八年级数学(上)期中测试题

合集下载

八年级(上)期中数学试卷(含答案解析)

八年级(上)期中数学试卷(含答案解析)

八年级(上)期中数学试卷一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.3.五边形的内角和是()A.180°B.360°C.540°D.600°4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠27.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.2812.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.16.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.17.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.参考答案与试题解析一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.五边形的内角和是()A.180°B.360°C.540°D.600°【考点】多边形内角与外角.【专题】常规题型.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形【考点】三角形的稳定性.【分析】根据三角形具有稳定性可得答案.【解答】解:直角三角形有稳定性,故选:B.【点评】此题主要考查了三角形的稳定性,是需要识记的内容.5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°【考点】平行线的性质.【分析】由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=95°﹣60°=35°,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=70°,∵DE∥BC,∴∠BED+∠ABC=180°,∴∠BED=180°﹣70°=110°.故选C.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.7.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点评】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【考点】角平分线的性质.【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交P.故选D.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题时注意题目要求要满足两个条件①到角两边距离相等,②点在CD上,要同时满足.二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=6.【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是65°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.16.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.【解答】解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.17.如图,AC=AD,BC=BD,则△ABC≌△ABD;应用的判定方法是(简写)SSS.【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带③去配,这样做的数学依据是两个角及它们的夹边对应相等的两个三角形全等.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS.【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形全等的判定,熟练掌握各判定定理是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明AF=DE,可以证明它们所在的三角形全等,即证明△ABF≌△DEC,已知两边(由BE=CF得出BF=CE,AB=DC)及夹角(∠B=∠C),由SAS可以证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE,∴AF=DE.【点评】本题考查了全等三角形的判定及性质;证明两边相等时,如果这两边不在同一个三角形中,通常是证明它们所在的三角形全等来证明它们相等,是一种很重要的方法.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.【考点】全等三角形的判定.【专题】证明题.【分析】根据已知得出Rt△CEB和Rt△AED,利用HL定理得出即可.【解答】证明:∵BE⊥CD,∴∠CEB=∠AED=90°,∴在Rt△CEB和Rt△AED中,∴Rt△CEB≌Rt△AED(HL).【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.【考点】作图-轴对称变换.【分析】根据关于坐标轴对称的点的坐标特点画出图形即可.【解答】解:如图所示.【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据OC=OD得,△ODC是等腰三角形;根据AB∥DC,得出对应角相等,求得△AOB是等腰三角形,证明最后结果.【解答】证明:∵OC=OD,∴△ODC是等腰三角形,∴∠C=∠D,又∵AB∥DC,∴∠A=∠C,∠B=∠D,∴∠A=∠B,∴△AOB是等腰三角形,∴OA=OB.【点评】本题主要考查了等腰三角形的判定和平行线的性质:两直线平行,内错角相等.。

数学八年级(上)期中试卷(含答案详解)

数学八年级(上)期中试卷(含答案详解)

2021-2022学年河南省商丘市柘城县八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中图案是轴对称图形的是()A.打喷嚏捂口鼻B.喷嚏后慎揉眼C.勤洗手勤通风D.戴口罩讲卫生2.(3分)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)3.(3分)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm4.(3分)如图,正五边形ABCDE,对角线AC、BD交于点P,那么∠APD=()A.96°B.100°C.108°D.115°5.(3分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC 于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.86.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°7.(3分)如图,△ABC与△DEF关于直线MN轴对称,则下列结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分8.(3分)等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A.140°或44°或80°B.20°或80°C.44°或80°D.140°9.(3分)如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是()A.30B.50C.60D.8010.(3分)如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s 速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s二、填空题(本大题共5小题,共15分)11.(3分)如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架.12.(3分)一个多边形的内角和比它的外角和的2倍少180°,则这个多边形的边数是.13.(3分)已知△ABC关于直线y=1对称,C到AB的距离为2,AB长为6,则点A、点B的坐标分别为.14.(3分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=.15.(3分)如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为.(注:把你认为正确的答案序号都填上)三、解答题(本大题共8小题,共75分)16.(8分)如图,在△ABC中,D为BC上一点,∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,试求∠DAC、∠ADC的度数.17.(9分)如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC 于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若AB=12cm,求CM的长.18.(9分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.19.(9分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,如图DE=DG,△ADG 和△AED的面积分别为50和38,求△EDF的面积.20.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.21.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.22.(10分)已知△ABC在平面直角坐标系中,在△ABC中,AB=BC,∠ABC=90°.(1)如图①,已知点A(0,﹣4),B(1,0),求点C的坐标;(2)如图②,已知点A(0,0),B(3,1),求点C的坐标.23.(11分)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB.2021-2022学年河南省商丘市柘城县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中图案是轴对称图形的是()A.打喷嚏捂口鼻B.喷嚏后慎揉眼C.勤洗手勤通风D.戴口罩讲卫生【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.2.(3分)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化﹣平移.【分析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P'的坐标,再根据关于x轴对称,横坐标不变,纵坐标相反解答.【解答】解:∵将点P(﹣3,2)向右平移3个单位得到点P',∴点P'的坐标是(0,2),∴点P'关于x轴的对称点的坐标是(0,﹣2).故选:A.3.(3分)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm【考点】三角形三边关系.【分析】首先设第三边长为xcm,根据三角形的三边关系可得6﹣3<x<6+3,再解不等式即可.【解答】解:设第三边长为xcm,根据三角形的三边关系可得:6﹣3<x<6+3,解得:3<x<9,故选:C.4.(3分)如图,正五边形ABCDE,对角线AC、BD交于点P,那么∠APD=()A.96°B.100°C.108°D.115°【考点】多边形内角与外角.【分析】首先根据正五边形的性质得到AB=BC=CD,∠ABC=∠BCD=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠CBD=∠BDC==36°,最后利用三角形的内角和定理得到∠APD=∠BPC=180°﹣∠CBD﹣∠BCA=180°﹣36°﹣36°=108°.【解答】解:∵五边形ABCDE为正五边形,∴AB=BC=CD,∠ABC=∠BCD=108°,∴∠BAC=∠BCA=∠CBD=∠BDC==36°,∴∠APD=∠BPC=180°﹣∠CBD﹣∠BCA=180°﹣36°﹣36°=108°.故选:C.5.(3分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC 于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.8【考点】含30度角的直角三角形;平行线的性质;等腰三角形的判定与性质.【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.6.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【考点】等腰三角形的性质;平行线的性质.【分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,由三角形外角的性质即可求得∠ACD的度数.【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.7.(3分)如图,△ABC与△DEF关于直线MN轴对称,则下列结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分【考点】轴对称的性质;线段垂直平分线的性质.【分析】根据轴对称图形的性质一一判断即可、【解答】解:∵△ABC与△DEF关于直线MN轴对称,∴∠B=∠E,AB=DE,AD的连线被MN垂直平分,∴B、C、D正确,故选:A.8.(3分)等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A.140°或44°或80°B.20°或80°C.44°或80°D.140°【考点】等腰三角形的性质.【分析】设另一个角是x,表示出一个角是2x﹣20°,然后分①x是顶角,2x﹣20°是底角,②x是底角,2x﹣20°是顶角,③x与2x﹣20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【解答】解:设另一个角是x,表示出一个角是2x﹣20°,①x是顶角,2x﹣20°是底角时,x+2(2x﹣20°)=180°,解得x=44°,所以,顶角是44°;②x是底角,2x﹣20°是顶角时,2x+(2x﹣20°)=180°,解得x=50°,所以,顶角是2×50°﹣20°=80°;③x与2x﹣20°都是底角时,x=2x﹣20°,解得x=20°,所以,顶角是180°﹣20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故选:A.9.(3分)如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是()A.30B.50C.60D.80【考点】全等三角形的判定与性质.【分析】易证△AEF≌△BAG,△BCG≌△CDH即可求得AF=BG,AG=EF,GC=DH,BG=CH,即可求得梯形DEFH的面积和△AEF,△ABG,△CGB,△CDH的面积,即可解题.【解答】解:∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,,∴△AEF≌△BAG,(AAS)同理△BCG≌△CDH,∴AF=BG,AG=EF,GC=DH,BG=CH,∵梯形DEFH的面积=(EF+DH)•FH=80,S△AEF=S△ABG=AF•AE=9,S△BCG=S△CDH=CH•DH=6,∴图中实线所围成的图形的面积S=80﹣2×9﹣2×6=50,故选:B.10.(3分)如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s 速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【考点】全等三角形的性质.【分析】分△ABC≌△PQA和△ABC≌△QPA两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QPA时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.二、填空题(本大题共5小题,共15分)11.(3分)如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架具有三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答即可.【解答】解:因为手机支架具有三角形的稳定性,故答案为:具有三角形稳定性.12.(3分)一个多边形的内角和比它的外角和的2倍少180°,则这个多边形的边数是5.【考点】多边形内角与外角.【分析】根据多边形的内角和、外角和的求法列方程求解即可.【解答】解:设这个多边形为n边形,由题意得,(n﹣2)×180°=360°×2﹣180°,解得n=5,即这个多边形为五边形,故答案为:5.13.(3分)已知△ABC关于直线y=1对称,C到AB的距离为2,AB长为6,则点A、点B的坐标分别为(2,﹣2),(2,4).【考点】坐标与图形变化﹣对称.【分析】根据题意,可得A、B的连线与y=1垂直,且两点到直线y=1的距离相等,又AB=6,从而可以得出A、B两点的纵坐标;又C到AB的距离为2,从而可以得出A、B 两点的横坐标.【解答】解:由题可知:可得A、B的连线与y=1垂直,且两点到直线y=1的距离相等∵AB=6∴A、B两点的纵坐标分别为﹣2和4又∵C到AB的距离为2∴A、B两点的横坐标都为2∴A、B两点的坐标分别为(2,﹣2)(2,4).14.(3分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=112°.【考点】轴对称﹣最短路线问题.【分析】如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB 于E′,交BC于F′,则点E′,F′即为所求,结合四边形的内角和即可得出答案.【解答】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E′,交BC于F′,则点E′,F′即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°﹣α,由轴对称知,∠ADE′=∠P,∠CDF′=∠Q,在△PDQ中,∠P+∠Q=180°﹣∠ADC=180°﹣(180°﹣34)=34°∴∠ADE′+∠CDF′=∠P+∠Q=34,∴∠E′DF′=∠ADC﹣(∠ADE′+∠CDF′)=180°﹣68°=112°故答案为:112°.15.(3分)如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为①、③、④.(注:把你认为正确的答案序号都填上)【考点】全等三角形的判定.【分析】由∠CAE=∠DAB,得∠CAB=∠DAE;则△CAB和△DAE中,已知的条件有:∠CAB=∠DAE,CA=AD;要判定两三角形全等,只需添加一组对应角相等或AE=AB 即可.【解答】解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;又AC=AD;所以要判定△ABC≌△AED,需添加的条件为:①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).故填①、③、④.三、解答题(本大题共8小题,共75分)16.(8分)如图,在△ABC中,D为BC上一点,∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,试求∠DAC、∠ADC的度数.【考点】三角形内角和定理.【分析】设∠BAD=∠ABC=α,根据外角的性质得到∠ADC=∠B+∠BAD=2α,于是得到∠ADC=∠ACD=2α,根据三角形的内角和列方程即可得到结论.【解答】解:设∠BAD=∠ABC=α,∵∠ADC=∠B+∠BAD=2α,∴∠ADC=∠ACD=2α,∵∠BAC=63°,∴63°+α+2α=180°,解得:α=39°,∴∠ADC=2α=78°.∴∠DAC=180°﹣4α=24°.17.(9分)如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC 于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若AB=12cm,求CM的长.【考点】等边三角形的判定与性质.【分析】(1)根据等边三角形的性质得出∠A=∠B=∠C,进而得出∠MPB=∠NMC=∠PNA=90°,再根据平角的意义即可得出∠NPM=∠PMN=∠MNP,即可证得△PMN 是等边三角形;(2)易证得△PBM≌△MCN≌△NAP,得出PA=BM=CN,PB=MC=AN,从而求得BM+PB=AB=12cm,根据直角三角形30°角所对的直角边等于斜边的一半得出2PB=BM,即可求得PB的长,进而得出MC的长.【解答】解:(1)∵△ABC是正三角形,∴∠A=∠B=∠C,∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,∴∠PMB=∠MNC=∠APN,∴∠NPM=∠PMN=∠MNP,∴△PMN是等边三角形;(2)根据题意△PBM≌△MCN≌△NAP,∴PA=BM=CN,PB=MC=AN,∴BM+PB=AB=12cm,∵△ABC是正三角形,∴∠A=∠B=∠C=60°,∴2PB=BM,∴2PB+PB=12cm,∴PB=4cm,∴MC=4cm.18.(9分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.【考点】三角形的角平分线、中线和高;三角形的面积.【分析】(1)利用“面积法”来求线段AD的长度;(2)△AEC与△ABE是等底同高的两个三角形,它们的面积相等;(3)由于AE是中线,那么BE=CE,于是△ACE的周长﹣△ABE的周长=AC+AE+CE ﹣(AB+BE+AE),化简可得△ACE的周长﹣△ABE的周长=AC﹣AB,易求其值.【解答】解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC=BC•AD,∴AD===4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,=AB•AC=×6×8=24(cm2).∴S△ABC又∵AE是边BC的中线,∴BE=EC,=S△AEC,∴BE•AD=EC•AD,即S△ABE=S△ABC=12(cm2).∴S△ABE∴△ABE的面积是12cm2.方法二:因为BE=BC=5,由(1)知AD=4.8,=BE•AD=×5×4.8=12(cm2).所以S△ABE∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.19.(9分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,如图DE=DG,△ADG 和△AED的面积分别为50和38,求△EDF的面积.【考点】全等三角形的判定与性质;角平分线的性质.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和38,=S△ADG﹣S△ADM=50﹣38=12,∴S△MDGS△DNM=S△EDF=S△MDG=×12=6.20.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.【考点】全等三角形的判定与性质.【分析】(1)由SAS证明△ABD≌△ACE即可;(2)先由全等三角形的性质得∠ACE=∠ABD=20°,再由等腰三角形的性质和三角形内角和定理得∠ABC=∠ACB=47°,则∠FBC=∠FCB=27°,即可得出答案.【解答】(1)证明:∵∠BAE=∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD=20°,∵AB=AC,∴∠ABC=∠ACB=(180°﹣86°)=47°,∴∠FBC=∠FCB=47°﹣20°=27°,∴∠BFC=180°﹣27°﹣27°=126°.21.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.【考点】作图﹣平移变换;作图﹣轴对称变换.【分析】(1)要关于y轴对称,即从各顶点向y轴引垂线,并延长,且线段相等,然后找出各顶点的坐标.(2)各顶点向右平移6个单位找对应点即可.(3)从图中可以看出关于直线x=3轴对称.【解答】解:(1)A1(0,4),B1(2,2),C1(1,1);(2)A2(6,4),B2(4,2),C2(5,1);(3)△A1B1C1与△A2B2C2关于直线x=3轴对称.22.(10分)已知△ABC在平面直角坐标系中,在△ABC中,AB=BC,∠ABC=90°.(1)如图①,已知点A(0,﹣4),B(1,0),求点C的坐标;(2)如图②,已知点A(0,0),B(3,1),求点C的坐标.【考点】全等三角形的判定与性质;等腰直角三角形;坐标与图形性质.【分析】(1)过点C作x轴的垂线,交x轴于点D,利用AAS证明△BCD≌△ABO,得CD=BO=1,BD=AO=4,可得答案;(2)过B作x轴的垂线,交x轴于点D,过点C作DB的垂线交DB的延长线于点E,利用AAS证明△ABD≌△BCE,得CE=BD=1,BE=AD=3,可得答案.【解答】解:(1)过点C作x轴的垂线,交x轴于点D,∵A(0,﹣4),B(1,0),∴OA=4,OB=1,∵∠ABC=90°,∠AOB=90°,∴∠CBD+∠OBA=90°,∠OAB+∠OBA=90°,∴∠CBD=∠BAO,∵AB=BC,∠AOB=∠BDC=90°,∴△BCD≌△ABO(AAS),∴CD=BO=1,BD=AO=4,∴OD=3,∴点C坐标为(﹣3,1);(2)过B作x轴的垂线,交x轴于点D,过点C作DB的垂线交DB的延长线于点E,∵A(0,0),B(3,1),∴OD=3,BD=1,∵∠ABC=90°,∠ADB=90°,∴∠CBE+∠OBD=90°,∠BAD+∠OBD=90°,∴∠BAD=∠CBE,∵AB=BC,∠ADB=∠BEC=90°,∴△ABD≌△BCE(AAS),∴CE=BD=1,BE=AD=3,∴DE=4,∴点C的横坐标为3﹣1=2,∴点C坐标为(2,4).23.(11分)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB.【考点】全等三角形的判定与性质.【分析】(1)根据角平分线性质可得∠PAB+∠PBA=45°,即可解题;(2)易得∠DPB=45°,可得∠BPF=135°,即可证明△ABP≌△FBP;(3)由(2)结论可得∠F=∠BAD,AP=PF,AB=BF,即可求得∠F=∠CAD,即可证明△APH≌△FPD,可得AH=DF,即可解题.【解答】解:(1)∵AD平分∠BAC,BE平分∠ABC,∴∠PAB+∠PBA=(∠ABC+∠BAC)=45°,∴∠APB=180°﹣45°=135°;(2)∵∠APB=135°,∴∠DPB=45°,∵PF⊥AD,∴∠BPF=135°,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA);(3)∵△ABP≌△FBP,∴∠F=∠BAD,AP=PF,AB=BF,∵∠BAD=∠CAD,∴∠F=∠CAD,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴AH=DF,∵BF=DF+BD,∴AB=AH+BD.。

