠EBC=∠ECB,∠EAC=∠ECA∴∠ECB+∠ECA=90°∴△ABC为直角三角形.【点评】本题考查了梯形的性质及菱形的判定,解题的关键是熟知梯形的性质,并理解其基本辅助线的作法.15.【题文】如图,在Rt△ABC中,∠ABC=90°,∠BAC=60°,D为AC的中点,以BD为折痕,将△BCD折叠,使得C点到达C 1点的位置,连接AC 1.求证:四边形ABDC 1是菱形.【答案】见解答.【分析】要证四边形ABDC 1为菱形,则要通过题中的条件证出四边相等即可得出答案.【解答】证明:∵∠ABC=90°,∠BAC=60°,∴∠C=30°∴BA= AC.又∵BD是斜边AC的中线,∴BD=AD= AC=CD.∴BD=AB=CD,∴∠C=∠DBC=30°,∵将△BCD沿BD折叠得△BC 1 D,∴△CBD≌△C 1 BD,∴CD=DC 1,∴AB=BD=DC 1,∴∠C 1 BA=∠BC 1 D=30°,∴BA∥DC 1,DC 1 =AB,∴四边形ABDC 1为平行四边形,又∵AB=BD,∴平行四边形ABDC 1为菱形.【点评】此题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.16.【题文】如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E.DF平分∠ADC交BC于F.(1)求证:△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.【答案】见解答.【分析】(1)由平行四边形ABCD可得出的条件有:①AB=CD,②∠A=∠C,③∠ABC=∠CDA;已知BE、CD分别是等角∠ABD、∠CDA的平分线,易证得∠ABE=∠CDF④;联立①②④,即可由ASA判定所求的三角形全等;(2)由(1)的全等三角形,易证得DE=BF,那么DE和BF平行且相等,由此可判定四边形BEDF 是平行四边形,根据对角线垂直的平行四边形是菱形即可得出EBFD的形状.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,∠ABC=∠ADC,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠CDF,∴△ABE≌△CDF(ASA);(2)解:若BD⊥EF,则四边形EBFD是菱形.证明:由△ABE≌△CDF,得AE=CF,在平行四边形ABCD中,AD平行BC,AD=BC,∴DE∥BF,DE=BF,∴四边形EBFD是平行四边形,∴若BD⊥EF,则四边形EBFD是菱形.【点评】此题主要考查了平行四边形的性质、全等三角形的判定和性质及菱形的判定方法.17.【题文】如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点.(1)求证:四边形DECF是平行四边形;(2)若AC=BC,则四边形DECF是什么特殊四边形?请说明理由.【答案】见解答.【分析】(1)根据一组对边平行且相等的四边形是平行四边进行证明;(2)根据一组邻边相等的平行四边形是菱形进行证明.【解答】(1)证明:方法一:∵D、E、F分别是边AB、BC、CA的中点,∴DE∥AC,DE= AC,CF= AC.(3)分∴DE∥CF,DE=CF.∴四边形DECF是平行四边形,5分)方法二:∵D、E、F分别是边AB、BC、CA的中点,∴DE∥AC,DF∥BC,(3分)∴四边形DECF是平行四边形.(5分)(2)解:四边形DECF是菱形(6分)理由:∵E、F分别是边BC、CA的中点,∴CE= BC,CF= AC,又∵AC=BC,∴CE=CF.(8分)由(1)知,四边形DECF是平行四边形,∴四边形DECF是菱形.(10分)【点评】考查了平行四边形和菱形的判定.形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.18.【题文】如图,在平行四边形ABCD中,点E、F分别在BC、AD上,且∠BAE=∠DCF.(1)求证:△ABE≌△CDF;(2)若AC⊥EF,试判断四边形AECF是什么特殊四边形,并证明你的结论.【答案】见解答.【分析】(1)平行四边形的对边相等,对角相等,即∠B=∠D,AB=CD,根据已知给出的∠BAE=∠DCF,可证明两个三角形全等.(2)可先证明四边形AECF中对角线的关系,根据AC⊥EF,从而判断出到底是什么特殊的四边形.【解答】解:(1)∵在平行四边形ABCD中,∴∠B=∠D,AB=CD,又∵∠BAE=∠DCF.∴△ABE≌△CDF;(2)∵△ABE≌△CDF,∴BE=DF,∴BC-BE=AD-FD,∴EC=AF,∵AD∥BC,∴∠FAC=∠ECA,∠CEF=∠AFE,∴△AOF≌△COE,∴AO=CO,EO=FO,又∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查了平行四边形的判定和性质,平行四边形的对边平行且相等,对角相等,全等三角形的判定和性质,菱形的判定.19.