第二十三章 旋转导学案(全章)

合集下载

(人教版九年级上册)第二十三章《旋转》导学案

(人教版九年级上册)第二十三章《旋转》导学案

九年级下数学NO :1 主备人:银 波 审核人: 授课人: 第 周 星期 第 组 学生 预习评价: 整理评价23.1图形的旋转(1)一、学习目标:通过具体实例认识图形的旋转,理解“对应点到旋转中心的距离相等”以及“旋转前、后的图形全等”的基本性质。

二、学习重难点为:旋转及对应点的有关概念及其应用 三、学习过程 (一)、情景导入: 1、观察下列图片:(1)时钟上的秒针在不停的转动;(2)大风车的转动;(3)飞速转动的电风扇叶片;(1)这些运动有什么共同特征?(2)它们在运动过程中,形状、大小、位置是否发生变化?(二)自主学习: 1、旋转的概念:图1:在同一平面内,点A 绕着定点O 旋转某一角度得到点 ; 图2:在同一平面内,线段AB 绕着定点O 旋转某一角度得到线段 ; 图3:在同一平面内,三角形ABC 绕着定点O 旋转某一角度得到 。

把一个 绕着 内 转动一个 ,叫做图形的旋转, 叫做旋转中心, 叫做旋转角。

2、旋转的三要素:(1) ;(2) ;(3) 。

3、旋转的性质:(1)△ABO 绕点O 旋转得到△CDO ,则:点B 的对应点是________;线段OB 的对应线段是________;线段CD 的对应线段是________; ∠AOB 的对应角是________;∠B 的对应角是________; 旋转中心是________;旋转角是_________________。

(2)△ABC在旋转过程中,哪些发生了变化?AB= ;∠AOB= ;∠ABO= ;∠OAB= ;OA= ;OB= ;OC= ;∠AO C= 。

对应边:;对应角:;对应点到旋转中心的距离:;对应点与旋转中心所连线段的夹角等于。

三、例题学习:1,△ABF是△ADE的旋转图形。

四边形ABCD是边长为1的正方形,且DE=4(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?四、课堂练习:如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF. 在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)∠AOD与∠BOE有什么大小关系?五、课后练习:1、下列现象中属于旋转的有( )个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动。

九年级数学上册第二十三章旋转章末复习导学案新版新人教版

九年级数学上册第二十三章旋转章末复习导学案新版新人教版

第二十三章旋转章末复习一、复习导入1.导入课题:本节课对全章的知识作一回顾,梳理其知识脉络,弄清其重点和考点.2.复习目标:(1)梳理全章知识要点,能画出它的知识结构框图.(2)进一步明确旋转、中心对称、中心对称图形等概念的含义及它们的性质和作图等.3.复习重、难点:重点:旋转、中心对称的概念和性质.难点:性质的应用及图案的设计.二、分层复习1.复习指导:(1)复习内容:教材第58页至第77页的内容.(2)复习时间:7分钟.(3)复习要求:搜集知识要点,画知识结构框图.(4)复习参考提纲:①梳理知识要点:a.旋转的概念.b.旋转的性质.c.中心对称与中心对称图形的概念.d.中心对称的性质.e.关于原点对称的点的坐标特征.f.旋转和中心对称的作图.②画全章知识结构框图.180180⎧⎪⎨⎪⎩︒⎧⎪⎧⎪⎨⎪⎨⎩⎪︒⎪⎪⎩定义(三要素:旋转中心、旋转方向、旋转角)对应点到旋转中心的距离相等性质对应点与旋转中心连线的夹角等于旋转角旋转不改变图形的形状和大小定义:两个图形旋转后互相重合旋转对称点的连线经过对称中心且被对称中心平分性质特殊的旋转中心对称关于对称中心对称的两个图形是全等图形中心对称图形(一个图形旋转后与其自身重合)关于原点对称的两点:横、纵坐标分别互为相反数⎧⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩利用平移、轴对称、旋转进行图案设计 2.自主复习:可结合复习指导进行自主复习.3.互助复习:(1)师助生:①明了学情:知识点的梳理是否详细、准确;知识结构框图是否能清晰展现全章的知识脉络.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:生生互动、交流、研讨、改正.4.强化:学习成果展示:画出全章知识结构框图.1.复习指导:(1)复习内容:典例剖析,考点跟踪.(2)复习时间:10分钟.(3)复习要求:注意体会知识点的考查方式,以及所学知识的综合运用.(4)复习参考提纲:①在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作(A )A .先逆时针旋转90°,再向左平移B .先顺时针旋转90°,再向左平移C .先逆时针旋转90°,再向右平移D .先顺时针旋转90°,再向右平移②下列四个图形中,既是轴对称图形又是中心对称图形的有(B )A.4个B.3个C.2个D.1个③若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O 对称,则m= -1 ,n= -5 . ④如图,在平面直角坐标系中,点A 的坐标为(-2,3),点B 的坐标为(-5,0),画出点A 、点B 关于原点的对称点A′、B′,并写出对称点的坐标.A′(2,-3)B′(5,0)⑤如图,在平面直角坐标系中,Rt △AOB 的两条直角边OA 、OB 分别在x 轴、y 轴的负半轴上,且OA =2,OB =1,将Rt △AOB 绕点O 按顺时针方向旋转90°,再把所得的图形沿x 轴正方向平移1个单位得到△CDO,写出A 、C 两点的坐标并求出点A 和点C 之间的距离.A(-2,0),C(1,2),点A 和点C 之间的距离22222313AC CD AD =+=+=.2.自主复习:可结合复习指导自主复习,或相互交流研讨.3.互助复习:(1)师助生:① 明了学情:特别关注学生是否对以往学过的旧知识不熟悉.② 差异指导:根据学情进行针对性指导.(2)生助生:小组内研讨、总结.4.强化:结合复习参考提纲,让学生明确本章的主要考点有:(1)中心对称图形的识别(或综合轴对称图形);(2)关于原点对称的点的坐标的运用;(3)利用旋转进行相关的计算或证明;(4)平移、轴对称和旋转变换的综合运用;(5)中心对称的性质的应用及相关的作图等.三、评价1.学生的自我评价(围绕三维目标):在这节课的学习中有何新的认识和收获?自我感觉还有什么不足的地方吗?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与情况,小组交流协作状况,以及学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):针对本课时的主要问题,从多个角度、分层次引导复习,让学生在复习中得到提升,设置典型的问题考查学生对于基础知识的理解和运用,从课堂反馈来看,大部分学生掌握了本章知识要点,还有部分学生对中心对称(图形)还是有些迷惑,在后面的教学中,要不定时检验他们对这方面知识的掌握情况.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为(C)A.60°B.75°C.85°D.90°第1题图第3题图第4题图2.(10分)已知点P(a,a+2)在直线y=2x-1上,则点P关于原点的对称点P′的坐标为(D)A.(3,5)B.(-3,5)C.(3,-5)D.(-3,-5)3.(10分) 如图,边长为4的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是(B)A.1B.4C.6D.84.(10分) 如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在点B′处,则BB′=45cm.5.(10分) 在艺术字中,有些汉字或字母是中心对称图形.下面的汉字或字母是中心对称图形吗?如果是,请标出它们的对称中心.解:都是中心对称图形,对称中心如图所示.6.(10分)如图,在张伯与王叔联合承包的平行四边形田地ABCD中,有块圆形低洼地,现要修建一条笔直的路,将平行四边形田地和圆形低洼地同时平分成两部分,请设计路线.解:连接AC,BD,交于O′,则O′是平行四边形ABCD的对称中心,连接圆心O与O′,则OO′所在的直线将平行四边形田地和圆形低洼地同时分成两部分.7.(10分) 如图,写出△ABC三顶点的坐标,并在图中描出点A1(3,3),B1(2,-2),C1(4,-1),并说明△A1B1C1是△ABC通过怎样的变化得到的?解:A(-2,2),B(-3,-3),C(-1,-2).描点如图.△A1B1C1是由△ABC先向右平移5个单位,再向上平移1个单位得到的.二、综合应用(20分)8.(20分) 如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0),②(0,8),③(-8,0),面积都等于12.(2)菱形②可以看做是由菱形①如何旋转得到的?解:绕点O逆时针旋转90°得到的.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是y=-x.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.解:第一种:向左平移16个单位长度.第二种:关于原点作中心对称.三、拓展延伸(10分)9.(10分) 如图,平行四边形ABCD中,AB⊥AC,AB=2,BC=25,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点F、E.(1)当旋转角度为90°时,四边形ABFE的形状是平行四边形;(2)试说明在旋转过程中,线段AF与EC总是保持相等;(3)在旋转过程中四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点O顺时针旋转的度数.解:(2)连接AF,EC.∵四边形ABCD是平行四边形∴AD与CB关于点O中心对称.又E、F分别在AD、BC上.∴AE与CF关于点O中心对称.∴AE=CF,又AE∥CF,∴四边形AFCE是平行四边形.∴AF=CE.(3)可能是菱形,当AC绕点O旋转45°时,∵AC=BC2-AB2=4,∴OA=OC=2,∴OA=AB,又∠BAC=90°,∴△OAB为等腰直角三角形,∴∠AOB=45°.当AC绕点O顺时针旋转45°时,∠AOE=45°,∴∠BOE=90°,EF垂直平分BD,∴BE=ED.易证四边形BEDF为平行四边形. ∴四边形BEDF是菱形.。

新人教版九年级数学第二十三章-旋转导学案(全章)

新人教版九年级数学第二十三章-旋转导学案(全章)

第二十三章 旋转23.1图形的旋转(1)学习目标1、掌握旋转的定义以及相关概念2、理解旋转的基本性质3、利用性质解决相关问题。

学习重点:旋转相关概念以及性质 学习难点:利用性质解决相关问题。

学习过程:认真阅读教材第59页----第61页,完成下列问题: 一、预习热身:把一个平面图形___ 着平面内某一点O_____一个角度,就叫做图形的旋转,点O 叫做_________,转动的角叫做________。

因此,旋转的决定因素....是_________和_________。

二、自主学习:1、钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了_________度.2、如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A 、B 分别移动______________3、如图:∆ABC 是等边三角形,D 是BC 上一点,∆ABD 经过旋转后到达∆ACE 的位置。

(1)旋转中心是_______(2)旋转了_______度.(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了________________. 三、合作探究:1、总结归纳旋转地性质。

①_______________________________________________________ ②__________________________________________________________ ③_____________________________________________________________ 2、旋转性质的应用1、已知△ABC 是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△DEC ,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE 与AB 的位置关系为_________________.2、正方形ABCD 中有一点P ,把△ABP 绕点点B 旋转到△CQB,连结PQ ,则△PBQ 的形状是_____________________________. 四、达标训练:1、下列现象中属于旋转的有________________①地下水位逐年下降;②传送带的移动;③方向盘的转动; ④水龙头的转动;⑤钟摆的运动;⑥荡秋千2、等边三角形至少旋转__________度才能与自身重合。