八年级(上)期中数学试卷含答案解析

八年级(上)期中数学试卷含答案解析

八年级(上)期中数学试卷一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC 的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C 的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEFK为正方形,∴EF=FK=BE=BK,∵AB=BC,∴CK=KF=EF=AE,在△AEF和△CKF中∴△AEF≌△CKF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92°.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB 的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC ≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC ≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65°.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为10.【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE =S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【解答】解:∵点E为AC的中点,∴S△ABE =S△ABC.∵BD:CD=2:3,∴S△ABD=S△ABC,∵S△AOE ﹣S△BOD=1,∴S△ABE =S△ABD=S△ABC﹣S△ABC=1,解得S△ABC=10.故答案为:10.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.【考点】三角形内角和定理.【分析】然后根据三角形的内角和等于180°列式计算求出∠B,然后求解即可.【解答】解:∵∠A=∠B﹣10°,∠C=∠B﹣5°,∴∠B﹣10°+∠B+∠B﹣5°=180°,∴∠B=65°,∴∠A=65°﹣10°=55°,∠C=65°﹣5°=60°,∴△ABC的内角的度数为55°,60°,65°.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.【解答】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的性质得到AB=AC,AD=AE,BE=CD,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质和三角形的内角和得到∠ACB=∠ABC=65°,根据垂直的定义得到∠BEC=∠AEB=90°,于是得到结论.【解答】(1)证明:∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=CD,∴BD=CE,在△BEC与△CDB中,,∴△BEC≌△CDB;(2)解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=65°,∵BE⊥AC,∴∠BEC=∠AEB=90°,∴∠ABE=∠ACD=40°,∴∠BCD=15°.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是(1,﹣1),点B的对应点B1的坐标是(﹣4,﹣1),点C的对应点C1的坐标是(﹣3,1);(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标(0,﹣3)或(0,1)或(3,﹣3).【考点】作图﹣轴对称变换;坐标确定位置.【分析】(1)根据各点坐标画出三角形即可,再根据轴对称的性质,画出三角形即可;(2)根据△△A1B1C1各顶点的位置写出其坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【解答】解:(1)画图如图所示:(2)由图可得,点A1的坐标是(1,﹣1),点B1的坐标是(﹣4,﹣1),点C1的坐标是(﹣3,1);(3)∵AB为公共边,∴与△ABC全等的三角形的第三个顶点的坐标为(0,﹣3),(0,1)或(3,﹣3).22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.【考点】翻折变换(折叠问题);三角形三边关系.【分析】根据翻折变换的性质可得CE=CD,BE=BC,然后求出AE,再求出AD+DE=AC,最后根据三角形的周长公式列式计算即可得解.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,∴AE<AD+DE,∴在△ABE中,AE>AB+BE,∴AE<5,AE>2,即2<AE<5,∴7<△AED的周长<1.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.【解答】解:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=2HE=2.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.【考点】三角形综合题.【分析】(1)如图1中,设CD与y轴交于点E.根据四边形内角和定理,只要证明∠BCD+∠BAD=180°即可解决问题.(2)如图1中,求出直线AB、BC的解析式,再求出直线AD、CD的解析式,利用方程组求交点D坐标.(3)分四种情形,利用全等三角形的性质,列出方程分别求解即可.【解答】解:(1)如图1中,设CD与y轴交于点E.∵AD⊥AB,∴∠BAD=90°,∵∠1+∠BCO=90°,∠1=∠2,∴∠BCO+∠2=90°,∴∠BCD=90°,∴∠BCD+∠BAD=180°,∴∠ABC+∠D=360°﹣(∠BCD+∠BAD)=180°.(2)如图1中,∵A(7a,﹣7a),B(0,﹣7a),∴直线AB的解析式为y=x﹣7a,∵AD⊥AB,∴直线AD的解析式为y=﹣x+7a,∵C(﹣3a,0),B(0,﹣7a),∴直线BC的解析式为y=﹣x﹣7a,∵CD⊥BC,∴直线CD的解析式为y=x+a,由解得,∴点D的坐标为(4a,3a).(3)①如图2中,作NG⊥OE于G,GN的延长线交DF于H.∵△NEM是等腰直角三角形,∴EN=MN,∠ENM=90°,由△ENG≌△NMH,得EG=NH,∵N(n,2n﹣3),D(4,3),∴HN=EG=3﹣(2n﹣3)=6﹣2n∵GH=4,∴n+6﹣2n=4,∴n=2,∴N(2,1).②如图3中,作NG⊥OE于G,MH⊥OE于H.由△ENG≌△MEH,得GE=HM=4,∴OG=7=2n﹣3,∴n=5,∴N(5,7).③如图4中,作NG⊥OE于G,GN的延长线交DF于H.由△ENG≌△NMH得EG=NH=4﹣n,∴3+4﹣n=2n﹣3,∴n=,∴N(,).④如图5中,作MG⊥OE于G,NH⊥GM于H.由△EMG≌△MNH得EG=MH=n﹣4,MG=NH=4∴GH=n,∴3﹣(n﹣4)+4=2n﹣3,∴n=,∴N(,).综上所述,满足条件的点N的坐标为(2,1)或(5,7)或(,)或(,).。