【题文】△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE 是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.【答案】见解答.【分析】(1)根据等边三角形的性质可得AB=AC,AE=AD,∠BAC=∠EAD=60°,然后求出∠BAE=∠CAD,再利用“边角边”证明△AEB和△ADC全等;②四边形BCGE是平行四边形,因为△AEB≌△ADC,所以可得∠ABE=∠C=60°,进而证明∠ABE=∠BAC,则可得到EB∥GC又EG∥BC,所以四边形BCGE是平行四边形;(2)根据(1)的思路解答即可.(3)当CD=CB时,四边形BCGE是菱形,由(1)可知△AEB≌△ADC,可得BE=CD,再证明BE=CB,即邻边相等的平行四边形是菱形.【解答】证明:(1)①∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°.又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠EAB=∠DAC,∴△AEB≌△ADC(SAS).②方法一:由①得△AEB≌△ADC,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC,∴EB∥GC.又∵EG∥BC,∴四边形BCGE是平行四边形.方法二:证出△AEG≌△ADB,得EG=AB=BC.∵EG∥BC,∴四边形BCGE是平行四边形.(2)①②都成立.(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.理由:方法一:由①得△AEB≌△ADC,∴BE=CD又∵CD=CB,∴BE=CB.由②得四边形BCGE是平行四边形,∴四边形BCGE是菱形.方法二:由①得△AEB≌△ADC,∴BE=CD.又∵四边形BCGE是菱形,∴BE=CB∴CD=CB.方法三:∵四边形BCGE是平行四边形,∴BE∥CG,EG∥BC,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°∴∠F=∠FBE=60°,∴△BEF是等边三角形.又∵AB=BC,四边形BCGE是菱形,∴AB=BE=BF,∴AE⊥FG∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30°.【点评】本题主要考了平行线四边形的判定和性质、等边三角形的性质、全等三角形的判定和性质以及菱形的判定,解题关键在于根据题意画出图形,通过求证三角形全等,推出等量关系,即可推出结论.20.【题文】如图,在△ABC中,AB=2BC,点D、点E分别为AB、AC的中点,连接DE,将△ADE 绕点E旋转180°,得到△CFE.试判断四边形BCFD的形状,并说明理由.【答案】见解答.【分析】四边形BCFD应该是菱形,要证四边形AFCE是菱形,只需通过定义证明它是一组邻边相等的平行四边形即可,此题实际是对判定菱形的方法“一组邻边相等的平行四边形是菱形”的证明.【解答】解:四边形BCFD是菱形,理由如下:∵点D、点E分别是AB、AC的中点,∴DE∥BC,DE= BC,又∵△CFE是由△ADE旋转而得,∴DE=EF,∴DF∥BC,DF=BC,∴四边形BCFD是平行四边形,又∵AB=2BC,且点D为AB的中点,∴BD=BC,∴BCFD是菱形.【点评】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.还有就是本题中一组邻边相等的平行四边形是菱形.。
初中数学教学课例《特殊的平行四边形(矩形)》课程思政核心素养教学设计及总结反思
(2)组织好小组展示和跨组自由交流,注意学习
时间分配,展示的质量和效率。
(3)组织小组同学交堂每时每刻学生的
动态,对发现的问题和讨论、交流等方面及时指导培训。
二、课堂流程
1.课堂导入----以活动的平行四边形的变化过程
完善学生的认知能力与应用水平。
通过图形性质定理的逆命题,先猜想提出判定图形是否成立的命题,然后运用演绎推理证明这些命题的真伪,得出图形的判定定理,进一步明确矩形的性质定理与判定定理之间的关系:从命题角度来说,判定定理与
相应的性质定理之间是互逆的。
教学目标
1.说出生活中的矩形实例,从边、角、对角线及对
称的角度总结矩形的性质与判定定理。
2.经历类比、猜想、发现结论、验证结论的过程,
形成研究特殊平行四边形的常用方法。
3.在探究的过程中体会类比与划归的数学思想,体
会数学与生活的紧密联系。
学生学习能
力分析
学生在小学阶段对长方形的学习与了解、从七年级开始数学说理的学习、以及前一节平行四边形内容的学习,都为本节课的学习打下了很好的学习基础与方法。学生动手能力和应用能力不强,说理过程的书写格式也有待于进一步规范。在小学阶段,学生对矩形虽有一定的学习与了解,但更多的是停留在表面的记忆和理解,