23章导学案

23章导学案

旋转(第1课时)【目标导航】1. 理解图形的旋转、旋转中心的概念 •2. 理解旋转过程中对应点、对应线段及旋转角的概念,能找出旋转角3. 理解旋转的性质,并利用此性质解决有关问题4. 能够按要求作出简单平面图形旋转后的图形【要点梳理】 与旋转有关的概念 把一个图形绕着某一点0转动一个角度的图形变换叫做旋转 .点0叫做旋转中心,转动的角叫 做旋转角.如果图形上的点P 经过旋转变为点 P',那么这两个点叫做这个旋转的对应点3. 旋转前后的图形全等.例4如右图,E 是正方形ABCD 中CD 边上的任意一点 以点A 为中心,把厶ADE 旋转90° ,请画出旋转后的图形【课堂操练】1.任意画一个△ ABC ,作下列旋转:(1) (2)以AC 中点为中心,把这个三角形旋转例1如图,可以看到点 A 旋转到点A0A 旋转到0A', / AOB 旋转到/A'OB',这些都是互相对应的点、线段与角 . 那么,点B 的对应点是点 线段0B 的对应线段是线段 _; 线段AB 的对应线段是线段 _; Z A 的对应角是 _____________ 二B 的对应角是 ______ ;旋转中心是点 ;旋转的角度是 __ 例2下列现象中属于旋转的有 ________________ .(填序号)①气球升空运动;②传送带上物体的运动;③方向盘的转动; ④水龙头的转动;⑤钟摆的运动;⑥一个图形沿某直线翻折.第1题 第2题 第3题 第4题 4. 如图,将△ AOB 绕点0逆时针旋转90°,得到△ DOE ,若点A 坐标为(a , b ),则点D的坐标为 __________ .5. 将一图形绕着点 0顺时针方向旋转 70°后,再绕着点0逆时针方向旋转120°,这时如果 要使图形回到原来的位置,需要将图形绕着点 0什么方向旋转多少度 ( )例3如图,如果正方形 CDEF 旋转后能与正方形 ABCD 重合, 那么图形所在的平面上可以作为旋转中心的点共有 __________ 个. 练习1.指出下列各图形的旋转中心、旋转角,并指出是由哪个基本图形得到B C -的. D C【课后盘点】1.如图,△ ABC 、△ ADE 均是顶角为42°的等腰三角形,BC 和DE 分别是底边,图中△ ________ 与2.如图,△ ABC 为等边三角形, (1)指出旋转中心;(2)求旋转角的度数;(3)求Z PAP '的度数. △ AP B 旋转后能与△ APC 重合,那么: △ ___ 可以通过以点 ______为旋转中心,旋转角度为 CE= ____ .2 .如图,将矩形ABCD 绕点C 按顺时针方向旋转 90 AF ,若 AB=3, BC=2,贝U AF= _____ .3.如图所示,把厶ABC 绕点C 顺时针转35°得 AC 于点 D ,若Z FDC=90 °,则 Z A= ______ .______ 得到.其中Z BAD=Z ________ , ,得到矩形FECG ,分别连接AC 、FC 、 以B 为中心,把这个三角形顺时针旋转180°. 60 ° ;例5如图,已知正方形 ABCD 和正三角形 ABE ,若将正三角形 ABE 绕点B 按逆时针方向 旋转90°得厶BCF ,再将△ BCF 以BC 为对称轴作轴对称图形厶 BCM ,连接AM 、CE . ⑴证明:AM=CE ;(2)设AM 与CE 交于N ,求Z CNM 的度数.旋转的基本性质 1.对应点到旋转中心的距离相等.CA .顺时针方向50°B .逆时针方向50°C .顺时针方向190 °D .逆时针方向1906.要使正十二边旋转后能与自身重合,至少应将它绕中心逆时针方向旋转.A. 30 B . 45 C. 60° D . 757.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△ BCE 绕点C顺时针方向旋转90°得到△ DCF,连接EF,若/ BEC=60°, 则/ EFD的度数为( )A. 10°B. 15°C. 20°D. 25°&如图,△ ABC绕点A顺时针旋转得△ ADE,点E恰好落在边BC 上.(1)若/ C= 65° ,求/ DEB的度数;(2)若/ BAC=90°,线段BC与BD有何关系?为什么?旋转(第2课时)【目标导航】1. 掌握与旋转有关的概念.2. 能够按要求作出简单平面图形旋转后的图形3. 理解旋转的性质,并利用此性质解决有关问题【复习引领】理解图形旋转后,图形中每一点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.【要点梳理】例1如图,△ ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B?对应点的位置,以及旋转后的三角形.9.如图,△ ABC为等边三角形,以AB为边向外作一△ ABD,使/ ADB=120°,然后把△BCD绕着点C按顺时针旋转60°得到△ ACE,已知BD=5 , AD=3.(1 )由旋转可知线段BC、CD、BD的对应线段分别是什么?(2)求/ BDC的度数.(3 )求CE的长.一一1 一一例2如图,四边形ABCD是边长为1的正方形,且DE=—, △ ABF是厶ADE的旋转图形.4(1)旋转中心是哪一点? ( 2)旋转了多少度?3) AF的长度是多少?( 4)如果连结EF,那么△ AEF是怎样的三角形?10.在△ ABC中,AC =BC =2,/ C=90 °,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点,图a,b,C是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图b加以证明.(2)三角板绕点P旋转,△ PBE是否能成为等腰三角形?若能,指出所有情况(即写出△ PBE为等腰三角形时CE的长);若不能,请说明理由.例3如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM ,使L、M?在AK的同旁, 连接BK和DM,试用旋转的思想说明线段BK与DM的关系.a b【课堂操练】1.已知等腰三角形ABC中,AB=AC=5,/ A=120°,将厶ABC绕点B顺时针旋转60°至厶A'BC', C'为C的对应点,求CC '的长.2.边长为2的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度,若使重叠部分的面积为口,则这个旋转角为度.3例4如图,在等边厶ABC内有一个点P, PA = 10, PB=8, PC = 6, 求/ BPC的度数.DCB【课后盘点】1 .下列语句中正确的个数有( )①一根针在平移前后,针尖的指向一定相同;②一个图形绕一点旋转a°之后与自身重合,则a—定是整数,且是360的因数;③我们说到正方形的对称特征时,总是指它的中心对称特征;④一个不是中心对称的图形不论绕什么点旋转多少度,都不会与自身重合.A .一个如图,在△延长线上的B. 两个C. 三个D.四个ABC中,/ B=40。

人教版初中初三年级九年级数学上册 旋转的概念与性质 精品导学案

人教版初中初三年级九年级数学上册  旋转的概念与性质 精品导学案

第二十三章 旋 转23.1 图形的旋转23.1.1 第1课时 旋转的概念与性质学习目标:1.掌握旋转的有关概念及基本性质.2.能够根据旋转的基本性质解决实际问题.重点:掌握旋转的有关概念及基本性质.难点:探索旋转的性质并能运用旋转的性质解决实际问题.一、知识链接1.将图①平移,使点A 的对应点为点C ,画出平移后的图形.2.如图②,已知△ABC 和直线l ,请画出△ABC 关于直线l 的对称图形.图① 图①二、要点探究探究点1:旋转的概念观察与思考 观察荡秋千、转动的钟表和风车,它们有什么共同的特征?思考 怎样来定义上面这些图形的变换?知识要点在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心.转动的角称为旋转角.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点.转动的方向分为顺时针与逆时针.典例精析例1 下列物体的运动是旋转的有.①电梯的升降运动;①行驶中的汽车车轮;①方向盘的转动;①骑自行车的人;①坐在摩天轮里的小朋友.方法总结:判断一种运动是否属于旋转,先看图形是否在同一平面内运动,其次要看是否有旋转中心,旋转角,旋转方向,还要注意判断变化前后图形大小是否发生了变化.例2 若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______ .练习如图,三角形ABD经过旋转后到三角形ACE的位置,其中①BAC=60°.(1)旋转中心是哪一点?(2)旋转了多少度?顺时针还是逆时针?(3)如果M是AB的中点,经过上述旋转后,点M转到什么位置?要点归纳:确定一次图形的旋转时,必须明确旋转中心、旋转角、旋转方向.旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素.典例精析例3 如图,点A、B、C、D都在方格纸的格点上,若①AOB绕点O按逆时针方向旋转到①COD 的位置,则旋转的角度为()A.30°B.45°C.90°D.135°方法总结:一个图形由一个位置旋转到另一个位置,如果有固定不动的点,那么这个点就是旋转中心,对应点与旋转中心所连线段的夹角等于旋转角.探究点2:旋转的性质合作探究1 根据图形填空旋转中心是点__________;图中对应点有;图中对应线段有_____________________________________.每对对应线段的长度有怎样的关系?________.图中旋转角等于________.合作探究2 观察下图,你能得到什么结论?知识要点:旋转的性质1.对应点到旋转中心的距离相等;2.两组对应点分别与旋转中心的连线所成的角相等;3.旋转中心是唯一不动的点;4.旋转不改变图形的形状和大小.想一想如图,将①ABC逆时针旋转①ADE,如何确定它们的旋转中心位置?练一练如图,在平面直角坐标系xOy中,①ABC的顶点A(1,2)、B(-2,2)、C(-1,0).若将①ABC以某点为旋转中心,顺时针旋转90°得到①DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,-1)D.(2.5,0.5)方法总结:旋转中心在对应点连线的垂直平分线上,要找到旋转中心,找到两组对应点连线的垂直平分线的交点即可.例4如图,将①ABC绕点A逆时针旋转150°,得到①ADE,这时点B,C,D恰好在同一直线上,求①B的度数.变式如图,①ABC为钝角三角形,将①ABC绕点A逆时针旋转120°,得到①AB' C' ,连接BB' .若AC' ①BB' ,则①CAB'的度数为多少?例5如图,四边形ABCD是正方形,①ADF按顺时针方向旋转一定角度后得到①ABE,已知AF =5,AB=8,求DE的长度.方法总结:利用旋转的性质解决问题时应抓住以下几点:(1)明确旋转中的“变”与“不变”;(2)找准旋转前后的“对应关系”;(3)充分挖掘旋转过程中的相等关系.当堂检测1.下列现象中属于旋转的有( )①地下水位逐年下降;②传送带的移动;③水龙头开关的转动;④钟摆的运动;⑤荡秋千运动.A.2个B.3个C.4个D.5个2. 下列説法正确的是( )A.旋转改变图形的形状和大小B.平移改变图形的位置C.图形可以沿某直线方向旋转一定距离D.由平移得到的图形也一定可由旋转得到3.①ABC绕点A旋转一定角度后得到①ADE,若BC=4,AC=3,则下列説法正确的是( )A.DE=3B.AE=4C.①CAB是旋转角D.①CAE是旋转角第3题图第4题图第5 题图4.如图,在平面直角坐标系中,有一个Rt①ABC,且A(-1,3),B(-3,-1),C(-3,3),已知①A1AC1是由①ABC旋转得到的.则旋转中心的坐标是()A.(0,0)B.(-1,0)C.(1,0)D.(0,-1)5.如图,点E是正方形ABCD内一点,连接AE、BE、CE,将①ABE绕点B顺时针旋转90°到①CBE′的位置,若AE=1,BE=2,CE=3则①BE′C=________度.拓展提高:6.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且①EDF=45°,将①DAE 绕点D按逆时针方向旋转90°得到①DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.参考答案自主学习一、知识链接1.图略2.图略课堂探究二、要点探究探究点1:观察与思考思考答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.钟表的指针在不停地转动,从3时到5时,时针转动了60度;把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.风车风轮的每个叶片在风的吹动下转动到新的位置.例1 ③⑤例2 O ∠AOB 60A与B B与C C与D D与E E与F F与A 练习解:(1)旋转中心是点A. (2)旋转了60 °,逆时针. (3)点M转到了AC的中点上.例3 C探究点2:合作探究1 C点A与点A′,点B与点B′,点M与点M′,点N与点N′线段CA与CA′、CB与CB′、AB与A′B′相等45°合作探究2 解:角:①AOA'=①BOB' =①COC';线:AO=A'O ,BO=B'O ,CO=C'O想一想解:如图,两条对应点连线段的垂直平分线的交点O即为旋转中心.练一练C例4 解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AB=AD.∴∠B=12(180°-150°)=15°.变式解:∵将△ABC绕点A逆时针旋转120°,得到△AB' C',∴∠BAB'=∠CAC'=120°,AB=AB' .∴∠AB'B= 12(180°-120°)=30°.又∵AC'∥BB' ,∴∠B'AC' =∠AB'B=30°.∴∠CAB'=∠CAC'-∠B'AC' =120°-30°=90°.例5 解:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=5,AD=AB=8. ∴DE=AD-AE=8-5=3.当堂检测1. B2. B3. D4. A5. 135拓展提高:(1)证明:①①DAE绕点D逆时针旋转90°得到①DCM,①DE=DM,①EDM=90°,①①EDF=45°,①①FDM=45°,①①EDF=①FDM.又①DF=DF,DE=DM,①①DEF①①DMF,①EF=MF.(2)解:设EF=MF=x,①AE=CM=1,AB=BC=3,∴EB=AB-AE=3-1=2,BM=BC+CM=3+1=4, ∴BF=BM-MF=4-x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2 ,即22+(4-x)2=x2,解得x=5 2.则EF的长为52.。