八年级数学上册期中试卷【含答案】

八年级数学上册期中试卷【含答案】

八年级数学上册期中试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 已知三角形ABC中,∠A=90°,AB=3,AC=4,则BC的长度为( )。

A. 5B. 6C. 7D. 83. 有理数-3/5、-5/7、-7/9的大小关系是( )。

A. -3/5 < -5/7 < -7/9B. -7/9 < -5/7 < -3/5C. -3/5 > -5/7 > -7/9D. -7/9 > -5/7 > -3/54. 下列哪个图形不是轴对称图形?( )A. 等边三角形B. 矩形C. 圆D. 梯形5. 如果一个多项式能被(x-1)整除,那么这个多项式( )。

A. 必定有实数根B. 必定有复数根C. 必定是偶数次的多项式D. 必定能被(x+1)整除二、判断题1. 两个负数相乘的结果一定是正数。

( )2. 平行四边形的对边相等且平行。

( )3. 任何两个有理数之间都存在无数个无理数。

( )4. 二次函数的图像一定经过原点。

( )5. 对角线互相垂直的四边形一定是菱形。

( )三、填空题1. 若 |x-3| = 5,则 x = _______ 或 _______。

2. 已知a = 2 + √3,b = 2 √3,则a² + b² = _______。

3. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是 _______。

4. 若一个等差数列的首项为2,公差为3,则第10项的值是 _______。

5. 若一个函数的图像关于y轴对称,则这个函数是 _______ 函数。

四、简答题1. 解释什么是算术平方根,并给出一个例子。

2. 描述平行线的性质。

八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。

答案:±42. 如果一个角的补角是120°,那么这个角是______。

答案:60°3. 一个数的绝对值是5,这个数可以是______。

答案:±54. 一个数的立方等于27,这个数是______。

答案:35. 一个数的倒数是1/3,那么这个数是______。

答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。

答案:x = 52. 已知一个角是45°,求它的补角。

八年级(上)期中数学试卷(附答案)

八年级(上)期中数学试卷(附答案)

八年级(上)期中数学试卷一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.2.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个3.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±14.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°6.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=27.下列运算错误的是()A.B.C.D.8.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3 B.4 C.6 D.510.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2 B.1 C.6 D.10二、填空题(每空2分,共24分)11.计算:(﹣3)﹣2=.12.约分:=.13.用科学记数法表示﹣0.000614为.14.分解因式:4x2y﹣4xy+y=.15.若分式有意义,则实数x的取值范围是.16.化简﹣的结果是.17.如图,已知∠1=∠2,AC=AD,添加一个条件使△ABC≌△AED,你添加的条件是(填一种即可),根据.18.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为.19.已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是.20.观察下列等式:第1个等式:a1==﹣;第2个等式:a2==﹣;第3个等式:a3==﹣;第4个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.三、解答题(每小题5分,共25分)21.分解因式:x2(m﹣2)+9y2(2﹣m)22.化简:﹣÷.23.解分式方程:.24.已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.25.先化简,再求值:(1﹣)÷,其中a=﹣1.四、解答题(26题3分,27-29每题6分,本题共21)26.尺规作图:已知:如图,∠A与直线l.试在l上找一点P,使点P到∠A的两边的距离相等.要求:保留痕迹,不写作法.27.列方程解应用题从A地到B地的路程是30千米.甲骑自行车从A地到B地先走,半小时后,乙骑自行车从A地出发,结果二人同时到达.已知乙的速度是甲的速度的1.5倍,求甲、乙二人骑车速度各是多少?28.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.29.已知:如图,Rt△ABC中,∠BAC=90°.(1)按要求作出图形:①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE.(2)猜想(1)中线段AD与BE的大小关系,并证明你的结论.解:(1)完成作图(2)AD与BE的大小关系是.参考答案与试题解析一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个【考点】因式分解-运用公式法;因式分解-提公因式法.【专题】因式分解.【分析】直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.【解答】解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.【点评】此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.3.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±1【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.【解答】解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.4.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°【考点】全等三角形的性质;三角形内角和定理.【分析】根据已知数据找出对应角,根据全等得出∠A=∠D=50°,∠F=∠C=72°,根据三角形内角和定理求出即可.【解答】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°﹣∠D﹣∠F=58°,故选B.【点评】本题考查了三角形内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠A=∠D=50°,∠F=∠C=72°是解此题的关键,注意:全等三角形的对应边相等,对应角相等.5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°【考点】全等三角形的性质.【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE﹣∠DAC代入数据进行计算即可得解.【解答】解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=35°.故选B.【点评】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.6.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=2【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣2),得2x﹣5=﹣3,解得x=1.检验:当x=1时,(x﹣2)=﹣1≠0.∴原方程的解为:x=1.故选:C.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.下列运算错误的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.【解答】解:A、==1,故本选项正确;B、==﹣1,故本选项正确;C、=,故本选项正确;D、=﹣,故本选项错误;【点评】此题考查了分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.8.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)【考点】全等三角形的判定与性质;作图—基本作图.【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【解答】解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选A.【点评】考查全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点.9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.10.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2 B.1 C.6 D.10【考点】分式的混合运算;完全平方公式.【专题】阅读型.【分析】根据题意求出所求式子的最小值即可.【解答】解:∵x>0,∴在原式中分母分子同除以x,即=x+,在面积是9的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=,(x>0),解得x=3,这时矩形的周长2(x+)=12最小,因此x+(x>0)的最小值是6.故选:C【点评】此题考查了分式的混合运算,弄清题意是解本题的关键.二、填空题(每空2分,共24分)11.计算:(﹣3)﹣2=.【考点】负整数指数幂.【分析】根据负指数次幂的意义,首先计算乘方,即可.【解答】解:(﹣3)﹣2==.故答案是:.【点评】本题主要考查了负指数次幂的意义,正确理解意义是解题的关键.12.约分:=.【考点】约分.【分析】先找出分式的分子和分母的公因式,再根据分式的基本性质求出即可.【解答】解:原式==,故答案为:.【点评】本题考查了分式的约分的应用,关键是找出分式的分子和分母的公因式.13.用科学记数法表示﹣0.000614为﹣6.14×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:﹣0.000614=﹣6.14×10﹣4,故答案为:﹣6.14×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:4x2y﹣4xy+y=y(2x﹣1)2.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(4x2﹣4x+1)=y(2x﹣1)2.故答案为:y(2x﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.若分式有意义,则实数x的取值范围是x≠5.【考点】分式有意义的条件.【专题】计算题.【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.16.化简﹣的结果是﹣.【考点】分式的加减法.【专题】计算题.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣=﹣=﹣.故答案为:﹣.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.如图,已知∠1=∠2,AC=AD,添加一个条件使△ABC≌△AED,你添加的条件是AB=AE(填一种即可),根据SAS.【考点】全等三角形的判定.【专题】开放型.【分析】首先根据等式的性质可得∠CAB=∠DAE,再添加条件AB=AE可利用SAS定理判定△ABC≌△AED.【解答】解:添加的条件AB=AE,∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,在△ABC和△AED中,∴△ABC≌△AED(SAS),故答案为:AB=AE,SAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为﹣=2.【考点】由实际问题抽象出分式方程.【分析】设原计划每天修建道路x米,则实际每天修建道路(x+20)米,根据题意,提前2天完成任务,列方程.【解答】解:设原计划每天修建道路x米,则实际每天修建道路(x+20)米,由题意得,﹣=2.故答案为:﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.19.已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是②③④.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,根据角平分线上的点到角的两边的距离相等可得DE=DF=DG,再根据到角的两边距离相等的点在角的平分线上解答.【解答】解:如图,过点D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,∵点D是△ABC的两外角平分线的交点,∴DE=DG,DF=DG,∴DE=DF=DG,∴点D在∠B的平分线上,故②③④正确,只有点G是AC的中点时,AD=CD,故①错误,综上所述,说法正确的是②③④.故答案为:②③④.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.20.观察下列等式:第1个等式:a1==﹣;第2个等式:a2==﹣;第3个等式:a3==﹣;第4个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)由前四个等是可以看出:是第几个算式,等号左边的分母的第一个因数是就是几,第二个因数是几加1,第三个因数是2的几加1次方,分子是几加2;等号右边分成分子都是1的两项差,第一个分母是几乘2的几次方,第二个分母是几加1乘2的几加1次方;由此规律解决问题;(2)把这20个数相加,化为左边的形式相加,正好抵消,剩下第一个数分裂的第一项和最后一个数分裂的后一项,得出答案即可.【解答】解:(1)用含n的代数式表示第n个等式:a n==﹣.(2)a1+a2+a3+…+a20=﹣+﹣+﹣+﹣+…+﹣=﹣.故答案为:(1),﹣;(2)﹣.【点评】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.三、解答题(每小题5分,共25分)21.分解因式:x2(m﹣2)+9y2(2﹣m)【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(m﹣2)﹣9y2(m﹣2)=(m﹣2)(x2﹣9y2)=(m﹣2)(x+3y)(x﹣3y).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.化简:﹣÷.【考点】分式的混合运算.【专题】计算题.【分析】原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣•=﹣=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.解分式方程:.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+2(x﹣1)=3,去括号得:2x+2x﹣2=3,移项合并得:4x=5,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定定理SAS推知△ADF≌△CBE;然后由全等三角形的对应边相等知,AF=CE,所以AF﹣EF=CE﹣EF,即AE=CF.【解答】证明:∵AD∥BC(已知),∴∠A=∠C(两直线平行,内错角相等);在△ADF和△CBE中,,∴△ADF≌△CBE (ASA),∴AF=CE(全等三角形的对应边相等),∴AF﹣EF=CE﹣EF,即AE=CF.【点评】本题主要考查了全等三角形的判定与性质.普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.做题时要根据已知条件的具体位置来选择方法.25.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【专题】探究型.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.四、解答题(26题3分,27-29每题6分,本题共21)26.尺规作图:已知:如图,∠A与直线l.试在l上找一点P,使点P到∠A的两边的距离相等.要求:保留痕迹,不写作法.【考点】作图—基本作图;角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等可得点P在∠A的角平分线上,因此画∠A 的角平分线与l的交点就是P点.【解答】解:如图所示:.【点评】此题主要考查了基本作图,以及角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.27.列方程解应用题从A地到B地的路程是30千米.甲骑自行车从A地到B地先走,半小时后,乙骑自行车从A地出发,结果二人同时到达.已知乙的速度是甲的速度的1.5倍,求甲、乙二人骑车速度各是多少?【考点】分式方程的应用.【分析】首先设甲的速度为x千米/时,则乙的速度为1.5x千米/时,由题意得:甲需要时间小时,乙需要小时,再根据乙所用时间+半小时=甲所用时间即可列出方程.【解答】解:设甲的速度为x千米/时,则乙的速度为1.5x千米/时,由题意得:=+,解得:x=20,经检验:x=20是原分式方程的解,1.5×20=30(千米/时).答:甲的速度为20千米/时,则乙的速度为30千米/时.【点评】此题主要考查了分式方程的应用,难度中等,做此类题主要是要抓住关键条件列出方程解答即可.28.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中真分式与假分式的定义判断即可;(2)原式变形,化为带分式即可;(3)分式化为带分式后,即可确定出x的整数值.【解答】解:(1)分式是真分式;(2)==1﹣;(3)==2﹣为整数,则x的可能整数值为0,﹣2,2,﹣4.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.29.已知:如图,Rt△ABC中,∠BAC=90°.(1)按要求作出图形:①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE.(2)猜想(1)中线段AD与BE的大小关系,并证明你的结论.解:(1)完成作图(2)AD与BE的大小关系是AD=BE.【考点】全等三角形的判定与性质.【分析】(1)根据已知条件画出图形即可;(2)在AE上截取AF=AC,连结BF,根据全等三角形的判定定理求出△BAF≌△BAC,求出△BFE≌△DCA,即可得出答案.【解答】解:(1)如图:;(2)AD=BE,理由是:在AE上截取AF=AC,连结BF,∵∠BAC=90°,∴∠BAF=180°﹣90°=90°,∴∠BAC=∠BAF,在△ABF与△ABC中∴△ABF≌△ABC(SAS),∴BF=BC,AF=AC,∠BCA=∠BFA,∵∠BFE+∠BFA=180°,∠BCA+∠DCA=180°,∴∠BFE=∠DCA,∵BC=DC,BC=BF,∴BF=DC,∵AC=AF,AE=2AC=AF+EF,∴EF=AC=AF,在△BFE和△DCA中∴△BFE≌△DCA,∴AD=BE,故答案为:AD=BE.【点评】本题考查了全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,有一定的难度.。