7.教师寄语以方形人生的小短句作为结束。使数学
中死板的图性变得有灵动性
课例研究综
述
本节课主要是与学生为主体,从课前的预习到课上的自主探究都体现出学生的自主性,其次从教室中的常
见图形抽象到我们的矩形,让学生体会到数学来源于生
活,最后利用所学知识解决生活中的实际问题,恰好体现了数学又应用于生活之中。探究过程中也强调了合作探究的重要性,整节课注重联系实际,拓展学生知识,
6.3 特殊的平行四边形-矩形导学案(第2课时)
6.3 特殊的平行四边形-矩形导学案(第2课时)课程标准:掌握矩形的判定方法;能用矩形定义判定等知识解决简单的证明题和计算题。
学习目标:1.理解并掌握矩形的判定方法;2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力;3.感受在探究和证明过程中运用的归纳、概括的逻辑方法和转化的数学思想。
学习重难点:1、掌握矩形的判定定理,会用定理进行有关的计算与证明;2、矩形的判定及性质定理的综合应用我的目标以及突破重难点的设想:学前准备:学情分析:学案使用说明以及学法指导:1.先利用10分钟时间预习一遍教材P13——P15内容,用红色笔进行重难点勾画:了解矩形的定义和性质;2.利用25分钟完成探究案,找出自己的疑惑和需要讨论的问题,用红笔做好标记;3.通过预习,A、B层的同学熟练掌握矩形的定义和性质,完成导学案中所有题目,C 层同学课后提升题目选做。
课前预习学案1、矩形的定义:几何语言描述:∵∴运用定义,可以判断一个平行四边形是矩形。
解释:证明一个四边形是矩形,可先证这个四边形是_________,然后再证这个平行四边形有一个角是______。
2、矩形的性质:边:角:对角线:对称性:课内探究学案探究一:李芳同学用四步画出了一个四边形,她的画法是“边——直角、边——直角、边——直角、边”这样,她说这就是一个矩形,她的判断对吗?为什么?自己动手试一试。
1、猜想矩形的判定定理:2、对你的猜想进行证明。
已知:求证:证明:3、定理的几何语言:∵,∴。
探究二:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?1、猜想矩形的判定定理:2、对你的猜想进行证明。
已知:求证:证明:3、定理的几何语言。
∵,∴。
归纳矩形的判定方法:(1)___________________________的平行四边形是矩形。
八年级数学下册 6.3 特殊的平行四边形导学案(新版)青岛版
八年级数学下册 6.3 特殊的平行四边形导学案(新版)青岛版一、自主学习(一)温故知新:1、__________________________________________________叫做平行四边形。
2、平行四边形有哪些性质?①边:_________________________________________________________ ___、②角:_________________________________________________________ ___、③对角线:________________________________________________________。
(二)自主学习:1、__________________________叫做矩形。
2、矩形的性质:(1)矩形的性质定理1:_____________________________________________、(2) 矩形的性质定理2:_______________________________________________________、已知:____________________________________________________DA 求证:_________________________________________________、证明:OCB几何语言:________________________________________(3)性质定理的推论:_____________________________________________________。
3、矩形是_______对称图形,有______条对称轴。
二、合作探究1、在ABCD中,若∠A=_______,则ABCD是矩形。
2、矩形的两条对角线把它分割成四个面积_______的______三角形。
6.3 特殊的平行四边形-菱形导学案(第3课时)
6.3 特殊的平行四边形-菱形导学案(第3课时)学习目标:1、知道菱形在现实生活中有广泛的应用;熟记菱形的有关性质和识别条件,并能灵活应用。
2、经历探索菱形的性质和判别条件的过程,了解菱形的现实应用和常用判别条件。
3、培养学生的观察能力,并提高学生的学习兴趣。
在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识。
学习重难点:1、菱形的性质和判定定理。
2、菱形性质的灵活应用。