2022年九年级数学上册 第23章 旋转导学案(新版)新人教版

2022年九年级数学上册 第23章 旋转导学案(新版)新人教版

第23章旋转第1课时图形的旋转(1)【学习目标】1、通过具体实例认识图形的旋转,理解“对应点到旋转中心的距离相等”以及“旋转前、后的图形全等”的基本性质。

2、经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,按要求作出简单平面图形旋转后的图形。

3、学生在经历了实际探究、知识应用及内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习的数学的主动性。

培养学生初步的审美能力,增强对图形的欣赏意识.。

【重点难点】重点:对生活中的旋转现象作数学上的分析,理解旋转的定义。

难点:对旋转现象进行分析研究,旋转后的现象进行探索。

【学法指导】问题式指导法。

学生通过预习课本、联系生活实际、查阅资料以及完成课前导学案等学习内容后提出问题。

使学生在认识图形的旋转的过程中,了解图形旋转的概念、形成新的知识结构,获得新的学习方法。

通过学生学习图形的旋转有关知识,体会获得学习数学新知识的乐趣。

教学互动设计方法导引【自主学习,基础过关】一、自主复习:1、将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2、如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3、圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?小结(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、预习引导:鼓励学生独立解决问题,让学生初步感受旋转,同时让学生感受旋转在生活中的应用。

问题1:钟表的指针在不停地转动,从3时到5时,时针转动了多少度? 问题2:风车风轮在每个叶片在风的吹动下如何转动到新的位置? 问题3:问题1、2有什么共同特点呢?三、自主学习,归纳总结1. 把一个平面图形绕着平面内某一点O 转动一个角度的图形变换叫做 .点O 叫做 ,转动的角叫做 .2. 一般地,可以根据定义得出旋转的以下性质: (1)对应点到旋转中心的距离 .(2)对应点与旋转中心所连线段的夹角等于 . (3)旋转前、后的图形 . 四、课堂练习,巩固新知1. 已知把ABC ∆绕着点B 顺时针旋转︒60后能与C B A '''∆重合.求:(1)找出旋转中心; (2)指出对应定点和对应边; (3)指出旋转角. A'C'BCA 2(1)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(-2,0)和(2,0).月牙①绕点B 顺时针旋转90°得到月牙②,则点A 的对应点A’的坐标为( ) A .(2,2) B .(2,4)C .(4,2)D .(1,2) (2)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )五、我的疑惑: (学生自主写出自己的疑惑,各小组组长收集,整理和分析这些疑惑,把这些疑惑传递给老师,老师一并把有意义的疑惑呈现给所有同学。

