数列专题

合集下载

数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题1、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).2、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;3、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 4、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 5、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.常用数列不等式证明中的裂项形式:(1)(1111n n =-+n(n+1)1111()1k n k =-+n(n+k);(2) 211111()1211k k k <=---+2k (3)211111111(1)(1)1kk k k k k k k k-=<<=-++-- (4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦; (5)()()111!!1!n n n n =-++(6)=<<=1(1)n n >+)一.数列的通项公式的求法1.定义法:①等差数列通项公式;②等比数列通项公式。

例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=2.公式法:已知n S (即12()n a a a f n +++=L )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。

2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。

对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。

对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。

如果a、G、b成等比数列,那么G叫做a与b的等比中项。

如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。

3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。

4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。

5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。

最后,对于数列的通项公式,可以使用数学归纳法证明。

1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。

其中,第n项表示为an,公差为d,公比为q。

常用的数列有等差数列和等比数列。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。

2.数列求和公式数列求和是指将数列中的所有项加起来的操作。

一轮复习专题31 数列综合练习

一轮复习专题31 数列综合练习

专题31数列综合练习一、选择题:本题共12小题,每小题5分,共60分。

1.下列公式可作为数列}{n a :1,2,1,2,1,2,…的通项公式的是()。

A 、1=n aB 、21)1(+-=n n a C 、|2sin |2π-=n a n D 、23)1(1+-=+n n a 【答案】C【解析】由|2sin|2π-=n a n 可得11=a ,22=a ,13=a ,24=a ,…,故选C 。

2.数列}{n a 中“n a 、1+n a 、2+n a (+∈N n )成等比数列”是“221++⋅=n n n a a a ”的()。

A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】A【解析】+∈N n ,n a 、1+n a 、2+n a 成等比数列,则221++⋅=n n n a a a ,反之,则不一定成立,举反例,如数列为1、0、0、0、…故选A 。

3.如图,n 个连续自然数按规律排成下表,则从2018到2020的箭头方向依次为()。

A 、↑→B 、→↑C 、↓→D 、→↓【答案】A【解析】选取1作为起点,由图可知,位置变化规律是以4为周期,由于250442018+⨯=,可知2018在2的位置,2019在3的位置,2020在4的位置,故选A 。

4.等差数列}{n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为()。

A 、130B 、170C 、210D 、260【答案】C【解析】由已知得30=m S 、1002=m S ,则m S 、m m S S -2、m m S S 23-、…为等差数列,则30=m S 、702m m S S -、11023=-m m S S ,则2103=m S ,故选C 。

5.将含有n 项的等差数列插入4和67之间,仍构成一个等差数列,且新等差数列的所有项之和等于781,则n 值为()。

A 、20B 、21C 、22D 、23【答案】A【解析】由题意知这些数构成2+n 项的等差数列,且首末项分别为4和67,由等差数列的求和公式可得7812)2()(21=+⨯+=+n a a S n ,解得20=n ,故选A 。

数列大题专题(含解析)

数列大题专题(含解析)

{ n} 1 1数列大题训练一、解答题1.设数列{ a n }的前 n 项和为 S n .已知 S 2 =4, a n +1 =2 S n +1, n ∈ N ∗ . (1)求通项公式 a n ;(2)求数列{| a n − n − 2 |}的前 n 项和.2.已知 a , a , a ,⋅⋅⋅, a为正整数且 a > a > a>⋅⋅⋅> a > 1 ,将等式 (1 − 1 ) + (1 − 1 ) + (1 − 1) +⋅⋅0 12n12na 1a 2a 3⋅ +(1 − 1 ) = 2(1 − 1) 记为 (∗) 式.a na 0(1)求函数 f (x ) = 1 − 1x, x ∈ [2, +∞) 的值域;(2)试判断当 n = 1 时(或 2 时),是否存在 a 0 , a 1 (或 a 0 , a 1 , a 2 )使 (∗) 式成立,若存在,写出对应 a 0 , a 1 (或 a 0 , a 1 , a 2 ),若不存在,说明理由;(3)求所有能使 (∗) 式成立的 a i ( 0 ≤ i ≤ n )所组成的有序实数对 (a 0, a 1, a 2,⋅⋅⋅, a n ) . 3.已知函数 f (x ) = log 3(x +1)(x > 0) 的图象上有一点列 P (x, y )(n ∈ N ∗),点P在 x 轴上的射影是x +1n n nnQ n (x n , 0) , 且 x n = 3x n−1 + 2 ( n ≥ 2 且 n ∈ N ∗ ),x 1 = 2 .(1)求证: {x n + 1} 是等比数列,并求出数列 {x n } 的通项公式;21 (2)对任意的正整数 n ,当 m ∈ [−1,1] 时,不等式 3t − 6mt + > y n 恒成立,求实数 t 的取值范3围.(3)设四边形 P Q QP1 1 的面积是 S ,求证: ++ ⋯ +1< 3 . n n n +1 n +1nS 1 2S 2nS n4.已知 n 为正整数,数列{a }满足 a >0, 4(n + 1)a2− na2= 0 ,设数列{b }满足 b= a n 2nnnn +1nnt na n (1)求证:数列 为等比数列;√(2)若数列{b n }是等差数列,求实数 t 的值;(3)若数列{b n }是等差数列,前 n 项和为 S n , 对任意的 n ∈N * , 均存在 m ∈N * , 使得 8a 2S n ﹣ a 4n 2=16b m 成立,求满足条件的所有整数 a 1 的值. a 2n5.已知数列 {a n } 和 {b n } 满足: a 1 = λ ,数, n 为正整数.n +1 = 3 a n + n − 4, b n = (−1)(a n − 3n + 21) 其中 λ 为实(1)对任意实数 λ ,证明数列 {a n } 不是等比数列; (2)对于给定的实数 λ ,试求数列 {b n } 的前 n 项和 S n ;(3)设 0 < a < b ,是否存在实数 λ ,使得对任意正整数 n ,都有 a < S n < b 成立?若存在,求 λ 的取值范围;若不存在,说明理由.6.已知数列 {a n } 满足 a 1 = 1,a n +1 = 1 − 14a n,其中 n ∈ N ∗ .1 1+a +1Ⅲ 3) (1)设 b n = 22an −1,求证:数列 {b n } 是等差数列,并求出 [a n } 的通项公式 ;(2)设 c n = 4a n n +1 ,数列 {c n c n +2 } 的前 n 项和为 T n ,且存在正整数 m ,使得 T n < 1 c m +1 对 于 n ∈ N ∗ 恒成立,求 m 的最小值.7.设各项均为正数的等比数列 {a n } 中, a 1 + a 3 = 10 , a 3 + a 5 = 40 ,数列 {b n } 的前 n 和 S n =n 2+7n .2(1)求数列 {a n } 、 {b n } 的通项公式;(2)若 c 1 = 1 , c n +1 = c n + b n −3a n,求证: c n< 3 .1(3)是否存在整数 k ,使得 a −b的最大值,若不存在,说明理由.+1a 2−b 2+⋅⋅⋅⋅⋅⋅ +1a n −b n>k 10对任意正整数 n 均成立?若存在,求出 k8.已知数列 {a } 的各项均为非零实数,其前 n 项和为 S,且S n a n .n(1)若 S 3=3 ,求 a 3 的值;nS n 1 = a n +2(2)若 a 2021=2021a 1 ,求证:数列 {a n } 是等差数列;(3)若 a 1=1 , a 2=2 ,是否存在实数 λ ,使得 |2a n − 2a m | ≤ λ|a 2 − a 2 | 对任意正整数 m ,n 恒成立,若存在,求实数 λ 的取值范围,若不存在,说明理由. a 2 −a+2anm9.已知数列 {a n } 和 {b n } , a 1 = 1, a 2 = 3 , a n +1= nn−1nn−1 ,( n ∈ N ∗且n ≥ 2 ), b n =1og 2(a n +1)2−5a n +1(I) 求 a 3, a 4 ;, (n ∈ N ∗) .(Ⅱ)猜想数列 {a n } 的通项公式,并证明;( )设函数 f (x ) = x + 1 x +2, 若 |f (b n ) − t | ≤ 16 35 对任意 n ∈ N ∗恒成立,求 t 的取值范围.210.已知数列 {a n } 满足: a 1 = − 3 , a n +1 =−2a n −3 (n ∈ N ∗ ).3a n+4(1)证明:数列 { 1} 是等差数列,并求 {a} 的通项公式;a n +1n(2)若数列 {b n } 满足: b n = 2 (a n + 1)(n ∈ N ),若对一切 n ∈ N ∗ ,都有 (1 − b 1)(1 − b 2). . . (1 −b n ) ≤λ√2n +1 成立,求实数 λ 的最小值.11.已知数列 {x n } ,如果存在常数 p ,使得对任意正整数 n ,总有 (x n +1 − p )(x n − p ) < 0 成立,那么我们称数列 {x n } 为“p -摆动数列”.(Ⅰ) 设 a n = 2n − 1 , b n = (− 由;1 n2, n ∈ N ∗ ,判断 {a n } 、 {b n } 是否为“p -摆动数列”,并说明理 (Ⅱ)已知“p -摆动数列” {c n} 满足 c n +1 = 1cn +1, c 1= 1 ,求常数 p 的值;∗} 1 2 (Ⅲ)设 d n = (−1)n ⋅ (2n − 1) ,且数列 {d n } 的前 n 项和为 S n ,求证:数列 {S n } 是“p -摆动数列”, 并求出常数 p 的取值范围.12.等差数列 {a n } 的前 n 项和为 S n .(1)求证:数列S n{ n }是等差数列;(2)若 a 1= 1, {√S n 是公差为 的等差数列,求使 S k +1⋅S k +2S k 2为整数的正整数 k 的取值集合;(3)记 b = t a n ( t 为大于 0 的常数),求证:b 1+b 2+⋯…+b n≤b 1+b 2.nn213.已知数列 {a n } 的前 n 项和为 S n ,且 S n = 2a n − 2 . (1)求 {a n } 的通项公式;(2)在 a n 与 a n +1 之间插入 n 个数,使这 n + 2 个数组成一个公差为 d n 的等差数列,在数列 {d n } 中是否存在 3 项 d m , d k , d p (其中 m , k , p 成等差数列)成等比数列?若存在,求出这样的 3 项;若不存在,请说明理由.14.已知递增的等比数列 {a n } 满足 a 2 + a 3 + a 4 = 28 ,且 a 3 + 2 是 a 2 , a 4 的等差中项. (1)求 {a n } 的通项公式;(2)若 b n = a n log 1a n , S n =b 1 + b 2 + b 3 + ⋯ + b n 求使 S n + n ⋅ 2n +1 > 30 成立的 n 的最小值. 15.已知数列 {a n } 中,已知 a 1 = 1 , a 2 = a , a n +1 = k (a n + a n +2) 对任意 n ∈ N ∗ 都成立,数列{a n }的前 n 项和为 S n .(1)若 {a n } 是等差数列,求 k 的值; (2) 若 a = 1 , k = − 12 , 求 S n ;(3)是否存在实数 k ,使数列 {a n } 是公比不为 1 的等比数列,且任意相邻三项 a m , a m +1 , a m +2 按某顺序排列后成等差数列?若存在,求出所有 k 的值;若不存在,请说明理由.16.一列火车从重庆驶往北京,沿途有 n 个车站(包括起点站重庆和终点站北京).车上有一邮政车厢,每停靠一站便要卸下火车已经过的各站发往该站的邮袋各 1 个,同时又要装上该站发往以后各站的邮袋各 1 个,设从第 k 站出发时,邮政车厢内共有邮袋 a k 个(k=1,2,…,n ).(1)求数列{a k }的通项公式;(2)当 k 为何值时,a k 的值最大,求出 a k 的最大值.17.已知等比数列 {a n } 的公比 q > 1 , a 2 , a 3 是方程 x 2 − 6x + 8 = 0 的两根. (1)求数列 {a n } 的通项公式; (2)求数列 {2n ⋅ a n } 的前 n 项和 S n .18.设数列 {a n } 满足 a n 2 = a n +1a n−1 + λ(a 2 − a 1)2 ,其中 n ⩾ 2 ,且 n ∈ N , λ 为常数. (1)若 {a n } 是等差数列,且公差 d ≠ 0 ,求 λ 的值;(2)若 a 1 = 1, a 2 = 2, a 3 = 4 ,且存在 r ∈ [3,7] ,使得 m ⋅ a n ≥ n − r 对任意的 n ∈ N ∗ 都成立,求m 的最小值;(3)若 λ ≠ 0 ,且数列 {a n } 不是常数列,如果存在正整数 T ,使得 a n +T = a n 对任意的 n ∈ N ∗均成立.求所有满足条件的数列{an } 中 T 的最小值.19.已知等差数列 {a n } 满足 a 2 = 5 , a 4 + a 5 = a 3 + 13 .设正项等比数列 {b n } 的前 n 项和为 S n , 且 b 2b 4 = 81 , S 3 = 13 .(1)求数列 {a n } 、 {b n } 的通项公式;(2)设 c n = a n b n ,数列 {c n } 的前 n 项和为 T n ,求 T n .20.公差不为零的等差数列 {a n } 中, a 1 , a 2 , a 5 成等比数列,且该数列的前 10 项和为 100,数列{b n } 的前 n 项和为 S n ,且满足 S n = 2b n − 1, n ∈ N ∗ .( Ⅰ ) 求数列 {a n } , {b n } 的通项公式;( Ⅱ ) 令 c n = 1+a n4b n,数列 {c n } 的前 n 项和为 T n ,求 T n 的取值范围.21.已知数列{a n }的前 n 项和为 S n , 且 S n +a n =4,n ∈N * . (1)求数列{a n }的通项公式;(2)已知 c n =2n+3(n ∈N *),记 d n =c n +log C a n (C >0 且 C≠1),是否存在这样的常数 C ,使得数列{d n }是常数列,若存在,求出 C 的值;若不存在,请说明理由. (3)若数列{b },对于任意的正整数 n ,均有 b a +b a +b a+…+b a =()n ﹣ n +2成立,求证:数n列{b n }是等差数列.1 n2 n ﹣13 n ﹣2n 1 2 222.已知数列 {a n } 满足 a 1 = 1, a n +1 = 1 −14a n,其中 n ∈ N ∗ .(1)设 b n = 22an −1,求证:数列 {b n } 是等差数列,并求出 {a n } 的通项公式;(2)设 c n = 4a nn +1 ,数列 {c n c n +2 } 的前 n 项和为 T n .23.已知数列{a n }的前 n 项和为 S n , 且满足 12S n ﹣36=3n 2+8n ,数列{log 3b n }为等差数列,且 b 1=3,b 3=27. (Ⅰ)求数列{a n }与{b n }的通项公式;(Ⅱ)令c =(﹣1)n (a − 5) + b ,求数列{c }的前 n 项和 T . nn12n n n24.已知 q 和 n 均为给定的大于 1 的自然数,设集合 M ={0,1,2,…,q -1},集合 A ={x|x =x 1+x 2q +…+x n q n -1 , x i ∈M ,i =1,2,…,n}.(1)当 q =2,n =3 时,用列举法表示集合 A.(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1, t =b 1+b 2q +…+b n q n-1, 其中a i ,b i ∈M ,i =1,2,…,n.证明:若 a n <b n , 则 s <t. ∗25.已知数列 {a n } 的首项 a 1 = a (a > 0) ,其前 n 项和为 S n ,设 b n = a n + a n +1(n ∈ N ) . (1)若 a 2 = a + 1 , a 3 = 2a 2 ,且数列 {b n } 是公差为 3 的等差数列,求 S 2n ; (2)设数列 {b n } 的前 n 项和为 T n ,满足 T n = n 2 . ①求数列 {a n } 的通项公式; ②若对 ∀n ∈ N ∗,且n ≥ 2 ,不等式 (a n−1 − 1)(a n +1 − 1) ≥ 2(1 − n ) 恒成立,求 a 的取值范围.12 Ⅱ26.是否存在一个等比数列{a }同时满足下列三个条件:①a +a =11 且 a a =;②a >a (n ∈N *);n163 49 n+1n③至少存在一个 m (m ∈N *且 m >4),使得 2a, a 2 , a + 4依次构成等差数列?若存在,求出通项公式;若不存在,说明理由.3m ﹣1mm+1927.设 {a n } 是等差数列, a 1 = −8 ,且 a 2 + 8 , a 3 + 6 , a 4 + 4 成等比数列. (1)求 {a n } 的通项公式;(2)求 {a n } 的前 n 项和 S n 的最小值;(3)若 {b n } 是等差数列, {b n } 与 {a n } 的公差不相等,且 b 5 = a 5 ,问: {a n } 和 {b n } 中除第 5 项外,还有序号相同且数值相等的项吗?(直接写出结论即可) 28.已知数列 {a } 满足 1a ≤ a≤ 3a , n ∈ N ∗ , a= 1 .n3 n n +1n1(1)若 a 2 = 3 , a 3 = x , a 4 = 6 ,求 x 的取值范围;(2)若 {a } 是公比为 q 的等比数列, S= a + a+ ⋯ + a , 1S ≤ S≤ 3S , n ∈ N ∗ , 求 qn的取值范围;n12n3 nn +1(3)若 a 1, a 2, ⋯ , a k 成等差数列,且 a 1 + a 2 + ⋯ + a k = 2020 ,求正整数 k 的最大值. 29.若数列 {a n } 是公差为 2 的等差数列,数列 {b n } 满足 b 1=1,b 2=2,且 a n b n +b n =nb n +1. (1)求数列 {a n } , {b n } 的通项公式;(2)设数列 {c n} 满足 c n= a n +1 b n +1,数列 {c n } 的前 n 项和为 T n ,若不等式 (-1)n λ < T n+ n 2n−1对一切 n ∈N *恒成立,求实数 λ 的取值范围.30.设 T n 是数列 {a n } 的前 n 项之积,且满足 T n = 3 − a n , n ∈ N ∗ .(1)求证:数列 { 13−a n1− } 是等比数列,并写出数列 {a n } 的通项公式;(2)设 S 是数列 {a } 是前 n 项之和,证明: n + 1 − 1< S< n + 2 − 2.nnT nnT n31.已知数列{a n }满足 a n+1+a n =4n ﹣3,n ∈N * (1)若数列{a n }是等差数列,求 a 1 的值; (2)当 a 1=﹣3 时,求数列{a n }的前 n 项和 S n ; (3)若对任意的n ∈N *, 都 有a n 2+a n +1 2a n +a n +1≥5 成立,求 a 1的取值范围.32.ΔABC 中,内角 A , B , C 的对边分别是 a , b , c ,已知 a , b , c 成等比数列,且B = 3.(Ⅰ)求1tan A+1tan B的值;cos 4( )设 B⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗A ⃗⃗⃗ ⋅ B ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗C ⃗⃗⃗ = 3 2,求 a + c 的值. 33.已知数列 {a n } 的前 n 和为 S n ,且满足 λS n = a n − 1 ,其中 λ ≠ 0 且 λ ≠ 1 . (1)证明:数列 {a n } 是等比数列;(2)当 λ = 12,令 c n= (n + 1)a n ,数列 {a n } 的前 n 项和为 T n ,若需 Tn> 2019 恒成立,求正整n数 n 的最小值.321+a 2 n a 2 n)34.已知数列 {a n} 满足 a 1 = 1 , a n +1=a n n, n ∈ N ∗, 记Sn, T n分别是数列 {a n} , {a 2} 的前 n 项和,证明:当 n ∈ N ∗ 时,(1)a n +1 < a n ;(2)T n = 1n +1− 2n − 1 ;(3)√2n − 1 < S n < √2n .35.设 q 为不等于 1 的正常数, {a n } 各项均为正,首项为 1 ,且 {a n } 前 n 项和为 S n ,已知对任意的正整数 n , m ,当时 n > m , S n − S m = q m · S n−m 恒成立. (1)求数列 {a n } 的通项公式;(2)若数列 {t n } 是首项为 1 ,公差为 3 的等差数列,存在一列数 k 1, k 2, ⋯ , k n , ⋯ :恰好使得 t k 1 = a 1, t k 2 = a 2, ⋯ , t k n = a n , ⋯, 且 k 1 = 1, k 2 = 2 ,求数列 {k n } 的通项公式;(3)当 q = 3 时,设 b n = na n ,问数列 {b n} 中是否存在不同的三项恰好成等差数列?若存在,求出所 有这样的三项,若不存在,请说明理由36.已知数列 {a} 满足aa− 3 ( n ≥ 2 , 且 n ∈ N ∗), 且 a= − 3, 设 b n + 2 = 3log 1(a n +n4 n = n−1 1441) , n ∈ N ∗,数列{c n } 满足 c n = (a n + 1)b n .(1)求证:数列 {a n + 1} 是等比数列并求出数列 {a n } 的通项公式; (2)求数列 {c n } 的前 n 项和 S n ; (3)对于任意 n ∈ N ∗,t ∈ [0,1], cn⩽ tm 2 − m − 12恒成立,求实数 m 的取值范围.37.已知 {a n } 是递增的等差数列, a 2 , a 4 是方程 x 2-5x +6=0 的根. (1)求 {a n } 的通项公式; a(2)求数列 {2n } 的前 n 项和.38.已知数列 {a } 的满足 a = 1 ,前 n 项的和为 S,且 a n +1−a n = 2 (n ∈ N *) .n1(1)求 a 2 的值;na n an +1 4S n−1(2)设 b n = a na n +1−a n ,证明:数列 {b n} 是等差数列;(3)设 c n = 2b n ⋅ a n ,若 1 ≤ λ ≤ √2 ,求对所有的正整数 n 都有 2λ2 − kλ + 3√2 < c n 成立的 k 的取值范围.39.数列 {a n } 是首项与公比均为 a 的等比数列( a > 0 ,且 a ≠ 1 ),数列 {b n } 满足 b n = a n ⋅ lg a n . (1)求数列 {b n } 的前 n 项和 T n ; (2)若对一切 n ∈ N ∗都有b n < b n +1 ,求 a 的取值范围.40.等差数列{a n }中,其前 n 项和为 S n , 且S n = (a n +1)22,等比数列{b n }中,其前 n 项和为 T n , 且 T n =(b n +1 2 ,(n ∈N *)2(1)求a n ,b n ; (2)求{a n b n }的前 n 项和 M n .n +1 41.已知函数 f (x ) = log 3(ax + b ) 的图象过点 A (2,1) 和 B (5,2 )记 a n = 3f (n ) , n ∈ N * .(1)求数列{ a n }的通项公式.(2)设 b n = a n2n , T n = b 1 + b 2 + ⋯ b n , T n< m ( m ∈ Z ),求 m 的最小值.42.已知公比 q > 0 的等比数列 {a n } 的前 n 项和为 S n ,且 a 1 = 1, S 3 = 13 ,数列 {b n } 中, b 1 = 1, b 3 = 3 .(1)若数列 {a n + b n } 是等差数列,求 a n , b n ; (2)在(1)的条件下,求数列 {b n } 的前 n 项和 T n .43.已知数列{b n }是首项 b 1=1,b 4=10 的等差数列,设 b n +2=3 log 1 4a n (n ∈n *).(1)求证:{a n }是等比数列;(2)记 c n =1 b n b n +1,求数列{c n }的前 n 项和 S n ;(3)记 d n =(3n+1)•S n , 若对任意正整数 n ,不等式的最大值.1n +d 1 1+ n +d 2 +…+ 1n +d nm> 24 恒成立,求整数 m 44.已知各项均不相等的等差数列 {a n } 的前五项和 S 5 = 20 ,且 a 1, a 3, a 7 成等比数列;(1)求数列 {a n } 的通项公式; (2)若 T n 为数列 { 1a n a n +1} 的前 n 项和,且存在 n ∈ N ∗,使得T n− λa n≥ 0 成立,求实数 λ 的取值范围。