学案使用说明以及学法指导:先自学课本,经历自主探索总结过程,并独立完成自主学习部分,然后学习小组讨论交流。
课前预习学案1、的四边形是平行四边形。
2、的平行四边形是矩形。
3、的平行四边形是菱形。
4、怎样判定一个四边形是矩形?(1)(2)(3)课内探究学案一、创设情境,导入新课我们知道平行四边形是一种比较规则,比较漂亮的几何图形。
那我们今天再来看一种更加规则,更加漂亮的几何图形。
二、自主学习,探究新知B C D A O B C DA OB CD A O 活动1:菱形定义探究问题1:请同学们欣赏一组日常生活中常见的图片,你能观察到图片中有平行四边形的形象吗?每个平行四边形的邻边具有怎样的特征?独立总结一下菱形的定义。
的平行四边形叫做菱形。
活动2:菱形性质的探究问题2:将一张矩形的纸对折再对折,然后沿着课本上图中的虚线剪下,打开观察,是一个什么样的图形?问题3:菱形是轴对称图形吗?如果是,它有几条对称轴?取一张菱形纸片折一折,试一试。
问题4:根据菱形的对称性,你发现菱形的边具有什么性质?菱形的对角线具有哪些性质? 根据以上问题我们得到菱形的性质性质1: 性质2:活动3、学以致用,自主练习1、下列性质中,菱形具有而矩形不一定具有的是( )A.对角相等B.对角线平分一组对角C.对角线互相平分D.对边平行且相等2、若菱形的边长是5,则它的周长是________ 。
3、如图,菱形ABCD 中,AC 、BD 交于点O , ∠BAD =1200,你还可以知道哪些结果?若它的周长为20,则较短的对角线长为_ __。
八年级数学《特殊的平行四边形正方形》教案
教学过程教师活动学生活动复习引入教师讲解:本节课,我们将探究正方形判定定理。
我们在这里的探究方法与前几节相同。
我们已经知道,正方形是一个中心对称图形,也是一个轴对称图形,正方形的定义是:既是菱形,又是矩形的四边形是正方形。
正方形有如下的性质:①四条边都相等;②四个角都是直角。
二、探究新知(一)正方形判定方法1的探究教师讲解:我们可以证明,有一个角是直角的菱形是正方形,即有一个角是直角的菱形也是矩形。
教师提问这一结论如何证明,要求学生作简要回答。
学生回答后教师总结:如果一个四边形是菱形,那么它就是平行四边形,这个四边形又有一个角是直角,则它又是矩形,所以是正方形。
(二)正方形判定方法2的探究教师讲解:我们还可以证明,有一组邻边相等的矩形是正方形。
即有一组邻边相等的矩形也是菱形。
教师提问这一结论如何证明,要求学生作简要回答。
学生回答后教师总结:如果一个四边形是矩形,那么它就是平行四边形,这个四边形又有一组邻边相等,则它又是菱形,所以是正方形。
(三)实例讲解1、教师提出问题:如图20.4-1,在△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F。
求证:四边形CFDE是正方形。
教师分析解题过程:要证明四边形CFDE是正方形,可以先证四边形CFDE 是矩形,然后再证有一组邻边相等;也可以先证四边形CF DE是菱形,然后再证有一个角是直角。
教师要求学生证明,学生证明后教师检查证明过程,给予即时纠正。
证明:∵DE⊥BC,DF⊥AC,∴∠DFC=∠DEC=90°(直角定义);又∵∠ACB=90°,∴四边形CFDE是矩形(有三个角是直角的四边形是矩形)。
∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF(角平分线上的点到角的两边距离相等)。
∴四边形CFDE是正方形(有一组邻边相等的矩形是正方形)。
拓展知识:①如果把题的条件改成DE∥AC,D F∥BC,这个结论还成立吗?②如果∠ACB不是90º,那么四边形CFDE会是什么图形?你还会对上边的题目做怎样的变换呢?学生动脑思考,交流方法。
初中八年级数学下册第六章《特殊平行四边形》回顾与思考教案教学设计
初中八年级数学下册第六章《特殊平行四边形》回顾与思考教案教学设计教学目标:知识与技能:1.熟悉菱形、矩形、正方形的定义及理解它们之间的关系.2.理解和掌握菱形、矩形、正方形的性质及判定,会进行简单的计算与证明.过程与方法:1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.2.经历课前准备,总结、探索三种特殊平行四边形的关系,发展总结归纳能力和初步的演绎推理的能力.3.在具体问题的证明过程中,有意识地渗透试验论证、逆向思维的思想,提高学生的能力.情感态度与价值观:1.积极参与数学学习活动,对数学有好奇心和求知欲.2.通过“猜想—总结—证明—应用”的数学活动提升科学素养.教学重难点:【重点】1.三种特殊平行四边形的性质和判定的复习.2.三种特殊平行四边形的关系.【难点】总结菱形、矩形、正方形的判定方法的多样性和系统性.知识总结:专题讲解专题一菱形的性质与判定【专题分析】菱形是特殊的平行四边形,它除了具有平行四边形的性质外,还具有自身特有的性质,解决问题时可以灵活使用.