第二十三章《旋转》导学案

第二十三章《旋转》导学案

第二十三章《旋转》导学案23.1 图形的旋转(1)新授课主备:崔红英审核:王洪亮时间:班级:姓名:学习目标:1.通过观察具体实例认识旋转,归纳旋转、旋转中心、旋转角和对应点的概念,并应用它们解决一些实际问题.2.探索旋转的性质,会画出旋转后的图形.学习重点和难点重点:旋转、对应点的有关概念及其应用.难点:对旋转现象进行分析研究,旋转后的现象进行探索.一、预习内容钟表的指针在不停地转动,风车风轮的每个叶片在风的吹动下转动到新的位置.(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、风车叶片在转动过程中,其形状、大小、位置是否发生变化呢?(3)钟表的指针在不停地转动,从3时到5时,时针旋转了多少度?二、数学概念1. 像这样,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的,点O叫做,转动的角叫做.如果图形上的点P经过旋转变为点P′,那么这两个点P和P′叫做这个旋转的 .2. 自学并完成课本60页的探究,归纳旋转的性质:(1)对应点到旋转中心的距离__________.(2)对应点与旋转中心所连线段的夹角等于________ .(3)旋转前、后的图形___________ .三、例题讲解例1:如图所示,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置,则旋转中心是哪点?旋转方向是什么?旋转角度是多少?点B的对应点是什么?例2:如下图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.四、总结反思1.说说你的收获;2.你还有什么问题?五、反馈练习1.下列物体的运动不是旋转的是( )A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.下列现象中属于旋转的有____个.地下水位逐年下降;传送带的移动;方向盘的转动;水龙头的转动;钟摆的运动;荡秋千运动.3.如图,如果把钟表的指针看成四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是____,旋转角是_________,经过旋转,点A转到___,点C转到___,点B转到___,线段OA、OB、BC、AC分别转到_____________________,∠A、∠B、∠C分别与___________________是对应角.4.如图,将△ABC绕点A逆时针旋转80°得到△AB′C′.若∠BAC=50°,则∠CAB′的度数为()A. 30°B. 40°C. 50°D. 80°5. 将叶片图案旋转180°后,得到的图形是()六、能力提升加点难度,你还能完成吗?1. 如图所示,请你先观察(1)~(3),然后确定第四张为()A. B.C. D.2. 如图所示,已知△ABC和旋转中心点O及点A的对应点D,请画出△ABC旋转后的图形△DEF.七、作业布置课本62页习题23.1第1、2、3题23.1 图形的旋转(2)主备人:王洪亮审核人:崔红英时间: 班级: 姓名:学习目标:会根据旋转的知识选择不同的旋转中心、不同的旋转角度,设计出美丽的图案.学习重点和难点重点:用旋转的有关知识画图.难点:根据需求设计出美丽的图案.一、预习内容1.上节课已经学习旋转性质,你能写出旋转性质吗?(1)________________________________________________(2)________________________________________________(3)________________________________________________2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.二、数学概念(或模型)1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.O画图的方法:1、连接________,作∠AOM=__________,在射线AM上截取________,则A的对应点为A´.2、同理作B、C、D的对应点B´、C´、D´.3、顺次连接A´B´、_______、________、___________,则四边形A´B´C´D´即为所求..O2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O´为中心,旋转角都为30•°的旋转图形..O.O´结论:旋转中心不变,改变______,与旋转角不变,改变_______,会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.三、例题讲解如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?四、总结反思谈谈今天这节课学习收获(学生交流)五、反馈练习1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.4.课本p62练习六、能力提升1.如何作出该图案绕O点按逆时针旋转90°的图形.2.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,求PP′的长.七、作业布置p63 5 .6 .7 . 823.2.1 中心对称(1)新授课主备人:薄光平审核人:甘淑君时间:班级:姓名:学习目标1.了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.2.通过具体实例认识两个图形关于某一点中心对称的本质:就是一个图形绕一点旋转180°而成.3.理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.学习重点和难点重点:①用中心对称、对称中心、关于中心对称点的概念解决一些问题.②中心对称的两条基本性质及其运用.难点:中心对称的性质及利用以上性质进行作图.一、预习内容1、轴对称的定义:如果一个图形沿着一条直线对折后能与另一个图形重合,则称这两个图形关于这条直线对称或轴对称.成轴对称的图形,它们的对应点的连线被对称轴_________.2、旋转性质:对应点到旋转中心的距离___________对应点与旋转中心所连线段的夹角___________旋转前、后的图形___________.3、中心对称定义:_____________________________________________.4、中心对称的性质:_____________________________________________.二、数学概念(或模型)1.观察:①如图1把其中一个图案绕点O旋转180°,你有什么发现?图1②如图2,线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180º,你有什么发现?图2老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△OCD重合.归纳:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;点O叫做对称中心;这两个图形中的对应点叫做关于中心的对称点.2、师生合作,探求新知[探究]如图,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?[发现]我们可以发现:(1)点O是线段AA'的中点;(2)△ABC≌△A'B'C'.上述发现可以证明如下.(1)点A'是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段A A'上,且OA=O A',即点O是线段A A'的中点.同样的,点O也是线段BB'和CC'的中点(2)在△AOB与△A'OB'中,OA=OA',OB=OB',∠AOB=∠A'OB',∴△AOB≌△A'OB'.∴AB=A'B'.同理BC=B'C',AC=A'C'.∴△ABC≌△A'B'C'.3、理解新知,典例解析[活动一] 师生合作,归纳出中心对称的性质:(1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2) 关于中心对称的两个图形是全等图形.[活动二] 中心对称与轴对称进行类比轴对称中心对称有一条对称轴——直线有一个对称中心——点图形沿对称轴对折(翻转180度)后重合图形绕对称中心旋转180度后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心且被对称中心平分三、例题讲解例1.(1)如教材图23.2-4,选择点O为对称中心,画出点A关于点O的对称点A’;(2)如教材图23.2-5,选择点O为对称中心,画出与△ABC关于点O 对称的△A’B’C’.问:1、一个点绕对称中心旋转180º,得到的是一个平角,这表示什么?2、你是如何理解“对称点所连线段都经过对称中心,而且被对称中心所3、确定一个三角形需要几个点?作一个三角形关于某点成中心对称的三角形,需要作几个点的对称点呢?四、总结反思谈谈今天这节课学习的收获(自我总结积累,同学交流)五、反馈练习A、教材P66练习1、2题B、如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.C、如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).六、能力提升1. 如图,等腰梯形ABCD中,AB∥CD,AB=2CD,AC交BD于点O,点E、F分别为AO、BO的中点,则下列关于点O成中心对称的一组三角形是().A. B.C. D.2、如图,在矩形ABCD中,点E在AD上,EC平分∠BED.⑴试判断△BEC是否为等腰三角形,请说明理由?⑵若AB=1,∠ABE=45°,求BC的长.⑶在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.七、作业布置1.教科书第69页习题23.2第1题2.完成练习册习题23.2.2 中心对称图形新授课主备人:甘淑君审核人:薄光平时间:班级:姓名:学习目标:1、通过自主学习,合作探究,观察比较会说出中心对称图形的定义和性质.2、通过练习,能准确判断一个图形是否中心对称图形,并能区分轴对称图形和中心对称图形.3、通过观察发现,培养动手动脑,自主探究、合作交流的能力,体验成功的喜悦.学习重点和难点重点:中心对称图形的有关概念及他们的应用难点:理解中心对称和中心对称图形的区别与联系一、预习内容1、什么中心对称图形?2、轴对称图形与中心对称图形的区别?3、(1)将线段AB绕着中点旋转180度,你发现了什么?(2)将平行四边形ABCD绕它的两条对角线的交点O旋转180度,你又发现了什么?二、数学概念(或模型)1、中心对称图形的定义:一个图形绕着某一个点_______________,如果旋转后的图形能够与______________重合,那么这个图形叫做____________,这个点就是它的___________.2、中心对称和中心对称图形的区别和联系中心对称中心对称图形区别联系(提示:可从图形的个数来考虑)3、根据提示,找出轴对称图形和中心对称图形的异同点轴对称图形中心对称图形关于一条直线对称沿对称轴翻折对折对折后与原图形重合三、例题讲解1、下列图形中,既是轴对称图形又是中心对称图形的是( )2、下列图形中,中心对称图形有()A 一个B 两个C 三个 D四个四、总结反思1、谈谈你的收获.2、你还有什么问题?五、反馈练习1.下列几张扑克牌中,中心对称图形的有________张2.在平面上一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.180°B.90°C.270°D.360°3.下列图案中,既是中心对称又是轴对称的图案是( )A B C D六、能力提升1.某校计划建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等边三角形、等腰梯形、菱形、正五边形等四种方案,你认为符合条件的是( )A. 等边三角形B. 等腰梯形C. 菱形D. 正五边形2.常见的图形中,既是轴对称又是中心对称图形的有哪些?它们的对称轴和对图1 图2称中心分别是什么?七、作业布置1.找出26个字母中是中心对称图形的字母2.完成课本及练习册的习题23.2.3 关于原点对称的点的坐标新授课主备:王鑫审核: 杜梦琳时间:班级:姓名:学习目标:1.举例说明两个关于原点对称的点的坐标特点;2.会在坐标系中画出已知点(已知图形)关于原点的对称点(对称图形). 重点:能说出关于原点的对称点的坐标特点.难点:会画关于原点对称的点.一、预习内容在图1中画出△ABC关于x轴的对称图形,在图2中画出△ABC关于y轴的对称图形.结论:点A的坐标是(x,y),则点A关于x轴的对称点的坐标是,点A关于y轴的对称点的坐标是 .二、数学概念(或模型)图31.如图3,写出点A 、B 、C 的坐标,并在直角坐标系中,作出图中已知 点关于原点O 的对称点A ,、B ,、C ,,并写出它们的坐标.2.观察已知点关于原点O 的对称点坐标与已知点坐标有什么关系? 结论:两个点关于原点对称时,它们的坐标符号 , 即点P (x ,y )关于原点的对称点P ’( ). 三、例题讲解例.如图,利用关于原点对称的点的坐标特点, 作出△ABC 关于原点对称的图形△A 1B 1C 1四、总结反思 1、点A (x ,y )关于x 轴的对称点的坐标 ,关于y 轴的 对称点的坐标 ,关于原点的对称点的坐标 .2、P(x,y)关于_____的对称点为P'(-x,-y).五、反馈练习下列各点哪两个点关于原点O 对称?哪两个点关于x 轴对称?哪两个点关于y 轴对称?A (-4,0),B (3,2),C (3,-2),D (0,-4),E (-3,-2),F (4,0),G (-2,-3)六、能力提升点P(y x 2+,x 2)关于原点对称的点的坐标为(y x -,-6 ),求xy 的值.y x 11O AB C七、布置作业1.下列各点中哪两个点关于原点O 对称?A(-5,0),B(0,2),C(2,-1),D (2,0), E (0,5),F(-2,1),G(-2,-1).2.写出下列各点关于原点的对称点A',B',C',D'的坐标:A(3,1),B(-2,3),C(-1,-2),D(2,-3).3.若点P(m,1)与点Q(5, n)关于原点对称,则m+n=______4.点M(5,6)和点N 是关于原点对称的两点,则点N 在第________象限.5.△ABC 的顶点坐标分别为A(5,0),B(-2,3),C(-1,0).作出与△ABC 关于原点O 对称 的图形△A'B'C'.xy–1–2–3–4–512345–1–2–31234OA C B23 旋转复习课主备:杜梦琳审核:王鑫时间:班级:姓名:学习目标:1、能结合图形说出旋转中心,旋转角及对应点.2、能应用旋转变换解决一些有关图形变换问题.学习重点和难点重点:旋转及对应点的有关概念及应用.难点:旋转的综合应用.一、知识梳理1.在平面内,将一个图形绕一个沿某个方向转动一个,这样的图形运动称为旋转.这个称为,转动的称为 .2.旋转性质:(1)对应点到旋转中心的相等;(2)任意一对对应点与旋转中心所连的都是旋转角;(3)图形上的每一个点都绕旋转中心沿相同方向转动了的角度.即旋转角 .3.在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相,那么这两个图形叫做中心对称,这个点叫做它的 .4. 中心对称图形上的每一对对应点所连成的线段都被对称中心 .5.中心对称与中心对称图形两个概念区别和联系中心对称是全等图形之间的;中心对称图形是图形本身成对称的 .中心对称的两个图形性质:成中心对称的两个图形是;成中心对称的两个图形,对称点的连线都经过,并且被对称中心 .6.点P(x,y)关于原点对称的点是________,关于x轴对称的点是______,关于y轴对称的点是_______.二、例题讲解例1.确定旋转中心如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2) C.(1,3) D.(1,4)例2.确定旋转角AP如图2,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转中心是____,旋转角等于____度,△ADP 是______三角形. 例3.旋转相关计算如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B , 则C ′B 的长为( ) A.222- B.32C.31-D.1 例4.画旋转图形如图,△ABC 中A (-2,3),B(-3,1),C(-1,2).(1)将△ABC 向右平移4个单位长度,画出平移后的111A B C △;(2)画出△ABC 关于x 轴对称的222A B C △;(3)将△ABC 绕原点O 旋转180°,画出旋转后的333A B C △; (4)在111A BC △,222A B C △,333A B C △中,△______与△______成轴对称,对称轴是______; △______与△______成中心对称,对称中心的坐标是______.例5.旋转规律探究问题如图,△AOB 为等腰三角形,顶点A 的坐标(2,),底边OB在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ′,点A 的对应点A ′在x 轴上,则点O ′的坐标为( ) A . (,)B . (,)C . (,)D . (,4)三、总结反思谈谈本节课自己的收获. 四、反馈练习1、在平面直角坐标系中,点A 的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是__________2、如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=_______.3、如图所示,在△ABC中,∠BAC=90°,AB=AC,点P是△ABC内的一点,且AP=3,将△ABP绕点A旋转后与△ACP′重合,求PP′的长.五、能力提升如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是__________.六、作业布置1.下列图形中,中心对称图形有()A 一个B 两个C 三个 D四个2.如图,△ABC与△A′B′C′是成中心对称,下列说法不正确的是()A.S△ABC =S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′C.AB∥A′B′,AC∥A′C′,BC∥B′C′ D.S△ACO =S△A′B′O3.如图,△OAB 绕点O 逆时针旋转80°到△OCD 的位置,已知∠AOB =45°,则∠AOD 等于( )A.55° B.45° C.40° D.35°4..如图,在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A ′与点A 是对应点,点B ′与点B 是对应点,连接AB ′,且A 、B ′、A ′在同一条直线上,则AA ′的长为( )A.6B.43C.33D.35.如图,四边形ABCD 的∠BAD=∠C=90°,AB =AD ,AE ⊥ BC 于E ,△BEA 旋转一定角度后能与△DFA 重合. (1) 旋转中心是哪一点? (2) 旋转了多少度?(3) 若AE=5cm ,求四边形ABCD的面积.F EDCBA。

