2015-2016年湖南省娄底市八年级(上)数学期中试卷及答案
湖南省娄底地区八年级上学期数学期中考试试卷
湖南省娄底地区八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2015八下·南山期中) 若关于x的一元一次不等式组有解,则m的取值范围是()A . m≥﹣8B . m≤﹣8C . m>﹣8D . m<﹣82. (2分)(2016·曲靖) 如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于 AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A . CD⊥lB . 点A,B关于直线CD对称C . 点C,D关于直线l对称D . CD平分∠ACB3. (2分)如图,△ABC中,BD平分∠ABC,交AC于D,CF平分∠ACB的邻补角∠ACE,CF交BA延长线于点F,交BD延长线于点M.在下列结论中:①∠BMC=∠MBC+∠F;②∠ABD+∠BAD=∠DCM+∠DMC;③2∠BMC=∠BAC;④3(∠BDC+∠F)=4∠BAC;其中正确的有()个.A . 1个B . 2个C . 3个D . 4个4. (2分)(2019·锦州) 下列既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分) (2013八下·茂名竞赛) 如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A . 4 cmB . 5 cmC . 6 cmD . 10 cm6. (2分)若a<b,则不等式(a-b)x>a-b,化为“x>a”或“x<a”的形式为()A . x>-1B . x>1C . x<1D . x<-17. (2分)(2020·上城模拟) 已知△A1B1C1 ,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2 , A1C1=A2C2 ,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2 ,∠B1=∠B2 ,则△A1B1C1≌△A2B2C2 ,对于上述的两个判断,下列说法正确的是()A . ①正确,②错误B . ①错误,②正确C . ①,②都错误D . ①,②都正确8. (2分)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为()A . 30°B . 45°C . 60°D . 120°9. (2分)如图,矩形纸片ABCD中,AB=8cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF= cm,则AD的长为()A . 4cmB . 5cmC . 6cmD . 7cm10. (2分)(2017·港南模拟) 已知不等式组仅有2个整数解,那么a的取值范围是()A . a≥2B . a<4C . 2≤a<4D . 2<a≤4二、填空题 (共8题;共8分)11. (1分) (2018八上·江北期末) 如图所示,是等腰直角三角形,其中,是边上的一点,连接,过作交于,,且,连接并延长,交于点.若四边形的面积为,则的面积为________.12. (1分) (2017八上·涪陵期中) 如图,BF、CF是△ABC的两个外角的平分线,若∠A=50°,则∠BFC=________度.13. (1分)(2017·黑龙江模拟) 如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为________.14. (1分) (2019七下·包河期中) 附加题:(本题5分)某同学到学校食堂买饭,看到1号、2号两个窗口前排队的人一样多(设为a人,a>8),就站到1号窗口队伍的后面,过了2分钟,他发现1号窗口每分钟有4人买饭离开,2号窗口每分钟有6人买饭离开且2号窗口后面每分钟增加5人。
2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510
12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。
娄底市联考八年级数学期中试卷及答案.doc
时间;120分钟 满分;120分一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分)1、在58, n m 3,3y x +,x 1,ba +3中,分式的个数是( )A .1B .2C .3D . 4 2、若把分式xyx 3+中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍3、a ÷b ×b 1÷c ×c 1÷d ×d1等于( )A .aB .222dc b a C .d a D .ab 2c 2d 24、下列分式是最简分式的是( ) A .122+x x B .112--x x C .x 24 D .1-x x-15、一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x6、下列长度的三条线段能组成三角形的是( )A .1, 2 ,4B .4, 5,9C .6,8, 10D .5, 15, 87、下列语句中不是命题的有( )(1)两点之间,线段最短;(2)不许大声讲话;(3)连接A 、B 两点;(4)鸟是动物;(5)不相交的两条直线叫做平行线;(6)无论a 为怎样的有理数,式子a 2+1的值都是正数吗? A .2 个 B .3个 C .4个 D .5个 8、尺规作图的工具是( )A .刻度尺、量角器B .三角板、量角器C .直尺、量角器D .没有刻度的直尺、圆规9、如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( ) A .三角形的稳定性 B .两点之间,线段最短 C .两点确定一条直线 D .垂线段最短10、如图,△ABC ≌△EFD 且AB=EF ,CE=3.5,CD=3,则AC=( ) A . 3 B .3.5 C .6.5 D .5二、细心填一填,一锤定音(本大题共8道小题,每小题4分,满分32分)11、(1)用科学计数法表示:0.000 04=________; (2)(π-3.14)0= 。
2015—2016学年八年级上学期数学期中试卷(5套)
2015—2016学年八年级上学期数学期中试
卷(5套)
2015年八年级上册数学期中考试题整理
八年级上册数学期中考试试卷:附答案
最新:初中二年级上册数学期中考试模拟试卷
2015—2016学年初二上学期数学期中试卷
八年级数学期中卷2015
一个学期一次的期中考试马上就要开始了,同学们正在进行紧张的复习。
这就是我们为大家准备的八年级上学期数学期中试卷,希望能够及时的帮助到大家。
为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。
湖南省娄底市五县市联考八年级数学上学期期中试题(含解析) 新人教版
湖南省娄底市五县市联考2015-2016学年八年级数学上学期期中试题一、请选择(下列各题均有四个备选答案,只有一个最符合题意,请将该选项的序号填在答题卷的相应答题栏里,每小题3分,共30分)1.如果把的x与y都扩大到原来的10倍,那么这个代数式的值( )A.不变 B.扩大10倍C.扩大100倍D.无法确定2.下列各有理式中,分式有( ),x2y,,,.A.1个B.2个C.3个D.4个3.a÷b×÷c×÷d×等于( )A.a B. C.D.ab2c2d 24.分式的最简公分母是( )A.x2y2B.3x2yxy2C.3x2y2 D.3x2y35.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为( )A.B.C.D.6.以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm7.下列命题是真命题的是( )A.两边及一个角对应相等的两三角形全等B.两角及一边对应相等的两三角形全等C.三个角对应相等的两三角形全等D.面积相等的两三角形全等8.已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为( )A.9 B.12 C.9或12 D.79.如图,在△ABC中,点D,E,F分别为BC,AD,AC的中点,且S△ABC=16,则S△DEF的面积为( )A.2 B.8 C.4 D.110.