八年级(上)期中数学试卷附答案解析

八年级(上)期中数学试卷附答案解析

八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个 D.1个6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.107.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠310.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=.12.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是.13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD=cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是(填序号).三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.23.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、直角三角形有三条高,故本选项错误;C、三角形的中线一定在三角形的内部,故本选项正确;D、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确.故选:B.2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个【解答】解:①7边形有=14条对角线,故正确;②外角和大于内角和的多边形只有三角形,故正确;③多边形外角和=360°,设这个多边形是n边形,根据题意得(n﹣2)•180°=360°×4,解得n=10.故错误.故选:C.3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对【解答】解:∵AB∥CD,∴∠A=∠D,∵AB=CD,AE=FD,∴△ABE≌△DCF(SAS),∴BE=CF,∠BEA=∠CFD,∴∠BEF=∠CFE,∵EF=FE,∴△BEF≌△CFE(SAS),∴BF=CE,∵AE=DF,∴AE+EF=DF+EF,即AF=DE,∴△ABF≌△CDE(SSS),∴全等三角形共有三对.故选:C.4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm【解答】解:∵O是AB,CD的中点,AB=CD,∴OA=OB=OD=OC,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD=15cm,故选:D.5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个D.1个【解答】解:第一个图形是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,故选:A.6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.10【解答】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BD是中线,∴∠ABD=30°,∵CE=CD,∴∠CDE=∠E=30°,∴∠BFE=90°,∴BE=2BF,∵EF=12,∴BE2=BF2+EF2,即4BF2=BF2+144,解得BF=4,在Rt△BDF中,cos30°=,∴BD=BF÷cos30°=4÷=8.故选:C.7.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【解答】解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D.8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC和△AB′C′关于直线L对称,∴(1)△ABC≌△AB′C′,正确;(2)∠B′AC=∠B′AC正确;(3)直线L一定垂直平分线段C C′,故本小题正确;(4)根据对应线段或其延长线的交点在对称轴上可知本小题错误;综上所述,正确的结论有3个.故选:B.9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠3【解答】解:如图,由三角形外角的性质可得∠1+∠4=∠5,∠2=∠5+∠3,∴∠1+∠4=∠2﹣∠3,故选:D.10.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选:B.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=(b﹣a)7.【解答】解:原式=[﹣(b﹣a)]2•(b﹣a)5=(b﹣a)2•(b﹣a)5=(b﹣a)7故答案为:(b﹣a)712.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【解答】解:∵∠B=30°,∠ACB=90°,AB=14cm,∴AC=7cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=7cm.=×7×7=(cm2).故S△ACF故答案为:.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD= 2.5cm.【解答】解:在△ABC中,∠C=90°,∠B=2∠A,所以,∠A=30°,∠B=60°,BC=sin∠A×AB=×10=5cm;∵CD⊥AB∴∠B+∠BCD=∠A+∠B=90°即:∠BCD=∠A又∵∠CDB=∠ACB=90°∴△ACB∽△CDB∴=即:DB===2.5cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为45°.【解答】解:∵AB=AC,∴∠C=∠ABC,∵BD=BC,∴∠C=∠CBD,∵∠A=30°,∴∠C=∠ABC=∠CBD=75°,∴∠CBD=30°,∴∠ABD=75°﹣30°=45°.故答案为45.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为110°.【解答】解:等腰三角形一个外角为70°,那相邻的内角为110°三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以110°只可能是顶角.故答案为:110°.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为6.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CND∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是②③④(填序号).【解答】解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;∵AD是△ABC的角平分线,∴∠EAD=∠FAD,在△AED和△AFD中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,故④正确;∵在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,故②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,故③正确.综上可得:正确的是:②③④,故答案为:②③④.三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.【解答】解:如图所示:点B′即为所求,∵A(0,2),B(3,﹣2),∴B点到AC的距离为4,则B′点到AC的距离也为4,且两点横坐标相等,∴B′(3,6).20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.【解答】解:∵AF平分∠CAE,∴∠CAF=∠DAF在△CAF与△DAF中,∴△CAF≌△DAF(SAS)∴∠ACF=∠ADF∵∠ACB=∠CAE=90°,∴∠ACE+∠CAE=∠B+∠CAE=90°∴∠ACE=∠B,∴∠ADF=∠B∴FD∥BC21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.【解答】解:数量关系为:BE=EC,位置关系是:BE⊥EC.证明如下:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC﹣∠EDA=180°﹣45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=CD=AC,∵AC=2AB,∴AB=AD=DC,∵在△EAB和△EDC中,∴△EAB≌△EDC(SAS),∴EB=EC,且∠AEB=∠DEC,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE⊥EC.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.【解答】解:∵+(4a﹣b﹣2)2=0,∴≥0,(4a﹣b﹣2)2≥0,∴,解得,∴(﹣3ab2)2=(﹣3×1×4)2=3623.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.【解答】解:原式=6x2+3x﹣2x2+10x﹣3x+15=4x2+10x+15,当x=﹣2时,原式=16﹣20+15=11.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.【解答】(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,∴BG>CE.21。