判定一个四边形是否为菱形,可以结合具体条件选择合适的菱形的判定定理来判定,为利用菱形的性质解决问题提供条件.如图所示,在ΔABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.〔解析〕(1)先根据条件证明ΔAFE与ΔDBE全等,然后根据全等的性质结合三角形的中线推出结论;(2)先证明四边形ADCF是平行四边形,再判定其是菱形.证明:(1)∵E是AD的中点,∴AE=ED.∵AF∥BC,∴∠AFE=∠DBE,∠FAE=∠BDE,∴ΔAFE≌ΔDBE,∴AF=DB.∵AD是ΔABC中BC边上的中线,∴DB=DC,∴AF=DC.解:(2)四边形ADCF是菱形.证明:由(1)知AF=DC.又∵AF∥CD,∴四边形ADCF是平行四边形.又∵AB⊥AC,∴ΔABC是直角三角形,∵AD是其BC边上的中线,∴AD=DC.∴平行四边形ADCF是菱形.【针对训练1】(2014·南京中考)如图所示,在ΔABC中,D,E分别是AB,AC的中点,过点E 作EF∥AB,交BC于点F.(1)求证四边形DBFE是平行四边形;(2)当ΔABC满足什么条件时,四边形DBFE是菱形?为什么?(2014·枣庄中考)如图所示,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为()A.22B.18C.14D.11〔解析〕在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理,可得AF=8,则AF=EC,又∵AD ∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2×(3+8)=22.故选A.[规律方法]本题主要运用菱形的性质以及平行四边形的性质求出四边形AECF的周长,注意熟练掌握并灵活运用菱形的性质是关键.【针对训练2】已知一个菱形的周长是20 cm,两条对角线的长度之比是4∶3,则这个菱形的面积是()A.12 cm2B.24 cm2C.48 cm2D.96 cm2〔解析〕设菱形的对角线的长分别为8x cm和6x cm,已知菱形的周长为20 cm,故菱形的边长为5 cm,根据菱形的性质可知菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线的长分别为8 cm和6 cm,所以菱形的面积=24(cm2).故选B.专题二矩形的性质与判定【专题分析】矩形是特殊的平行四边形,它除了具有平行四边形的性质外,还具有自身特有的性质,解决问题时可以灵活使用.判定一个四边形是否为矩形,可以结合具体条件选择合适的矩形的判定定理来判定,为利用矩形的性质解决问题提供条件.(2014·湘潭中考)如图所示,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证ΔEDF≌ΔCBF;(2)求∠EBC.〔解析〕(1)首先根据矩形的性质和折叠的性质可得DE=BC,∠E=∠C=90°,对顶角∠DFE=∠BFC,利用AAS可判定ΔDEF≌ΔBCF;(2)在RtΔABD中,根据AD=3,BD=6,可得出∠ABD=30°,然后利用折叠的性质可得∠DBE=30°,继而可求得∠EBC的度数.[易错提示]此类问题具有一定的综合性,解题时要注意认真审题,恰当运用翻折变换的性质,依此提供证题所需的信息.此题容易出错的地方:①不能由折叠的性质结合矩形的性质得出三角形全等的条件;②根据AD,BD的长无法得出∠ABD的度数.【针对训练3】(2014·沈阳中考)如图所示,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证OE=OF.(2014·百色中考)如图所示,已知点E,F在四边形ABCD的对角线延长线上,AE=CF,DE ∥BF,∠1=∠2.(1)求证ΔAED≌ΔCFB;(2)若AD⊥CD,四边形ABCD是什么特殊的四边形?请说明理由.〔解析〕(1)由DE∥BF,可得∠E=∠F,结合已知条件,利用AAS便可说明ΔAED≌ΔCFB;(2)由ΔAED≌ΔCFB,可得AD=CB,∠EAD=∠FCB,利用等角的补角相等,可得∠DAC=∠BCA,进而得到AD∥BC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形ABCD是平行四边形,再利用“有一个角为直角的平行四边形是矩形”,便可得到四边形ABCD是矩形.证明:(1)∵DE∥BF,∴∠E=∠F.又∵∠1=∠2,AE=CF,∴ΔAED≌ΔCFB(AAS).解:(2)四边形ABCD是矩形.理由如下:由(1)知ΔAED≌ΔCFB,∴AD=CB,∠EAD=∠FCB,∴180°-∠EAD=180°-∠FCB,即∠DAC=∠BCA,∴AD∥BC,∴四边形ABCD为平行四边形.∵AD⊥CD,∴∠ADC=90°,∴▱ABCD为矩形.[方法归纳]矩形的判定方法:一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;三个角是直角的四边形是矩形.