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE二、填空题(每小题3分,共30分)11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 74mm2,这个数用科学记数法表示为__________.12.化简:=__________.13.当x=__________时,分式的值为0.14.若关于x的分式方程有增根,则m的值为__________.15.写出“到线段两端距离相等的点在线段的垂直平分线上”的逆命题:__________.16.三角形三个内角的度数比为1:2:3,则这个三角形是__________三角形.17.如图,已知AB=AC=BD,那么∠1与∠2的关系为__________.18.如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件是__________.19.直线 l1、l2、l3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有__________处.20.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连结EC,则∠ECD的度数是__________.三、解答题(共60分)21.解方程:(1)﹣=0(2)=.22.先约分,再求值,其中x=2﹣2,y=﹣2015.23.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.24.1202班原有卫生区200平方米,现在由于某种原因变成了260平方米,因此要求搞卫生时每分钟比原来多搞15平方米,结果现在完成卫生任务的时间与原来的一样,求:(1)原来每分钟搞卫生多少平方米?(2)完成卫生任务要多少时间?25.如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.26.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.27.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.2015-2016学年湖南省娄底市五县市联考八年级(上)期中数学试卷一、请选择(下列各题均有四个备选答案,只有一个最符合题意,请将该选项的序号填在答题卷的相应答题栏里,每小题3分,共30分)1.如果把的x与y都扩大到原来的10倍,那么这个代数式的值( )A.不变 B.扩大10倍C.扩大100倍D.无法确定【考点】分式的基本性质.【分析】把x换成10x,y换成10y,然后根据分式的基本性质化简即可.【解答】解:∵=,∴这个代数式的值扩大10倍.故选B.【点评】本题考查了分式的基本性质,熟记性质是解题的关键.2.下列各有理式中,分式有( ),x2y,,,.A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】根据分式的定义对各式进行逐一分析即可.【解答】解:式子,的分母中含有未知数,是分式;x2y,,的分母中不含有未知数,是整式.故选B.【点评】本题考查的是分式的定义,熟知分母中含有未知数的式子是分式是解答此题的关键.3.a÷b×÷c×÷d×等于( )A.a B. C.D.ab2c2d 2【考点】分式的乘除法.【专题】计算题.【分析】原式利用除法法则变形,计算即可得到结果.【解答】解:原式=a××××××=,故选B.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.4.分式的最简公分母是( )A.x2y2B.3x2yxy2C.3x2y2 D.3x2y3【考点】最简公分母.【分析】根据确定最简公分母的方法取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.【解答】解:的最简公分母是3x2y3;故选D.【点评】本题考查了最简公分母,确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.5.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为( )A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】压轴题.【分析】若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解.【解答】解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:﹣=20.故选B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.6.以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.下列命题是真命题的是( )A.两边及一个角对应相等的两三角形全等B.两角及一边对应相等的两三角形全等C.三个角对应相等的两三角形全等D.面积相等的两三角形全等【考点】全等三角形的判定;命题与定理.【分析】根据三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.针对每个选项进行分析,即可选出答案.【解答】解:A、根据两边及夹角对应相等的两三角形全等,故此选项错误;B、两角及一边对应相等的两三角形全等,故此选项正确;C、三个角对应相等的两三角形全等,边长不一定相等,故此选错误;D、面积相等的两三角形不一定全等,故此选项错误.故选:B.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.8.已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为( ) A.9 B.12 C.9或12 D.7【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为2时,2+2<5,所以不能构成三角形;当腰为5时,2+5>5,所以能构成三角形,周长是:2+5+5=12.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,在△ABC中,点D,E,F分别为BC,AD,AC的中点,且S△ABC=16,则S△DEF的面积为( )A.2 B.8 C.4 D.1【考点】三角形的面积.【分析】利用等底同高的三角形的面积相等,可先得到S△DEF=S△AEF,即S△DEF=S△ADF,同理可知S△ADF=S△ACD,S△ACD=S△ABC,从而得到S△DEF=S△ABC,那么就可求出S△DEF的面积.【解答】解:∵D是BC的中点,∴S△ADC=S△ABC=8.又∵E,F分别为AD,AC的中点,∴S△AFD=S△ADC=4,∴S△DEF=S△AFD=2.故选A.【点评】此题主要根据等底等高来求各个小三角形的面积是大三角形的面积的一半.10.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.二、填空题(每小题3分,共30分)11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 74mm2,这个数用科学记数法表示为7.4×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 74=7.4×10﹣7;故答案为:7.4×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.化简:=.【考点】分式的加减法.【专题】计算题.【分析】原式通分并利用同分母分式的加法法则计算,即可得到结果.【解答】解:原式==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.当x=2时,分式的值为0.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.【解答】解:分式的值为0,即|x|﹣2=0,x=±2,∵x+2≠0,∴x≠﹣2,即x=2.故当x=2时,分式的值为0.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.14.若关于x的分式方程有增根,则m的值为2.