八年级(上)期中数学试卷付答案解析

八年级(上)期中数学试卷付答案解析

八年级(上)期中数学试卷一、选择题(每小题2分,共20分)1.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.2.(﹣xy3)2的计算结果是()A.xy5B.x2y6C.﹣x2y6D.x2y53.下列计算错误的是()A.(a2)3•(﹣a3)2=a12B.(﹣ab2)2•(﹣a2b3)=a4b7C.(2xy n)•(﹣3x n y)2=18x2n+1y n+2D.(﹣xy2)(﹣yz2)(﹣zx2)=﹣x3y3z34.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°5.如图,∠A=60°,∠B=80°,则∠1+∠2=()A.100°B.120°C.140°D.150°6.如图,AB∥CD,AD∥BC,AC与BD相交于点O,则图中全等三角形共有()A.2对B.4对C.6对D.8对7.若2m=3,2n=5,则2m+2n=()A.15 B.30 C.45 D.758.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°9.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5° C.30°D.45°10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题2分,共16分)11.在△ABC中,∠A=∠B=2∠C,则∠C等于度.12.三角形的两边长分别为4和5,那么第三边a的取值范围是.13.(﹣)•x2y2=.14.等腰三角形的两边分别为5cm和8cm,则它的周长为.15.如图,D、E分别是△ABC的边AB、AC上的点,把△ADE沿DE折叠,使点A落在四边形BCED 内部A′处,已知∠A=40°,则∠1+∠2=度.16.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是.17.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.18.在Rt△ABC中,∠A=30°,∠C=90°,AB+BC=12cm,AB=.三、(第19题8分,第20题8分,共计16分)19.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.20.如图,已知△ABC,用尺规作图作出BC边上的高AD(保留作图痕迹,不写作法),若∠B=∠BAC=30°,求∠CAD的度数.四、(第21题6分,第22题8分,共计14分)21.计算:(2x)2+x(x﹣1)+(1+x)(6﹣5x)22.如图,在△ABC中,AB=AC,∠C=30°,AD⊥AB交BC于D,AD=3cm,求BC的长.五、(8分)23.如图,在△ABC中,已知∠ABC和△ABC的外角∠ACG的平分线交于点F,过点F作FD∥BC,FD分别交AB、AC于点D、E,求证:DE=BD﹣CE.六、(8分)24.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O.(1)如图1,∠A=90°,则∠BOC=;(2)如图2,∠A=80°,求∠BOC的度数;(3)从上述计算中,你能发现∠BOC与∠A的关系吗?请直接写出∠B0C与∠A的关系.七、(8分)25.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.八、(10分)26.如图,△ABC为等边三角形,P是直线AB左侧一点,连接PA、PB、PC,PC与AB相交于点D,∠BPC=60°.(1)求证:∠PBA=∠PCA;(2)求证:PC=PA+PB.参考答案与试题解析一、选择题(每小题2分,共20分)1.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(﹣xy3)2的计算结果是()A.xy5B.x2y6C.﹣x2y6D.x2y5【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方的运算法则计算即可.【解答】解:原式=x2y6.故选B.【点评】本题考查的是幂的乘方和积的乘方的简单应用.3.下列计算错误的是()A.(a2)3•(﹣a3)2=a12B.(﹣ab2)2•(﹣a2b3)=a4b7C.(2xy n)•(﹣3x n y)2=18x2n+1y n+2D.(﹣xy2)(﹣yz2)(﹣zx2)=﹣x3y3z3【考点】幂的乘方与积的乘方;同底数幂的除法.【专题】计算题.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3•(﹣a3)2=a12,故本选项正确;B、(﹣ab2)2•(﹣a2b3)=﹣a4b7,故本选项错误;C、(2xy n)•(﹣3x n y)2=18x2n+1y n+2,故本选项正确;D、(﹣xy2)(﹣yz2)(﹣zx2)=﹣x3y3z3,故本选项正确.故选B.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键,特别注意符号的变化.4.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】三角形的外角性质.【专题】探究型.【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.5.如图,∠A=60°,∠B=80°,则∠1+∠2=()A.100°B.120°C.140°D.150°【考点】三角形内角和定理.【分析】在四边形ABCD中,根据四边形的内角和定理和邻补角的定义就可以得到∠1+∠2的度数.【解答】解:∵∠A=60°,∠B=80°,∴∠ADC+∠BCD=220°,∴∠1+∠2=360°﹣220°=140°.故选C.【点评】本题主要考查了四边形的内角和定理,以及邻补角的定义.四边形的内角和等于360°.6.如图,AB∥CD,AD∥BC,AC与BD相交于点O,则图中全等三角形共有()A.2对B.4对C.6对D.8对【考点】全等三角形的判定.【分析】根据平行线的性质得出∠ADB=∠CBD,∠DAO=∠BCO,∠ABD=∠CDB,∠BAO=∠DCO,根据ASA即可推出△ADB≌△CBD,△ABC≌△CDA,根据全等三角形的性质得出AD=BC,AB=CD,根据ASA推出△AOD≌△COB,△AOB≌△COD即可.【解答】解:图中全等三角形有4对,是△ADB≌△CBD,△ABC≌△CDA,△AOD≌△COB,△AOB ≌△COD,理由是:∵AB∥CD,AD∥BC,∴∠ADB=∠CBD,∠DAO=∠BCO,∠ABD=∠CDB,∠BAO=∠DCO,在△ADB和△CBD中,,∴△ADB≌△CBD(ASA),同理△ABC≌△CDA,∴AD=BC,AB=DC,在△AOD和△COB中,,∴△AOD≌△COB(ASA),同理△AOB≌△COD.故选B.【点评】本题考查了平行线的性质,全等三角形的性质和判定的应用,能灵活运用全等三角形的判定和性质定理进行推理是解此题的关键.7.若2m=3,2n=5,则2m+2n=()A.15 B.30 C.45 D.75【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:原式=(2m)(2n)2=3×25=75.故选D.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.8.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°【考点】多边形内角与外角;三角形内角和定理.【分析】先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.【解答】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.【点评】本题考查了直角三角形的性质和四边形的内角和定理.知道剪去直角三角形的这个直角后得到一个四边形,根据四边形的内角和定理求解是解题的关键.9.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5° C.30°D.45°【考点】轴对称-最短路线问题;等边三角形的性质.【分析】过E作EM∥BC,交AD于N,连接CM交AD于F,连接EF,推出M为AB中点,求出E和M关于AD对称,根据等边三角形性质求出∠ACM,即可求出答案.【解答】解:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.【点评】本题考查了轴对称﹣最短路线问题,等边三角形的性质,等腰三角形的性质,平行线分线段成比例定理等知识点的应用.10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.【解答】解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每小题2分,共16分)11.在△ABC中,∠A=∠B=2∠C,则∠C等于36度.【考点】三角形内角和定理;解一元一次方程.【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠A=∠B=2∠C代入得出5∠C=180°,求出即可.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠B=2∠C,∴5∠C=180°,∴∠C=36°,故答案为:36.【点评】本题考查了解一元一次方程,三角形内角和定理的应用,能得出关于∠C的方程是解此题的关键.12.三角形的两边长分别为4和5,那么第三边a的取值范围是1<a<9.【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边a的取值范围.【解答】解:∵三角形的两边长分别为4和5,第三边的长为a,∴根据三角形的三边关系,得:5﹣4<a<5+4,即:1<a<9.故答案为:1<a<9.【点评】此题考查了三角形的三边关系.此题比较简单,注意掌握已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和.13.(﹣)•x2y2=x3y3z.【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:原式=﹣x1+2y1+2z=x3y3z,故答案为:x3y3z.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.14.等腰三角形的两边分别为5cm和8cm,则它的周长为18cm或21cm.【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为5cm和8cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是5cm,底边是8cm时,能构成三角形,则其周长=5+5+8=18cm;②当底边是5cm,腰长是8cm时,能构成三角形,则其周长=5+8+8=21cm.故答案为:18cm或21cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.应向学生特别强调.15.如图,D、E分别是△ABC的边AB、AC上的点,把△ADE沿DE折叠,使点A落在四边形BCED 内部A′处,已知∠A=40°,则∠1+∠2=80°度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据平角定义和折叠的性质,得∠1+∠2=360°﹣2(∠ADE+∠AED),再利用三角形的内角和定理进行转换,得∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.【解答】解:根据平角的定义和折叠的性质,得∠1+∠2=360°﹣2(∠ADE+∠AED),又∵∠ADE+∠AED=180°﹣∠A,∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A=80°.故答案为:80°.【点评】本题主要考查了三角形的内角和定理,平角的定义、折叠的性质,综合运用各定理是解答此题的关键.16.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是360°.【考点】多边形内角与外角;三角形的外角性质.【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠3、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.17.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180度.【考点】角的计算.【专题】计算题.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.【点评】本题考查了角的计算、三角板的度数,注意分清角之间的关系.18.在Rt△ABC中,∠A=30°,∠C=90°,AB+BC=12cm,AB=8cm.【考点】含30度角的直角三角形.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得BC=AB,然后代入求解即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB,∵BC+AB=12cm,∴AB+AB=12,解得AB=8cm.故答案为:8cm.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键,作出图形更形象直观.三、(第19题8分,第20题8分,共计16分)19.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.【考点】作图-轴对称变换.【分析】利用关于y轴对称点的性质进而得出各点坐标,进而画出图形即可.【解答】解:如图所示:△A1B1C1各点的坐标分别为:A1(3,2),B1(4,﹣3),C1(1,﹣1).【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.20.如图,已知△ABC,用尺规作图作出BC边上的高AD(保留作图痕迹,不写作法),若∠B=∠BAC=30°,求∠CAD的度数.【考点】作图—基本作图.【分析】先过点A作BC的垂线,垂足为D,则AD为△ABC的高线,再依据三角形外角的性质求得∠ACD=60°,从而可求得∠CAD=30°.【解答】解:如图所示:∵∠ACD=∠B+∠BAC,∴∠ACD=30°+30°=60°.∵AD是△ABC的高线,∴∠BDA=90°.∴∠ACD=90°﹣60°=30°.【点评】本题主要考查的是尺规作图,掌握五种基本作图是解题的关键.四、(第21题6分,第22题8分,共计14分)21.计算:(2x)2+x(x﹣1)+(1+x)(6﹣5x)【考点】整式的混合运算.【分析】先算乘法,再合并同类项,即可得出答案.【解答】解:(2x)2+x(x﹣1)+(1+x)(6﹣5x)=4x2+x2﹣x+6﹣5x+6x﹣5x2=6.【点评】本题考查了整式的混合运算的应用,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.22.如图,在△ABC中,AB=AC,∠C=30°,AD⊥AB交BC于D,AD=3cm,求BC的长.【考点】勾股定理;等腰三角形的性质;含30度角的直角三角形.【分析】由等腰三角形的性质得出∠B=∠C=30°,∠BAD=90°;易证得∠DAC=∠C=30°,即CD=AD=3cm.Rt△ABD中,根据30°角所对直角边等于斜边的一半,可求得BD=2AD=6cm;由此可求得BC的长.【解答】解:∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×3=6(cm),∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=3cm∴BC=BD+DC=6+3=9(cm).【点评】本题考查了等腰三角形的性质、三角形内角和定理、含30°角的直角三角形的性质;熟练掌握等腰三角形的性质,求出BD和CD的长度是解决问题的关键.五、(8分)23.如图,在△ABC中,已知∠ABC和△ABC的外角∠ACG的平分线交于点F,过点F作FD∥BC,FD分别交AB、AC于点D、E,求证:DE=BD﹣CE.【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】证明BD=FD,CE=FE,即可解决问题.【解答】证明:∵∠ABC的平分线和外角∠ACF的平分线交于点F,∴∠DBF=∠CBF,∠ECF=∠GCF;∵FD∥BC,∴∠DFB=∠CBF,∠EFC=∠GCF,∴∠DBF=∠DFB,∠ECF=∠EFC,∴BD=FD,EC=EF;∴DE=BD﹣CE【点评】该题主要考查了等腰三角形的判定、平行线的性质等几何知识点的应用问题;牢固掌握等腰三角形的判定、平行线的性质等几何知识点是灵活运用、解题的基础和关键.六、(8分)24.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O.(1)如图1,∠A=90°,则∠BOC=135°;(2)如图2,∠A=80°,求∠BOC的度数;(3)从上述计算中,你能发现∠BOC与∠A的关系吗?请直接写出∠B0C与∠A的关系.【考点】三角形内角和定理.【分析】(1)求出∠ABC+∠ACB的度数,根据平分线的定义得出∠OBC=∠ABC,∠OCB=∠ACB,求出∠OBC+∠OCB的度数,根据三角形内角和定理求出即可;(2)与(1)同理可得结果;(3)由(1)结论可得,(2)同理可得,可得结论.【解答】解:(1)∵∠A=90°,∴∠ABC+∠ACB=180°﹣∠A=90°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=45°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣45°=135°,故答案为:135;(2)∵在△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵∠ABC和∠ACB的平分线交于O点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×100°=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°;(3)∠BOC=90°+∠A,∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB),在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,即:∠BOC=90°+∠A.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.七、(8分)25.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据∠1=∠2求出∠EAC=∠DAB,根据ASA推出△EAC≌△DAB即可.【解答】证明:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,∴∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(ASA),∴AE=AD.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.八、(10分)26.如图,△ABC为等边三角形,P是直线AB左侧一点,连接PA、PB、PC,PC与AB相交于点D,∠BPC=60°.(1)求证:∠PBA=∠PCA;(2)求证:PC=PA+PB.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】证明题.【分析】(1)首先根据三角形的内角和求得∠PBC+∠PCB=120°,再根据等边三角形的内角为60°,得到∠PBA+∠PCB=60°,∠ACB=∠PCB+∠PCA=60°,即可得到∠PBA=∠PCA.(2)如图,延长BP至E,使PE=PA,连接AE,证明△PAE为等边三角形,得到AE=AP=PE,∠PAE=60°,由△ABC为等边三角形,证明△AEB≌△APC(SAS),得到EB=PC,即可解答.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵∠BPC=60°,∴∠PBC+∠PCB=180°﹣60°=120°,∴∠PBA+∠ABC+∠PCB=120°,∴∠PBA+∠PCB=60°,∵∠ACB=∠PCB+∠PCA=60°,∴∠PBA=∠PCA.(2)如图,延长BP至E,使PE=PA,连接AE,∵∠PBA=∠PCA,∴点A,P,B,C四点共圆,∴∠APC=∠ABC=60°,∴∠APE=180°∠BPC﹣∠APC=60°,又∵PE=PA,∴△PAE为等边三角形,∴AE=AP=PE,∠PAE=60°,∵△ABC为等边三角形,∴AC=BC,∠BCA=60°,∴∠BAC=∠PAE,∴∠BAC+∠PAD=∠PAE+∠PAD,即:∠EAB=∠PAC,在△AEB和△APC中,,∴△AEB≌△APC(SAS),∴EB=PC,∵BE=BP+PE=PB+PA,∴PC=PB+PA.【点评】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,解决本题的关键是正确作出辅助线.。

期中测试题(八年级上册数学)

期中测试题(八年级上册数学)