数列专题

数列专题

数列专题一、单选题(共20小题)1. [容易] 已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16 B.8 C.4 D.22. [容易] 记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n3. [较易] 若等比数列{a n}的各项均为正数,a2=3,4a32=a1a7,则a5=()A.B.C.12 D.244. [较易] 3+33+35+…+32n+1=()A.(9n﹣1)B.(9n+1﹣1)C.(9n﹣1)D.(9n+1﹣1)5. [较易] 设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a6+a7+a8=()A.63 B.45 C.39 D.276. [容易] 记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.127. [较易] 已知等比数列{a n}的前n项和为S n,S4=1,S8=3,则a9+a10+a11+a12=()A.8 B.6 C.4 D.28. [容易] 等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.89. [较易] 我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏10. [较易] 记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.811. [容易] 已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.9712. [较易] 等比数列{a n}的各项都为正数,记{a n}的前n项和为S n,若S3=1,S5﹣S2=4,则a1=()A.B.C.D.13. [容易] 已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.8414. [容易] 已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.15. [容易] 已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5 B.7 C.9 D.1116. [较易] 已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.1217. [容易] 等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.18. [容易] 设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.6419. [较易] 已知{a n}是公差为3的等差数列.若a1,a2,a4成等比数列,则{a n}的前10项和S10=()A.165 B.138 C.60 D.3020. [较易] 已知数列{a n}是等差数列,且a9=3,则a4+a8+2a12=()A.12 B.9 C.6 D.3二、填空题(共10小题)21. [较易] 记S n为等比数列{a n}的前n项和.若a1=1,S3=,则S4=.22. [较易] 记S n为等比数列{a n}的前n项和.若a1=,a42=a6,则S5=.23. [较易] 记S n为等差数列{a n}的前n项和.若a3=5,a7=13,则S10=.24. [容易] 记S n为等差数列{a n}的前n项和.若a1≠0,a2=3a1,则=.25. [较易] 已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.26. [较易] 设等差数列{a n}的前n项和为S n,若a2=﹣3,S5=﹣10,则a5=,S n的最小值为﹣.27. [较易] 记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣.28. [较易] 记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=.29. [较易] 设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为﹣.30. [较易] 若等差数列{a n}的前5项的和为25,则a1+a5=.三、解答题(共10小题)31. [较易] 已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.32. [较易] 记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.33. [较易] 设{a n}是等差数列,a1=﹣10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求S n的最小值.34. [较易] 在等差数列{a n}中,已知a1+a3=12,a2+a4=18,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求a3+a6+a9+…+a3n.35. [较易] 等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.36. [一般] 已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.37. [一般] 已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.38. [一般] 已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.39. [一般] 已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.40. [一般] 设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.数列专题参考答案一、单选题(共20小题)1.【解答】解:设等比数列{a n}的公比为q(q>0),则由前4项和为15,且a5=3a3+4a1,有,∴,∴,故选:C.2.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n﹣5,,故选:A.3.【解答】解:数列{a n}是等比数列,各项均为正数,4a32=a1a7=,所以,所以q=2.所以a5==3×23=24.故选:D.4.【解答】解:数列3,33,35,…,32n+1是首项为3,公比为32的等比数列;且32n+1是第n+1项;∴=.故选:D.5.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S3=9,S6=36,得,解得a1=1,d=2;∴a6+a7+a8=3a1+18d=3+36=39.故选:C.6.【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.7.【解答】解:∵等比数列{a n}的前n项和为S n,S4=1,S8=3,由等比数列的性质得S4,S8﹣S4,S12﹣S8成等比数列,∴1,3﹣1=2,S12﹣S8=a9+a10+a11+a12成等比数列,∴a9+a10+a11+a12=4.故选:C.8.【解答】解:∵等差数列{a n}的首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,解得d=﹣2,∴{a n}前6项的和为==﹣24.故选:A.9.【解答】解:设塔顶的a1盏灯,由题意{a n}是公比为2的等比数列,∴S7==381,解得a1=3.故选:B.10.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.11.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.12.【解答】解:等比数列{a n}的公比设为q,各项都为正数,记{a n}的前n项和为S n,若S3=1,S5﹣S2=4,可得a1+a2+a3=1,a3+a4+a5=4,即有a1(1+q+q2)=1,a1q2(1+q+q2)=4,相除可得q=2(﹣2舍去),且a1=,故选:B.13.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.14.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.15.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.16.【解答】解:∵{a n}是公差为1的等差数列,S8=4S4,∴8a1+×1=4×(4a1+),解得a1=.则a10=+9×1=.故选:B.17.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.18.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.19.【解答】解:{a n}是公差d为3的等差数列,若a1,a2,a4成等比数列,则a1a4=a22,即a1(a1+9)=(a1+3)2,解得a1=3,又d=3,可得S10=10a1+×10×9d=30+45×3=165.故选:A.20.【解答】解:因为{a n}是等差数列,所以a4+a8+2a12=2a6+2a12=4a9=12.故选:A.二、填空题(共10小题)21.【解答】解:∵等比数列{a n}的前n项和,a1=1,S3=,∴q≠1,=,整理可得,,解可得,q=﹣,则S4===.故答案为:22.【解答】解:在等比数列中,由a42=a6,得q6a12=q5a1>0,即q>0,q=3,则S5==,故答案为:23.【解答】解:在等差数列{a n}中,由a3=5,a7=13,得d=,∴a1=a3﹣2d=5﹣4=1.则.故答案为:100.24.【解答】解:设等差数列{a n}的公差为d,则由a1≠0,a2=3a1可得,d=2a1,∴==,故答案为:4.25.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.26.【解答】解:设等差数列{a n}的前n项和为S n,a2=﹣3,S5=﹣10,∴,解得a1=﹣4,d=1,∴a5=a1+4d=﹣4+4×1=0,S n==﹣4n+=(n﹣)2﹣,∴n=4或n=5时,S n取最小值为S4=S5=﹣10.故答案为:0,﹣10.27.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n﹣1=2a n﹣1+1,②,由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣6328.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.29.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.30.【解答】解:∵等差数列{a n}的前5项的和为25,∴=25,∴a1+a5=25×=10.故答案为:10.三、解答题(共10小题)31.【解答】解:(1)设等比数列的公比为q,由a1=2,a3=2a2+16,得2q2=4q+16,即q2﹣2q﹣8=0,解得q=﹣2(舍)或q=4.∴;(2)b n=log2a n=,∵b1=1,b n+1﹣b n=2(n+1)﹣1﹣2n+1=2,∴数列{b n}是以1为首项,以2为公差的等差数列,则数列{b n}的前n项和.32.【解答】解:(1)根据题意,等差数列{a n}中,设其公差为d,若S9=﹣a5,则S9==9a5=﹣a5,变形可得a5=0,即a1+4d=0,若a3=4,则d==﹣2,则a n=a3+(n﹣3)d=﹣2n+10,(2)若S n≥a n,则na1+d≥a1+(n﹣1)d,当n=1时,不等式成立,当n≥2时,有≥d﹣a1,变形可得(n﹣2)d≥﹣2a1,又由S9=﹣a5,即S9==9a5=﹣a5,则有a5=0,即a1+4d=0,则有(n﹣2)≥﹣2a1,又由a1>0,则有n≤10,则有2≤n≤10,综合可得:n的取值范围是{n|1≤n≤10,n∈N}.33.【解答】解:(Ⅰ)∵{a n}是等差数列,a1=﹣10,且a2+10,a3+8,a4+6成等比数列.∴(a3+8)2=(a2+10)(a4+6),∴(﹣2+2d)2=d(﹣4+3d),解得d=2,∴a n=a1+(n﹣1)d=﹣10+2n﹣2=2n﹣12.(Ⅱ)由a1=﹣10,d=2,得:S n=﹣10n+=n2﹣11n=(n﹣)2﹣,∴n=5或n=6时,S n取最小值﹣30.34.【解答】解:(I)因为{a n}是等差数列,a1+a3=12,a2+a4=18,所以解得d=3,a1=3.则a n=3+(n﹣1)×3=3n,n∈N*.………….(7分)(II)a3,a6,a9,…,a3n构成首项为a3=9,公差为9的等差数列.则=.………….(13分)35.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.36.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.37.【解答】解:(1)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,当n=1时,有a12﹣(2a2﹣1)a1﹣2a2=0,而a1=1,则有1﹣(2a2﹣1)﹣2a2=0,解可得a2=,当n=2时,有a22﹣(2a3﹣1)a2﹣2a3=0,又由a2=,解可得a3=,故a2=,a3=;(2)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,变形可得(a n﹣2a n+1)(a n+1)=0,即有a n=2a n+1或a n=﹣1,又由数列{a n}各项都为正数,则有a n=2a n+1,故数列{a n}是首项为a1=1,公比为的等比数列,则a n=1×()n﹣1=()n﹣1,故a n=()n﹣1.38.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.39.【解答】解:(1)数列{a n}满足a1=1,na n+1=2(n+1)a n,则:(常数),由于,故:,数列{b n}是以b1为首项,2为公比的等比数列.整理得:,所以:b1=1,b2=2,b3=4.(2)数列{b n}是为等比数列,由于(常数);(3)由(1)得:,根据,所以:.40.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.。