【考点】分式方程的增根.【专题】计算题.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣2)=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣2),得x﹣2(x﹣2)=m∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=2.故答案为2.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.写出“到线段两端距离相等的点在线段的垂直平分线上”的逆命题:线段的垂直平分线上的点到线段两端距离相等.【考点】命题与定理.【分析】写出线段垂直平分线的性质定理即可.【解答】解:“到线段两端距离相等的点在线段的垂直平分线上”的逆命题为:线段的垂直平分线上的点到线段两端距离相等.故答案为线段的垂直平分线上的点到线段两端距离相等.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.16.三角形三个内角的度数比为1:2:3,则这个三角形是直角三角形.【考点】三角形内角和定理.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数.【解答】解:设一份为k°,则三个内角的度数分别为k°,2k°,3k°.则k°+2k°+3k°=180°,解得k°=30°.所以2k°=60°,3k°=90°,即∠B=60°,∠C=90°.故这个三角形是直角三角形.故答案是:直角.【点评】此类题利用三角形内角和定理列方程求解可简化计算.17.如图,已知AB=AC=BD,那么∠1与∠2的关系为3∠1﹣∠2=180°.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理可得∠1和∠C之间的关系,再根据三角形外角的性质可得∠1和∠2之间的关系.【解答】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故答案为:3∠1﹣∠2=180°.【点评】本题考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.18.如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件是∠A=∠C,∠B=∠D,OD=OB,AB∥CD.【考点】全等三角形的判定.【专题】开放型.【分析】本题要判定△OAB≌△OCD,已知OA=OC,∠AOB=∠COD,具备了一组边对应相等和一组角对应相等,故添加∠A=∠C,∠B=∠D,OD=OB,AB∥CD后可分别根据ASA、AAS、SAS、AAS判定△OAB≌△OCD.【解答】解:∵OA=OC,∠A=∠C,∠AOB=∠COD,∴△OAB≌△OCD(ASA).∵OA=OC,∠B=∠D,∠AOB=∠COD,∴△OAB≌△OCD(AAS).∵OA=OC,OD=OB,∠AOB=∠COD,∴△OAB≌△OCD(SAS).∵AB∥CD,∴∠A=∠C,∠B=∠D(两直线平行,内错角相等),∵OA=OC,∴△OAB≌△OCD(AAS).故填∠A=∠C,∠B=∠D,OD=OB,AB∥CD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.直线 l1、l2、l3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有4处.【考点】角平分线的性质.【专题】应用题.【分析】根据角平分线的性质货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点,而外角平分线有3个交点,内角平分线有一个交点,即可得到答案.【解答】解:∵中转站要到三条公路的距离都相等,∴货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点,而外角平分线有3个交点,内角平分线有一个交点,∴货物中转站可以供选择的地址有4个.故答案为:4.【点评】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.注意此题答案不唯一,小心别漏解.20.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连结EC,则∠ECD的度数是25°.【考点】线段垂直平分线的性质.【分析】根据角平分线定义求出∠EBC,根据线段垂直平分线得出NE=CE,推出∠ECD=∠EBC 即可.【解答】解:∵BE平分∠ABD,∠AB C=50°,∴∠EBD=∠ABC=25°,∵AD垂直平分线段BC,∴BE=CE,∴∠ECD=∠EBC=25°,故答案为:25°.【点评】本题考查了线段垂直平分线和等腰三角形性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.三、解答题(共60分)21.解方程:(1)﹣=0(2)=.【考点】解分式方程.【专题】计算题.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x﹣4﹣3x+9=0,解得:x=5,经检验x=5是分式方程的解;(2)去分母得:3x+6=5x,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.先约分,再求值,其中x=2﹣2,y=﹣2015.【考点】分式的化简求值.【专题】计算题.【分析】原式变形后,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式==,当x=,y=﹣2015时,原式==﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质;直角三角形的性质.【专题】证明题.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【解答】证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.【点评】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.24.1202班原有卫生区200平方米,现在由于某种原因变成了260平方米,因此要求搞卫生时每分钟比原来多搞15平方米,结果现在完成卫生任务的时间与原来的一样,求:(1)原来每分钟搞卫生多少平方米?(2)完成卫生任务要多少时间?【考点】分式方程的应用.【分析】(1)设原来每分钟搞卫生x平方米,则现在每分钟搞卫生(x+15)平方米,根据“现在完成卫生任务的时间与原来的一样”列出方程.(2)利用工作量÷工作效率=工作时间进行解答.【解答】解:(1)设原来每分钟搞卫生x平方米,则=,解得 x=50.答:原来每分钟搞卫生50平方米;(2)由(1)知,原来每分钟搞卫生50平方米,则200÷50=4(分钟).答:完成卫生任务要4分钟.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.25.如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【考点】全等三角形的应用.【分析】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【解答】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【点评】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.26.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)欲证两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF 可以得出∠ACB=∠F,条件找到,全等可证.(2)根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.【解答】证明:(1)∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DE F(AAS);(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.【点评】本题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.27.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.【考点】全等三角形的判定与性质.【专题】压轴题;开放型.【分析】(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS 即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.【解答】解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD.【点评】此题考查了全等三角形的判定与性质,平行线的性质,利用了转化的数学思想,熟练掌握全等三角形的判定与性质是解本题的关键.。