期中自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列交通标志图案是轴对称图形的是()A B C D2.(2022年金华)已知三角形的两边长分别为5 cm和8 cm,则第三边的长可以是()A. 2 cmB. 3 cmC. 6 cmD. 13 cm3. 如图1,已知△ABC≌△DEC,点E在AB边上,∠B=70°,则∠BCE的度数为()A. 30°B. 40°C. 45°D. 50°图14.若一个正多边形的各个内角都是140°,则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形5. 根据图2中给定的条件,全等的三角形是()A.①和②B.②和③C.①和④D.②和④①②③④图26.若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限7. 如图3,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C,E,再分别以点C,E为圆心,大于12CE的长为半径画弧,两弧交于点F,连接BF交AC于点D.若∠A=50°,则∠CBD的度数是()A. 25°B. 40°C. 50°D. 65°图3 图4 图5 图68.(2022年海南)如图4,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A. 80°B. 100°C. 120°D. 140°9. 如图5,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点的三角形共有()A. 3个B. 4个C. 5个D. 6个10.如图6,在△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S.若AQ=PQ,PR=PS,有下列结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确的是()A.仅①②B.仅①②③C.仅①②④D.①②③④二、填空题(本大题共6小题,每小题4分,共24分)11. 如图7是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是.图7 图8 图912. 如图8,已知BE=DC,请添加一个条件:,使得△ABE≌△ACD.13.如图9,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG.若S△ABC=6,则图中阴影部分的面积是.14. 如图10,把长方形纸片ABCD沿对角线折叠,若∠BDE =25°,那么∠BED =__________.图10 图11 图1215. 如图11,OP平分∠AOB,PM⊥OA于点M,点D在OB上,DH⊥OP于点H.若OD=4,OP=7,PM=3,则DH的长为.16. 如图12,点E在等边三角形ABC的边BC上,BE=12,DC⊥BC于点C,P是射线CD上一动点,F 是线段AB上一动点,当EP+PF的值最小时,BF=14,则AC的长为__________.三、解答题(本大题共7小题,共66分)17.(6分)如图13,在平面直角坐标系中,形如英文字母“V”的图形三个端点的坐标分别是A(2,3),B(1,0),C(0,3).(1)画出字母“V”的图形关于x轴对称的图形;(2)所得图形与原图形结合起来,你能从中看出什么英文字母?图1318.(6分)如图14,在四边形ABCD中,∠A=100°,∠D=140°,∠BCD的平分线CE交AB于点E.(1)若∠B=∠BCD,则∠B= °;(2)若CE∥AD,求∠B的度数.图1419.(8分)如图15,点B,E,C,F在同一条直线上,AB=DE,AB∥DE.老师说:再添加一个条件就可以使△ABC≌△DEF.下面是课堂上三个同学的发言,甲说:添加AC=DF;乙说:添加AC∥DF;丙说:添加BE=CF.(1)甲、乙、丙三个同学说法正确的是 .(2)请你从正确的说法中选择一种,并给出证明.图1520.(10分)如图16,在△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.(1)若∠C=35°,求∠DBA的度数;(2)若△ABD的周长为30,AC=18,求AB的长.图1621.(10分)如图17,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证:(1)△ADB≌△AEC;(2)DB⊥EC.图1722.(12分)如图18,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.(1)AD与CE相等吗?为什么;(2)若∠BCD=75°,求∠ACE的度数;(3)若∠BCE=α,∠ACE=β,则α,β之间满足一定的数量关系,试说明这个结论.图1823.(14分)如图19,在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点,点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向A点运动,并且点Q的运动速度与点P的运动速度不相等,设点Q的运动时间是t s.(1)用含有t的式子表示PC=cm;(2)当△BPD与△CQP全等时,求点Q的运动速度;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求:经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?图19期中自我评估一、1. A 2. C 3. B 4. D 5. C 6. D 7. A 8. B 9. C 10. C二、11. 540°12.∠B=∠C或∠AEB=∠ADC13.2 14.130°15. 12 716. 20 解析:如图1,作点E关于直线CD的对称点G,过G作GF⊥AB于点F,交CD 于点P,此时EP+PF的值最小.因为△ABC是等边三角形,所以AC=BC,∠B=60°.又∠BFG=90°,所以∠G=30°.所以BG=2BF=28.因为BE=12,所以CE=12EG=12×(28-12)=8.所以AC=BC=BE+EC=12+8=20.三、17. 解:(1)如图所示.(2)字母x.18.解:(1)60(2)因为CE∥AD,所以∠DCE+∠D=180°.所以∠DCE=180°-∠D=180°-140°=40°.因为CE平分∠BCD,所以∠BCD=2∠DCE=80°.所以∠B=360°-(100°+140°+80°)=40°.19. 解:(1)乙、丙(2)选择乙(答案不唯一).证明如下:因为AB∥DE,AC∥DF,所以∠B=∠DEC,∠F=∠ACB.在△ABC和△DEF中,∠ACB=∠F,∠B=∠DEF,AB=DE,所以△ABC≌△DEF(AAS).20.解:(1)因为DE是BC的垂直平分线,所以CD=BD.所以∠CBD=∠C=35°.因为∠A=90°,所以∠C+∠CBD+∠DBA=90°.所以∠DBA=90°-35°-35°=20°.(2)因为△ABD的周长为30,所以AB+AD+BD=AB+AD+CD=AB+AC=30.因为AC=18,所以AB=30-18=12.21.证明:(1)因为AB⊥AC,AD⊥AE,所以∠BAC=∠DAE=90°.所以∠BAC+∠BAE=∠DAE+∠BAE,即∠BAD=∠CAE.在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,所以△ADB≌△AEC(SAS).(2)设BD和CE交于点F.因为△ADB≌△AEC,所以∠ACE=∠ABD.图1所以∠BFC=∠BAC=90°.所以DB⊥EC.22.(1)证明:AD=CE.理由如下:因为BD为△ABC的角平分线,所以∠ABD=∠CBE.在△ABD和△EBC中,BA=BE,∠ABD=∠CBE,BD=BC,所以△ABD≌△EBC(SAS).所以AD=CE.(2)解:因为BD=BC,所以∠BDC=∠BCD=75°.所以∠ADB=180°-75°=105°.由(1)知∠BCE=∠ADB=105°.所以∠ACE=105°-75°=30°.(3)解:同(2)可得∠BDC=∠BCD=α-β.因为△ABD≌△EBC,所以∠BAD=∠BEC.所以∠EBC=∠ABD=∠ACE=β.因为∠DBC+∠BDC+∠BCD=180°,所以β+(α-β)+(α-β)=180°.所以2α-β=180°.23.解:(1)(8-3t)(2)因为D为AB的中点,所以BD=12AB=5.因为点Q的运动速度与点P的运动速度不相等,所以BP≠CQ.又∠B=∠C,所以△BPD≌△CPQ.所以BP=PC=4 cm,CQ=BD=5 cm.所以3t=4,解得t=4 3 .所以点Q的运动速度为5÷43=154cm/s.(3)设经过x秒后点P与点Q第一次相遇.根据题意,得154x=3x+2×10.解得x=803.所以点P共运动了803×3=80 cm.△ABC周长为10+10+8=28 cm.因为80=28×2+8+10+6,所以点P,Q在AB边上相遇.所以经过803s点P与点Q第一次在AB边上相遇.。

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等差数列的首项为2,公差为3,则第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则这个圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个等腰三角形的底边相等,则这两个三角形全等。

()2. 任何两个奇数之和都是偶数。

()3. 一个数的平方和它的立方一定相等。

()4. 任何两个负数相乘的结果都是正数。

()5. 若一个数的平方是36,则这个数一定是6。

()三、填空题(每题1分,共5分)1. 若一个等边三角形的边长为6cm,则它的面积是______平方厘米。

2. 若一个等差数列的首项为3,公差为2,则第5项是______。

3. 一个圆的直径是10cm,则这个圆的周长是______厘米。

4. 若一个数的立方是64,则这个数的平方根是______。

5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______立方厘米。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是等差数列?给出一个等差数列的例子。

3. 简述圆的周长和面积的计算公式。

4. 什么是质数?给出5个质数的例子。

5. 什么是因式分解?给出一个多项式因式分解的例子。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的周长。

八年级(上)期中测试数学试卷(含答案)

八年级(上)期中测试数学试卷(含答案)

第一学期八年级期中测试数学试卷一、选一选(本大题共12小题,每小题3分,共36分)下列各题均附有四个备选答案,其中有且只有—个是正确的,请将正确答案的代号填在上面答题卡中对应的题号内. 1、实数—2,0.3,71,2,π中,无理数的个数是( ) A .2 B .3 C .4 D .5 2、下列“QQ 表情”中属于轴对称图形的是( )3、如图1所示,△ABC ≌△EFD, ∠B 与∠F 是对应角,那么( ) A. AB=DE, AC=EF, BC=DF B. AB=DF, AC=DE, BC=EFC. AB=EF, AC=DE, BC=DFD.AB=EF, AC=DF, BC=DEFED C BAEDCA图1 图2 4、点P(2,-3)关于y 轴的对称点的坐标是( )A.(2,3)B.(-2,-3)C.(-2,3)D.(-3,2) 5、若式子5+x 在实数范围内有意义,则x 的取值范围是( ) A.x>-5 B.x<-5 C.x≠-5 D.x≥-5 6、下列四个条件中,能证明两个直角三角形全等的是( ) A .两个锐角对应相等 B .一条直角边对应相等 C .斜边对应相等 D .两条直角边对应相等 7、下列性质中,等腰三角形具有而直角三角形不一定具有的是( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边,C .有两个锐角的和等于90°D .内角和等于180°8. 如图2,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个 9.下列图案是由斜边相等的等腰直角三角形按照一定的规律拼接而成的.依此规律,第9个图案中的三角形与第一个图案中的三角形能够全等的共有( )个。

A 49 B.64 C.81. D.10010、如图3,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )A .100°B .80°C .70°D .50°DCBAFEDCBAFOGEDCBA图3 图4 图511、如图4所示,四边形ABCD 中,AE 、AF 分别是BC 、CD 的垂直平分线,∠EAF=80°,∠CBD=30°则∠ADC 的度数为( )A .45°B .60°C .80°D .100°12、如图5,已知:△ABE 是等边三角形,BC 平分∠GBE, DF ∥AB. 下列结论:①△BGC 是等边三角形;②BO+OC=GO;③BO 平分∠AOG;④AF -EF=BF ,成立的是( ) A .①②③④ B .①②④ C .①②③ D .①③ 二、填一填(每题3分,共12分)13、16 =_____,38- =____,2)3(-=____14、如图6,点P 关于OA 、OB 的对称点分别为点C 、点D ,连接CD ,分别交OA 、OB 于M 、N 两点,若△PMN 的周长为8厘米,则CD 的长为______ 厘米.P N MODC BA DCBA图6 图7 图815、如图7,AB=AC ,要证明△ADB ≌△ADC ,需添加的条件不能是______(只需写其中一种). 16、如图8,△ABC 中,点A 的坐标为(O ,1),点B 的坐标为(3,1), 点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是______.三、解下列各题(本大题有9小题,共72分) 17.(本题6分)计算:3(3+31)-327125-18(本题6分)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE . 求证:∆ACD ≌△BCE.ED19(本题6分)若m=1-x -x -1+4x ,求出m 的算术平方根。