数列专题练习

数列专题练习

数列(专题练习)(一)等差数列1.设等差数列{a n }的前n 项和是S n ,公差d 不等于零.若a 1,a 2,a 5成等比数列,则( )A .a 1d >0,dS 3>0B .a 1d >0,dS 3<0C .a 1d <0,dS 3>0D .a 1d <0,dS 3<0 2.记等差数列{a n }的前n 项和为S n ,若a 6=16,S 5=35,则{a n }的公差为( )A .-3B .-2C .3D .2 3.已知数列{a n }满足2a n+1=a n +a n+2.若a 7+a 5=12,且a 7=7,则a 8=( )A .6B .12C .10D .84.我国明代珠算家程大位的名著《直指算法统宗》中有如下问题今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”其意思为:“今有白米一百八十石,甲、乙、丙三人来分,他们分得的白米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”请问甲应该分得白米为( )A .96石B .78石C .60石D .42石 5.在a ,b 中插入n 个数,使它们和a 、b 组成等差数列a ,a 1,a 2,…a n ,b ,则a 1+a 2+…+a n =( ) A .n (a+b ) B .2b a n )(+ C .2b a 1n ))((++ D .2b a 2n ))((++ 6.在等差数列{a n }中,a 1011=5,a 1+2a 4=9则a 2019=( )A .9B .8C .7D .6 7.数列{a n }满足a n +a n+2=2a n+1(n∈N*),且a 1+a 2+a 3=9,a 4=8,则a 5=( ) A .221 B .9 C .217D .7 8.已知等差数列{a n }的公差为d ,若b n =2an ,且b 1+b 3=17,b 2+b 4=68,则d=( )A .1B .2C .3D .49.设等差数列{a n }的前n 项和为S n ,首项a 1>0,公差d <0,a 10•S 21<0,则S n 最大时,n 的值为( ) A .11 B .10 C .9 D .810.已知数列{a n }、{b m }的通项公式分别为a n =4n -2(1≤n≤100,n∈N *),b m =6m -4(m∈N*),由这两个数列的公共项按从小到大的顺序组成一个新的数列,求新数列的各项和( )A .6788B .6800C .6812D .6824 11.已知函数f (x )(x∈R )满足f (2-x )=2-f (x ),若函数y=1-x 1x +与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑=+m1i i i y x )(=( )A .0B .mC .2mD .4m 12.等差数列a 1,a 2…,a n (n∈N *),满足|a 1|+|a 2|+…+|a n |=|a 1+1|+|a 2+1|+…+|a n +1|=|a 1+2|+|a 2+2|+…+|a n +2|=|a 1+3|+|a 2+3|+…+|a n +3|=2010,则( ) A .n 的最大值是50 B .n 的最小值是50 C .n 的最大值是51 D .n 的最小值是5113.设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 5=__________,S n 的最小值为__________. 14.已知数列{a n }与{na 2n }均为等差数列(n∈N*),且a 1=1,则a 10=__________.15.若数列{a n }满足a 1=2,a n+1=a n -2,则a 2019=__________.16.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若1n 22-n 3n n +=T S ,则99b a=__________.17.设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.18.在等差数列{a n }中,已知a 1+a 3=12,a 2+a 4=18,n∈N *. (1)求数列{a n }的通项公式; (2)求a 3+a 6+a 9+…+a 3n .19.等差数列{a n }中,公差d <0,a 2+a 6=-8,a 3a 5=7. (1)求{a n }的通项公式;(2)记T n 为数列{b n }前n 项的和,其中b n =|a n |,n∈N *,若T n ≥1464,求n 的最小值.20.在等差数列{a n }中,a 15+a 16+a 17=-45,a 9=-36,S n 为其前n 项和. (1)求S n 的最小值,并求出相应的n 值;(2)求T n =|a 1|+|a 2|+…+|a n |.21.设{a n }为递增等差数列,S n 为其前n 项和,满足a 1a 3-a 5=S 10,S 11=33. (1)求数列{a n }的通项公式a n 及前n 项和S n ;(2)试求所有的正整数m ,使2m 3m 1m a aa +++为正整数.22.数列{a n }的前n 项和记为S n ,a 1=1,a n+1=2S n +1(n≥1). (1)求a 2,a 3;(2)求数列{a n }的通项公式;(3)等差数列{b n }的前n 项和T n 有最大值,且T 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .(二)等比数列1.在等比数列{a n }中,a 4、a 12是方程x 2+3x+1=0的两根,则a 8=( )A .1B .-1C .±1D .±32.已知等比数列{a n }的各项均为正数,且a 1008a 1011+a 1009a 1010=8,则log 2a 1+log 2a 2+…+log 2a 2018等于( ) A .2016 B .2017 C .2018 D .20193.正项等比数列{a n }中,存在两项a m ,a n ,使得n m a a =1a 3,且a 7=a 6+6a 5,则n4m 1+的最小值是( ) A .3 B .23 C .625 D .37 4.若a ,b 是方程x 2-px+q=0(p <0,q >0)的两个根,且a ,b ,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值为( )A .-4B .-3C .-2D .-1 5.已知数列{a n }是公比为2的正项等比数列,若a m ,a n 满足2a n <a m <1024a n ,则(m -1)2+n 的最小值为( ) A .3 B .5 C .6 D .10 6.已知各项为正的等比数列{a n },其公比为q ,且对任意n∈N *有a n+2=a n+1+2a n ,则q=( ) A .2 B .23C .2D .1 7.设等比数列{a n }的前n 项和为S n ,则下列等式中一定成立的是( )A .S n +S 2n =S 3nB .S 22n =S n S 3nC .S 22n =S n +S 2n -S 3nD .S 2n +S 22n =S n (S 2n +S 3n )8.《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为( )(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)A .2.2天B .2.4天C .2.6天D .2.8天 9.一个放射性物质不断衰变为其他物质,每经过一年就有43的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是( )A .6B .5C .4D .3 10.设{a n }为等比数列,给出四个数列:∈{2a n };∈{a n2};∈{2a n };∈{log 2|a n |},一定为等比数列的是( ) A .∈∈ B .∈∈ C .∈∈ D .∈∈11.记S n 为数列{a n }的前n 项和;已知{a n }和{S n -k}(k 为常数)均为等比数到,则k 的值可能为( ) A .a 1 B .a 2 C .a 3 D .a 1+a 3 12.若存在等比数列{a n },使得a 1(a 2+a 3)=6a 1-9,则公比q 的最大值为( )A .451+ B .251+ C .451-+ D .251-+ 13.已知等比数列{a n }的前n 项和为S n ,则下列结论中一定成立的( )A .若a 5>0,则S 2019<0B .若a 5>0,则S 2019>0C .若a 6>0,则S 2018<0D .若a 6>0,则S 2018>014.已知无穷等比数列{a n }满足:对任意的n∈N *,sin a n =1,则数列{a n }公比q 的取值集合为__________.15.已知正项等比数列{a n }的前n 项和为S n .若S 9=S 3+2S 6,则S 6+31S 取得最小值时,S 9的值为__________.16.设S n 是等比数列{a n }的前n 项的和,若63a a =−21,则63S S =__________. 17.设无穷等比数列{a n }的公比为q ,若{a n }的各项和等于q ,则首项a 1的取值范围是__________.18.已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 21a n ,S n =b 1+b 2+b 3+…+b n ,对任意正整数n ,S n +(n+m )a n+1<0恒成立,试求m 的取值范围.19.设数列{a n }的首项a 1为常数,且a n+1=3n -2a n (n∈N *).(1)判断数列{a n −53n}是否为等比数列,请说明理由;(2)S n 是数列{a n }的前n 项的和,若{S n }是递增数列,求a 1的取值范围.20.已知数列{a n }的前n 项和S n =n (n+1)+2,其中n∈N *. (1)求数列{a n }的通项公式;(2)若a 2,a k+2,a 3k+2(k∈N *)为等比数列{b n }的前三项,求数列{b n }的通项公式.21.已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n −a n =2n +1,且S n +T n =2n+1+n 2−2. (1)求T n -S n ; (2)求数列{nn2b }的前n 项和R n .22.已知数列{a n }的前n 项和为S n ,且满足S n =2a n -n ,(n∈N *) (1)证明:{a n +1}是等比数列;并求数列{a n }的通项公式; (2)若b n =(2n+1)a n +2n+1,求数列{b n }的前n 项和为T n ;(3)若c n =3n +(-1)n -1λ•(a n +1)(λ为非零常数,n∈N *),问是否存在整数λ,使得对任意n∈N *,都有c n+1>c n ?专题(三)数列的递推式1.设a ,b∈R ,数列{a n }满足a 1=a ,a n+1=a n 2+b ,n∈N *,则( ) A .当b=21时,a 10>10 B .当b=41时,a 10>10 C .当b=-2时,a 10>10 D .当b=-4时,a 10>102.在数列{a n }中,a 1=-41,a n =1-1-a 1n (n >1),则a 2019的值为( ) A .41-B .54C .5D .以上都不对 3.在数列{a n }中,已知a 1=1,a n+1-a n =2n ,则a n =( )A .2n -1B .2n -1C .2n+1-3D .2n+1-1 4.已知数列{a n }满足a 1=21,a n+1=a n +nn 12+,则a n =( ) A .n 1-23 B .2-1n 3+ C .1−1n 1+ D .n123+5.已知等比数列{a n }满足:a 1=4,S n =pa n+1+m (p >0),则p −m 1取最小值时,数列{a n }的通项公式为( )A .a n =4•3n -1B .a n =3•4n -1C .a n =2n+1D .a n =4n 6.数列{a n }满足a n+2=a n+1+2a n ,且a 1=1,a 2=2,则a 6=( )A .24B .25C .26D .277.已知数列{a n }满足(n+1)a n =na n+1,a 2=4,等比数列{b n }满足b 1=a 1,b 2=a 2,则{b n }的前6项和为( ) A .-63 B .-126 C .63 D .126 8.各项均正的数列{a n }满足a 1=4,a n+1=2a n +2n+1,则a n 等于( )A .n •2n -1B .(n+1)•2nC .n •2n+1D .(n -1)•2n 9.已知S n 是数列{a n }的前n 项和,且S n+1=S n +a n +1,a 2+a 6=10,则S 7=( )A .20B .25C .30D .35 10.已知数列{a n }满足2a n ≤a n -1+a n+1(n ∈N *,n ≥2),则( )A .a 5≤4a 2-3a 1B .a 2+a 7≤a 3+a 6C .3(a 7-a 6)≥a 6-a 3D .a 2+a 3≥a 6+a 711.设数列{a n }的前n 项和为S n ,且a 1=2,a n +a n+1=2n (n ∈N *),则S 13=( )A .34213-B .32213+C .34214-D .32214+12.若数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,(S n +1)(S n+2+1)=(S n+1+1)2,则S n =( )A .21n n )(+ B .2n+1 C .2n -1 D .2n+1+1专题(四)数列与三角、向量综合1.在平面四边形ABCD 中,∈ACD 面积是∈ABC 面积的2倍,数列{a n }满足a 1=3,且CA =(a n+1-3)CB +(a n -2)CD ,则a 5=( )A .31B .33C .63D .652.已知数列{a n }为等差数列,且满足OA =a 1OB +a 2107OC ,若AB =λAC (λ∈R ),点O 为直线BC 外一点,则a 1009=( )A .3B .2C .1D .21 3.已知等差数列{a n }的前n 项和为S n ,设A (a 1009,1),B (2,-1),C (2,2)为坐标平面上三点,O 为坐标原点,若向量OA 与OB 在向量OC 方向上的投影相同,则S 2017为( ) A .-2016 B .-2017 C .2017 D .04.如图,已知点E 为平行四边形ABCD 的边AB 上一点,AE =2EB ,F n (n ∈N *)为边DC 上的一列点,连接AF n 交BD 于G n ,点G n (n ∈N *)满足D G n =31a n+1A G n -(3a n +2)E G n ,其中数列{a n }是首项为1的正项数列,则a 4的值为( )A .45B .51C .53D .615.已知等差数列{a n }的前n 项和为S n ,若OB =a 7OA +a 2006OC ,且A 、B 、C 三点共线(该直线不过点O ),则S 2012等于( )A .1006B .2012C .22012D .2-2012 6.设a k =(cos6πk ,sin 6πk +cos 6πk ),k∈Z ,则a 2015 • a 2016 =( ) A .3 B .213-C .132-D .2 7.在等差数列{a n }中,a n ≠0(n ∈N *).角α顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(a 2,a 1+a 3),则ααααcos sin cos 2sin -+=( )A .5B .4C .3D .28.已知函数f (x )=sin (ωx+φ)(ω>0,|φ|<2π)的部分图象如图,则∑=20191n 6n )(πf =( )A .-1B .21C .0D .19.设等差数列{a n }满足)()()(65247274sin cos sin cos sin a a a a a a +-=1,公差d∈(-1,0),则d=( )A .-4π B .-5π C .-6π D .-7π10.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3)若点C 满足OC =a 1OA +a 2012OB ,其中{a n }为等差数列,且a 1006+a 1007=1,则点C 的轨迹方程为( )A .3x+2y -11=0B .(x -1)2+(y -2)2=5C .2x -y=0D .x+2y -5=011.将向量a 1=(x 1,y 1),a 2=(x 2,y 2),…a n =(x n ,y n )组成的系列称为向量列{a n },并定义向量列{a n }的前n 项和S n =a 1+a 2+…+a n .如果一个向量列从第二项起,每一项与前一项的差都等于同一个向量,那么称这样的向量列为等差向量列.若向量列{a n }是等差向量列,那么下述四个向量中,与S 21一定平行的向量是( )A .a 10B .a 11C .a 20D .a 21 12.设函数f (x )=2x -cosx ,{a n }是公差为8π的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f(a 3)]2−a 2a 3=( )A .0B .161π2 C .81π2 D .1613π2 13.已知A ,B ,C 为∈ABC 的三个内角,向量m 满足|m |=26,且m =(2sin 2C B +,cos 2CB -),若A 最大时,动点P 使得|PB |,|BC |,|PC |||BC PA 的最大值是__________.14.已知点集L ={(x ,y)|y =m •n },其中m =(x−2b ,2),n =(1,b+1),点P n (a n ,b n )∈L ,P 1=L∩{(x ,y )|x=1},且a n+1-a n =1,则数列{b n }的通项公式为__________.15.已知向量a ,b 满足a =(-2sinx ,3(cosx+sinx )),b=(cosx ,cosx -sinx ),函数f (x )=a •b (x∈R ). (1)求f (x )的单调区间; (2)已知数列a n =n 2f(24112n ππ-)(n∈N *),求{a n }前2n 项和为S 2n .16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a -b sin -sin 3C B =csin +sin BA .(1)求角A 的大小;(2)若等差数列{a n }的公差不为零,a 1sinA=1,且a 2,a 4,a 8成等比数列;若b n =1n n a a 1+,求数列{b n }的前n 项和S n .专题(五)数列求和1.已知数列{a n }满足:a n ≠1,a n+1=2-n a 1(n∈N *),数列{b n }中,b n =1a 1n -,且b 1,b 2,b 4成等比数列; (1)求证:{b n }是等差数列; (2)S n 是数列{b n }的前n 项和,求数列{n1S }的前n 项和T n .2.在数列{a n }中,a 1=23,a n+1=4a n −))((2n 1n n 8n 3+++(n ∈N *). (1)设b n =a n −)(1n n 1+,求证:数列{b n }是等比数列;(2)求数列{a n }的前n 项和S n .3.已知正项数列{a n }的前n 和为S n ,且2a 1S n =a n 2+a n . (1)求数列{a n }的通项公式;(2)若b n =(31)n •a n ,求数列{b n }的前n 项和T n .4.设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是前n 项和.记b n =cn n 2n+S ,n ∈N *,其中c 为实数. (1)若数列{c n }满足c n =nnS ,证明:数列{c n }等差数列; (2)若c=0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (3)若{b n }是等差数列,证明:c=0.。