2015—2016学年度第一学期八年级数学(上)期中测试试卷附答案
第1题图第13题图第12题图2015—2016学年度第一学期八年级数学(上)期中测试试卷(考试用时:120分钟 ; 满分: 100分)(共:10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是: 点M (3,2)关于x 轴对称的点的坐标为 :A.(—3,2)B.(-3,-2)C. (3,-2)D. (2,-3) 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为:A. 5或7B. 7或9C. 7D. 9 等腰三角形的一个角是80°,则它的底角是:A. 50°B. 80°C. 50°或80°D. 20°或80° 如图:OC 平分∠AOB ,CD ⊥OA 于D ,CE ⊥OB 于E ,CD=3㎝,则CE 的长度为:A.2㎝B.3㎝C.4㎝D.5㎝如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。
A .30° B. 40° C. 50° D. 60°现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm.从中任取三根木棒,能组成三角形的个数为:A .1个B .2个C .3个D .4个 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ;(2)AD ⊥BC ;(3)∠B=∠C ;4)AD 是△ABC 的角平分线。
其中正确的有( )。
A .1个 B. 2个 C. 3个 D. 4个如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于BDC 的度数为:A.72°B.36°C.60°D.82°10.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二、填空题:(本大题:10小题,每小题2分,共20分.请把答案填写在相应题目后的横线上)11. 若A (x ,3)关于y 轴的对称点是B (-2,y ),则x =____ ,y =______ ,12.如图:ΔABE ≌ΔACD ,AB=10cm ,∠A=60°,∠B=30°,则AD=_____ cm ,∠ADC=_____。
2015—2016学年度上学期期中检测八年级数学试卷(附答案答题卡)
4题2015—2016学年度上学期期中检测八年级数学试卷一、选择题(每小题3分,10题共30分) 1、下列图形是轴对称图形的有( )A.4个B.3个C.1个D.1个2、在△ABC 中,∠A ∶∠B ∶∠C =1∶1∶2,则此三角形的形状为( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、等腰直角三角形3、等腰三角形的一边长是6,另一边长是12,则周长为( ) A.30 B.24 C.24或30 D.184、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2, 则PQ 的最小值为( )A 、1B 、 2C 、 3D 、 4 5、等腰三角形的一个角是80°,则它的底角是( ) A. 50° B. 80° C. 50°或80° D. 20°或80° 6、一个多边形的每个内角为108°,则这个多边形是( ) A 、四边形 B 、五边形 C 、六边形 D 、七边形7、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个8、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数 ( )A. 大于90°B. 等于90°C. 小于90°D. 不能确定9、如图, 已知△ABC 中, AB=AC, ∠BAC =90°, 直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点E 、F, 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ; ④BE+CF =EF. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合). 上述结论中始终正确的有( )A. 1个B. 2个C. 3个D. 4个10、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.恒成立的有( )个. A .1 B .2C .3D .4二、填空题(每题3分,6题共18分)11、已知点P (-3,4),关于x 轴对称的点的坐标为 。
【解析版】娄底市初中数学八年级上期中经典练习题(含解析)
一、选择题1.题目文件丢失!2.题目文件丢失!3.题目文件丢失!4.题目文件丢失!5.题目文件丢失!6.题目文件丢失!7.题目文件丢失!8.题目文件丢失!9.题目文件丢失!10.题目文件丢失!11.题目文件丢失!12.题目文件丢失!13.题目文件丢失!14.题目文件丢失!15.题目文件丢失!二、填空题16.题目文件丢失!17.题目文件丢失!18.题目文件丢失!19.题目文件丢失!20.题目文件丢失!21.题目文件丢失!22.题目文件丢失!23.题目文件丢失!24.题目文件丢失!25.题目文件丢失!三、解答题26.题目文件丢失!27.题目文件丢失!28.题目文件丢失!29.题目文件丢失!30.题目文件丢失!【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.C4.D5.A6.C7.B8.C9.D10.B11.D12.A13.D14.C15.A二、填空题16.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得17.15【解析】【分析】题目给出等腰三角形有两条边长为6cm和3cm而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】当腰为3cm时3+3=6不能构成三角形因此这种18.【解析】【分析】根据角平分线上的点到角的两边距离相等可得CD=DE再判断出△BDE是等腰直角三角形设BE=x然后根据△BDE的周长列方程求出x的值再分别求解即可【详解】解:∵∠C=90°AD平分∠B19.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及20.2【解析】【分析】根据多项式相乘的法则展开然后代入数据计算即可【详解】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4当a+b=ab=1时原式=1﹣2×+4=2故答案为2考点:整式的混合运算—化简求21.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内22.3【解析】根据条件求出各个角的度数由此确定哪个三角形是等腰三角形解答:∵在△ABC中AB=BC∠A=36°∴∠ABC=∠ACB=72°∵BD平分∠ABC∴∠ABD=∠CBD=36°∴∠ABD=∠A=23.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:24.1【解析】【分析】有增根是化为整式方程后产生的使原分式方程分母为0的根在本题中可确定增根是1然后代入化成整式方程的方程中求得m的值【详解】解:去分母得:m ﹣1=2x﹣2由分式方程有增根得到x﹣1=025.