八年级(上)期中数学试卷含解析

八年级(上)期中数学试卷含解析

八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.123.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180° D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是.10.若正n边形的每个内角都等于150°,则n=,其内角和为.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE=.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A 的对应点A1的坐标是.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)参考答案与试题解析一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【考点】K6:三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.3.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故选:C.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【考点】K7:三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180° D.140°【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm【考点】KJ:等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C从而求解.△ODE【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,BC=BD+DE+EC=OD+DE+OE=C△ODE=10cm.故选C.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;KI:等腰三角形的判定;KW:等腰直角三角形;M6:圆内接四边形的性质.【分析】求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.【解答】解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,∵M为EF的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴②正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴③正确;即正确的有4个,故选D.二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是两点之间线段最短.【考点】K6:三角形三边关系.【分析】三角形三边关系定理:三角形两边之和大于第三边,可以运用两点之间线段最短的性质进行判断.【解答】解:“三角形任意两边之和大于第三边”,得到这个结论的理由是:两点之间线段最短.故答案为:两点之间线段最短.10.若正n边形的每个内角都等于150°,则n=12,其内角和为1800°.【考点】L3:多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE=125°.【考点】KD:全等三角形的判定与性质.【分析】在△ADC和△ABE中,由∠C=∠E,∠A=∠A和AD=AB证明△ADC≌△ABE,得到∠ADC=∠ABE,由∠CDE=55°,得到∠ADC=125°,即可求出∠ABE的度数.【解答】解:∵在△ADC和△ABE中,,∴△ADC≌△ABE(AAS),∴∠ADC=∠ABE,∵∠CDE=55°,∴∠ADC=125°,∴∠ABE=125°,故答案为125°.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【考点】KF:角平分线的性质;KQ:勾股定理.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8cm.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=12,解得AD=6cm,∴S△ABC∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为4.【考点】KI:等腰三角形的判定;D5:坐标与图形性质.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;P是OA的中垂线与x轴的交点,有1个,共有4个.【解答】解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故填:4.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.【考点】K7:三角形内角和定理.【分析】先写出已知、求证,再画图,然后证明.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【考点】K7:三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.【考点】KD:全等三角形的判定与性质.【分析】可证明△ABC≌△DBE,得到AC=BE DE=BC,即可证明AC+DE=CE.【解答】证明:∵∠ABD=90°,AC⊥CB,DE⊥BE,∴∠ABC+∠DBE=∠ABC+∠A,∴∠A=∠DBE;在△ABC与△DBE中,,∴△ABC≌△DBE(AAS),∴AC=BE,BC=DE,∴AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.【解答】解:过点C作BA的垂线,交BA的延长线于点D,解:∵∠B=∠ACB=15°,∴∠CAD=∠B+∠ACB=15°+15°=30°,∵AC=4cm,CD是AB边上的高,∴CD=AC=×2=1.∴AB边上的高是1.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.【考点】KD:全等三角形的判定与性质;K6:三角形三边关系.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=2,在△ABE中,根据三角形三边关系定理得出AB﹣BE<AE<AB+BE,代入求出即可.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=2,在△ABE中,AB﹣BE<AE<AB+BE,∴4﹣2<2AD<4+2,∴1<AD<3,∵AD是整数,∴AD=2,22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A 的对应点A1的坐标是(3,﹣1).(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(﹣2,﹣3).(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为:(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为:(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3=13.5.故答案为:13.5.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)【考点】KY:三角形综合题.【分析】(1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=∠DAE=90°,所以BD⊥CE.(3)根据①的∠CBF+∠BCF=∠ABC+∠ACB,所以∠BFC=∠BAC,再由∠BAC=∠DAE=60°,所以∠BFC=60°(4)根据②∠BFC=∠BAC,所以∠BFC=α【解答】解:(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),(2)BD与CE相互垂直,BD=CE.由(1)知,△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,∵∠BAC=90°,∴∠CBF+∠BCF=∠ABC+∠ACB=90°,∴∠BFC=90°∴BD⊥CE.(3)由题①得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=60°,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=60°.(4)由题(1)得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=α,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=α.。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

八年级(上)期中数学试卷内含答案

八年级(上)期中数学试卷内含答案

八年级(上)期中数学试卷一、选择题(共9小题,每小题3分,满分27分)1.(3分)下列图形中,是轴对称图形的是()A. B.C.D.2.(3分)小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm4.(3分)正n边形的内角和等于1080°,则n的值为()A.7 B.8 C.9 D.105.(3分)等腰三角形的底角为40°,则这个等腰三角形的顶角为()A.40°B.80°C.100° D.100°或40°6.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD7.(3分)以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等8.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC 的长为()A.7cm B.10cm C.12cm D.22cm9.(3分)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm二、填空题(共9小题,每小题3分,满分27分)10.(3分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.11.(3分)计算:a•a3=.12.(3分)点A(2,﹣1)关于x轴对称的点的坐标是.13.(3分)在△ABC中,∠A=34°,∠B=72°,则与∠C相邻的外角为.14.(3分)若正多边形的一个内角等于140°,则这个正多边形的边数是.15.(3分)如图,AB∥CE,BF交CE于点D,DE=D F,∠F=20°,则∠B的度数为.16.(3分)如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB ≌△DOC,你补充的条件是(填出一个即可).17.(3分)当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为.18.(3分)如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于.三、解答题(共8小题,满分66分)19.(8分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.20.(8分)如图,已知:点B,C,F,E在同一直线上,∠1=∠2,BF=EC,AB ∥DE.求证:AB=DE.21.(8分)已知:如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,AE=BE.(1)求∠B的度数.(2)如果AC=3cm,CD=2cm,求△ABD的面积.22.(8分)a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置(不写作法,保留作图痕迹).23.(8分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.24.(8分)△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B (﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.25.(10分)如图,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.26.(8分)Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.参考答案与试题解析一、选择题(共9小题,每小题3分,满分27分)1.(3分)下列图形中,是轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.2.(3分)小芳有两根长度为4cm和9c m的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【解答】解:对A,∵4+5=9,不符合三角形两边之和大于第三边,故错误;对B,∵4+3<9,不符合三角形两边之和大于第三边,故错误;对C,∵4+9<17,不符合三角形两边之和大于第三边,故错误;对D,∵4+9>12,12﹣9<4,符合两边之和大于第三边,三角形的两边差小于第三边,故正确;故选:D.3.(3分)已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm【解答】解:∵直角三角形中30°角所对的直角边为2cm,∴斜边的长为2×2=4cm.故选:B.4.(3分)正n边形的内角和等于1080°,则n的值为()A.7 B.8 C.9 D.10【解答】解:由题意可得:(n﹣2)×180°=1080°,解得n=8.故选:B.5.(3分)等腰三角形的底角为40°,则这个等腰三角形的顶角为()A.40°B.80°C.100° D.100°或40°【解答】解:∵等腰三角形的底角为40°,∴另一底角也为40°,∴顶角为180°﹣40°﹣40°=100°.故选:C.6.(3分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.7.(3分)以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等【解答】解:A,正确,符合等边三角形三线合一性质;B,正确,符合等边三角形的判定;C,不正确,也可能是钝角或等腰直角三角形;D,正确,符合等边对等角及等角对等边的性质.故选:C.8.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC 的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.9.(3分)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.二、填空题(共9小题,每小题3分,满分27分)10.(3分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.11.(3分)计算:a•a3=a4.【解答】解:a3•a,=a3+1,=a4.故答案为:a4.12.(3分)点A(2,﹣1)关于x轴对称的点的坐标是(2,1).【解答】解:点A(2,﹣1)关于x轴对称的点的坐标是(2,1),故答案为:(2,1).13.(3分)在△ABC中,∠A=34°,∠B=72°,则与∠C相邻的外角为106°.【解答】解:如图:∵∠1=∠A+∠B,∠A=34°,∠B=72°,∴∠1=34°+72°=106°,故答案为:106°.14.(3分)若正多边形的一个内角等于140°,则这个正多边形的边数是9.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.15.(3分)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为40°.【解答】解:∵DE=DF,∠F=20°,∴∠E=∠F=20°,∴∠CDF=∠E+∠F=40°,∵AB∥CE,∴∠B=∠CDF=40°,故答案为:40°.16.(3分)如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB ≌△DOC,你补充的条件是AB=CD(答案不唯一)(填出一个即可).【解答】解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:AB=CD(答案不唯一).17.(3分)当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为120°.【解答】解:∵α=20°,∴β=2α=40°,∴最大内角的度数=180°﹣20°﹣40°=120°.故答案为:120°.18.(3分)如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于4.【解答】解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=8,∴在Rt△DEG中,DG=DE=4,∴DF=DG=4.故答案为:4.三、解答题(共8小题,满分66分)19.(8分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).20.(8分)如图,已知:点B,C,F,E在同一直线上,∠1=∠2,BF=EC,AB ∥DE.求证:AB=DE.【解答】证明:∵AB∥DE,∴∠E=∠B,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).∴AB=DE.21.(8分)已知:如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,AE=BE.(1)求∠B的度数.(2)如果AC=3cm,CD=2cm,求△ABD的面积.【解答】解:(1)∵DE⊥AB且AE=BE,∴AD=BD,∴∠B=∠DAE,∵AD是△ABC的角平分线,∴∠DAE=∠DAC,∴∠B=∠DAE=∠DAC,∵∠C=90°,∴∠B+∠DAE+∠DAC=90°,∴∠B=30°;(2)∵∠C=90°,AD是△ABC的角平分线,DE⊥AB,在Rt△ACD与Rt△AED中,,∴Rt△ACD≌Rt△AED,∴AE=BE,∴AB=2AE=2×3=6,=AB•DE=×6×2=6cm2.∴S△ABD22.(8分)a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置(不写作法,保留作图痕迹).【解答】解:点O或点O′就是所求的点.23.(8分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.【解答】证明:∵AB∥DC,∴∠A=∠C,∠B=∠D,∵OA=OB,∴∠A=∠B,∴∠C=∠D,∴OC=OD.24.(8分)△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B (﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(2,2);(2)△A1B1C1的面积为:2×3﹣×1×1﹣×2×2﹣×1×3=225.(10分)如图,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.【解答】证明;∵AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∠EAD=∠FAD,在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,又∵DE=DF,∴AD是EF的垂直平分线,即AD垂直平分EF.26.(8分)Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.【解答】解:(1)连接EM.∵AE⊥AB,∴∠EAM=∠B=90°.在△AEM与△BMC中,,∴△AEM≌△BMC(SAS).∴∠AEM=∠BMC,EM=MC.∵∠AEM+∠AME=90°,∴∠BMC+∠AME=90.∴∠EMC=90°.∴△EMC是等腰直角三角形.∴∠MCE=45°∵AN∥CE,∴∠AFM=∠MCE=45°;解:(2)如图2,连接ME.同(1)△AEM≌△BMC(SAS),则EM=MC,∠MEA=∠CMB=15°.又∵∠MEA+∠EMA=90°,∴∠EMC=60°,∴△EMC是等边三角形,∴∠ECM=60°,∵AN∥CE∴∠AFM+∠ECM=180°,∴∠AFM=120°.。