数列分专题经典练习-题型大全-典型例题

数列分专题经典练习-题型大全-典型例题

数列专题一.等差数列练习题1.设S n 是数列{a n }的前n 项和,且S n =2n 2-5n ,证明数列{a n }是等差数列。

2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列3.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( )A .48B .49C .50D .514.首项为-24的等差数列,从第10项起开始为正数,则公差的范围是______。

5.如果等差数列{}n a 中,34512712,___.a a a a a a ++=+++=那么6.已知1,a ,b 成等差数列,3,a +2,b +5成等比数列,则公差为( )A .3或-3B .3或-1C .3D .-37.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为______.8.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为( )A .21n a n =+B .21n a n =-C .23n a n =-D .25n a n =-9.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.2410.设n S 是等差数列{}n a 的前n 项和,若363,24S S ==,则9__.a = 11.设等差数列{}n a 的前n 项和为n S ,若924972,___.S a a a =++=则12.{}n a 是公差为-2的等差数列,a 1+a 4+….. + a 97 =50,a 3+a 6+ a 9+….. + a 99 =( )A.-182B.-78C.-148D.-8213.}{n a 是等差数列,且,13,77,57146541074==++++=++k a a a a a a a a 若 则k =14.在等差数列}{n a 中,若4681012120a a a a a ++++=,则10122a a -= 15.已知}{n a 为等差数列,a 1+a 8+ a 13+ a 18=100,求a 10= 16.已知数列{a n }的前n 项和S n =n (n -40),则下列判断正确的是( ) A.a 19>0,a 21<0B.a 20>0,a 21<0C.a 19<0,a 21>0D.a 19<0,a 20>017.等差数列{a n }中,a 1>0,S 4=S 9,则S n 取最大值时,n=18.等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。

高中数学《数列》复习专题

高中数学《数列》复习专题
检验:当n 1时, a1 1 12 2 满足已知条件.
1 n 1 练1.若an an 1 1 ( ) , a1 0, 求通项公式. 2 解:
专题2:求通项公式 1.累加型 an an1 f ( n) 2.累乘型 an an1 f ( n)
n 1个 an 1 q an 2 an q a
例3.数列 {an }满足an 3an1 1, a1 1, 求 {an }的通项公式 .
解: 设 为待定系数, an 3an 1 1
1 1 n 1 那么an =(a1 )3 2 2 an 3an1 1 1 1 n 1 即an = 3 1 2 2 an 3(an 1 ) n 1 3 3 +1 也即an = 1 1 2 则 令 , 2 3 1 1 即an 3(an 1 ) 2 2 1 1 {an }是以a1 为首项, 2 2 3为公差的等比数列.
练1.an
1 4n 1
2
, 求S n .
1 1 练 2.an 2 , 证明Sn . 4n 4n 3 3
1 1 1 例2.求和: 2+ 3 3+ 4 4+ 5
1 99+ 100
1 1 1 练3.求和: + 1+ 3 2+ 4 3+ 5
1 n + n+2
2 an an1 an1
专题2:求通项公式 1.累加型 an an1 f ( n) 回顾:求等差数列的通 项公式:— —累加法
由递推公式 an an1 d (n 2)可知, a2 a1 d 当n 2时, a3 a2 d a4 a3 d n 1个 a n 1 a n 2 d a n a n 1 d

数列复习专题精选完整版ppt课件

数列复习专题精选完整版ppt课件

数列与函数问题:化归思想,函数与方程思想
恒成立问题: 论证推理
探索性问题--恒成立问题
恒成立问题: 论证推理
探索性问题--存在性问题
注:(1)不等式恒成立与最值问题相关联:确定变量最大或最小(2)数列最值问题关联:单调数列特征,或数列取值正负变化特征,或数列二次函数特征(3)恒成立问题:推理论证(4)存在性问题:寻找,特值法、代入验证法等
二、数列基本方法
1、方程(组)思想、函数思想2、代入法,因式分解降次法3、待定系数法4、分类讨论思想5、化归转换思想★6、不等式放缩应用
数列问题探究-典型例举
数列问题探究-典型例举
数列问题:
2、一般数列通项递推的应用(关于Sn--an)
递推式运用原则:减元原则、降次原则、目标趋近原则
知识拓展与方法应用:
数 列
1.知识
2. 问题
3. 方法
一、数列基础知识
一般数列:
特殊数列:等差数列
特殊数列:等差数列性质 足码和特征、和项特征、奇偶项和特征
特殊数列:等比数列
特殊数列:等比数列性质 足码和特征、和项特征、奇偶项和特征
二、数列基本问题
公式变式\性质应用
题例
基本关系式应用:正用代入--逆用作差
一般数列通项递推的应用
数列求和:数列递推问题:数列与不等式问题:数列与函数:探索性问题:成立与存在性问题预测方向
数列递推问题
数列递推问题
数列递推问题---化归转换为运用待定系数法、累加或累乘型
数列递推问题---化归转换为运用待定系数法、累加或累乘型
小结:(1)高考卷选择填空题型:等差等比比重大,一般数列通项或和,新定义与创新型问题(2)高考数列解答题:通项、前n项和,★递推问题,不等式证明(3)含参数问题:取值或范围,最值问题(4)重点问题:特殊数列、递推问题等

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。

解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。

)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。

专题23 数列的基本知识与概念 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题23 数列的基本知识与概念 (学生版)高中数学53个题型归纳与方法技巧总结篇

高中数学53个题型归纳与方法技巧总结篇专题23数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N*-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】题型一:数列的周期性题型二:数列的单调性题型三:数列的最大(小)项题型四:数列中的规律问题题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值()A .1147B .1148C .1142-D .1143-例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =()A .2B .5C .7D .8例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于()A .16B .16-C .6D .6-例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为()A .67B .68C .134D .167例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于()A .15B .25C .35D .45例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩ *(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为()A .60572B .3028C .60552D .3029例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =()A .14-B .45C .5D .45-例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于()A .12-B .12C .-1D .2题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是()A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是()A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为()A .12a <<B .23a <<C .3522a <<D .1322a <<例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为()A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是()A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列,则实数b 的取值范围为()A .(2,)-+∞B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【方法技巧与总结】解决数列的单调性问题的3种方法作差比较法根据1n n a a +-的符号判断数列{}n a 是递增数列、递减数列或是常数列作商比较法根据1(>0<0)n n n na a a a +或与1的大小关系进行判断数形结合法结合相应函数的图象直观判断题型三:数列的最大(小)项例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是()A .12B .1C .2D .3例16.已知数列{}n a 满足110a =,12n na a n+-=,则n a n 的最小值为()A .-1B .112C .163D .274例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na nn b S =,则数列{}n b 的最小项为()A .第3项B .第4项C .第5项D .第6项例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____例19.数列,1n =,2, ,中的最小项的值为__________.【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n nn a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =.题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =();()f n =().A .352331n n +-B .362331n n -+C .372331n n -+D .382331n n +-例21.由正整数组成的数对按规律排列如下:()1,1,()1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在()A .第386位B .第193位C .第348位D .第174位例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为()A .()1,12B .()3,10C .()2,11D .()3,9例23.将正整数排列如下:123456789101112131415……则图中数2020出现在A .第64行3列B .第64行4列C .第65行3列D .第65行4列题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为()A .343B .575C .D .12例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n -=+-,则下列说法正确的是()A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a 例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是()A .12B .34C .1D .32例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为()A .92-B .102-C .112-D .122-例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为()A .235B .143C 12D .13例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为()A .134B .5C .6D .132例30.(2022·浙江·高三专题练习)已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是()A .[]40,25--B .[]40,0-C .[]25,25-D .[]25,0-【过关测试】一、单选题1.(2022·陕西·交大附中模拟预测(理))函数()f x 定义如下表,数列{}()N n x n ∈满足02x =,且对任意的自然数n 均有()1n n x f x +=,则2022x =()x 12345()f x 51342A .1B .2C .4D .52.(2022·内蒙古赤峰·模拟预测(理))大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和,其中一列数如下:0,2,4,8,12,18,24,32,40,50,…….按此规律得到的数列记为{}n a ,其前n 项和为n S ,给出以下结论:①22122n a n n -=-;②182是数列{}n a 中的项;③21210a =;④当n 为偶数时,()2122n n n S S S n n *++-+=+∈N .其中正确的序号是()A .①②B .②③C .①④D .③④3.(2022·河南·模拟预测(理))观察数组()2,2,()3,4,()4,8,()5,16,()6,32,…,根据规律,可得第8个数组为()A .()9,128B .()10,128C .()9,256D .()10,2564.(2022·吉林长春·模拟预测(理))已知数列{}n a 满足()()11120n n a a +-++=,112a =,则数列{}n a 的前2022项积为()A .16-B .23C .6-D .325.(2022·江西·临川一中模拟预测(理))已知数列{}n a 满足()1112,21*+-==∈-n n n a a a n N a ,则2022=a ()A .13B .1C .2D .526.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为n aa n n=+,则“21a a >”是“数列{}n a 单调递增”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2022·全国·高三专题练习)已知数列{}n a 满足()2**2,5,,1,5,.n n tn n n a t n n n ⎧-+≤∈⎪=⎨->∈⎪⎩N N 且数列{}n a 是单调递增数列,则t 的取值范围是()A .919,24⎛⎫⎪⎝⎭B .9,2⎛⎫+∞ ⎪⎝⎭C .()5,+∞D .(]1,48.(2022·全国·高三专题练习)若数列{an }的前n 项和Sn =n 2-10n (n ∈N *),则数列{nan }中数值最小的项是()A .第2项B .第3项C .第4项D .第5项9.(2022·上海普陀·二模)数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是()A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-10.(2022·北京四中三模)已知数列{n a }的通项为22n a n n λ=-,则“0λ<”是“*n ∀∈N ,1n n a a +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题11.(2022·河北·衡水第一中学高三阶段练习)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是()A .此数列的第20项是200B .此数列的第19项是180C .此数列偶数项的通项公式为222n a n=D .此数列的前n 项和为(1)n S n n =⋅-12.(2022·全国·高三专题练习)若数列{}n a 满足1112,012,1321,12n n n n n a a a a a a +⎧⎪⎪==⎨⎪-<<⎪⎩ ,则数列{}n a 中的项的值可能为()A .13B .2C .23D .4513.(2022·全国·高三专题练习)下列四个选项中,不正确的是()A .数列2345,,,3456,⋯的一个通项公式是1n n a n =+B .数列的图象是一群孤立的点C .数列1,1-,1,1-,⋯与数列1-,1,1-,1,⋯是同一数列D .数列11,24,⋯,12n是递增数列14.(2022·全国·高三专题练习)已知n S 是{}n a 的前n 项和,12a =,()1112n n a n a -=-≥,则下列选项错误的是()A .20212a =B .20211012S =C .331321n n n a a a ++⋅⋅=D .{}n a 是以3为周期的周期数列15.(2022·全国·高三专题练习)若数列{an }满足112,2712,62n n n n n a a a a a +⎧≤⎪⎪=⎨⎪->⎪⎩,123a =,则数列{an }中的项的值可能为()A .19B .16C .13D .4316.(2022·全国·高三专题练习)已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有()A .2-B .23C .32D .317.(2022·全国·高三专题练习(文))南宋杨辉在他1261年所著的《详解九章算术》一书中记录了一种三角形数表,称之为“开方作法本源”图,即现在著名的“杨辉三角”.如图是一种变异的杨辉三角,它是将数列{}n a 各项按照上小下大,左小右大的原则写成的,其中{}n a 是集合{}220,,s ts t s t Z +≤<∈且中所有的数从小到大排列的数列,即13a =,25a =,36a =,49a =,510a =,…,则下列结论正确的是()A .第四行的数是17,18,20,24B .()11232-+=⋅n n n a C .()11221n n a n +=+D .10016640a =18.(2022·全国·高三专题练习)如图所示的数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和.则下列说法正确的是()A .第6行第1个数为192B .第10行的数从左到右构成公差为102的等差数列C .第10行前10个数的和为9952⨯D .数表中第2021行第2021个数为202060612⨯19.(2022·河北·石家庄实验中学高三开学考试)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是()A .此数列的第20项是200B .此数列的第19项是182C .此数列偶数项的通项公式为222n a n=D .此数列的前n 项和为(1)n S n n =⋅-20.(2022·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =-,则下列说法正确的是().A .{}n a 是递增数列B .{}n a 是递减数列C .122n a n=-D .数列{}n S 的最大项为5S 和6S 21.(2022·湖南·长沙一中高三阶段练习)对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的数目.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如()96ϕ=(1,2,4,5,7,8与9互质),则()A .若n 为质数,则()1n n ϕ=-B .数列(){}n ϕ单调递增C .数列()2n n ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前5项和等于72D .数列(){}3nϕ为等比数列三、填空题22.(2022·北京·人大附中模拟预测)能说明命题“若无穷数列{}n a 满足()111,2,3,n na n a +>= ,则{}n a 为递增数列”为假命题的数列{}n a 的通项公式可以为n a =__________.23.(2022·陕西·宝鸡中学模拟预测)写出一个符合下列要求的数列{}n a 的通项公式:①{}n a 是无穷数列;②{}n a 是单调递减数列;③20n a -<<.这个数列的通项可以是__________.24.(2022·海南·模拟预测)写出一个同时具有下列性质①②③的数列{}n a 的通项公式:n a =__________.①10n n a a +<;②数列{}n a 是单调递减数列;③数列{}2nn a 是一个等比数列.25.(2022·江西·临川一中模拟预测(文))已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是_______.26.(2022·天津市新华中学高三期末)在数列{}n a 中,()71()8n n a n =+,则数列{}n a 中的最大项的n =________.27.(2022·山西·模拟预测(理))数列{}n a 中,已知11a =,20a >,()*21n n n a a a n ++=-∈N ,则2022a 的取值范围是___________.28.(2022·四川成都·三模(理))已知数列{}n a 满足13a =,122n n n a a a ++=,则2022a 的值为______.29.(2022·全国·模拟预测)在数列{}na 中,11a =,1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,则1232021a a a a ++++= ___.。