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:解析丢失2.C解析:解析丢失3.C解析:解析丢失4.D解析:解析丢失5.A解析:解析丢失6.C解析:解析丢失7.B解析:解析丢失8.C解析:解析丢失9.D解析:解析丢失10.B解析:解析丢失11.D解析:解析丢失12.A解析:解析丢失13.D解析:解析丢失14.C解析:解析丢失15.A解析:解析丢失二、填空题16.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:解析丢失17.15【解析】【分析】题目给出等腰三角形有两条边长为6cm和3cm而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】当腰为3cm时3+3=6不能构成三角形因此这种解析:解析丢失18.【解析】【分析】根据角平分线上的点到角的两边距离相等可得CD=DE 再判断出△BDE是等腰直角三角形设BE=x然后根据△BDE的周长列方程求出x的值再分别求解即可【详解】解:∵∠C=90°AD平分∠B解析:解析丢失19.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及解析:解析丢失20.2【解析】【分析】根据多项式相乘的法则展开然后代入数据计算即可【详解】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4当a+b=ab=1时原式=1﹣2×+4=2故答案为2考点:整式的混合运算—化简求解析:解析丢失21.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:解析丢失22.3【解析】根据条件求出各个角的度数由此确定哪个三角形是等腰三角形解答:∵在△ABC中AB=BC∠A=36°∴∠ABC=∠ACB=72°∵BD平分∠ABC∴∠ABD=∠CBD=36°∴∠ABD=∠A=解析:解析丢失23.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:解析:解析丢失24.1【解析】【分析】有增根是化为整式方程后产生的使原分式方程分母为0的根在本题中可确定增根是1然后代入化成整式方程的方程中求得m的值【详解】解:去分母得:m﹣1=2x﹣2由分式方程有增根得到x﹣1=0解析:解析丢失25.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:解析丢失三、解答题26.解析丢失27.解析丢失28.解析丢失29.解析丢失30.解析丢失。
2015-2016学年八年级上数学期中考试试卷含答案
2015-2016学年度第一学期八年级数学期中试卷 2015.11一.用心选一选:(每小题3分,共30分)1.下列各式是因式分解且完全正确的是( )A .ab +ac +d =b a (+c )+dB .)1(23-=-x x x xC .(a +2)(a -2)=2a -4 D .2a -1=(a +1)(a -1) 2.医学研究发现一种新病毒的直径约为0.000043毫米,这个数用科学记数法表 示为( )A. 41043.0-⨯ B. 41043.0⨯ C. 5103.4-⨯ D. 5103.4⨯3. 下列各式:()xxx x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。
A .2 B. 3 C. 4 D. 54. 多项式 2233449-18-36a x a x a x 各项的公因式是( )A .22a xB .33a xC .229a xD .449a x5. 如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M 、N ,使OM =ON ,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP .可证得△POM ≌△PON ,OP 平分∠AOB .以上依画法证明 △POM ≌△PON 根据的是( ) A .SSS B .HL C .AAS D .SAS6. 甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。
如果设甲每小时做x 个零件,那么下面所列方程中正确的是( ). A.9060-6x x = B. 90606x x =+ C. 90606x x =+ D. 9060-6x x= 7. 如图,已知△ABC ,则甲、乙、丙三个三角形中和△ABC 全等的是( )bacca丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 乙和丙C. 只有丙D. 甲和乙8. 下列各式中,正确的是( )A .122b a b a =++ B .2112236d cd cd cd++= C . -a b a b c c ++= D .222-4-2(-2)a a a a += 9.如图,正方形ABCD 的边长为4,将一个足够大的直角三角板的直角顶点放于点A 处,该三角板的两条直角边与CD 交于点F ,与CB 延长线交于点E .四边形AECF 的面积是( )A. 16 B .4 C .8 D. 1210.在数学活动课上,小明提出这样一个问题:如右图, ∠B =∠C = 90︒, E 是BC 的中点, DE 平分∠ADC, ∠CED = 35︒, 则∠EAB 的度数 是 ( )A .65︒B .55︒C .45︒D .35︒二.细心填一填:(每小题3分,共24分) . 11.计算:2220042003-= .ED CBA12. 04= 212-⎛⎫- ⎪⎝⎭= ()312a b -=13. 如果分式 242x x -+ 的值是零,那么x 的值是 _________________ .14. 将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕, 则CBD ∠的度数为_ _.15. 计算: 2422x x x --- = __________________. 16. 如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件, 使得△AOB ≌△DOC ,你补充的条件是 .17. 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E . 已知PE =3,则点P 到AB 的距离是_________________.18. 在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E , 使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 .三.用心做一做(19、20题每题3分,21、22、23题每题4分,共26分)19.因式分解: 24a -32a +64 20.计算:3222)()(---⋅a ab (结果写成分式)21.计算: (1) 22819369269a a a a a a a --+÷⋅++++ (2) (m 1+n1)÷nn m +22.解分式方程:(1)3221+=x x (2)214111x x x +-=--23. 先化简: 21x +21+x +1x -1⎛⎫÷⎪⎝⎭,再选择一个恰当的数代入求值.四.应用题(本题5分)24. 甲乙两站相距1200千米,货车与客车同时从甲站出发开往乙站,已知客车的速度是货车速度的2倍,结果客车比货车早6小时到达乙站,求客车与货车的速度分别是多少?解:DCB五、作图题(本题2分)25.画图 (不用写作法,要保留作图痕迹......)尺规作图:求作AOB∠的角平分线OC.六、解答题:(28题5分,其他每题4分,共17分)26.已知,如图,在△AFD和△CEB中,点A,E,F,C在同一直线上,AE=CF,DF=BE,AD=CB. 求证:AD∥BC.27.已知:如图,AB=AD,AC=AE,且BA⊥AC,DA⊥AE.求证:(1)∠B=∠D (2) AM=AN.28.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC,求证:∠PCB+∠BAP=180º.29. 已知:在平面直角坐标系中,△ABC的顶点A、C别在y轴、x轴上,且∠ACB=90°,AC=BC.(1)如图1,当(0,2),(1,0)A C-,点B则点B的坐标为;(2)如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断OABDOC+与OABDOC-哪一个是定值,并说明定值是多少?