第二十三章 旋转(全章)教案

第二十三章  旋转(全章)教案

第二十三章旋转(全章教案)23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.四、应用拓展例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心重合,不难,现把其中一个正方形固定不动,•另一个正方形绕知道重合部分的面积为14其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.五、归纳小结(学生总结,老师点评)本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.六、布置作业1.教材复习巩固1、2、3.23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA ′,OB=OB ′,OC=OC ′,也就是对应点到旋转中心相等.2.∠AOA ′=∠BOB ′=∠COC ′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC 和△A ′B ′C ′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC 绕C 点旋转后,顶点A 的对应点为点D ,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C 点旋转,A 点的对应点是D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB ′=ACD ,•又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定B ′的位置,如图所示.解:(1)连结CD(2)以CB 为一边作∠BCE ,使得∠BCE=∠ACD(3)在射线CE 上截取CB ′=CB则B ′即为所求的B 的对应点.(4)连结DB ′则△DB ′C 就是△ABC 绕C 点旋转后的图形.例2.如图,四边形ABCD 是边长为1的正方形,且DE=14,△ABF 是△ADE 的旋转图形. (1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴AE=2211()4 =17 ∵对应点到旋转中心的距离相等且F 是E 的对应点∴AF=174(4)∵∠EAF=90°(与旋转角相等)且AF=AE∴△EAF 是等腰直角三角形.三、巩固练习: 教材P64 练习1、2.四、应用拓展例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.六、布置作业1.教材复习巩固4 综合运用5、6.23.1 图形的旋转(3)第三课时教学内容:选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.教学目标:理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.重难点、关键1.重点:用旋转的有关知识画图.2.难点与关键:根据需要设计美丽图案.教具、学具准备小黑板教学过程一、复习引入1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A ′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材P65 练习.四、应用拓展例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A•′G′、G′D′、D′H′、H′A′;(4)所作出的图案就是所求的图案.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.六、布置作业1.教材P67 综合运用7、8、9.23.2 中心对称(1)第一课时教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.2.难点与关键:从一般旋转中导入中心对称.教具、学具准备小黑板、三角尺教学过程一、复习引入请同学们独立完成下题.如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法.老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:(1)连结OA、OB、OC、OD;(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;(3)分别截取OE=OB,OF=OC;(4)依次连结DE、EF、FD;即:△DEF就是所求作的三角形,如图所示.二、探索新知问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB 与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.解:作法:(1)延长AD,并且使得DA′=AD(2)同样可得:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′)(2)连结A′B′、A′C′.则△A′B′C′为所求作的三角形,如图所示.三、巩固练习教材P74 练习2.四、应用拓展例3.如衅,在△ABC中,∠C=70°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积.(2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式.分析:(1)∵BC=4,AC=4∴△ABC是等腰直角三角形,易得△BDC′也是等腰直角三角形且BC′=1(2)∵平移的距离为x,∴BC′=4-x五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称及对称中心的概念;2.关于中心的对称点的概念及其运用.六、布置作业1.教材练习1.23.2 中心对称(2)第二课时教学内容1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材P70 练习.三、应用拓展例3.如图等边△ABC内有一点O,试说明:OA+OB>OC.分析:要证明OA+OB>OC,必然把OA、OB、OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,•旋转60°,便可把OA、OB、OC转化为一个三角形内.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B•的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′在△BOO′中,OO′+OB>BO′即OA+OB>OC四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业1.教材复习巩固1 综合运用6、7.23.2 中心对称(3)第三课时教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.BACDO复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用. 重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形. 教具、学具准备 小黑板、三角形 教学过程 一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形. 2.(学生活动)作图题.(1)作出线段AO 关于O 点的对称图形,如图所示.A O(2)作出三角形AOB 关于O 点的对称图形,如图所示.BAO(2)延长AO 使OC=AO , 延长BO 使OD=BO , 连结CD则△COD 为所求的,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB 绕它的中点旋转180°,因为OA=•OB ,所以,就是线段AB 绕它的中点旋转180°后与它重合.上面的(2)题,连结AD 、BC ,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵AO=OC ,BO=OD ,∠AOB=∠COD ∴△AOB ≌△COD ∴AB=CD也就是,ABCD 绕它的两条对角线交点O 旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.B ACDO分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD是平行四边形.三、巩固练习教材P72 练习.四、应用拓展例4.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,•求折痕EF的长.分析:将矩形折叠,使C点和A点重合,折痕为EF,就是A、C两点关于O点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.解:连接AF,∵点C与点A重合,折痕为EF,即EF垂直平分AC.∴AF=CF,AO=CO,∠FOC=90°,又四边形ABCD为矩形,∠B=90°,AB=CD=3,AD=•BC=4设CF=x,则AF=x,BF=4-x,由勾股定理,得AC2=BC2+AB2=52∴AC=5,OC=12AC=52∵AB2+BF2=AF2∴32+(4-x)=2=x2 ∴x=258∵∠FOC=90°∴OF2=FC2-OC2=(258)2-(52)2=(158)2OF=158lA 同理OE=158,即EF=OE+OF=154五、归纳小结(学生归纳,老师点评) 本节课应掌握:1.中心对称图形的有关概念; 2.应用中心对称图形解决有关问题. 六、布置作业 1.教材 综合运用523.2 中心对称(4)第四课时教学内容两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y ),关于原点的对称点为P ′(-x ,-y )及其运用. 教学目标理解P 与点P ′点关于原点对称时,它们的横纵坐标的关系,掌握P (x ,y )关于原点的对称点为P ′(-x ,-y )的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用. 重难点、关键1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )•关于原点的对称点P ′(-x ,-y )及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.教具、学具准备 小黑板、三角尺 教学过程 一、复习引入(学生活动)请同学们完成下面三题.1.已知点A 和直线L ,如图,请画出点A 关于L 对称的点A ′.2.如图,△ABC 是正三角形,以点A 为中心,把△ADC 顺时针旋转60°,画出旋转后的图形.3.如图△ABO ,绕点O 旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知(学生活动)如图23-74,在直角坐标系中,已知A (-3,1)、B (-4,0)、C (0,3)、•D (2,2)、E (3,-3)、F (-2,-2),作出A 、B 、C 、D 、E 、F 点关于原点O 的中心对称点,并写出它们的坐标,并-3-33OBA C-2-21-1y x3-4D4221-1回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连结AO 并延长AO (2)在射线AO 上截取OA ′=OA(3)过A 作AD ′⊥x 轴于D ′点,过A ′作A ′D ″⊥x 轴于点D ″. ∵△AD ′O 与△A ′D ″O 全等 ∴AD ′=A ′D ″,OA=OA ′ ∴A ′(3,-1)同理可得B 、C 、D 、E 、F 这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P (x ,y )关于原点O 的对称点P ′(-x ,-y ).例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.分析:要作出线段AB 关于原点的对称线段,只要作出点A 、点B 关于原点的对称点A ′、B ′即可. 解:点P (x ,y )关于原点的对称点为P ′(-x ,-y ),因此,线段AB 的两个端点A (0,-1),B (3,0)关于原点的对称点分别为A ′(1,0),B (-3,0).连结A ′B ′.则就可得到与线段AB 关于原点对称的线段A ′B ′.(学生活动)例2.已知△ABC ,A (1,2),B (-1,3),C (-2,4)利用关于原点对称的点的坐标的特点,作出△ABC 关于原点对称的图形.老师点评分析:先在直角坐标系中画出A 、B 、C 三点并连结组成△ABC ,要作出△ABC 关于原点O 的对称三角形,只需作出△ABC 中的A 、B 、C 三点关于原点的对称点,•依次连结,便可得到所求作的△A ′B ′C ′. 三、巩固练习 教材 练习.。

初中数学最新版《旋转的概念与性质 》精品导学案(2022年版)

初中数学最新版《旋转的概念与性质 》精品导学案(2022年版)

第二十三章 旋转一、新课导入第 1 课时 旋转的概念与性质1.导入课题: 运用课件欣赏日常生活中一些物体的旋转现象,观察旋转的过程,引入新课.2.学习目标: 〔1〕了解生活中广泛存在的旋转现象,知道旋转是继平移、对称之后的又一种根本变换. 〔2〕能结合图形指出什么是旋转中心、旋转角和对应点. 〔3〕体会旋转的形成过程,并探究旋转的性质. 3.学习重、难点: 重点:旋转的有关概念和性质. 难点:探究旋转的性质. 二、分层学习 1.自学指导: 〔1〕自学内容:教材第 59 页的内容. 〔2〕自学时间:5 分钟. 〔3〕自学方法:观察生活中物体的旋转现象,体会旋转过程,形成旋转概念的感性认 识. 〔4〕自学参考提纲: ①把一个平面图形 绕着平面内某一点 O 转动一个角度 ,叫做图形的旋转. ②从课文中的思考实例可以看出:图形的旋转三要素是 旋转中心 , 旋转方向 , 旋转角 . ③如右图,点 P 是正方形 ABCD 内一点,将△ABP 绕 B 点顺时针方向旋转到△CBP′的位置时,其旋转中心是 点 B ,旋转角度为 90° ,点 A、 B、P 的对应点分别为 C、B、P′ .2.自学:学生可参考自学指导进行自学. 3.助学: 〔1〕师助生: ①明了学情:观察学生能否抓住旋转的要素.②差异指导:根据学情进行相应指导. 〔2〕生助生:小组内相互交流、改正. 4.强化: (1)旋转的三要素. (2)指出课本中风车的旋转中心、旋转角、旋转方向. (3)练习: ①时钟的时针在不停地旋转,从上午 6 时到上午 9 时,时针旋转的角度是多少?从上午 9 时到上午 10 时呢? 解:从上午 6 时到上午 9 时,时针旋转的角度为 90°,从上午 9 时到上午 10 时,时针 旋转的角度是 30°. ②如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点 O ,旋转角是 ∠AOA′ , 点 A 的对应点是点 A′ . 1.自学指导: 〔1〕自学内容:教材第 60 页的“探究〞——旋转的性质. 〔2〕自学时间:6 分钟. 〔3〕自学方法:准备一块硬纸板、小刀和一张白纸,小组合作,通过操作、研讨,再 总结归纳. 〔4〕探究参考提纲: ①按以下要求动手画图: 在硬纸板上先挖一个三角形洞,再在三角形洞外挖一个小洞 O〔作 为旋转中心〕,把挖好洞的硬纸板放在白纸上,在白纸上描出挖掉的三角 形图案〔△ABC〕,围绕旋转中心转动硬纸板,再描出挖掉的三角形图案 〔△A′B′C′〕,移开硬纸板,用虚线连接 OA、OA′、OB、OB′、OC、OC′. ②OA 与 OA′、OB 与 OB′、OC 与 OC′分别有何关系? 分别相等 . ③∠AOA′、∠BOB′、∠COC′之间有何关系? ∠AOA′=∠BOB′=∠COC′ . ④△ABC 与△A′B′C′有何关系? △ABC≌△A′B′C′ . ⑤观察你画的图形,还有不同的发现吗? AB=A′B′,BC=B′C′,AC=A′C′. 2.自学:学生可参考自学指导进行自学探究. 3.助学:〔1〕师助生: ①明了学情:看学生是否能在探究提纲的指导下,动手操作、实验,并归纳出相应结论. ②差异指导:根据学情进行个别指导或分类指导. 〔2〕生助生:小组内相互交流、协作,共同探讨、归纳. 4.强化: 〔1〕归纳旋转的性质. 〔2〕完成以下练习: ①如图 1,小明坐在秋千上,秋千旋转了 80°.请在图中小明身上任意选一点 P,利用旋转 的性质,标出点 P 的对应点. ②如图 2,用左面的三角形经过怎样的旋转,可以得到右面的图形? 解:分别绕点 O 顺时针旋转 120°,240°. ③找出图 3 中扳手拧螺母时的旋转中心和旋转角. 解:点 O 就是旋转中心,旋转角就是∠POP′. 三、评价 1.学生的自我评价〔围绕三维目标〕:这节课你学到了哪些知识?自我感知有何缺乏? 2.教师对学生的评价: 〔1〕表现性评价:点评学生的主动参与情况、小组协作交流情况、学习效果及缺乏之 处等. 〔2〕纸笔评价:课堂评价检测. 3.教师的自我评价〔教学反思〕:积极创设情境,激发学生学习的好奇心和求知欲.以“丰 富的生活中的旋转〞作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了 学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激 发学生主动参与探究新知的兴趣.此外,本节课需要注意的地方:①教师在提问时需给学生 充分思考的时间,帮助学生养成良好的思考、分析习惯;②如何将“创设情境〞与教学有机 地结合起来,更有效地为教学效劳.问题情境的创设不能流于形式,而应更多地考虑学生的 年龄特征、兴趣爱好,多从学生的角度来设计、创造.〔时间:12 分钟总分值:100 分〕 一、根底稳固〔70 分〕1.(10 分) 以下现象中属于旋转的有〔D〕 ①火车行驶;②荡秋千运动;③方向盘的转动;④钟摆的运动;⑤圆规画圆.A.1 个B.2 个C.3 个D.4 个2.(10 分) 如图,点 A、B、C、D 都在方格纸的格点上,假设△AOB 绕点 O 按逆时针方向旋转到△COD 的位置,那么旋转的角度为〔C〕A.30°B.45°C.90°D.135°第 2 题图第 3 题图3.(20 分) 如图,四边形 ABCD 是边长为 4 的正方形,且 DE=1,△ABF 是△ 点 A ,旋转了 90 度,AF 的长度是 17 ,连接 EF,那么△AEF 的形状是 等腰直角三角形 .4.(10 分) 如图,右边的小鸡是由左边的小鸡经过旋转得到的,旋转中心是点 O.从图中量一量旋转角是多少度.解:旋转角为 85°.5.(20 分)下面两组图形分别是用左边的图形经过怎样的旋转得到右边的图形的?解:(1)绕中心顺时针旋转 60°,120°,180°,240°,300°得到;(2)绕中心顺时针旋转 90°,180°,270°得到.二、综合应用〔20 分〕6.(10 分) 如图,该图形围绕自己的旋转中心,按以下角度旋转后,不能与自身重合的是〔B〕A.72° B.108° C.144° D.216°第 6 题图第 7 题图7.(10 分)把图中的五角星图案,绕着它的中心点 O 旋转,旋转角为多少度时,旋转后的五角星能与自身重合?解:旋转角为 72°或 144°或 216°或 288°时,旋转后的五角星能与自身重合.三、拓展延伸〔10 分〕8.(10 分)如图,△ABD、△AEC 都是等边三角形,BE 与 DC 有什么关系?你能用旋转的性质说明上述关系成立的理由吗?解:BE=DC.理由:因为 AB 是由 AD 绕中心点 A 逆时针旋转 60°得到,AE 是由 AC 绕中心点 A 逆时针旋转 60°得到,所以△ABE 可看成是由△△ADC≌△24.2.1 点和圆的位置关系教学目标 (一)教学知识点 了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.(二)能力训练要求 1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力. 2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题 的策略. (三)情感与价值观要求 1.形成解决问题的一些根本策略,体验解决问题策略的多样性,开展实践能力与创新 精神. 2.学会与人合作,并能与他人交流思维的过程和结果. 教学重点 1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论. 2.掌握过不在同一条直线上的三个点作圆的方法. 3.了解三角形的外接圆、三角形的外心等概念. 教学难点 经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的 三个点作圆. 教学方法 教师指导学生自主探索交流法. 教具准备 投影片三张 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点 能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索. Ⅱ.新课讲解 1.回忆及思考 投影片(§3.4A)1.线段垂直平分线的性质及作法. 2.作圆的关键是什么?[生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.作法:如以以下图,分别以 A、B 为圆心,以大于 1 AB 长为半径画弧,在 AB 的两侧 2找出两交点 C、D,作直线 CD,那么直线 CD 就是线段 AB 的垂直平分线,直线 CD 上的 任一点到 A 与 B 的距离相等.[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做 圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆 心和半径的大小.确定了圆心和半径,圆就随之确定.2.做一做(投影片§3.4B)(1)作圆,使它经过点 A,你能作出几个这样的圆?(2)作圆,使它经过点 A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布 有什么特点?与线段 AB 有什么关系?为什么?(3)作圆,使它经过点 A、B、C(A、B、C 三点不在同一条直线上).你是如何作的?你 能作出几个这样的圆?[师]根据刚刚我们的分析,作圆的关键是确定圆心和半径,下面请大家互相交换意见并 作出解答.[生](1)因为作圆实质上是确定圆心和半径,要经过点 A 作圆,只要圆心确定下来,半 径就随之确定了下来.所以以点 A 以外的任意一点为圆心,以这一点与点 A 所连的线段为 半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).(2)点 A、B 都在圆上,它们到圆心的距离都等于半径.因此圆心到 A、B 的距离相等.根 据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距 离相等,那么圆心应在线段 AB 的垂直平分线上.在 AB 的垂直平分线上任意取一点,都能 满足到 A、B 两点的距离相等,所以在 AB 的垂直平分线上任取一点都可以作为圆心,这点 到 A 的距离即为半径.圆就确定下来了.由于线段 AB 的垂直平分线上有无数点,因此有无 数个圆心,作出的圆有无数个.如图(2).(3)要作一个圆经过 A、B、C 三点,就是要确定一个点作为圆心,使它到三点的距离 相等.因为到 A、B 两点距离相等的点的集合是线段 AB 的垂直平分线,到 B、C 两点距离 相等的点的集合是线段 BC 的垂直平分线,这两条垂直平分线的交点满足到 A、B、C 三点 的距离相等,就是所作圆的圆心.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆. [师]大家的分析很有道理,究竟应该怎样找圆心呢? 3.过不在同一条直线上的三点作圆. 投影片(§3.4C)作法图示1.连结 AB、BC2.分别作 AB、BC 的垂直 平分线 DE 和 FG,DE 和 FG 相交于点 O3.以 O 为圆心,OA 为半径作 圆 ⊙O 就是所要求作的圆他作的圆符合要求吗?与同伴交流. [生]符合要求. 因为连结 AB,作 AB 的垂直平分线 ED,那么 ED 上任意一点到 A、B 的距离相等; 连结 BC,作 BC 的垂直平分线 FG,那么 FG 上的任一点到 B、C 的距离相等.ED 与 FG 的满足条件. [师]由上可知,过一点可作无数个圆.过两点也可作无数个圆,过不在同一条直线上的 三点可以作一个圆,并且只能作一个圆. 不在同一直线上的三个点确定一个圆. 4.有关定义 由上可知,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆 (circumcircle of triangle),这个三角形叫这个圆的内接三角形. 外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter). Ⅲ.课堂练习 锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有 怎样的特点? 解:如以以下图. O 为外接圆的圆心,即外心. 锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心 在三角形的外部. Ⅳ.课时小结 本节课所学内容如下: 1.经历不在同一条直线上的三个点确定一个圆的探索过程. 方法. 3.了解三角形的外接圆,三角形的外心等概念. Ⅴ.课后作业 习题 3.6 Ⅵ.活动与探究 如以以下图,CD 所在的直线垂直平分线段 AB.怎样使用这样的工具找到圆形工件的 圆心? 解:因为 A、B 两点在圆上,所以圆心必与 A、B 两点的距离相等,又因为和一条线段 的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在 CD 所在的直线上.因此 使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.。