专题05数列

专题05数列

专题05数列(添加试题分类成品)学校:___________姓名:___________班级:___________考号:___________二、多选题2.设正整数010112222k k k kn a a a a --=×+×++×+×L ,其中{}0,1i a Î,记()01k n a a a w =+++L .则( )A .()()2n n w w =B .()()231n n w w +=+C .()()8543n n w w +=+D .()21nnw -=三、单选题3.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ).A .120B .85C .85-D .120-四、填空题4.将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为________.五、单选题六、双空题6.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ´的长方形纸,对折1次共可以得到10dm 12dm ´,20dm 6dm ´两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ´,10dm 6dm ´,20dm 3dm ´三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么1nk k S ==å______2dm.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.12.已知数列{}n a 满足11a =,11,,2,.n n n a n aa n ++ì=í+î为奇数为偶数(1)记2n nb a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}na 的前20项和.13.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+¼+-.14.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ÎN 中的项的个数,求数列{}m b 的前100项和100S .于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数,因此{}na 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C 2.ACD【分析】利用()n w 的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误.【详解】对于A 选项,()01k n a a a w =+++L ,12101122222k k k k n a a a a +-=×+×++×+×L ,所以,()()012kn a a a n w w =+++=L ,A 选项正确;对于B 选项,取2n =,012237121212n +==×+×+×,()73w \=,而0120212=×+×,则()21w =,即()()721w w ¹+,B 选项错误;对于C 选项,3430234301018522251212222k k k k n a a a a a a +++=×+×++×+=×+×+×+×++×L L ,所以,()01852kn a a a w +=++++L ,2320123201014322231212222k k k k n a a a a a a +++=×+×++×+=×+×+×+×++×L L ,所以,()01432k n a a a w +=++++L ,因此,()()8543n n w w +=+,C 选项正确;对于D 选项,01121222n n --=+++L ,故()21n n w -=,D 选项正确.故选:ACD.3.C【分析】方法一:根据等比数列的前n 项和公式求出公比,再根据48,S S 的关系即可解出;方法二:根据等比数列的前n 项和的性质求解.【详解】方法一:设等比数列{}na 的公比为q ,首项为1a ,由题意,2n m £,即2log n m £,当1m =时,10b =.当)12,21k k m +éÎ-ë时,,m b k k *=ÎN ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++L L L L 0122438416532637480=+´+´+´+´+´+´=.[方法三]:由题意知)1,2,2k k m b k m +é=Îë,因此,当1m =时,10b =;[2,4)m Î时,1m b =;[4,8)m Î时,2m b =;[8,16)m Î时,3m b =;[16,32)m Î时,4m b =;[32,64)m Î时,5m b =;[64,128)m Î时,6m b =.所以1001234100S b b b b b =+++++L 0(11)(222)(666)=++++++++++L L 0122438416532637480=+´+´+´+´+´+´=.所以数列{}nb 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b L 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.答案第171页,共22页。

数列难题专题

数列难题专题

数列难题专题一.解答题(共20小题)1.已知数列{an }的前n项和为Sn,且,数列{bn}满足b1=1,且bn+1=bn+2.(Ⅰ)求数列{an }、{bn}的通项公式;(Ⅱ)设,求数列{cn }的前2n项和T2n.2.设数列{an }的首项a1为常数,且an+1=3n﹣2an,(n∈N*)(1)证明:{an﹣}是等比数列;(2)若a1=,{an}中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.(3)若{an }是递增数列,求a1的取值范围.3.数列{an }的首项a1=1,前n项和Sn与an之间满足an=(n≥2).(1)求证:数列{}是等差数列;(2)设存在正数k,使(1+S1)(1+S2)..(1+Sn)对一切n∈N×都成立,求k的最大值.4.若数列{an }满足条件:存在正整数k,使得=对一切n∈N*,n>k都成立,则称数列{an}为k级等比数列.(1)若an =2n sin(ωn+)(ω为常数),且{an}是3级等比数列,求ω所有可能值的集合;(2)若正项数列{an }既为2级等比数列,也为3级等比数列,证明:{an}为等比数列.5.已知数列{an }中,a1=1,其前n项的和为Sn,且满足an=(n≥2).(1)求证:数列{}是等差数列;(2)证明:当n≥2时,S1+S2+S3+…+Sn<.6.各项均为正数的等比数列{an }中,a1=1,a2a4=16,单调递增数列{bn}的前n项和为Sn,a4=b3,且6Sn =b+3bn+2(n∈N*).(Ⅰ)求数列{an }、{bn}的通项公式;(Ⅱ)令cn=(n∈N*),(1)求数列{cn }的前n项和Tn;(2)若n∈N*时m>cn恒成立,求m的取值范围.7.已知数列{an }满足:a1=1,,n∈N*.(1)求数列{an}的通项公式;(2)设数列{bn }的前n项和为Sn,且满足,试确定b1的值,使得数列{bn}为等差数列;(3)将数列中的部分项按原来顺序构成新数列{cn },且c1=5,求证:存在无数个满足条件的无穷等比数列{cn}.8.已知数列{an }的各项均为正数,其前n项和为Sn,且Sn=.(1)求证:数列{Sn2}为等差数列;(2)从数列{Sn 2}中抽出k个不同的项按一定次序组成新数列{bk}.①若b1≤3,且b1b2,b2b3,b3b1成等差数列,求b1+b2+b3的值;②是否存在偶数k,使得b1b2,b2b3,b3b4,…,bk﹣1bk,bkb1成等差数列?若存在,请求出k的值;若不存在,请说明理由.9.已知数列{an }中,a1=a,a2=2,数列{an}的前n项和为Sn,且2Sn=n(3a1+an),n∈N*.(Ⅰ)求a的值;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若Tn 是数列{bn}的前n项和,且对一切n∈N*都成立,求实数m取值范围.10.已知二次函数f(x)=x2+x.数列{an }的前n项和为Sn,点(n,Sn)(n∈N*)在二次函数y=f(x)的图象上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =anan+1cos[(n+1)π](n∈N*),数列{bn}的前n项和为Tn,若Tn≥tn2对n∈N*恒成立,求实数t的取值范围;(Ⅲ)在数列{an}中是否存在这样一些项:a,a,a,…,a这些项都能够构成以a1为首项,q(0<q<5)为公比的等比数列{a}?若存在,写出nk关于f(x)的表达式;若不存在,说明理由.11.设Sn 为正项数列{an}的前n项和,满足2Sn=a+an﹣2.(I)求{an}的通项公式;(II)若不等式(1+)≥4对任意正整数n都成立,求实数t的取值范围;(III)设bn=e(其中r是自然对数的底数),求证:.12.已知数列{an }的首项a1=a(a>0),其前n项和为Sn,设bn=an+an+1(n∈N*).数列{bn}的前n项和为Tn ,满足Tn=n2.(1)求证:数列{bn}的任意连续三项不成等比数列;(2)求数列{an}的通项公式;(3)若对∀n∈N*且n≥2,不等式(an ﹣1)(an+1﹣1)≥2(1﹣n)恒成立,求a的取值范围.13.已知各项均不为零的数列{an }的前n项和为Sn,且满足a1=c,2Sn=anan+1+r.(1)若r=﹣6,数列{an}能否成为等差数列?若能,求c满足的条件;若不能,请说明理由.(2)设Pn =,Qn=,若r>c>4,求证:对于一切n∈N*,不等式﹣n<Pn ﹣Qn<n2+n恒成立.14.已知数列{an }中,a1=1,an+1=1+,记bn=(1)求证:数列{bn }是等比数列,并求bn;(2)求数列{an }的通项公式an;(3)记cn =nbn,Sn=c1+c2+…+cn,对任意正整数n,不等式+Sn+n(﹣)n+1﹣(﹣)n>0恒成立,求最小正整数m.15.已知数列{an }满足a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣).(1)求数列{an}的通项公式;(2)求证:++…+<;(3)记Sn =++…+,证明:对于一切n≥2,都有Sn2>2(++…+).16.已知数列{an }中,a2=2,前n项和为.(I)证明数列{an+1﹣an}是等差数列,并求出数列{an}的通项公式;(II)设,数列{bn }的前n项和为Tn,求使不等式对一切n∈N*都成立的最大正整数k的值.17.已知数列{an }的前n项和sn,点(n,sn)(n∈N*)在函数y=x2+x的图象上(1)求{an}的通项公式;(2)设数列{}的前n项和为Tn ,不等式Tn>loga(1﹣a)对任意的正整数恒成立,求实数a的取值范围.18.若无穷数列{an }满足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,则称{an}具有性质P.(1)若{an }具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{bn }是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c5=1;b5=c1=81,an=bn+cn,判断{an}是否具有性质P,并说明理由;(3)设{bn }是无穷数列,已知an+1=bn+sinan(n∈N*),求证:“对任意a1,{an}都具有性质P”的充要条件为“{bn}是常数列”.19.已知递增的等差数列{an }的首项a1=1,且a1、a2、a4成等比数列.(1)求数列{an }的通项公式an;(2)设数列{cn }对任意n∈N*,都有成立,求c1+c2+…+c2012的值.(3)若(n∈N*),求证:数列{bn}中的任意一项总可以表示成其他两项之积.20.已知数列{an }的前n项和为Sn,且满足a1=a(a≠3),,设,n∈N*.(1)求证:数列{bn}是等比数列;(2)若an+1≥an,n∈N*,求实数a的最小值;(3)当a=4时,给出一个新数列{en },其中,设这个新数列的前n项和为Cn,若C n 可以写成t p(t,p∈N*且t>1,p>1)的形式,则称Cn为“指数型和”.问{Cn}中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.。

数列专题:数列求和的6种常用方法(原卷版)

数列专题:数列求和的6种常用方法(原卷版)

数列专题:数列求和的6种常用方法一、几种数列求和的常用方法1、分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.2、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.3、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.4、倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、公式法求和常用公式公式法主要适用于等差数列与等比数列.1、等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d 2、等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q 3、一些常见的数列的前n 项和:①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n ②21(21)135(21)=-=++++-=∑n k k n n ;③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n 三、裂项相消法中常见的裂项技巧1、等差型裂项(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n (5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n (8)2222211111)(()+=-++n n n n n (9)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 2、根式型裂项=1=-k12=(1)1111(1)1++=+-++n n n n n n 3、指数型裂项(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n nn n n (3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n (5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦n n n n n n n n n n n n n n n n n n n n n n 1111(1)1111(1)(1)(1))22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n nn n n n n 4、对数型裂项11log log log ++=-n a n aa a n na a a 四、错位相减法求和步骤形如n n n A B C =⋅,其中{}n B 为等差数列,首项为1b ,公差为d ;{}n C 为等比数列,首项为1c ,公比为q .对数列{}n A 进行求和,首先列出n S ,记为①式;再把①式中所有项同乘等比数列{}n C 的公比q ,即得n q S ⋅,记为②式;然后①②两式错开一位作差,从而得到{}n A 的前n 项和。

数列难题专题(含答案)

数列难题专题(含答案)