【针对训练4】如图所示,ΔABC中,AB=AC,AD⊥BC于D,AE是ΔBAC的外角平分线,DE∥AB 交AE于点E,求证四边形ADCE是矩形.证明:∵在ΔABC中,AB=AC,∴∠ABC=∠ACB.又∵AD⊥BC,∴BD=CD.∵AE是ΔBAC的外角平分线,∴∠1=∠EAC.又∵∠1+∠EAC=∠ABC+∠ACB,∴∠EAC=∠ACB,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,AB=DE,∴AE∥CD,AE=CD,∴四边形ADCE是平行四边形.又∵AB=AC,AB=DE,∴AC=DE,∴▱ADCE是矩形.专题三正方形的性质与判定【专题分析】正方形是特殊的平行四边形,它除了具有平行四边形的性质外,还具有自身特有的性质,解决问题时可以灵活使用.判定一个四边形是否为正方形,可以结合具体条件选择合适的正方形的判定定理来判定,为利用正方形的性质解决问题提供条件.(2014·扬州中考)如图所示,已知RtΔABC中,∠ABC=90°,先把ΔABC绕点B顺时针旋转90°后至ΔDBE,再把ΔABC沿射线AB平移至ΔFEG,DE,FG相交于点H.(1)判断线段DE,FG的位置关系,并说明理由;(2)连接CG,求证四边形CBEG是正方形.〔解析〕(1)因为旋转、平移不改变图形的形状和大小,可以得到对应边和对应角相等,在判断DE⊥FG后,主要运用了“两个锐角互余的三角形是直角三角形”进行证明;(2)在已知∠GEF为直角的条件下,需要证明四边形CBEG是平行四边形,得到四边形CBEG为矩形,再加上邻边BE=EG,即可判定矩形CBEG为正方形.解:(1)DE⊥FG.理由如下:由题意得∠A=∠EDB=∠GFE,∠ABC=∠DBE=90°,∴∠BDE+∠BED=90°,∴∠GFE+∠BED=90°,∴∠FHE=90°,即DE⊥FG.(2)∵ΔABC沿射线AB平移至ΔFEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.又∵∠GEF=∠ABC=90°,∴四边形CBEG是矩形.又∵EG=BE,∴四边形CBEG是正方形.[规律方法](1)结论性探究题的解题策略是从结论出发,执果索因,直到已知条件和定理.(2)在证明一个四边形是正方形时,通常先证明其为平行四边形,再证明其为矩形(或菱形),最后得到正方形.(3)本题中涉及两个基本图形和一个基本思路:如图(1)所示的是典型的“三垂线”图形,当∠B=∠BEG=∠GHE=90°时,∠BED=∠G,反之也可以成立;如图(2)所示的也是有关正方形问题的经典图形,DE和GF若相等必垂直,反之也可以成立.【针对训练5】如图所示,点P是正方形ABCD的边AB上一点(不与A,B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于 ()A.75°B.60°C.45°D.30°〔解析〕过点E作EF⊥AB,交AB的延长线于点F,则∠F=90°.∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF.在ΔAPD和ΔFEP中,∠ADP=∠FPE,∠A=∠F=90°,PD=EP,∴ΔAPD≌ΔFEP,∴AP=FE,AD=FP,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∵∠F=90°,∴ΔBEF为等腰直角三角形,∴∠EBF=45°,又∵∠ABC=90°,∴∠CBE=45°.故选C.(2014·自贡中考)如图所示,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证AE=CF.(2)若∠ABE=55°,求∠EGC的大小.〔解析〕(1)用SAS证明ΔABE≌ΔCBF;(2)根据∠EGC=∠EBG+∠BEF,∠EBG=90°-∠ABE,ΔBEF是等腰直角三角形求解.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.∵BE⊥BF,∴∠EBF=90°,∴∠ABE=∠CBF.∵AB=BC,∠ABE=∠CBF,BE=BF,∴ΔABE≌ΔCBF,∴AE=CF.解:(2)∵BE=BF,∠EBF=90°,∴∠BEF=45°.∵∠ABC=90°,∠ABE=55°,∴∠GBE=35°,∴∠EGC=∠GBE+∠BEF=80°.【针对训练6】(2014·泸州中考)如图所示,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G,求证AE=BF.证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠BAE+∠AEB=90°.∵AE⊥BF,垂足为G,∴∠CBF+∠AEB=90°.∴∠BAE=∠CBF.在ΔABE与ΔBCF中,∴ΔABE≌ΔBCF(ASA),∴AE=BF.