2023-2024学年度上学期八年级期中测试题数学附详细答案

2023-2024学年度上学期八年级期中测试题数学附详细答案

2023-2024学年度上学期八年级期中测试题数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 2.64的算术平方根是A.√8B.8C.±8D.16 3.下列计算正确的是A.a+a=a 2B.a 2·a 2=2a 2C.(−ab) 2=ab 2D.(2a) 2÷4a=a 4.下列计算正确的是A.√9=±3B.√9=−3C.√273=3 D.−√273=3 5.若等腰三角形的两边长分别为2、4,则它周长为A.8B.10C.8或10D.10或12 6.下列分解因式正确的是A.a 2+a+1=a(a+1)+1B.a 2−ab=a(a −1)C.a 2−4b 2=(a+2b)(a −2b)D.a 2+2ab+b 2=(a −b)27.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 之间的距离,但绳子不够长.他通过思考又想到了这样一个方法:先在地上取一个可以直接到达A 、B 的点C ,连接AC 并延长到点D ,使CD=CA ;连接BC 并延长到点E ,使CE=CB ,连接DE 并且测出DE 的长即为A 、B 之间的距离.图中△ABC ≌△DEC 的数学理由是 A.SSS B.SAS C.ASA D.AAS8.如图,在△ABA 1中,AB=A 1B ,∠B=20°.在A 1B 上取一点C ,延长AA 1到点A 2,使A 1A 2=A 1C ,连结A 2C ;在A 2C 上取一点D ,延长A 1A 2到点A 3,使A 2A 3=A 2D ,连结A 3D ;……,按此操作进行下去,在以点A 5为顶角顶点的等腰三角形的底角的度数为 A.20° B.10° C.5° D.2.5° 二、填空题(每小题3分,共18分) 9.16的平方根为_______.10.命题“内错角相等”是______命题(填“真”或“假”). 11.若a+b=3,则a 2−b 2+6b 的值为_______.12.如图,△ABC ≌△DBE ,点B 在线段AE 上,若∠C=25°,则∠BDE 的度数是_____.13.如图,在△ABC 中,AB=AC ,点D 为BC 的是中点,连结AD ,在边AC 上截取AD=AE.若∠BAD=20°,则∠EDC 的大小为____度.14.如图,四边形ABCD 中,AB=BC ,∠ABC=90°,对角线BD ⊥CD.若BD=6,CD=1,则四(第12题)AB ED C(第13题)ABCEDA(第14题)BDC(第7题)(第8题)B C DE A 12 A3 A4 A n边形ABCD 的面积为_____.三、解答题(本大题10小题,共78分)15.(6分)计算:(1)(6ab)2÷4a 2. (2)(a+b)(a −3b). 16.(6分)因式分解下列各题:(1)a 2−9. (2)a 2+12a+36. 17.(6分)如图,AB=AE ,AC=AD ,∠BAD=∠EAC ,∠D=43°,求∠C 的大小.18.(7分)先化简,再求值:(2x +1)(2x −1)− x (4x −3),其中x =120.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法,并保留作图痕迹.(1)在图①中画△BCD ,使△BCD 与△ABC 全等.(2)在图②中画△BCE ,使△BCE 与△ABC 的面积相等,但不全等.(3)在图③中画△FGH ,使△FGH 与△ABC 全等,且所作的三角形有一条边经过AC 的中点.(第19题)图③AC B图② AC B图①AC BA(第17题)ECDB20.(7分)先化简,再求值:(2a −b)2−(a −2b)(a+2b)−2a(a-2b),其中a=√5,b=1. 21.(8分)如图①,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点. (1)求△AEF 的周长.(2)如图②,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACG 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点.若AC=4AF ,则△AEF 的周长为________.22.(9分)【探究】在△ABC 中,AB=AC ,D 是边BC 上一点,以AD 为一边在AD 的右侧作△ADE 使AE=AD ,∠DAE=∠BAC ,连结CE. (1)求证:△BAD ≌△CAE.(2)若∠BAC=α,求∠DCE 的大小(用含α的代数式表示).【应用】若∠BAC=50°,且△DCE 的两个锐角的度数之比为1︰4,则∠DAC 的大小为_____度.23.(10分)【教材原题】观察图①,用等式表示下图中图形的面积的运算为_________.ABEC(第22题)D(第21题)图②A BC GDEFA图①CEF DB【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为___________. 【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a 2+b 2=___________. (2)若x 满足(11−x )(x −8)=2,求(11−x )2+(x −8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD ,AC ⊥BD 于点E ,AE=DE ,BE=CE.该校计划在△AED 和△BEC 区域内种花,在△CDE 和△ABE 的区域内种草.经测量种花区域的面积和为252,AC=7,直接写出种草区域的面积和.24.(12分)如图,在△ABC 中,∠ABC=90°,AB=4,BC=6,点B 在直线m 上,点M 是直线m 上点B 左边的一点,且BM=2,∠ABM=60°.动点P 从点A 出发,以每秒1个单位长度的速度沿折线AB-BC 向终点C 匀速运动;同时动点Q 从C 点出发,以每秒3个单位长度的速度沿折线沿CB-BA 向终点A 匀速运动.分别过点P 、点Q 作PD ⊥m 于D ,QE ⊥m 于E.设点P 的运动时间为t(s). (1)用含t 的代数式表示BQ 的长.(2)当点Q 在边BC 上时,求证:∠PBD=∠BQE.(3)连结PM 、QM ,在不添加辅助下和连结其它线段的条件下,当图中存在等边三角形时,求t 的值.(4)当△PBD 与△BQE 全等时,直接写出t 的值.A(第23题)图①图②图③D CBabab a 2b 2花 草草=++ 花E2023-2024学年度上学期八年级期中测试题参考答案数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 1.解:√3是无限不循环小数,是无理数,故选A 。

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。

八年级(上)期中数学试卷答案解析版

八年级(上)期中数学试卷答案解析版

八年级(上)期中数学试卷一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.(4分)△ABC中BC边上的高作法正确的是()A.B.C.D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形5.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.66.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120° D.150°8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:29.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;(2)添加了条件后,证明△ABC≌△EFD.21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:条条条条条.(2)一个正n边形有条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)25.(12分)如图1,△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D 点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段A E、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?参考答案与试题解析一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.3.(4分)△ABC中BC边上的高作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形【解答】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D说法错误;故选:D.5.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.6【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.6.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选:B.7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120° D.150°【解答】解:∵∠A与∠B互余,∴∠A+∠B=90°,在△ABC中,∠C=180°﹣(∠A+∠B)=180°﹣90°=90°.故选:B.8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.9.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC﹣∠ABD=36°=∠ABD,∴BD平分∠ABC;故(1)正确;∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故(2)正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故(3)正确;∵AD=BD>CD,∴D不是AC的中点,故(4)错误.故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=6.【解答】解:∵点A(2,a)关于x轴的对称点是B(b,﹣4),∴a=4,b=2,∴a+b=6.故答案为6.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:K62897.【解答】解:实际车牌号是K62897.故答案为:K62897.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为70°或40°.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故填70°或40°.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.【解答】解:(1);(2)A′(1,5),B′(1,0),C′(4,3);(3)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB=5,AB边上的高为3,=.∴S△ABC18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.【解答】解:∵AB∥CD,∴∠1=∠A,∵∠A+∠1=74°,∴∠1=×74°=37°,∴∠ECD=∠1=37°,∵DE⊥AE,∴∠DEC=90°,∴∠D=90°﹣37°=53°.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.【解答】证明:在△ACB与△DCE中,∵∴△ACB≌△DCE(SAS),∴AB=DE,即DE的长就是A、B的距离.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在△BDE和△CFD中,,∴△BDE≌△CDF(AAS),∴DE=DF,∴点D在∠BAC的平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.【解答】证明:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.【解答】解:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AD=AE.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠ABE=∠ACD,∴∠ABC﹣∠ABE=∠ACB﹣∠ACD,∴∠PBC=∠PCB,∴PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:3条4条5条6条7条.(2)一个正n边形有n条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)【解答】解:(1)三角形有3条对称轴;正方形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正七边形有7条对称轴;正八边形有8条对称轴;(2)一个正n边形有n条对称轴;(3)①所作图形如图所示:②所作图形如图所示.故答案为:3,4,5,6,7;n.25.(12分)如图1,△ABC和△DBE中,AB=C B,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠A BE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;②线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3题图
2015——2016学年八年级数学(上)期中测试试卷
(考试用时:120分钟 ; 满分: 120分)
一、选择题(共8小题,每小题3分,共24分。

每小题只有一个正确答案)
1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( )
2.下列各组数据能作为三角形的三边长的是( )
A. 1,2,3
B.3,4,5
C. 3,3,8
D. 3,4,9 3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一 样的玻璃,那么最省事的办法是带( )去 A .① B .② C .③ D .①和②
4. 等腰三角形的一个角是80°,则它的底角是( ) A. 50° B. 80° C. 50°或80° D. 20°或80°
5. 点M (3,2)关于y 轴对称的点的坐标为 ( )
A.(—3,2)
B.(-3,-2)
C. (3,-2)
D. (2,-3) 6. 如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ) A .30° B. 40° C. 50° D. 60°
第6题图 第7题 第8题
B
D
A
15°
15°
第13题图
O
第11题图
A B
7. 如图,△ABC 中,AC =AD =BD ,∠DAC =80º,则∠B 的度数是( )
A .40º
B .35º
C .25º
D .20º 8. 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论: (1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线。

其中正确的有( ) A .1个 B. 2个 C. 3个 D. 4个
二、填空题(本大题共6小题,每小题3分,共18分。


9.一个多边形的内角和为1800°,这个多边形是 边形。

10.等腰三角形的两条边长分别是3和4,这个等边三角形的周长是 。

11.如图:ΔABE ≌ΔACD ,∠A=60°,∠B=30°,则∠ADC=_____。

12. 如图,已知线段AB 、CD 相交于点O ,且∠A=∠B ,只需补充一个条件_________,则有△AOC ≌△BOD 。

13.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________。

14.如图,小亮从A 点出发前进10m ,向右转, 再前进10m ,又向右转15°…… 这样一直走 下去,他第一次回到出发点A 时,一共走 了
m.
第14题图
A C
B
D
第12题图
三、解答题(本大题共9小题,共78分)
15.(本题7分)一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?
16.(本题7分)如图,△ABC中,AB=AC=CD,BD=AD,求∠B的度数。

第16题图
17.(本题8分)如图:AB 与CD 相交于点O ,AC//BD ,AC=BD 。

求证:AO=BO.
18.(本题8分)已知:点A 、B 、C 、D 在同一直线上,AE =BF ,∠A =∠B ,AC=BD .求证:△EAD ≌△FBC .
A
B
第17题图
A
B
E
F
第18题图
19.(本题8分)如图,AD 平分∠BAC ,AB=AC 。

求证:∠B=∠C.
20.(本题9分)△ABC 在平面直角坐标系中的位置如图所示.A 、B 、
C 三点在格点上.
(1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点C 1的坐标; (2)写△A 1B 1C 1出个顶点的坐标; (3)求△ABC 的面积。

y
x
第20题图
第19题图
B
C
A
D
21.(本题9分)如图,已知:C是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足。

求证:△DOC≌△EOC。

O
第21题图
22.(本题10分)已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .求证:⑴ △ABC ≌△DEF ; ⑵ BE =CF .
第22题图
B F
A
E
C
23、(本题12分)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60º,请你探究OE,EF之间有什么数量关系?并证明你的结论。

第23题图。

相关文档
最新文档