请证明你的结论.F CFDCBAEO附加题1.选择题:以右图方格纸中的3个格点为顶点,有多少个不全等的三角形( ) A .6 B .7 C .8 D .92.填空题:考察下列命题:(1)全等三角形的对应边上的中线、高线、角平分线对应相等;(2)两边和其中一边上的中线对应相等的两个三角形全等;(3)两边和第三边上的中线对应相等的两个三角形全等;(4)两角和其中一角的角平分线对应相等的两个三角形全等;(5)两角和第三角的角平分线对应相等的两个三角形全等;(6)两边和其中一边上的高线对应相等的两个三角形全等;(7)两边和第三边上的高线对应相等的两个三角形全等;其中正确的命题是 (填写序号).3.解答题:我们知道,假分数可以化为带分数. 例如: 83=223+=223. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:11x x -+,21x x -这样的分式就是假分式;31x + ,221xx + 这样的分式就是真分式 . 类似的,假分式也可以化为带分式(即:整式与真分式和的形式). 例如:1(1)22=1111x x x x x -+-=-+++; 22111(1)1111111x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为带分式; (2)若分式211x x -+的值为整数,求x 的整数值;解:参考答案1-5 DCACB 6-10 ABDBD 11 . 4007 12. 1, 4, 338a b - 13. -2 14 . 90︒ 15. 2 16. OC OB ,或CD AB ,或===OD OA17. 3 18.(5,-1),(1,5),(1,-1) 19. 2)4(4-a 20. 48b a21. (1)-2 (2)1m22. (1) x=1 (2)无解 23. -1 24. x=625.略 26. SSS 证全等 27.(1)SAS 证全等 (2)ASA 证全等 28. 过点P 作PE 垂直BA 于点E ,HL 证全等. 29.(1) (3,-1) (2)OC BDOA-是定值.附加题1.选择题: C2.填空题: 正确的命题是 1,2,3,4 ,5 3.解答题:解:(1)12331222x x x x x -(+)-==-+++; (2)2121332111x x x x x -(+)-==-+++. 当211x x -+为整数时,31x +也为整数.1x ∴+可取得的整数值为1±、3±.x ∴的可能整数值为0,-2,2,-4.。
湖南省娄底市 八年级(上)期中数学试卷(含答案)
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分) 1. 在ba ,−2ab 2,x3,14+x 中,分式共有( )A. 2个B. 3个C. 4个D. 5个 2. 下列各组中的三条线段能组成三角形的是( )A. 3,4,5B. 5,6,11C. 6,3,10D. 4,4,83. 下列各题中,所求的最简公分母,错误的是( )A. 13x 与a6x 最简公分母是6x 2 B. 13a 2b 3与13a 2b 3c 最简公分母是3a 2b 3c C. 1m +n 与1m−n 的最简公分母是(m +n )(m −n ) D. 1a (x−y )与1b (y−x )的最简公分母是ab (x −y )(y −x )4. 不改变分式0.5x−10.3x +2的值,如果把其分子和分母中的各项的系数都化为整数,那么所得的正确结果为( )A. 5x−13x +2B. 5x−103x +20C. 2x−13x +2 D. x−23x +205. 若分式x 2−9x 2+x−12=0,则x 的值是( )A. 3或−3B. −3C. 3D. 96. 如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3的度数为( )A. 50∘B. 60∘C. 70∘D. 80∘7. 下列式子:①(-2)-2 =14;②a 0=1;③3a -2=13a 2;④-7.02×10-4=-0.000702.其中正确的式子有( )A. 1个B. 2个C. 3个D. 4个8. 如图,D 是线段AB 、BC 垂直平分线的交点,若∠ABC =150°,则∠ADC 的大小是( )A. 60∘B. 70∘C. 75∘D. 80∘9. 甲、乙两班学生参加植树造林,已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是( )A. 60x+2=70xB. 60x=70x+2C. 60x−2=70xD. 60x=70x−210.下列命题中是假命题的()A. 在同一平面内,垂直于同一条直线的两条直线平行B. 三角形的三个内角中至少有一个角不大于60∘C. 三角形的一个外角等于两个内角之和D. 平行于同一条直线的两条直线平行二、填空题(本大题共8小题,共24.0分)11.分式1x+1有意义的条件是______ .12.定理“线段垂直平分线上的点到线段两端的距离相等”的逆定理是:______ .13.微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小,某种电子元件的面积大约为0.000 000 75平方毫米,用科学记数法表示为______ 平方毫米.14.已知1a −1b=12,则aba−b的值是______.15.如图,已知AB=AE,∠BAD=∠CAE,要使△ABC≌△AED,还需添加一个条件,这个条件可以是______ .16.等腰三角形两边长为6和4,则这个三角形的周长为______ .17.如图,在直角三角形ABC中,两锐角平分线AM、BN所夹的钝角∠AOB=______度.18.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三、解答题(本大题共8小题,共66.0分)19.计算:(1)m2−mm2−1-m−1 m+1;(2)a-2b-2•(-3a4b3)2÷a-4b-5.20.解分式方程:(1)1x−2=4x−4;(2)2x−2+3=1−x2−x.21.先化简分式:(1-2x−1)•x2−xx2−6x+9,再选一个你喜欢的x的值代入求值.22.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.求∠BAC和∠DAE的度数.23.如图,在Rt△ABC中,AB=CB,∠ABC=9O°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠EDC的度数.24.新化到长沙的距离约为200km,小王开着小轿车,张师傅开着大货车都从新化去长沙,小王比张师傅晚出发20分钟,最后两车同时到达长沙.已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?25.解关于x的方程x+1x+2-xx−1=kx+2(x−1)(x+2)时产生了增根,请求出所有满足条件的k的值.26.如图,已知AD=BC,AC=BD.请探究:OA与OB是否相等?若相等,请证明;若不相等,请说明理由.答案和解析1.【答案】A【解析】解:分式有,两个,故选A.根据分式的定义进行选择即可.本题考查了分式的定义,掌握分式的定义是解题的关键.2.【答案】A【解析】解:A、3+4>5,能组成三角形,故此选项正确;B、5+6=11,不能组成三角形,故此选项错误;C、6+3<10,不能组成三角形,故此选项错误;D、4+4=8,不能组成三角形,故此选项错误;故选:A.根据三角形任意两边之和大于第三边进行分析即可.本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.3.【答案】D【解析】【分析】本题考查了最简公分母.求几个分式的最简公分母时,应注意将分母转化为最简式后再进行相乘.求几个分式的最简公分母时,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母.【解答】解:选项D中与中字母最高次幂的积为一次,所以最简公分母是ab(x-y).故选D.4.【答案】B【解析】解:不改变分式的值,如果把其分子和分母中的各项的系数都化为整数,则分子分母要同时扩大10倍,即分式=,故选B.只要将分子分母要同时扩大10倍,分式各项的系数就可都化为整数.解答此类题一定要熟练掌握分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变.5.