专题四方程思想【专题分析】在探究特殊四边形的条件是什么时,常把需要满足的条件作为结论构造方程来解决问题,这不失为一种解决问题的捷径.如图所示,在RtΔABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由.证明:(1)在ΔDFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t.又∵AE=2t,∴AE=DF.解:(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.由(1)知AE=DF,∴四边形AEFD为平行四边形.若四边形AEFD为菱形,则AE=AD.∵AD=AC-DC=(60-4t) cm,AE=2t cm,∴60-4t=2t,解得t=10,∴当t=10时,四边形AEFD为菱形.【针对训练7】如图所示,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC∶BD=1∶2,则AO∶BO=,菱形ABCD的面积S=.〔答案〕1∶216专题五数形结合思想【专题分析】数形结合思想,就是把数、式与图形结合起来考虑,用几何图形直观地反映和描述数量关系.用代数方法来分析几何图形中蕴含的数量关系,从而使问题巧妙、快速解决.涉及镶嵌的计算问题时,常要结合图形探索镶嵌的边角关系,构造方程,来解决边角计算问题.如图所示,用8块相同的小矩形地砖拼成一个大矩形,则每个小矩形地砖的面积是()A.200 cm2B.300 cm2C.600 cm2D.2400 cm2【针对训练8】将图(1)中的正方形作如下操作:第1次:分别连接各边中点,如图(2)所示,得到5个正方形;第2次:将图(2)中左上角的正方形按上述方法再分割,如图(3)所示,得到9个正方形,….以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502B.503C.504D.505〔解析〕找到规律:第n次操作,得到的正方形个数为4n+1.当4n+1=2013时,n=503.故选B.。
人教版数学八年级下册18.2《特殊平行四边形》教学设计
人教版数学八年级下册18.2《特殊平行四边形》教学设计一. 教材分析人教版数学八年级下册18.2《特殊平行四边形》是学生在学习了平行四边形的性质和判定之后,进一步研究特殊平行四边形的特征和应用。
本节内容主要包括矩形、菱形、正方形的性质,以及它们之间的关系和转化。
教材通过丰富的图形和实例,引导学生探索和发现特殊平行四边形的性质,培养学生的观察能力、逻辑思维能力和解决问题的能力。
二. 学情分析学生在八年级上学期已经学习了平行四边形的性质和判定,对平行四边形有了初步的认识。
但特殊平行四边形的性质和判定对他们来说还是新的内容,需要通过实例和探究活动来进一步理解和掌握。
学生在学习过程中应具备观察和分析图形的能力,能够运用已学的知识解决实际问题。
三. 教学目标1.了解矩形、菱形、正方形的定义和性质。
2.掌握特殊平行四边形的判定方法。
3.培养学生的观察能力、逻辑思维能力和解决问题的能力。
4.能够运用特殊平行四边形的性质解决实际问题。
四. 教学重难点1.特殊平行四边形的性质和判定。
2.矩形、菱形、正方形之间的关系和转化。
五. 教学方法1.情境教学法:通过展示实际生活中的特殊平行四边形,激发学生的学习兴趣,引导学生主动探索。
2.问题驱动法:教师提出问题,引导学生思考和讨论,培养学生解决问题的能力。
3.合作学习法:学生分组讨论和探究,培养学生的团队协作能力。
4.直观教学法:利用图形和教具,直观展示特殊平行四边形的性质和判定。
六. 教学准备1.教学课件:制作课件,展示特殊平行四边形的图形和实例。
2.教学道具:准备一些特殊的平行四边形模型,如矩形、菱形、正方形等。
3.练习题:准备一些有关特殊平行四边形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些特殊的平行四边形,如矩形、菱形、正方形等,引导学生观察和思考:这些图形有什么特殊的性质?它们之间的关系如何?2.呈现(10分钟)教师简要介绍矩形、菱形、正方形的定义和性质,引导学生通过观察和分析,发现它们之间的关系和转化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3特殊的平行四边形(3)
【学习目标】
1.理解菱形的定义,探究归纳菱形的性质;
2.掌握菱形的判定方法。
【课前预习】
学习任务一:阅读课本第23—25页内容,思考并总结本节课学习的主要内容,写在下面的横线上:(要写的详细些)
学习任务二:菱形及其性质
1. 叫做菱形。
菱形是________的平行四边形。
2.从菱形的意义可以探究菱形具有的性质:
(1)菱形具有平行四边形具有的一切性质。
(2)菱形与平行四边形比较又有其特殊的性质:
特殊在“边”上的性质是_____________________________________________.