第二十三章_旋转全章导学案

第二十三章_旋转全章导学案

23.1 图形的旋转(1)年级:九年级 学科:数学 执笔:李琦 审核:九年级数学组 内容: 图形的旋转(1) 课型:新授 时间:2013.10.8一、学习目标:1.掌握旋转的概念,了解旋转中心、旋转角、旋转方向、对应点的概念及其应用。

2.掌握旋转的性质,应用概念解决一些实际问题. 二、学习重难点重点:对数学中的旋转现象做出分析;难点:对数学中的旋转现象的探索. 三、学习过程(一)温故知新:前面我们学过图形的两种变换,如下图,由△ABC 到△A′B′C′的变换分别是:(二)探究新知:(预习课本第55页至56 页的部分,完成以下问题)1.旋转的定义:把一个图形绕着某一点O 转动一个角度的图形变换叫做 ,点O 叫做 ,转动的角叫做 .图形上的点P 经过旋转变为点P′,这两个点叫做这个旋转的 .旋转也是一种图形变换.2.如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OCD ,在这个旋转过程中:(1)旋转中心是 ; 旋转角是 ;(2)经过旋转,点A 、B 分别移动到什么位置?即点A 、B 的 对应点分别是 。

3.如图,四边形ABCD 是边长为1的正方形,且DE=14, △ABF 是由△ADE 的旋转得到的图形 ① 旋转中心是_________; ②AF 的长度是________③旋转了_______度探究:如图,△ABC 绕点O 顺时针旋转一定角度得到△A′B′C′,OA 与OA′有什么关系?∠AOA′与∠BOB′ 有什么关系?△ABC 与△A′B′C′形状和大小有什么关系? 【归纳总结】 4.旋转的性质:A ′C ′C′⑴⑵DC'B'C B A⑴对应点到旋转中心的距离 ;⑵对应点与旋转中心所连线段的夹角彼此 ; ⑶旋转前、后的图形 。

旋转三要素: 、 、 。

(三)学以致用例1 (见课本)见57页(四)自主演练:1.如图,将ABC Rt ∆绕点C 按顺时针方向旋转︒90到C B A '''∆的位置,已知斜边cm AB 10=,cm BC 6=,(1)旋转中心是_______(2)如果连接B B ',那么B BC '∆的形状是_______1题 2题 3题 4题2.如图2,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,•点E •在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC 为等边三角形,D 为△ABC •内一点,•△ABD •经过旋转后到达△ACP 的位置,则,(1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP •是________三角形.4.如图,△ABC 与△ADE 都是直角三角形,∠C 与∠AED 都是直角,点E 在AB 上,∠D =30°,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点______,旋转了_____度。

第23章旋转全章导学案(新人教版九年级上 扫描版)-教学文档

第23章旋转全章导学案(新人教版九年级上 扫描版)-教学文档

第23章旋转全章导学案(新人教版九年级上扫
描版)
学习目标:
1.了解旋转定义;
2.理解旋转的性质;
3.了解中心对称的性质;
4.了解各种中心对称图形;
5.探索图形的变换。

学习过程:
一、知识回顾
1.在平面内,将一个图形绕一个沿某个方向转动一个,这样的图形运动称为旋转。

2.这个称为,转动的称为。

3.旋转性质:(1)对应点到旋转中心的相等;(2)任意一对对应点与旋转中心所连的都是旋转角;(3)图形上的每一个点都绕旋转中心沿相同方向转动了的角度。

即旋转角。

4. 在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相,那么这两个图形叫做中心对称,这个点叫做它的。

5. 中心对称图形上的每一对对应点所连成的线段都被对称中心。

6.点P(x,y)关于原点对称的点是________,关于x轴对称的点是______,关于y轴对称的点是_______.
7、请问以下三个图形中是轴对称图形的有,是中心对称图形的有。

8、中心对称与中心对称图形两个概念区别和联系
中心对称是全等图形之间的中心对称图形是图形本身成对称的。

中心对称的两个图形性质:
成中心对称的两个图形是成中心对称的两个图形,对称点的连线都经过,并且被对称中心。

9、下列图形中,是中心图形又是轴对称图形的有(1)平行四边形(2)菱形;(3)矩形;(4)正方形;(5)等腰梯形;(6)线
段;(7)角;(8)线段;(9)等边三角形;(10)圆;。

第23章旋转全章导学案

第23章旋转全章导学案

第23章旋转全章导学案学习目标:1、把握关于原点对称的点的坐标特点,能够运用特点解决相关问题。

学习过程:一、复习回忆1、1、如图,⑴画出点A关于x轴的对称点A⑵画出点B关于x轴的对称点B⑶画出点C关于y轴的对称点C⑷画出点A关于y轴的对称点D。

2、填空:⑴点A(-2,1)关于x轴的对称点为A( ,⑵点B(0,-3)关于x轴的对称点为B( ,⑶点C(-4,-2)关于y轴的对称点为C( ,⑷点D(5,0)关于y轴的对称点为D( ,)。

二、新课学习1、创设情境,导入新课点P(x,y)关于x轴的对称点为P( ,点P(x,y)关于y轴的对称点为P ( ,2、合作探究如图,A(3,2),B(-3,2),C(3,0),⑴在直角坐标系中,画出点A,B,C关于原点的对称点A,B,C⑵点A(3,2)关于原点的对称点为A( ,)点B(-3,2)关于原点的对称点为B( ,),点C(3,0)关于原点的对称点为C( ,单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

如此,即巩固了所学的材料,又锤炼了学生的写作能力,同时还培养了学生的观看能力、思维能力等等,达到“一石多鸟”的成效。

归纳:两个点关于原点对称时,它们的坐标符号,即点P(x,y)关于原点的对称点P___________宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,专门是汉代以后,关于在“校”或“学”中传授经学者也称为“经师”。