【答案】B【解析】解:∵分式,∴=0,∴(x+3)(x-3)=0,∴x=3或x=-3,∵x=3时,(x+4)(x-3)=0,分式无意义,∴x=-3.故选B.首先对分式的分子和分母进行因式分解,推出=0,根据分式的意义可推出(x+4)(x-3)≠0,所以x≠-4或x≠3,然后根据题意可推出(x+3)(x-3)=0,推出x=3或x=-3,由于x=3使分式无意义,故x=-3.本题主要考查分式的意义,多项式的因式分解,关键在于根据题意确定x的值.6.【答案】C【解析】解:∵△BCD中,∠1=50°,∠2=60°,∴∠4=180°-∠1-∠2=180°-50°-60°=70°,∴∠5=∠4=70°,∵a∥b,∴∠3=∠5=70°.故选:C.先根据三角形内角和定理求出∠4的度数,由对顶角的性质可得出∠5的度数,再由平行线的性质得出结论即可.本题考查的是平行线的性质,解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.7.【答案】B【解析】解:①、(-2)-2=,该等式正确;②、a0=1,只有当a≠0是才成立,故该等式不正确;③、3a-2=≠,故该等式不正确;④、-7.02×10-4=-0.000702,该等式正确.即正确的有①和④.故选B.结合负整数指数幂以及零指数幂的概念和预算法则进行判断求解即可.本题主要考查了负整数指数幂和零指数幂的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.8.【答案】A【解析】解:连接BD.∵D是线段AB、BC垂直平分线的交点,∴AD=BD,BD=CD.∴∠A=∠ABD,∠C=∠CBD.又∠ABC=150°,∴∠ADC=360°-150°×2=60°.故选A.连接BD.根据线段垂直平分线的性质,得AD=BD=CD,根据等边对等角,得∠A=∠ABD,∠C=∠CBD.根据∠ABC=150°和四边形的内角和定理,即可求得∠ADC的度数.此题考查了线段垂直平分线的性质、等边对等角的性质和四边形的内角和定理.正确作出辅助线是解答本题的关键.9.【答案】B【解析】解:设甲班每天植树x棵,则甲班植60棵树所用的天数为,乙班植70棵树所用的天数为,所以可列方程:=.故选:B.本题需重点理解:甲班植60棵树所用的天数与乙班植70棵树所用的天数相等,等量关系为:甲班植60棵树所用的天数=乙班植70棵树所用的天数,根据等量关系列式.此题主要考查了由实际问题抽象出分式方程,熟练地运用数量之间的各种关系找出等量关系,然后再利用等量关系列出方程是解题关键.10.【答案】C【解析】解:A、在同一平面内,垂直于同一条直线的两条直线平行,所以A选项为真命题;B、三角形的三个内角中至少有一个角不大于60°,所以B选项为真命题;C、三角形的一个外角等于与之不相邻的两个内角之和,所以C选项为假命题;D、平行于同一条直线的两条直线平行,所以D选项为真命题.故选C.根据平行线的判定对A、D进行判断;根据三角形内角和定理对B进行判断;根据三角形外角性质对C进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.11.【答案】x≠-1【解析】解:由题意得,x+1≠0,解得x≠-1.故答案为:x≠-1.根据分式有意义,分母不等于0列不等式求解即可.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.【答案】到线段两端点距离相等的点在线段的垂直平分线上【解析】解:定理“线段垂直平分线上的点到线段两端的距离相等”的逆定理是到线段两端点距离相等的点在线段的垂直平分线上,故答案为:到线段两端点距离相等的点在线段的垂直平分线上写出下列定理的逆命题解答即可.本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题.13.【答案】7.5×10-7【解析】解:0.000 000 75=7.5×10-7;故答案为:7.5×10-7绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【答案】-2【解析】解:∵-=,∴=,∴ab=2(b-a),∴ab=-2(a-b),∴=-2.故答案是:-2.先把所给等式的左边通分,再相减,可得=,再利用比例性质可得ab=-2(a-b),再利用等式性质易求的值.本题考查了分式的加减法,解题的关键是通分,得出=是解题关键.15.【答案】AC=AD【解析】解:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,∴∠BAC=∠EAD,而AB=AE,当添加AC=AD时,根据“SAS”可判断△ABC≌△AED.故答案为AC=AD.由∠BAD=∠CAE得到∠BAC=∠EAD,加上AB=AE,所以当添加∠C=∠D时,根据“AAS”可判断△ABC≌△AED;当添加∠B=∠E时,根据“ASA”可判断△ABC≌△AED;当添加AC=AD时,根据“SAS”可判断△ABC≌△AED.本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.16.【答案】14或16【解析】解:(1)若4为腰长,6为底边长,由于6-4<4<6+4,即符合三角形的两边之和大于第三边.所以这个三角形的周长为6+4+4=14.(2)若6为腰长,4为底边长,由于6-6<4<6+6,即符合三角形的两边之和大于第三边.所以这个三角形的周长为6+6+4=16.故等腰三角形的周长为:14或16.故答案为:14或16.求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.17.【答案】135【解析】解:∵△ABC是直角三角形,∴∠BAC+∠ABC=90°,又∵AM,BN为∠BAC,∠ABC的角平分线,∴∠CAM+∠NBC=45°,∴∠AOB=180°-(∠CAM+∠NBC)=135°,∴∠AOB=135°.故答案为:135根据三角形内角与外角的定义即可解答.本题考查的是角平分线的定义,三角形内角和定理.三角形内角和等于180°.18.【答案】32【解析】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4a ,A 4B 4=8B 1A 2=8a ,A 5B 5=16B 1A 2=16a ,以此类推:A 6B 6=32B 1A 2=32a .故答案是:32a .根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键. 19.【答案】解:(1)原式=m (m−1)(m +1)(m−1)-m−1m +1=m m +1-m−1m +1=1m +1;(2)原式=1a 2b 2•9a 8b 6•a 4b 5=9a 10b 9. 【解析】(1)根据异分母分式加减法法则计算;(2)根据负整数指数幂的性质解答.本题考查的是分式的加减法、负整数指数幂的运算,掌握异分母分式加减法法则、负整数指数幂的性质是解题的关键.20.【答案】解:(1)方程两边都乘以(x +2)(x -2)得:x +2=4,解得:x =2,检验:把x =2代入(x +2)(x -2)=0,即x =2不是原方程的解,所以原方程无解;(2)方程两边都乘以x -2得:2+3(x -2)=x -1,解得:x =32,检验:把x =32代入x -2≠0,即x =32是原方程的解,所以原方程的解为x =32.【解析】(1)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可;(2)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可.本题考查了解分式方程的应用,能把分式方程转化成整式方程是解此题的关键.21.【答案】解:原式=(1-2x−1)×x (x−1)(x−3)2=x−3x−1×x (x−1)(x−3)2=xx−3∵ x −1≠0(x −3)2≠0, ∴x ≠1且x ≠3,当x =0时,∴原式=0(答案不唯一)【解析】先将原式化简,然后选取满足分式有意义的值代入即可求出答案. 本题考查分式的混合运算,涉及代入求值,注意分式有意义的条件.22.【答案】解:∵∠B =30°,∠C =50°, ∴∠BAC =180°-30°-50°=100°,∵在△ABC 中,AE 是角平分线,∴∠CAE =12∠BAC =50°,∵在△ABC 中,AD 是△ABC 的高,∴∠CAD =90°-∠C =40°,∴∠DAE =∠CAE -∠CAD =50°-40°=10°.