数列难题专题一.解答题(共50小题)1.已知数列{a n }的前n 项和为S n ,且S n =n (n+1)(n ∈N *). (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若数列{b n }满足:,求数列{b n }的通项公式;(Ⅲ)令(n ∈N *),求数列{c n }的前n 项和T n .2.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12. (1)求数列{a n }的通项公式;(2)令b n =a n •3n ,求数列{b n }的前n 项和S n .3.已知数列{a n }中,a 1=3,a 2=5,其前n 项和S n 满足S n +S n ﹣2=2S n ﹣1+2n ﹣1(n ≥3).令b n =.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若f (x )=2x ﹣1,求证:T n =b 1f (1)+b 2f (2)+…+b n f (n )<(n ≥1).4.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)令b n =(﹣1)n ﹣1,求数列{b n }的前n 项和T n .5.已知等差数列{a n }的公差d >0,设{a n }的前n 项和为S n ,a 1=1,S 2•S 3=36. (Ⅰ)求d 及S n ;(Ⅱ)求m ,k (m ,k ∈N *)的值,使得a m +a m+1+a m+2+…+a m+k =65.6.设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N *. (Ⅰ)设b n =S n ﹣3n ,求数列{b n }的通项公式; (Ⅱ)若a n+1≥a n ,n ∈N *,求a 的取值范围.7.已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:an+2﹣an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.8.设数列{an }的首项a1∈(0,1),an=,n=2,3,4…(1)求{an}的通项公式;(2)设,求证bn <bn+1,其中n为正整数.9.设数列满足|an﹣|≤1,n∈N*.(Ⅰ)求证:|an |≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|an |≤()n,n∈N*,证明:|an|≤2,n∈N*.10.已知数列{an }的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.11.给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足an+1=f(an),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,an+1﹣an≥c;(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.12.数列{an }满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an }的前 n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.13.设各项均为正数的数列{an }的前n项和为Sn满足Sn2﹣(n2+n﹣3)Sn﹣3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.14.已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an}前n项和为Sn ,且满足S5=2a4+a5,a9=a3+a4.(1)求数列{an}的通项公式;(2)若am am+1=am+2,求正整数m的值;(3)是否存在正整数m,使得恰好为数列{an}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.15.已知等差数列{an }中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an }的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.16.已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *) (1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *).17.已知等差数列{a n }的首项a 1=1,公差d >0,且a 2,a 5,a 14分别是等比数列{b n }的b 2,b 3,b 4. (Ⅰ)求数列{a n }与{b n }的通项公式; (Ⅱ)设数列{c n }对任意自然数n 均有=a n+1成立,求c 1+c 2+…+c 2014的值.18.设数列{a n }的前n 项和为S n ,已知a 1=1,,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有.19.数列{a n }的首项a 1=1,前n 项和S n 与a n 之间满足a n =(n ≥2).(1)求证:数列{}是等差数列;(2)设存在正数k ,使(1+S 1)(1+S 2)..(1+S n )对一切n ∈N ×都成立,求k 的最大值. 20.若数列{a n }的前n 项和为S n ,a 1=1,.(1)证明:数列{a n ﹣2}为等比数列; (2)求数列{S n }的前n 项和T n .21.已知数列{a n },{b n }满足b n =a n+1﹣a n ,其中n=1,2,3,…. (Ⅰ)若a 1=1,b n =n ,求数列{a n }的通项公式; (Ⅱ)若b n+1b n ﹣1=b n (n ≥2),且b 1=1,b 2=2.(ⅰ)记c n =a 6n ﹣1(n ≥1),求证:数列{c n }为等差数列; (ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次.求a 1应满足的条件.22.在数列{an }中,a1=3,an+1an+λan+1+μan2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{an}的通项公式;(Ⅱ)若λ=(k0∈N+,k≥2),μ=﹣1,证明:2+<<2+.23.设数列{an }的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an }的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an }是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an },总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.24.已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an} 前n项和为Sn ,且满足S3=a4,a3+a5=2+a4(1)求数列{an}的通项公式;(2)求数列{an }前2k项和S2k;(3)在数列{an }中,是否存在连续的三项am,am+1,am+2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m的值;若不存在,说明理由.25.已知数列{an }满足a1=1,|an+1﹣an|=p n,n∈N*.(Ⅰ)若{an }是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.26.已知数列{an }满足:a1∈N*,a1≤36,且an+1=(n=1,2,…),记集合M={an|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.27.设数列{an }的前n项和为Sn,满足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.28.已知公比为q(q≠1)的无穷等比数列{an }的首项a1=1.(1)若q=,在a1与a2之间插入k个数b1,b2,…,bk,使得a1,b1,b2,…,bk,a2,a3成等差数列,求这k个数;(2)对于任意给定的正整数m,在a1,a2,a3的a1与a2和a2与a3之间共插入m个数,构成一个等差数列,求公比q的所有可能取值的集合(用m表示);(3)当且仅当q取何值时,在数列{an }的每相邻两项ak,ak+1之间插入ck(k∈N*,ck∈N)个数,使之成为一个等差数列?并求c1的所有可能值的集合及{cn}的通项公式(用q表示).29.已知数列{an }的各项均为正数,bn=n(1+)n an(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令cn =(a1a2…an),数列{an},{cn}的前n项和分别记为Sn,Tn,证明:Tn<eSn.30.设等差数列{an }的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.31.正整数列{an },{bn}满足:a1≥b1,且对一切k≥2,k∈N*,ak是ak﹣1与bk﹣1的等差中项,bk是ak﹣1与bk﹣1的等比中项.(1)若a2=2,b2=1,求a1,b1的值;(2)求证:{an }是等差数列的充要条件是{an}为常数数列;(3)记cn =|an﹣bn|,当n≥2(n∈N*)时,指出c2+…+cn与c1的大小关系并说明理由.32.已知数列{an }是无穷数列,a1=a,a2=b(a,b是正整数),.(Ⅰ)若a1=2,a2=1,写出a4,a5的值;(Ⅱ)已知数列{an }中,求证:数列{an}中有无穷项为1;(Ⅲ)已知数列{an }中任何一项都不等于1,记bn=max{a2n﹣1,a2n}(n=1,2,3,…;max{m,n}为m,n较大者).求证:数列{bn}是单调递减数列.33.对于项数为m的有穷数列{an },记bk=max{a1,a2,…,ak}(k=1,2,…,m),即bk为a1,a2,…,a k 中的最大值,并称数列{bn}是{an}的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{an }的控制数列为2,3,4,5,5,写出所有的{an}.(2)设{bn }是{an}的控制数列,满足ak+bm﹣k+1=C(C为常数,k=1,2,…,m),求证:bk=ak(k=1,2,…,m).(3)设m=100,常数a∈(,1),an =an2﹣n,{bn}是{an}的控制数列,求(b1﹣a1)+(b2﹣a2)+…+(b100﹣a100).34.已知数列{an }是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N*,总有b1•b2•b3…bn﹣1•bn=an+2成立.(Ⅰ)求数列{an }和{bn}的通项公式;(Ⅱ)记cn =(﹣1)n,求数列{cn}的前n项和Tn.35.已知f(x)=,数列{an }为首项是1,以f(1)为公比的等比数列;数列{bn}中b1=,且bn+1=f(bn),(1)求数列{an }和{bn}的通项公式(2)令,{cn }的前n项和为Tn,证明:对∀n∈N+有1≤Tn<4.36.已知数列{an }满足a1=,an=(n≥2,n∈N).(1)试判断数列是否为等比数列,并说明理由;(2)设bn =,求数列{bn}的前n项和Sn;(3)设cn =ansin,数列{cn}的前n项和为Tn.求证:对任意的n∈N*,Tn<.37.已知数列{an }满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an }是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.38.对于函数f(x),若存在x0∈R,使f(x)=x成立,则称x为f(x)的不动点.如果函数f(x)=有且仅有两个不动点0和2.(1)试求b、c满足的关系式.(2)若c=2时,各项不为零的数列{an }满足4Sn•f()=1,求证:<<.(3)设bn =﹣,Tn为数列{bn}的前n项和,求证:T2009﹣1<ln2009<T2008.39.在数列{an }中,a1=1,an+1=(1+)an+.(1)设bn =,求数列{bn}的通项公式;(2)求数列{an }的前n项和Sn.40.已知数列{an }的前n项和为Sn,且满足a1=2,nan+1=Sn+n(n+1).(Ⅰ)求数列{an }的通项公式an;(Ⅱ)设Tn 为数列{}的前n项和,求Tn;(Ⅲ)设bn =,证明:b1+b2+b3+…+bn<.41.已知数列an满足(1)求数列an 的通项公式an;(2)设,求数列bn 的前n项和Sn;(3)设,数列cn 的前n项和为Tn.求证:对任意的.42.如图,已知曲线C 1:y=(x >0)及曲线C 2:y=(x >0),C 1上的点P 1的横坐标为a 1(0<a 1<).从C 1上的点P n (n ∈N +)作直线平行于x 轴,交曲线C 2于点Q n ,再从点Q n 作直线平行于y 轴,交曲线C 1于点P n+1.点P n (n=1,2,3,…)的横坐标构成数列{a n } (Ⅰ)试求a n+1与a n 之间的关系,并证明:a 2n ﹣1<; (Ⅱ)若a 1=,求证:|a 2﹣a 1|+|a 3﹣a 2|+…+|a n+1﹣a n |<.43.已知数列{a n }中,a 1=1,a n+1=(n ∈N *).(1)求证:{+}是等比数列,并求{a n }的通项公式a n ;(2)数列{b n }满足b n =(3n ﹣1)••a n ,数列{b n }的前n 项和为T n ,若不等式(﹣1)n λ<T n +对一切n ∈N *恒成立,求λ的取值范围.44.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,)都在函数f (x )=x+的图象上.(1)计算a 1,a 2,a 3,并归纳出数列{a n }的通项公式;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值; (3)设A n 为数列的前n 项积,若不等式A n <f (a )﹣对一切n ∈N *都成立,求a的取值范围.45.数列{bn }的前n项和为Sn,且对任意正整数n,都有;(1)试证明数列{bn}是等差数列,并求其通项公式;(2)如果等比数列{an }共有2017项,其首项与公比均为2,在数列{an}的每相邻两项ai与ai+1之间插入i个(﹣1)i bi (i∈N*)后,得到一个新数列{cn},求数列{cn}中所有项的和;(3)如果存在n∈N*,使不等式成立,若存在,求实数λ的范围,若不存在,请说明理由.46.已知数列{an}的首项,,n=1,2,….(Ⅰ)求{an}的通项公式;(Ⅱ)证明:对任意的x>0,,n=1,2,…;(Ⅲ)证明:.47.已知数列{an }的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1﹣,(n+2)cn=﹣,其中n∈N*.(1)若数列{an }是公差为2的等差数列,求数列{cn}的通项公式;(2)若存在实数λ,使得对一切n∈N*,有bn ≤λ≤cn,求证:数列{an}是等差数列.48.已知数列{an }满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn }滿足,证明:数列{bn}是等差数列;(Ⅲ)证明:.49.已知数列{an }的各项均为正数,且a1=1,对任意的n∈N*,均有an+12﹣1=4an(an+1),bn=2log2(1+an)﹣1.(1)求证:{1+an }是等比数列,并求出{an}的通项公式;(2)若数列{bn }中去掉{an}的项后,余下的项组成数列{cn},求c1+c2+…+c100;(3)设dn =,数列{dn}的前n项和为Tn,是否存在正整数m(1<m<n),使得T1、Tm、Tn成等比数列,若存在,求出m的值;若不存在,请说明理由.50.在数列{an }中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an﹣2n}为等差数列;(2)设数列{bn }满足bn=log2(an+1﹣n),若…对一切n∈N*且n≥2恒成立,求实数k的取值范围.参考答案与试题解析一.解答题(共50小题)1.已知数列{an }的前n项和为Sn,且Sn=n(n+1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn }满足:,求数列{bn}的通项公式;(Ⅲ)令(n∈N*),求数列{cn }的前n项和Tn.【分析】(Ⅰ)当n=1时,a1=S1=2,当n≥2时,an=Sn﹣Sn﹣1=n(n+1)﹣(n﹣1)n=2n,由此能求出数列{an}的通项公式.(Ⅱ)由(n≥1),知,所以,由此能求出bn.(Ⅲ)=n(3n+1)=n•3n+n,所以Tn =c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n),令Hn=1×3+2×32+3×33+…+n×3n,由错位相减法能求出,由此能求出数列{cn}的前n项和.【解答】解:(Ⅰ)当n=1时,a1=S1=2,当n≥2时,an =Sn﹣Sn﹣1=n(n+1)﹣(n﹣1)n=2n,知a1=2满足该式,∴数列{an }的通项公式为an=2n.(2分)(Ⅱ)∵(n≥1)①∴②(4分)②﹣①得:,bn+1=2(3n+1+1),故bn=2(3n+1)(n∈N*).(6分)(Ⅲ)=n(3n+1)=n•3n+n,∴Tn =c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)令Hn=1×3+2×32+3×33+…+n×3n,①则3Hn=1×32+2×33+3×34+…+n×3n+1②①﹣②得:﹣2Hn=3+32+33+…+3n﹣n×3n+1=∴,…(10分)∴数列{cn}的前n项和…(12分)【点评】本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意错位相减法的灵活运用.2.已知数列{an }是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn =an•3n,求数列{bn}的前n项和Sn.【分析】(1)由数列{an }是等差数列,且a1=2,a1+a2+a3=12,利用等差数列的通项公式先求出d=2,由此能求出数列{an}的通项公式.(2)由an =2n,知bn=an•3n=2n•3n,所以Sn=2×3+4×32+6×33+…+2(n﹣1)×3n﹣1+2n×3n,再由错位相减法能够求出数列{bn }的前n项和Sn.【解答】解:(1)∵数列{an }是等差数列,且a1=2,a1+a2+a3=12,∴2+2+d+2+2d=12,解得d=2,∴an=2+(n﹣1)×2=2n.(2)∵an=2n,∴bn =an•3n=2n•3n,∴Sn=2×3+4×32+6×33+…+2(n﹣1)×3n﹣1+2n×3n,①3Sn=2×32+4×33+6×34+…+2(n﹣1)×3n+2n×3n+1,②①﹣②得﹣2Sn=6+2×32+2×33+2×34+…+2×3n﹣2n×3n+1=2×﹣2n×3n+1=3n+1﹣2n×3n+1﹣3=(1﹣2n)×3n+1﹣3∴Sn=+.【点评】本题考查数列的通项公式的求法和数列前n项和的求法,综合性强,难度大,易出错.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用错位相减法进行求和.3.已知数列{an }中,a1=3,a2=5,其前n项和Sn满足Sn+Sn﹣2=2Sn﹣1+2n﹣1(n≥3).令bn=.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若f(x)=2x﹣1,求证:Tn =b1f(1)+b2f(2)+…+bnf(n)<(n≥1).【分析】(Ⅰ)由题意知an =an﹣1+2n﹣1(n≥3)(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a3﹣a2)+a2=2n+1.(Ⅱ)由于=.故Tn =b1f(1)+b2f(2)+…+bnf(n)=,由此可证明Tn=b1f(1)+b2f(2)+…+bnf(n)<(n≥1).【解答】解:(Ⅰ)由题意知Sn ﹣Sn﹣1=Sn﹣1﹣Sn﹣2+2n﹣1(n≥3)即an =an﹣1+2n﹣1(n≥3)∴an =(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a3﹣a2)+a2=2n﹣1+2n﹣2+…+22+5=2n+1(n≥3)检验知n=1、2时,结论也成立,故an=2n+1.(Ⅱ)由于bn=,f(x)=2x﹣1,∴=.故Tn =b1f(1)+b2f(2)+…+bnf(n)==.【点评】本题考查数列的性质和综合应用,解题时要认真审题.仔细解答.4.已知等差数列{an }的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn =(﹣1)n﹣1,求数列{bn}的前n项和Tn.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得bn=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{an }的公差为2,前n项和为Sn,∴Sn ==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴an =a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得bn=(﹣1)n﹣1==.∴Tn=﹣++…+.当n为偶数时,Tn=﹣++…+﹣=1﹣=.当n为奇数时,Tn=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.5.已知等差数列{an }的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.(Ⅰ)求d及Sn;(Ⅱ)求m,k(m,k∈N*)的值,使得am +am+1+am+2+…+am+k=65.【分析】(Ⅰ)根据等差数列通项公式和前n项和公式,把条件转化为关于公差d的二次方程求解,注意d的范围对方程的根进行取舍;(Ⅱ)由(Ⅰ)求出等差数列{an }的通项公式,利用等差数列的前n项和公式,对am+am+1+am+2+…+am+k=65化简,列出关于m 、k 的方程,再由m ,k ∈N *进行分类讨论,求出符合条件的m 、k 的值. 【解答】解:(Ⅰ)由a 1=1,S 2•S 3=36得, (a 1+a 2)(a 1+a 2+a 3)=36,即(2+d )(3+3d )=36,化为d 2+3d ﹣10=0, 解得d=2或﹣5, 又公差d >0,则d=2, 所以S n =n=n 2(n ∈N *).(Ⅱ)由(Ⅰ)得,a n =1+2(n ﹣1)=2n ﹣1, 由a m +a m+1+a m+2+…+a m+k =65得,,即(k+1)(2m+k ﹣1)=65,又m ,k ∈N *,则(k+1)(2m+k ﹣1)=5×13,或(k+1)(2m+k ﹣1)=1×65, 下面分类求解:当k+1=5时,2m+k ﹣1=13,解得k=4,m=5;当k+1=13时,2m+k ﹣1=5,解得k=12,m=﹣3,故舍去; 当k+1=1时,2m+k ﹣1=65,解得k=0,故舍去;当k+1=65时,2m+k ﹣1=1,解得k=64,m=﹣31,故舍去; 综上得,k=4,m=5.【点评】本题考查了等差数列的通项公式、前n 项和公式,及分类讨论思想和方程思想,难度较大,考查了分析问题和解决问题的能力.6.设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N *. (Ⅰ)设b n =S n ﹣3n ,求数列{b n }的通项公式; (Ⅱ)若a n+1≥a n ,n ∈N *,求a 的取值范围.【分析】(Ⅰ)依题意得S n+1=2S n +3n ,由此可知S n+1﹣3n+1=2(S n ﹣3n ).所以b n =S n ﹣3n =(a ﹣3)2n ﹣1,n ∈N *.(Ⅱ)由题设条件知S n =3n +(a ﹣3)2n ﹣1,n ∈N *,于是,a n =S n ﹣S n ﹣1=,由此可以求得a 的取值范围是[﹣9,+∞).【解答】解:(Ⅰ)依题意,S n+1﹣S n =a n+1=S n +3n ,即S n+1=2S n +3n , 由此得S n+1﹣3n+1=2S n +3n ﹣3n+1=2(S n ﹣3n ).(4分)因此,所求通项公式为bn =Sn﹣3n=(a﹣3)2n﹣1,n∈N*.①(6分)(Ⅱ)由①知Sn=3n+(a﹣3)2n﹣1,n∈N*,于是,当n≥2时,a n =Sn﹣Sn﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,a n+1﹣an=4×3n﹣1+(a﹣3)2n﹣2=,当n≥2时,⇔a≥﹣9.又a2=a1+3>a1.综上,所求的a的取值范围是[﹣9,+∞).(12分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.7.已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:an+2﹣an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.【分析】(Ⅰ)利用an an+1=λSn﹣1,an+1an+2=λSn+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{an}为等差数列,设公差为d.可得λ=an+2﹣an=(an+2﹣an+1)+(an+1﹣an)=2d,.得到λSn=,根据{an}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵an an+1=λSn﹣1,an+1an+2=λSn+1﹣1,∴an+1(an+2﹣an)=λan+1∵an+1≠0,∴an+2﹣an=λ.(Ⅱ)解:①当λ=0时,an an+1=﹣1,假设{an}为等差数列,设公差为d.则an+2﹣an=0,∴2d=0,解得d=0,∴an =an+1=1,∴12=﹣1,矛盾,因此λ=0时{an}不为等差数列.②当λ≠0时,假设存在λ,使得{an}为等差数列,设公差为d.则λ=an+2﹣an=(an+2﹣an+1)+(an+1﹣an)=2d,∴.∴,,∴λSn=1+=,根据{an}为等差数列的充要条件是,解得λ=4.此时可得,an=2n﹣1.因此存在λ=4,使得{an}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.8.设数列{an }的首项a1∈(0,1),an=,n=2,3,4…(1)求{an}的通项公式;(2)设,求证bn <bn+1,其中n为正整数.【分析】(1)由题条件知,所以{1﹣an }是首项为1﹣a1,公比为的等比数列,由此可知(2)方法一:由题设条件知,故bn >0.那么,bn+12﹣bn2=an+12(3﹣2an+1)﹣an2(3﹣2an)=由此可知bn <bn+1,n为正整数.方法二:由题设条件知,所以.由此可知bn<bn+1,n为正整数.【解答】解:(1)由,整理得.又1﹣a1≠0,所以{1﹣an}是首项为1﹣a1,公比为的等比数列,得(2)方法一:由(1)可知,故bn>0.那么,bn+12﹣bn2=an+12(3﹣2an+1)﹣an2(3﹣2an)= =又由(1)知an >0且an≠1,故bn+12﹣bn2>0,因此bn <bn+1,n为正整数.方法二:由(1)可知,因为,所以.由an≠1可得,即两边开平方得.即bn <bn+1,n为正整数.【点评】本题考查数列的综合应用,难度较大,解题时要认真审题,注意挖掘题设中的隐含条件.9.设数列满足|an﹣|≤1,n∈N*.(Ⅰ)求证:|an |≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|an |≤()n,n∈N*,证明:|an|≤2,n∈N*.【分析】(I)使用三角不等式得出|an |﹣|an+1|≤1,变形得﹣≤,使用累加法可求得<1,即结论成立;(II)利用(I)的结论得出﹣<,进而得出|an|<2+()m•2n,利用m的任意性可证|an|≤2.【解答】解:(I)∵|an ﹣|≤1,∴|an|﹣|an+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1.∴|an |≥2n﹣1(|a1|﹣2)(n∈N*).(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)≤++…+=<.∴|an|<(+)•2n≤[+•()m]•2n=2+()m•2n.①由m的任意性可知|an|≤2.否则,存在n∈N*,使得|a|>2,取正整数m0>log且m>n,则2•()<2•()=|a|﹣2,与①式矛盾.综上,对于任意n∈N*,都有|an|≤2.【点评】本题考查了不等式的应用与证明,等比数列的求和公式,放缩法证明不等式,难度较大.10.已知数列{an }的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.【分析】(1)利用“当n≥2时,an =Sn﹣Sn﹣1;当n=1时,a1=S1”即可得出;(2)对任意的n>1,假设都存在m∈N*,使得a1,an,am成等比数列.利用等比数列的定义可得,即(3n﹣2)2=1×(3m﹣2),解出m为正整数即可.【解答】(1)解:∵Sn=,n∈N*.∴当n≥2时,an =Sn﹣Sn﹣1=﹣=3n﹣2,(*)当n=1时,a1=S1==1.因此当n=1时,(*)也成立.∴数列{an }的通项公式an=3n﹣2.(2)证明:对任意的n>1,假设都存在m∈N*,使得a1,an,am成等比数列.则,∴(3n﹣2)2=1×(3m﹣2),化为m=3n2﹣4n+2,∵n>1,∴m=3n2﹣4n+2=>1,因此对任意的n>1,都存在m=3n2﹣4n+2∈N*,使得a1,an,am成等比数列.【点评】本题考查了递推式的意义、等差数列与等比数列的通项公式、二次函数的单调性等基础知识与基本技能方法,考查了恒成立问题的等价转化方法,考查了反证法,考查了推理能力和计算能力,属于难题.11.给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足an+1=f(an),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,an+1﹣an≥c;(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.【分析】(1)对于分别取n=1,2,an+1=f(an),n∈N*.去掉绝对值符合即可得出;(2)由已知可得f(x)=,分三种情况讨论即可证明;(3)由(2)及c>0,得an+1≥an,即{an}为无穷递增数列.分以下三种情况讨论:当a1<﹣c﹣4时,当﹣c﹣4≤a1<﹣c时,当a1≥﹣c时.即可得出a1的取值范围.【解答】解:(1)a2=f(a1)=f(﹣c﹣2)=2|﹣c﹣2+c+4|﹣|﹣c﹣2+c|=4﹣2=2,a 3=f(a2)=f(2)=2|2+c+4|﹣|2+c|=2(6+c)﹣(c+2)=10+c.(2)由已知可得f(x)=当an ≥﹣c时,an+1﹣an=c+8>c;当﹣c﹣4≤an <﹣c时,an+1﹣an=2an+3c+8≥2(﹣c﹣4)+3c+8=c;当an <﹣c﹣4时,an+1﹣an=﹣2an﹣c﹣8>﹣2(﹣c﹣4)﹣c﹣8=c.∴对任意n∈N*,an+1﹣an≥c;(3)假设存在a1,使得a1,a2,…,an,…成等差数列.由(2)及c>0,得an+1≥an,即{an}为无穷递增数列.又{an }为等差数列,所以存在正数M,当n>M时,an≥﹣c,从而an+1=f(an)=an+c+8,由于{an}为等差数列,因此公差d=c+8.①当a1<﹣c﹣4时,则a2=f(a1)=﹣a1﹣c﹣8,又a2=a1+d=a1+c+8,故﹣a1﹣c﹣8=a1+c+8,即a1=﹣c﹣8,从而a2=0,当n≥2时,由于{an }为递增数列,故an≥a2=0>﹣c,∴an+1=f(an)=an+c+8,而a2=a1+c+8,故当a1=﹣c﹣8时,{an}为无穷等差数列,符合要求;②若﹣c﹣4≤a1<﹣c,则a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=﹣c,应舍去;③若a1≥﹣c,则由an≥a1得到an+1=f(an)=an+c+8,从而{an}为无穷等差数列,符合要求.综上可知:a1的取值范围为{﹣c﹣8}∪[﹣c,+∞).【点评】本题综合考查了分类讨论的思方法、如何绝对值符号、递增数列、等差数列等基础知识与方法,考查了推理能力和计算能力.12.数列{an }满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an }的前 n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.【分析】(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{an }的通项公式,利用等比数列的前n项和公式即可求数列{an}的前 n项和Tn;(3)利用构造法,结合裂项法进行求解即可证明不等式.【解答】解:(1)∵a1+2a2+…nan=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+nan=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)an﹣1=4﹣,n∈N+.两式相减得nan=4﹣﹣(4﹣)=,n≥2,则an=,n≥2,当n=1时,a1=1也满足,∴an=,n≥1,则a3=;(2)∵an=,n≥1,∴数列{an}是公比q=,则数列{an }的前 n项和Tn==2﹣21﹣n.(3)bn =+(1+++…+)an,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴bn =+(1+++…+)an,∴Sn =b1+b2+…+bn=(1+++…+)a1+(1+++…+)a2+…+(1+++…+)an=(1+++…+)(a1+a2+…+an)=(1+++…+)Tn=(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)=2+2×(++…+)<2+2lnn,即Sn<2(1+lnn)=2+2lnn.【点评】本题主要考查数列通项公式以及前n项和的计算,以及数列和不等式的综合,利用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能力,综合性较强,难度较大.13.设各项均为正数的数列{an }的前n项和为Sn满足Sn2﹣(n2+n﹣3)Sn﹣3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.【分析】(1)本题可以用n=1代入题中条件,利用S1=a1求出a1的值;(2)利用an 与Sn的关系,将条件转化为an的方程,从而求出an;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:,即.∴(S1+3)(S1﹣2)=0.∵S1>0,∴S1=2,即a1=2.(2)由得:.∵an>0(n∈N*),∴Sn>0.∴.∴当n≥2时,,又∵a1=2=2×1,∴.(3)由(2)可知=,∀n∈N*,=<=(),当n=1时,显然有=<;当n≥2时,<+=﹣•<所以,对一切正整数n,有.【点评】本题考查了数列的通项与前n项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.14.已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an}前n项和为Sn ,且满足S5=2a4+a5,a9=a3+a4.(1)求数列{an}的通项公式;(2)若am am+1=am+2,求正整数m的值;(3)是否存在正整数m,使得恰好为数列{an}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.【分析】(1)设等差数列的公差为d,等比数列的公比为q由题意列式求出公差和公比,则等差数列和等比数列的通项公式即可得出;(2)分am =2k和am=2k﹣1,利用amam+1=am+2即可求出满足该等式的正整数m的值;(3)对于k∈N*,有..假设存在正整数m,使得恰好为数列{an}中的一项,设=L(L∈N*),则,变形得到(3﹣L)3m﹣1=(L﹣1)(m2﹣1),由此式得到L的可能取值,然后依次分类讨论求解.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q,则a1=1,a2=2,a3=1+d,a4=2q,a9=1+4d.∵S5=2a4+a5,∴a1+a2+a3=a4,即4+d=2q,又a9=a3+a4.∴1+4d=1+d+2q.解得:d=2,q=3.∴对于k∈N*,有.故;(2)若am =2k,则由amam+1=am+2,得2•3k﹣1(2k+1)=2•3k,解得:k=1,则m=2;若am=2k﹣1,则由(2k﹣1)•2•3k﹣1=2k+1,此时左边为偶数,右边为奇数,不成立.故满足条件的正数为2;(3)对于k∈N*,有..假设存在正整数m,使得恰好为数列{an}中的一项,又由(1)知,数列中的每一项都为正数,故可设=L(L∈N*),则,变形得到(3﹣L)3m﹣1=(L﹣1)(m2﹣1)①.∵m≥1,L≥1,3m﹣1>0,∴L≤3.又L∈N*,故L可能取1,2,3.当L=1时,(3﹣L)3m﹣1>0,(L﹣1)(m2﹣1)=0,∴①不成立;当L=2时,(3﹣2)3m﹣1=(2﹣1)(m2﹣1),即3m﹣1=m2﹣1.若m=1,3m﹣1≠m2﹣1,令,则=.因此,1=T2>T3>…,故只有T2=1,此时m=2,L=2=a2.当L=3时,(3﹣3)3m﹣1=(3﹣1)(m2﹣1).∴m=1,L=3=a3.综上,存在正整数m=1,使得恰好为数列{an}中的第三项,存在正整数m=2,使得恰好为数列{an}中的第二项.【点评】本题考查了等差数列和等比数列的性质,训练了分类讨论的数学思想方法,考查了学生综合分析问题和解决问题的能力,考查了学生的逻辑思维能力,是压轴题.15.已知等差数列{an }中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an }的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.【分析】(1)由题意,得,由此可解得an=1+(n﹣1)•2=2n﹣1.(2)由=,知=.由此可求出m的值.【解答】解:(1)由题意,得解得<d<.又d∈Z,∴d=2.∴an=1+(n﹣1)•2=2n﹣1.(2)∵=,∴=.∵,,,S2为S1,Sm(m∈N*)的等比中项,∴S22=SmS1,即,解得m=12.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答.16.已知数列{an }满足a1=且an+1=an﹣an2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{an 2}的前n项和为Sn,证明(n∈N*).【分析】(1)通过题意易得0<an ≤(n∈N*),利用an﹣an+1=可得>1,利用==≤2,即得结论;(2)通过=an ﹣an+1累加得Sn=a1﹣an+1,对an+1=an﹣an2两边同除以an+1an采用累积法可求出an+1的范围,从而得出结论.【解答】证明:(1)由题意可知:an+1﹣an=﹣an2≤0,即an+1≤an,故an≤,1≤.由an =(1﹣an﹣1)an﹣1得an=(1﹣an﹣1)(1﹣an﹣2)…(1﹣a1)a1>0.所以0<an≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵an ﹣an+1=,∴an>an+1,∴>1,∴==≤2,∴1≤≤2(n∈N*),综上所述,1<≤2(n∈N*);(2)由已知,=an ﹣an+1,=an﹣1﹣an,…,=a1﹣a2,累加,得Sn =++…+=a1﹣an+1,①由an+1=an﹣an2两边同除以an+1an得,和1≤≤2,得1≤≤2,累加得1+1+...1≤+﹣+...+﹣≤2+2+ (2)所以n≤﹣≤2n,因此≤an+1≤(n∈N*)②,由①②得≤(n∈N*).【点评】本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.17.已知等差数列{an }的首项a1=1,公差d>0,且a2,a5,a14分别是等比数列{bn}的b2,b3,b4.(Ⅰ)求数列{an }与{bn}的通项公式;(Ⅱ)设数列{cn }对任意自然数n均有=an+1成立,求c1+c2+…+c2014的值.【分析】(Ⅰ)依题意,a2,a5,a14成等比数列⇒(1+4d)2=(1+d)(1+13d),可求得d,继而可求得数列{an }的通项公式;由b2=a2=3,b3=a5=9,可求得q与其首项,从而可得数列{bn}的通项公式;(Ⅱ)由(Ⅰ)知an =2n﹣1,bn=3n﹣1,由++…+=an+1,可求得c1=b1a2=3,=an+1﹣an=2(n≥2),于是可求得数列{cn }的通项公式,继而可求得c1+c2+…+c2014的值.【解答】解:(Ⅰ)∵a2=1+d,a5=1+4d,a14=1+13d,∵a2,a5,a14成等比数列,∴(1+4d)2=(1+d)(1+13d),解得d=2,∴an=1+(n﹣1)×2=2n﹣1;又b2=a2=3,b3=a5=9,∴q=3,b1=1,∴bn=3n﹣1.(Ⅱ)∵++…+=an+1,∴=a2,即c1=b1a2=3,又++…+=an(n≥2),∴=an+1﹣an=2(n≥2),∴cn =2bn=2•3n﹣1(n≥2),∴cn=.∴c1+c2+…+c2014=3+2×3+2×32+…+2×32013=3+2×(3+32+ (32013)=3+2×。