特殊在“对角线”上的性质是:_______________________________________.
学习任务三:从“对角线”和“角”两方面得到菱形的判定定理:
菱形的判定定理(1):________________________________________________.
菱形的判定定理(2):________________________________________________.
学习任务四:阅读课本18页,自己在下面独立证明菱形的判定定理(1):
四条边都相等的四边形是菱形
已知:
求证:
证明:
学习任务五:阅读课本18页,合上课本在下面独立证明菱形的判定定理(2):
对角线互相垂直的平行四边形是菱形
已知:
求证:
证明:
【课中探究】
典型例题:如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.
(1)求证:四边形AODE是菱形;
(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE 是怎样的四边形?
知识小结:填一填
2.判定方法比较
菱形性质及判定口诀:
一个四边形,对应边平行.再有邻边等,菱形才构成.
菱形有性质,仔细听分明.对角线垂直,四条边相等.
对角线两条,平分四顶角.全等三角形,成对不可少.
菱形要判定,性质相对应,四边都相等,菱形就生成.
对角线垂直,对边又平行.两条不能省,才能是菱形.
【当堂检测】
1.有一组相等的平行四边形叫做菱形。
2.菱形是特殊的平行四边形:
特殊在“边”上的性质是___________.特殊在“对角线”上的性质是:___________.
3.从“对角线”和“角”两方面得到菱形的判定定理:
菱形的判定定理1:四条边__________的四边形是菱形.
菱形的判定定理2:对角线____________的四边形是菱形.
4.菱形ABCD中∠A=120°,周长为14.4,则较短对角线的长度为。
5.菱形的面积为50平方厘米,一个角为30°,则它的周长为。
6.在菱形ABCD中,AB=5cm,则此菱形的周长为()
A.5cm
B.15cm
C.20cm
D.25cm
7.在菱形ABCD中,∠BAD=80°,AB的垂直平分线交AC于F,交AB于E,则∠CDF=()
A.80°
B.70°
C.65°
D.60°
8.菱形的周长为8.4cm,相邻两角之比为5:1,那么菱形一组对边之间的距离为()
A.1.05cm
B.0.525cm
C.4.2cm
D.2.1cm
9.下列命题中是真命题的是()
A.对角线互相平分的四边形是菱形
B.对角线互相平分且相等的四边形是菱形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分的四边形是菱形
10.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形。
小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是()
A.小明、小亮都正确
B.小明正确,小亮错误
C.小明错误,小亮正确
D.小明、小亮都错误
【课后巩固】
1. 已知菱形ABCD的对角线AC、BD的长度是6和8,则这个菱形的周长是()
A.20
B.14
C.28
D.24
2.如图,在菱形ABCD中,∠BAD=60°,BD=4,则菱形ABCD的周长是_______.
3. 用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()
A.一组临边相等的四边形是菱形
B.四边相等的四边形是菱形
C.对角线互相垂直的平行四边形是菱形
D.每条对角线平分一组对角的平行四边形是菱形
4.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为()
A.2
B.
C.4
D.
4题
3题
2题
5.依次连接菱形的各边中点,得到的四边形是( ) A.矩形 B.菱形 C.正方形 D.梯形
6.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD=120°,AC=4,则菱形的面积是( ) A.16错误!未找到引用源。
B.16 C.8错误!未找到引用源。
D.8
7.如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为 .
拓展探究
菱形花坛ABCD 的边长为20m ,∠ABC=60°,沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.
……
第7题。