九年级上数学:第23章《旋转》全章导学案

九年级上数学:第23章《旋转》全章导学案

第二十三章旋转23.1图形的旋转(1)1.了解旋转及其旋转中心和旋转角的概念.2. 了解旋转对应点的概念及应用它们解决一些实际问题.重点:旋转及对应点的有关概念及其应用.难点:从生活中抽象出数学概念.(2分钟)请同学们完成下面各题.(1)将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.,第(1)小题图),第(2)小题图)(2)如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.(3)①圆是轴对称图形吗?②等腰三角形呢?③你还能指出其他的吗?答:(1)①是;(2)②是;(3)③等腰梯形、长方形、正多边形等.点拨精讲:(1)平移的有关概念及性质;(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质;(3)什么叫轴对称图形.一、自学指导.(10分钟)观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间点旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:(1)从3时到5时,时针转动了多少度?(60°)(2)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(60°)(3)以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?归纳:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.下列物体的运动不是旋转的是(C)A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.下列现象中属于旋转的有__4__个.①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千运动.3.如图,如果把钟表的指针看成四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是点__O__,旋转角是__∠AOD(或∠BOE),经过旋转,点A转到__D__点,点C转到__F__点,点B转到__E__点,线段OA,OB,BC,AC 分别转到OD,OE,EF,DF,∠A,∠B,∠C分别与∠D,∠E,∠F__是对应角.点拨精讲:旋转角指对应点与旋转中心的连线的夹角.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角;(3)经过旋转,点A,B,C,D分别移到什么位置?解:(1)可以看做是由基本图案正方形ABCD通过旋转而得到的;(2)画图略;(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.点拨精讲:旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.2.如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点__A__;旋转的度数是__45°__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.点拨精讲:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE′=S△ODD′,即说明△OEE′≌△ODD′.学生总结本堂课的收获与困惑.(2分钟)1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.学习至此,请使用本课时对应训练部分.(10分钟)23.1图形的旋转(2)1.通过观察具体实例认识旋转,探索它的基本性质.2.了解图形旋转的特征,并能根据这些特征绘制出旋转后的几何图形.重点:图形的旋转的基本性质及其应用.难点:利用旋转的性质解决相关问题.一、自学指导.(10分钟)动手操作:在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题:(一组推荐一人上台说明) 1.线段OA 与OA′,OB 与OB′,OC 与OC′有什么关系? 2.∠AOA ′,∠BOB ′,∠COC ′有什么关系? 3.△ABC 与△A′B′C′的形状和大小有什么关系? 点拨精讲:(1)OA =OA′,OB =OB′,OC =OC′,也就是对应点到旋转中心距离相等.(2)∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.(3)△ABC 和△A′B′C′形状相同且大小相等,即全等. 归纳:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)如图,四边形ABCD 是边长为1的正方形,且DE =14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点? (2)旋转了多少度? (3)AF 的长度是多少?(4)如果连接EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.△ABF 与△ADE 是完全重合的,所以△AEF 是等腰直角三角形.解:(1)旋转中心是A 点;(2)∵△ABF 是由△ADE 旋转而成的, ∴B 是D 的对应点,∴∠DAB =90°就是旋转角;(3)∵AD =1,DE =14,∴AE =12+(14)2=174.∵对应点到旋转中心的距离相等且F 是E 的对应点,∴AF =174;(4)∵∠EAF =90°(与旋转角相等)且AF =AE , ∴△EAF 是等腰直角三角形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.点拨精讲:关键是确定△ADE三个顶点的对应点的位置.2.已知线段AB和点O,画出AB绕点O逆时针旋转100°后的图形.作法:1.连接OA;2.在逆时针方向作∠AOC=100°,在OC上截取OA′=OA;3.连接OB;4.在逆时针方向作∠BOD=100°,在OD上截取OB′=OB;5.连接A′B′.∴线段A′B′就是线段AB绕点O按逆时针方向旋转100°后的对应线段.点拨精讲:作图应满足三要素:旋转中心、旋转角、旋转方向.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.(1)此图能否旋转某一部分得到一个正方形?(2)若能,指出由哪一部分旋转而得到的?并说明理由.(3)它的旋转角多大?并指出它们的对应点.解:(1)能;(2)由△BCQ绕B点旋转得到.理由:连接AB,易证四边形ABCD为正方形.再证△ABP≌△CBQ.可知△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.(3)90°.点C对应点A,点Q对应点P.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.点拨精讲:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°,∴△ADM是以A为旋转中心,以∠BAD为旋转角,由△ABK旋转而成的.∴BK=DM.点拨精讲:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.学生总结本堂课的收获与困惑.(2分钟)1.问题:对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?2.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.学习至此,请使用本课时对应训练部分.(10分钟)23.1图形的旋转(3)1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2. 掌握根据需要用旋转的知识设计出美丽的图案.重点:用旋转的有关知识画图.难点:根据需要设计美丽图案.一、自学指导.(15分钟)1.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.点拨精讲:要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.探究:从上面的作图题中,知道作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.2.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.归纳:旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以可以经过旋转设计出美丽的图案.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)如图所示是日本三菱汽车公司的标志,它可以看作是由一个菱形经过__3__次旋转,每次旋转__120°__得到的.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.如图所示,图①沿逆时针方向旋转90°可得到图__⑤__.图①按顺时针方向至少旋转__180__度可得图③.2.如图所示,在△ABC中,∠BAC=90°,AB=AC,点P是△ABC内的一点,且AP=3,将△ABP 绕点A旋转后与△AC P′重合,求PP′的长.解:依题意,AP绕点A旋转90°时得AP′=AP=3,则△APP′是等腰直角三角形.所以PP′=PA2+P′A2=32+32=3 2.解题的关键是确定AP与AP′垂直且相等.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)如图所示,点C是线段AB上任意一点,分别以AC,BC为边在同侧作等边三角形ACD和等边三角形BCE,连接AE,BD,试找出图中能通过旋转完全重合的一对三角形,并指明旋转中心、旋转角及旋转方向.解:△ACE旋转后能与△DCB完全重合.旋转中心是点C,旋转角是60°,旋转方向是顺时针方向.(也可看作△DCB绕点C逆时针旋转60°得到△ACE)学生总结本堂课的收获与困惑.(3分钟)1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.学习至此,请使用本课时对应训练部分.(10分钟)23.2中心对称23. 2. 1中心对称1. 了解中心对称、对称中心、关于中心的对称点等概念.2. 掌握中心对称的基本性质.重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.一、自学指导.(10分钟)自学1:中心对称,对称中心,对称点等概念:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry);这个点叫做对称中心;这两个图形中的对应点叫做关于对称中心的对称点.自学2:中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A,B,C,D关于中心对称的对称点是哪些点.解:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.(2)A,B,C,D关于中心D的对称点是A′,B′,C′,D′,这里的D′与D重合.2.如图,已知AD是△ABC的中线,作出以点D为对称中心,与△ABD成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C,B为一对对应点,因此,只要再作出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),A点关于中心D的对称点为A′.(2)连接A′B′,A′C′.则△A′B′D为所求作的三角形,如图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称.(只保留作图痕迹,不要求写出作法)点拨精讲:(1)画法总结;(2)性质归纳.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.如图,等边△ABC内有一点O,试说明:OA+OB>OC.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B.又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′.在△BOO′中,OO′+OB>BO′,即OA+OB>OC.点拨精讲:要证明OA+OB>OC,必然把OA,OB,OC转化在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,旋转60°,便可把OA,OB,OC转化在一个三角形内.2.教材第66页练习.学生总结本堂课的收获与困惑.(2分钟)1.中心对称及对称中心的概念;2.关于中心对称的两个图形的性质.学习至此,请使用本课时对应训练部分.(10分钟)23.2.2中心对称图形1. 掌握中心对称图形的定义.2. 准确判断某图形是否为中心对称图形.重点:中心对称图形的判断.难点:两个图形成中心对称和中心对称图形的关系,以及中心对称图形的判定.一、自学指导.(7分钟)自学:自学课本P66~67的内容.探究:中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合.那么这个图形叫做中心对称图形,这个点就是它的对称中心.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(3分钟)将下面左图的四张扑克牌中的一张旋转180°后,得到右图,你知道旋转了哪一张扑克吗?议一议.解:J.点拨精讲:这里相当于问哪一张扑克牌是中心对称图形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.我们已学过许多几何图形,下列几何图形中,哪些是中心对称图形?对称中心是什么?(出示课件图片)(1)平行四边形(2)矩形(3)菱形(4)正方形(5)正三角形(6)线段(7)角(8)等腰梯形解:常见的中心对称图形:线段(线段中点)、平行四边形(对角线交点)、矩形、菱形、正方形、圆(圆心)等.2.中心对称图形与中心对称有哪些区别与联系.解:区别:中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成中心对称.联系:如果将成中心对称的两个图形看成一个整体,则它们是中心对称图形;如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(15分钟)1.英文大写字母中有哪些中心对称图形?答:(H,I,N,O,S,X,Z).2.说一说:在生活中你还见过哪些中心对称图形?学生思考、举例、回答问题,教师展示图片、归纳总结.3.想一想:你学过的几何图形具有怎样的对称性?点拨精讲:边数为奇数的正多边形只是轴对称图形而不是中心对称图形,边数为偶数的正多边形既是轴对称图形,又是中心对称图形.4.课本第67页小练习2.点拨精讲:怎样判断非常见几何图形是否为中心对称图形的妙法:将书本转180°,即倒过来后,看图形是否与原来一样.5.如果公园里的草坪是下面的形状,你能否只修一条笔直的小路就将这块草坪分成面积相等的两部分?点拨精讲:由两个中心对称图形构成的图形,过两个对称中心的直线,把这个图形分成的两部分面积相等.学生总结本堂课的收获与困惑.(2分钟)1.中心对称图形的定义.2.怎样准确判断某图形是否为中心对称图形.学习至此,请使用本课时对应训练部分.(10分钟)23.2.3关于原点对称的点的坐标掌握两个点关于原点对称时的坐标特征,能够运用特征解决相关问题.重点:关于原点对称的点的坐标的关系及初步应用.难点:关于原点对称的点的坐标的性质及其运用它解决实际问题.一、自学指导.(10分钟)自学:自学课本P68的内容.思考:关于原点作中心对称时,(1)它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?(2)坐标与坐标之间符号又有什么特点?点拨精讲:(1)横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等;(2)坐标符号相反,即P(x,y)关于原点O的对称点为P′(-x,-y).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-2),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?解:A,B,C,D,E,F点关于原点O对称点分别为A′(3,-1),B′(4,0),C′(0,-3),D′(-2,-2),E′(-3,2),F′(2,2).这些点的横纵坐标与已知点的横纵坐标互为相反数.2.如图,利用关于原点对称的点的坐标的特点,作出与△ABC关于原点对称的图形.解:△ABC的三个顶点A(-2,2),B(-4,-1),C(1,1)关于原点的对称点分别为A′(2,-2),B′(4,1),C′(-1,-1),依次连接A′B′,B′C′,A′C′,就可得到与△ABC关于原点对称的△A′B′C′,如右图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)如图,直线AB与x轴、y轴分别相交于A,B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1.(1)在图中画出直线A1B1.(2)求出过线段A1B1中点的反比例函数解析式.(3)是否存在另一条与直线A1B1平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等),它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.点拨精讲:(1)只需画出A,B两点绕点O顺时针旋转90°得到的点A1,B1,连接A1B1.(2)先求出A1B1中点的坐标,设反比例函数解析式为y=kx代入求k.(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加以说明.这一条直线是存在的,因为A1B1与双曲线是相切的,只要我们通过A1B1的坐标作A1,B1关于原点的对称点A2,B2,连接A2B2的直线就是我们所求的直线.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC 关于原点对称的图形.点拨精讲:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′.2.教材P69的第1,2,3题.学生总结本堂课的收获与困惑.(2分钟)本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y),及利用这些特点解决一些实际问题.学习至此,请使用本课时对应训练部分.(10分钟)23.3课题学习图案设计1.认识和欣赏平移、轴对称、旋转在现实生活中的应用.2. 利用图形的平移、轴对称、旋转变换设计组合图案.重点:设计图案.难点:如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.一、自学指导.(10分钟)自学:自学教材P72内容,思考下列问题.(1)我们学过哪些图形变换?它们分别有何特征?(2)下列图形之间的变换分别属于什么变换?探究:(1)观察下面的图形,分析它是将哪种基本图形经过了哪些变换后得到的?(2)观察三种图形变换的过程,回答问题:①平移、旋转和轴对称变换的基本特征;②归纳三种图形变换的共性.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.分析图案的形成过程要注意些什么?分析图案的形成过程,应注意运用__平移、__轴对称__、__旋转__进行描述,只要合理就行.2.图案设计的关键是什么?选取简单的基本几何图形,然后通过不同的变换组合出美丽的图案.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(7分钟)用平移、旋转或轴对称变换分析下图中各个图案,分析它是将哪种基本图形经过了哪些变换后得到的?点拨精讲:将基本图形从组合图案中分离出来,并再现此基本图形的变换过程.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.某单位搞绿化,要在一块圆形空地上种植四种颜色的花,为了便于管理和美观,相同颜色的花集中种植,且每种颜色的花所占的面积相同,现征集设计方案,你能帮忙设计吗?点拨精讲:将基本图形创造性地应用平移、轴对称、旋转等变换,设计出和谐、丰富、美观的组合图案.2.下面花边中的图案,由圆弧、圆构成.仿照例图,请你为班级的板报设计一条花边,要求:(1)只要画出组成花边的一个图案;(2)以所给的图形为基础,用圆弧、圆或线段画出;(3)图案应有美感.学生总结本堂课的收获与困惑.(2分钟)利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.学习至此,请使用本课时对应训练部分.(10分钟)。