(完整)高考数列大题专题

(完整)高考数列大题专题

(完整)高考数列大题专题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考中的数列—最后一讲(内部资料勿外传)1.已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2.设{a n}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.3.已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小.4.已知等差数列{a n}满足a2=0,a6+a8=﹣10(I)求数列{a n}的通项公式;(II)求数列{}的前n项和.5.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式;(II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.6.在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.(I)求数列{a n}的通项公式;(Ⅱ)设b n=tana n?tana n+1,求数列{b n}的前n项和S n.7.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(Ⅰ)若S 5=5,求S 6及a 1;(Ⅱ)求d 的取值范围.8.已知等差数列{a n }的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =(4﹣a n )q n ﹣1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .9.已知数列{a n }满足a 1=0,a 2=2,且对任意m 、n ∈N *都有a 2m ﹣1+a 2n ﹣1=2a m+n ﹣1+2(m ﹣n )2(1)求a 3,a 5;(2)设b n =a 2n+1﹣a 2n ﹣1(n ∈N *),证明:{b n }是等差数列;(3)设c n =(a n+1﹣a n )q n ﹣1(q ≠0,n ∈N *),求数列{c n }的前n 项和S n .10.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an }的前n 项和S n .11.已知数列{a n }满足,,n ∈N ×.(1)令b n =a n+1﹣a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.12.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n ),均在函数y=b x +r (b >0)且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b=2时,记b n =n ∈N *求数列{b n }的前n 项和T n .13.(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .14.已知数列{a n}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.15.设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;16.已知数列{x n}的首项x1=3,通项x n=2n p+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.17.设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.18.在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;(Ⅲ)求数列{a n}的前n项和T n.19.已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和S n.20.在数列{}n a 中,10a =,且对任意*k N ∈k N ∈,21221,,k k k a a a -+成等差数列,其公差为k d 。