新人教版数学九年级上册第23章《旋转》导学案3

新人教版数学九年级上册第23章《旋转》导学案3

优质文档新人教版数学九年级上册第23章《旋转》导学案3课题中心对称课型新授课课时第一课时课堂检测1、已知下列命题:①关于中心对称的两个图形一定不全等;②关于中心对称的两个图形一定全等;③两个全等的图形一定成中心对称,其中真命题的个数是()[来源学科网ZXXK]A、0B、1C、2D、32、下列图形即是轴对称又是中心对称的是()[来源:Z_xx_]A B C C3、已知,△ABC与△DEF成中心对称,请找出它们的对称中心。

4、如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.4题图5、如图,点A'是A关于点O的对称点,请作出线段AB关于点O对称的线段A'B'[来源:]学法指导栏[来源:]学习目标1、通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.2、掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.学习重点中心对称的性质及初步应用.学习难点中心对称的性质及初步应用.教师“复备栏”或学生“笔记栏”自主探究1、观察、实验:选择你最喜欢的一幅图,用透明纸覆盖在图上,描画出其中的一部分,用大头针固定在O处。

旋转180°后,你有什么发现?(1)(2)(3)发现:把一个图形绕着某一个旋转,如果他们能够与另一个图形,那么就说这个图形,这个点叫做,这两个图形中的叫做关于中心的.2、组内交流在图3中,我们通过实验知四边形A B C D和四边形A'B'C'D'关于点O对称。

(1)你知道它的对称中心、对称点吗?(2)连接A A'、B B'、C C'、D D'你有什么发现?(3)线段AB、BC、CD、DA的对应线段是什么?AB与A'B'的关系是怎样的?四边形ABCD和四边形A'B'C'D'有什么关系?为什么?自我尝试:(1)、已知点A和点O,画出点A关于点O的对称点A'。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三章 旋转23.1图形的旋转(1)新授课: 1课时 主备:吴诗颜 审核:初三数学老师 学习目标1、掌握旋转的定义以及相关概念2、理解旋转的基本性质3、利用性质解决相关问题。

学习重点:旋转相关概念以及性质 学习难点:利用性质解决相关问题。

学习过程:认真阅读教材第59页----第61页,完成下列问题: 一、预习热身:把一个平面图形___ 着平面内某一点O_____一个角度,就叫做图形的旋转,点O 叫做_________,转动的角叫做________。

因此,旋转的决定因素....是_________和_________。

二、自主学习:1、钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了_________度.2、如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A 、B 分别移动______________3、如图:∆ABC 是等边三角形,D 是BC 上一点,∆ABD 经过旋转后到达∆ACE 的位置。

(1)旋转中心是_______(2)旋转了_______度.(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了________________.三、点拔释疑:1、总结归纳旋转地性质。

①_______________________________________________________ ②__________________________________________________________ ③_____________________________________________________________ 2、旋转性质的应用E DCBAMABCB'A'1、已知△ABC 是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△DEC ,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE 与AB 的位置关系为_________________.2、正方形ABCD 中有一点P ,把△ABP 绕点点B 旋转到△CQB,连结PQ ,则△PBQ 的形状是_____________________________. 四、盘点提升:1、下列现象中属于旋转的有________________①地下水位逐年下降;②传送带的移动;③方向盘的转动; ④水龙头的转动;⑤钟摆的运动;⑥荡秋千2、等边三角形至少旋转__________度才能与自身重合。

3、如图1,可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是( )A .90B .60C .45D .304、如图2,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )图1 图2 五、达标检测1、如图3,把△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,若∠BCA '=1000,则∠B /CA 的度数是__________。

2、如图4,P 是等边△ABC 内一点,△BMC 是由△BPA 旋转所得,则∠PBM =______°.3、如图5,△ABP 是由△ACE 绕A点旋转得到的,那么△ABP 与△ACE 是什么关系? 若∠BAP =40°,∠B =30°,∠PAC =20°,求旋转角及∠CAE=____°∠E=____° ∠BAE=____°图3 图4 图5A EBCP4、△ABC 是等腰直角三角形,BC 是斜边,P 是△ABC 内一点,将△ABC 绕点A 逆时针旋转后于△ACQ 重合,,如果AP=3,则PQ=__________5、在Rt △ABO 中,∠OAB=90°,OA=AB=6,将△ABO 绕点O 逆时针方向旋转90°得到△OA 1B 1, (1)则线段OA 1的长是__________,∠AOB 1=_______° (2)连接AA 1,求证四边形OAA 1B 1是平行四边形;(3)求四边形OAA 1B 1的面积?23.1图形的旋转(2)新授课: 1课时 主备:吴诗颜 审核:初三数学老师 学习目标:1、能够按照要求做出简单的图形旋转后的图形。

2、继续利用旋转的性质解决相关问题。

学习重点:旋转相关概念以及性质 学习难点:利用性质解决相关问题。

学习过程:认真阅读教材第59页----第61页,完成下列问题: 一、自主学习:1、在图形旋转中,下列说法错误的是( )A.图形上各点的旋转角相同;B.由旋转得到的图形也一定可以由平移得到;C.对应点到旋转中心的距离相等D. 旋转不改变图形的大小、形状; 2、如图,是△AOB 绕点O 按逆时针方向旋转450所得的。

则 点B 的对应点是点_____。

线段OB 的对应线段是线段______。

线段AB 的对应线段是线段______。

∠A 的对应角是______。

∠B 的对应角是_____。

旋转中心是点_____。

旋转的角度是 __________。

CABOD3、归纳:图形的旋转具有以下基本性质 ①旋转前、后的图形_____________;②对应点到______________________________;③每一对对应点与________所连线段的夹角等于_______; ④图形旋转由_________、__________、_________决定的 二、合作探究如图 ,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D 。

试确定顶点 B 的对应位置, 以及旋转后的三角形。

分析:1、作图前需明确什么? ﹒DA 2、作出图形B C3、你还有别的作图方法吗?三、点拨释疑练习:①在图1中画出△ABC 绕点C 顺时针旋转90°后的图形△A 1B 1C 1②在图2中画出△ABC 绕点O 逆时针旋转90°后的图形△A 1B 1C 1③图3中△A 1B 1C 1是△ABC 绕着某一点O 旋转得到的图形,请在图中画出旋转中心O图1图3A B C A B C A B C O OA 1B 1C 1 图2四、盘点提升旋转作图时需确定:__________________________________________ 旋转中心在___________________________________________________五、达标检测1、如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ). ①对应点连线的中垂线必经过旋转中心. ②这两个图形大小、形状不变. ③将一个图形绕旋转中心旋转某个定角后必与另一个图形重合. ④对应线段一定相等且平行.A .1个B .2个C .3个D .4个 2、如图,菱形AEFG 可以看成是把菱形ABCD 以A 为中心( ). A .顺时针旋转60°得到 B .顺时针旋转120°得到 C .逆时针旋转60°得到 D .逆时针旋转120°得到3、张扑克牌如图3(1)所示放在桌子上,小敏把其中一张旋转180°后 得到如图3(2)所示,那么她所旋转的牌从左起是( )A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张图3(1) 图3(2)4、已知△ABC 的BC 边的中点D ,①画出△ABC 绕点D 旋转180°的图形△EBC ;②四边形ABEC 是怎样的四边形?为什么?5、 如图所示,把一直角三角尺绕着300角的顶点B 顺时针旋转,使点A 与CB 的延长线上的点E 重合。

(1)三角尺旋转了多少度? (2)连接CD ,试判断△CBD 的形状。

(3)求∠BDC 的度数。

23.2中心对称23.2.1中心对称新授课:1课时主备:吴诗颜审核:初三数学老师学习目标:1、掌握中心对称的定义以及相关概念。

理解中心对称的性质,能够利用性质解决相关问题。

2、能够依据中心对称的性质解决相关作图问题。

学习重点:作图以及利用性质解决问题。

学习难点:利用性质解决问题。

学习过程:认真阅读教材第64页----第66页,完成下列问题:一、自主学习1、把一个图形_________________________________________________________________那么就说这两个图形关于这个点中心对称。

这个点叫_______。

2、结合中心对称的定义回答:①中心对称的图形有____个;②中心对称是把一个图形绕某一点旋转___°③中心对称揭示了_____个图形中的一种_______关系。

3、利用旋转的性质——对应点到_________的距离相等,可知中心对称的两个图形的对称点到______的距离相等,亦即对称点的连线被__________平分。

对称点的连线经过_________. 、由旋转的性质——旋转前后对应的线段___________,可知中心对称的两个图形的对称线段_______,由此可得到,中心对称的两个图形是__________.二、合作探究1、画出△ABC关于点O的中心对称图形。

2、△ABC与△DEF关于点O中心对称,做出对称点。

3、依据第2题的作图,回答:对称点是_____,相等的线段有________________________________________.△ABC与△DEF是______形,点A、B、C的对称点分别为___________________.4、关于中心对称的两个图形的对称线____________________.三、点拨释疑1、中心对称的定义:把一个图形绕着某一个点旋转,如果它能够与另一个图形,那么就称这两个图形关于这个点成中心对称(简称)。

2、中心对称的性质:中心对称的两个图形,对称点所连线段都经过,而且被对称中心。

四、盘点提升1、关于中心对称的两个图形,对应线段的关系是( ).(A) 平行 (B) 相等 (C) 平行且相等 (D) 相等且平行或在同一直线上2、关于中心对称的两个图形,对称点的连线____________3、如果两个图形的对应点连成的线段都经过某一点,并且被平分,则这两个图形一定关于这一点成____________对称.4、右图中②③④⑤分别由①图顺时针旋转180°变换而成的是____________。

五、达标检测1、关于中心对称的两个图形,对应线段的关系是( ).(A)平行 (B)相等 (C)平行且相等 (D)相等且平行或在同一直线上2、如果两个图形的对应点连成的线段都经过某一点,并且被平分,则这两个图形一定关于这一点成____________对称.3、ΔABC和ΔA’B’C’关于点O中心对称,若ΔABC的周长为12cm,ΔA’B’C’的面积为6cm2,则ΔA’B’C’的周长为________,ΔABC的面积为________。

相关文档
最新文档