数列专题(精品)

数列专题(精品)

数列专题一、数列知识的梳理1.等差数列的通项公式和前n 项和公式如果等差数列{}n a 的首项为1a ,公差为d ,那么它的通项公式是:)()1(11d a dn d n a a n -+=-+=如果等差数列{}n a 的首项为1a ,公差为d ,那么它的前n 项和公式是:n da n d d n n na n a a S n n )2(22)1(2)(1211-+=-+=+=2.等差数列的性质(1)通项公式的推广:),()(*N m n d m n a a m n ∈-+=.(2)若{}n a 为等差数列,且),,,(*N n m l k nm l k ∈+=+,则n m l k a a a a +=+.(3)若{}n a 是等差数列,公差为d ,则{}n a 2也是等差数列,公差为d 2. (4)若{}n a ,{}n b 是等差数列,则{}n n qb pa +也是等差数列. (5)若{}n a 是等差数列,公差为d ,则),(,,*2N m k a a a m k m k k ∈++ ,是公差为md 的等差数列.(6)数列 ,,,232m m m m m S S S --构成等差数列.3.等比数列的通项公式和前n 项和公式如果等比数列{}n a 的首项为1a ,公比为q ,那么它的通项公式是:)0(11≠⋅=-q q a a n n如果等比数列{}n a 的首项为1a ,公比为q ,那么它的前n 项和公式是:⎪⎩⎪⎨⎧≠--=--==.111)1(;1111q q qa a qq a q na S n n n4.等比数列的性质(1)通项公式的推广:),(*N m n qa a mn m n ∈⋅=-.(2)若{}n a 为等比数列,且),,,(*N n m l k nm l k ∈+=+,则n m l k a a a a ⋅=⋅.(3)若{}n a ,{}n b (项数相同)是等比数列,则{}{}{}}{,,},1{),0(2nn nn n n b a b a a a a n ⋅≠λλ仍是等比数列.(4)公比不为-1的等比数列{}n a 的前n 项和为n S ,则 ,,,232n n n n n S S S --仍成等比数列,其公比为nq .(5)若{}n a 是公比不为1的等比数列,)1,0,0,0(≠≠≠=++=⇔q q A B A B Aq S n n 且.二、数列通项的几种求法 1.累加法:数列的基本形式为:)()(*1N n n f a a n n ∈=-+.等式左边)()()()()(11223211a a a a a a a a a a n n n n n -=-+-++-+-=--- 等式左边)1()2()2()1(f f n f n f +++-+-= 所以:1)1()2()2()1(a f f n f n f a n ++++-+-= .例1 已知{}n a 的首项)(,2,1*11N n n a a a n n ∈+==+,求{}n a 的通项公式.2.累乘法:数列的基本形式为:)()(*1N n n f a a nn ∈=+. 等式左边11223211a a a a a a a a a a n n n n n =+⋅⋅⋅=--- 等式左边)1()2()2()1(f f n f n f ⋅⋅⋅-⋅-= 所以:1)]1()2()2()1([a f f n f n f a n ⋅⋅⋅⋅-⋅-= . 例2 已知{}n a 的首项)(,2,2*11N n a n na a n n ∈+==+,求{}n a 的通项公式.2.公式法:若n S 为数列{}n a 的前n 项和,即:n n a a a a S ++++= 321,则⎩⎨⎧≥-==-.2;111n S S n S a n nn例3 数列{}n a 中,n S 是前n 项和,若)2(,31,211≥==+n S a a n n ,求{}n a 的通项公式.4.待定系数法:数列{}n a 有形如)1(1≠+=+k b ka a n n 的关系时,可用待定系数法求得{}t a n +为等比数列,进而求得n a .即:)(1t a k t a n n +=++展开可得:t k ka a n n )1(1-+=+,其中1-=k b t .例4 已知数列{}n a 满足关系,231+=+n n a a 且11=a ,求{}n a 的通项公式.5.倒数法:数列{}n a 有形如n n n a k a a =++)(1的关系时,可先用倒数法,再用待定系数法求n a . 即:n n n n a ka a a =+⋅++11 两边同时除以n n a a ⋅+1,可得:111+=+n n a a k 将na 1看成一个整体运用待定系数法,从而得出n a .例5已知数列{}na满足关系,31+=+nnn aaa且)(2*1Nna∈=,求{}n a的通项公式.课堂练习:1.已知等差数列{}na中,51,28610==Sa,求数列{}n a的通项公式.2.已知数列{}na满足,12,111++==+naaann,求数列{}na的通项公式.3.已知数列{}na满足,nnnaaa2,111==+,求数列{}na的通项公式.4.已知数列{}na的前n项和nS满足,2)1(41+=nnaS且0>na,求数列{}n a的通项公式.5.已知数列{}na满足,12,111+==+nnaaa,求数列{}n a的通项公式.6.已知数列{}na满足,22,111+==+nnn aaaa,求数列{}na的通项公式.三、数列前n 项和的求法: 1.裂项相消法:一般地,若是公差为d 的等差数列,则有:)11()1(114321321321nn n a a ·a ·a a a ·a ·a d n a a ·a ·a --=-特殊的裂项公式: (1)111)1(1+-=+=n n n n a n ;(2))121121(21)12)(12(1+--=+-=n n n n a n ;(3)n n n n a n -+=++=111.例6 已知数列{}n a 是递增的等比数列,且8,93241=⋅=+a a a a .⑴求数列{}n a 的通项公式; ⑵设n S 为数列{}n a 的前n 项和,11++=n n n n S S a b 求数列{}n b 的前前n 项和n T .例7 已知数列{}n a 满足)(1,1*11N n n a a a n n ∈+=-=+,求数列}1{na 的前10项和.2.错位相减法:一般地,若数列{}n a 是公差为d 的等差数列,数列{}n b 是公比为q 的等比数列,若n n n b a c ⋅=,则数列{}n c 的前n 项和n S :n n n b a b a b a b a b a S +++++= 44332211…………………………① 154433221++++++=n n n b a b a b a b a b a qS ………………………②①—②得:143211)()1(+-+++++=-n n n n b a b b b b d b a S q若1≠q 时,212111)1(1q b b d q b a b a S n n n n --⋅+--=++若1=q 时,2)(11na ab S n n ⋅+⋅=.例8 已知数列{}n a 满足n n a na a ⋅+==+211112,2)(.⑴求数列{}n a 的通项公式; ⑵令n n n a a b 211-=+,求数列{}n b 的前n 项和n S .课堂练习:1. 已知等比数列{}n a 中,16,241==a a .⑴求数列{}n a 的通项公式; ⑵令*122log log 1N n a a b n n n ∈⋅=+,求数列{}n b 的前n 项和n S .2. 已知等比数列{}n a 中,*11),1()1(,1N n n n a n na a n n ∈+++==+.⑴证明:求数列⎭⎬⎫⎩⎨⎧n a n 是等差数列; ⑵设n nn a b ⋅=3,求数列{}n b 的前n 项和n S .四、等差、等比数列的综合应用例9 已知数列{}{}n n b a ,满足3,4,6332211======b a b a b a ,且数列{})*1N n a a n n ∈-+(是等差数列,{}2-n b 是等比数列,求数列{}n a 和{}n b 的通项公式.五、课堂小结: 1.数列知识梳理: ①等差数列;②等比数列的通项公式; ③前n 项和公式及性质; 2.数列通项的求法: ①累加法; ②累乘法; ③公式法; ④待定系数法; ⑤倒数法.3.数列前n 项和的求法: ①裂项相消法; ②错位相减法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列专题训练
选择题
1.{an}是等比数列,且 ,则 等于
A、5B、10C、15D、20解:A
2.已知数列{an}(nN)中,a1= 1,an+1=,则an为
(A) 2n-1(B) 2n+ 1(C)(D)解:C
填空题
1.设等比数列 的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为.解:-2
⑴求数列{bn}的通项公式;⑵求证{ }是等比数列,并求数列{an}的通项公式.
解(1)Bn= (2)
4.已知函数 设数列 }满足 ,数列 }满足
(Ⅰ)用数学归纳法证明 ;(Ⅱ)证明
练习
1.等差数列{an}的前n项和为Sn,若a1>0,S4=S8,则当Sn取得最大值时,n的值为
(A) 5(B)6(C) 7(D) 8
解答题
1.设数列{an}的首项a1=a≠ ,且
记 ,n==l,2,3,…·.
(I)求a2,a3;
(II)判断数列{bn}是否为等比数列,并证明你的结论;
(III)求 .
解:(I)a2=a1+ =a+ ,a3= a2= a+ ;
(II)∵a4=a3+ = a+ ,所以a5= a4= a+ ,
所以b1=a1- =a- ,b2=a3- = (a- ),b3=a5- = (a- ),
(2)求数列{bn}的前n项和为Tn.
解:(1)当n=1时,a1=2a1-1,∴a1=1,当n≥2时,an=Sn-Sn-1=2an-1-2an-1+1,
∴an=2an-1.于是数列{an}是首项为1,公比为2的等比数列.
∴an=2n-1.
(2)∵bn+1=an+bn,∴bn+1-bn=2n-1.从而bn-bn-1=2n-2,bn-1-bn-2=2n-3,……b2-b1=1,
上式相加,得bn-b1=1+2+22+…+2n-2=2n-1-1,又b1=2,∴bn=2n-1+1.
Tn=b1+b2+…+bn=(20+21+…+2n-1)+n.=2n-1+n..
3.已知数列{an}和{bn}有a1= ,an= (n≥2),而{bn}的前n项和Bn= .
⑴求数列{bn}的通项公式;
(Ⅰ)用数学归纳法证明 ;
(Ⅱ)证明
解:(Ⅰ)证明:当 因为a1=1,
所以
下面用数学归纳法证明不等式
(1)当n=1时,b1= ,不等式成立,
(2)假设当n=k时,不等式成立,即
那么
所以,当n=k+1时,不等也成立.
根据(1)和(2),可知不等式对任意n∈N*都成立.
(Ⅱ)证明:由(Ⅰ)知,
所以
故对任意
练习
选择题
1.等差数列{an}的前n项和为Sn,若a1>0,S4=S8,则当Sn取得最大值时,n的值为
(A) 5(B)6(C) 7(D) 8
解答提示:B, 最大。
2.=C
(A)0(B)(C)1(D)不存在
解答提示:C,=1
填空
1.设 的首项为1的正数数列,且 则它的通项公式为
2.已知数列{an}中,a1=1,前n项和为Sn,且点(an,an+1)在直线x-y+1=0上.
则+++…+=.解:
解答题
1.设数列{an}的首项a1=a≠ ,且 ,记 ,n==l,2,3,…·.
(I)求a2,a3;(II)判断数列{bn}是否为等比数列,并证明你的结论;
(III)求 .
解:(I)a2=a+ ,a3= a+ ;(II){bn}是首项为a- ,公比为 的等比数列·
⑵求证{ }是等比数列,并求数列{an}的通项公式.
解(1)由题意得Bn= ①,Bn-1= n-1)②
①-②得Bn=n+3,又n=1时,b1=4,∴bn=n+3(n∈N).
(2) (n≥2),
∴{ }是等比数列,公比为 ,首项为 .
∴ =- ( )n-1,
4.已知函数 设数列 }满足 ,数列 }满足
即 ,得 因
当 =0时,{an}为正的常数列就有
当 = 时, ,就有
于是数列{ }是公比为1或 的等比数列
(Ⅱ)如果无穷等比数列 的公比 =1,则当 →∞时其前 项和的极限不存在.
因而 = ≠0,这时公比 = , 这样 的前 项和为
则S= 由 ,得公差 =3,首项 = =3
2.已知数列{an}的各项均为正数且a1= 6,点 在抛物线 上;数列{bn}中,点 在过点(0,1)且方向向量为(1,2)的直线上.
(1)求数列{an}、{bn}的通项公式;
(2)对任意正整数n,不等式 ≤ … 成立,求正数a的取值范围.
解:(1)将点 代入 中得

∴ 2分
过点(0,1)且方向向量为(1,2)的直线为

(2)对任意正整数n,不等式 ≤ … 成立
即a≤ … 对任意正整数n成立
记 …

∴ ,即f(n)递增
故 ,∴0<a≤ .
数列专题训练
选择题
1.{an}是等比数列,且 ,则 等于
A、5B、10C、15D、20
解答提示:A
2.已知数列{an}(nN)中,a1= 1,an+1=,则an为
(A) 2n-1(B) 2n+ 1(C)(D)
解答提示:C=+2,{}为等差数列,= 2n-1.∴an=;
填空题
1.设等比数列 的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为.
解答提示:-2
2.已知数列{an}中,a1=1,前n项和为Sn,且点(an,an+1)在直线
x-y+1=0上.则+++…+=.
解答提示: an-aห้องสมุดไป่ตู้+1+1=0,即an+1=an+1,
∴{an}是等差数列,首项和公差均为1,∴an=n.
∴Sn=1+2+…+n=,==2(-)
+++…+==2(1-)=
(III) .
2.数列{an}的前n项和为Sn,且Sn=2an-1,数列{bn}满足b1=2,bn+1=an+bn.
(1)求数列{an}的通项公式;(2)求数列{bn}的前n项和为Tn.
解:(1)an=2n-1. (2) Tn=2n-1+n..
3.已知数列{an}和{bn}有a1= ,an= (n≥2),而{bn}的前n项和Bn= .
解:B
2.=C
(A)0(B)(C)1(D)不存在
解答提示:C,=1
填空
1.设 的首项为1的正数数列,且 则它的通项公式为
解答提示: , ,累乘法
2.已知{an}为等差数列,a1=2,S10=110.设an=log0.5bn( nN*),则{bn}的各项和为.
解答提示:.∵S10=10×2+0.5×10(10-1)d=110,得d=2,an=2n.故bn= ()2 n.
∴{bn}为等比数列,首项为,公比为.故{bn}的各项和为=.
解答题
1.已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .
(Ⅰ)证明 为等比数列;
(Ⅱ)如果无穷等比数列 各项的和 ,求数列 的首项 和公差 .
(注:无穷数列各项的和即当 时数列前 项和的极限)
解:(Ⅰ)设数列{an}的公差为d,依题意,由 得
猜想:{bn}是公比为 的等比数列·
证明如下:
因为bn+1=a2n+1- = a2n- = (a2n-1- )= bn, (n∈N*)
所以{bn}是首项为a- ,公比为 的等比数列·
(III) .
2.数列{an}的前n项和为Sn,且Sn=2an-1,数列{bn}满足b1=2,bn+1=an+bn.
(1)求数列{an}的通项公式;
相关文档
最新文档