【解析】先根据三角形内角和定理,求得∠BAC 度数,再根据AD ,AE 分别是△ABC 的高和角平分线,求得∠CAE 与∠CAD ,最后根据∠DAE=∠CAE-∠CAD 进行计算即可.本题主要考查了三角形内角和定理以及三角形的高线与角平分线的综合应用,解决问题的关键是掌握:三角形的内角和等于180°.23.【答案】(1)证明:∵∠ABC =90°, ∴∠CBD =180°-90°=90°,在△ABE和△CBD中,AB=CB∠ABC=∠CBDBE=BD,∴△ABE≌△CBD(SAS);(2)解:∵△ABE≌△CBD,∴∠BCD=∠BAE,∵AB=CB,∠ABC=9O°,BE=BD,∴∠BAC=∠BED=45°,∠CAE=30°,∴∠BAE=45°-30°=15°,∴∠EDC=∠BED-∠BCD=45°-15°=30°.【解析】(1)由SAS证明△ABE≌△CBD即可;(2)由全等三角形的性质得出∠BCD=∠BAE,由等腰直角三角形的性质得出∠BAC=∠BED=45°,由∠CAE=30°,得出∠BAE=45°-30°=15°,再由三角形的外角性质即可得出所求结果.本题考查了全等三角形的判定与性质、等腰直角三角形的性质以及三角形的外角性质;证明三角形全等是解决问题的关键.24.【答案】解:设大货车的速度是x千米/时,则小轿车的速度是1.2x/时,由题意,得200 x -2001.2x=2060,解得x=100,经检验,x=100是原方程的解,且符合题意,则1.2x=120.答:大货车的速度为100km/h,小轿车的速度为120km/h.【解析】设大货车的速度是x千米/时,则小轿车的速度是1.2x/时,根据时间关系列出方程,解方程即可.本题考查了分式方程分应用、分式方程的解法;根据时间关系列出方程是解决问题的关键.25.【答案】解:方程去分母后得:(k+2)x=-3,分以下两种情况:令x=1,k+2=-3,∴k=-5令x=-2,-2(k+2)=-3,∴k=-12,综上所述,k的值为-5,或-12.【解析】根据等式的性质,可得整式方程,根据方程的增跟适合整式方程,可得关于k 的方程,根据解方程,可得答案.本题考查了分式方程的增根,利用分式方程的增根得出关于k 的方程是解题关键.26.【答案】解:AO =BO ,理由:连接AB ,在△ADB 和△BCA 中 AD =BCDB =AC AB =BA,∴△DAB ≌△CBA (SSS ),∴∠DBA =∠CAB ,∴OA =OB .【解析】连接AB ,利用SSS 判定△DAB ≌△CBA ,进而可得∠DBA=∠CAB ,再根据等角对等边可得AO=BO .此题主要考查了全等三角形的性质和判定,关键是正确作出辅助线.。
2015-2016学年八年级上学期期中考试数学试卷带答案
2015(全卷满分120分,班级 姓名 分数 一. 符合题目要求的。
本大题共15小题,每小题3分,计1.下列计算中正确的是 ( )A .5322a b a =+B .44a a a =÷C .842a a a =⋅D .()632a a -=-2.等腰三角形的两边分别为3和6,则这个三角形的周长是 ( ).A .12B .15C .9D .12或153.下面是某同学在一次测验中的计算摘录,其中正确的个数有 ( ) ①()523623x x x -=-⋅; ②()a b a b a 22423-=-÷;③()523a a =; ④()()23a a a -=-÷-A .1个B .2个C .3个D .4个4.已知210x y -=,则124+-y x 的值为( )A .10B .21C .10-D .21-5.下列各式是完全平方式的是 ( )A .412+-x x B .21x + C .1++xy x D .122-+x x6.若3x =15,3y =5,则3x -y 等于 ( )A .5B .3C .15D .107. 从五边形的一个顶点作对角线,把这个五边形分成三角形的个数是( )A. 5个B. 4个C. 3个D.2个8.我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=,那么48⊗为( )A.32B.3210C.1210D.10129. 下列图形中有稳定性的是 ( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形10.到三角形三边距离相等的点是( )A .三边垂直平分线的交点B .三条高线交点C .三条中线的交点D .三条角平分线的交点11.如图,用尺规作图画角平分线:以O 为圆心,任意长为半径画弧交OA ,OB 于点C ,D ,再分别以C ,D 为圆心,以大于CD 21长为半径 画弧,两弧交于点P ,由此得△POC ≌△POD 依据是( ) A .AAS B. SAS C.SSS D .ASA 12.如图,已知CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,且13.若(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为 ( ) A. –3 B. 3 C. 0 D. 1 14.若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为 ( ) A .3:2:1 B .1:2:3 C .3:4:5 D . 5:4:3 15.在ABC Rt ∆中,︒=∠90A ,BD 平分ABC ∠交AC 于点D ,AD=2, AC=5,则D 到BC 的距离是( ) A .2 B .3 C .4 D .5 二、解答题:(请将解答结果书写在答题卡上指定的位置.本大题共9小题,16~17每小题6分,18~19每小题7分,20~21每小题8分,22题10分,23题11分,24题12分,合计75分) 16、计算:2(2)(2)x x x ++- 17.先化简,再求值. 2(3)(3)(3)x x x --+-, 其中x=1 18. 如图,AD 是△ ABC 中∠ BAC 的平分线,DE ⊥ AB 于点E ,DF ⊥AC 交AC 于点F ,S ABC △ =7,DE=2,AB=4, 求AC 的长 19如图,在ABC Rt ∆中,︒=∠90ABC ,点F 在CB 的延长线上且AB=BF ,过F 作AC EF ⊥交AB 于D ,求证:DB=BCDCPOC D C B F A D E20. 如图,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D .(1)求证:△ADC ≌△CEB (2)若AD=8cm ,DE=5cm ,求BE 的长度21. (1)已知 (a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值.(2)已知:x 2+y 2+4x -6y +13=0,x 、y 均为有理数,求x y 的值.22.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形B C E ,,在同一条直线上,连结DC .(1).请找出图②中的全等三角形,并给予说明(注意:结论中不得含有未标识的字母);(2).请判断DC 与BE 的位置关系,并证明;(3).若CE=2,BC=4,求△DCE 的面积.23. 如图,△ABC 中,AB =AC ,∠BAC =90°, (1)CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上,BE 的延长线交CA 的延长线于M ,补全图形,并探究BE 和CD 的数量关系,并说明理由; (2)若BC 上有一动点P ,且∠BPQ =12∠ACB ,BQ ⊥PQ 于Q ,PQ 交AB 于F ,试探究BQ 和PF 之间的数量关系,并证明你的结论. 24.正方形四条边都相等,四个角都是90°.如图,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时: ①判断△ADG 与△ABE 是否全等,并说明理由; ②过点F 作FH ⊥MN ,垂足为点H ,观察并猜测线段BE 与线段CH 的数量关系,并说明理由; (2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 与△ABE 是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,连CF ,已知GD=4,求△CFH 的面积. (12分)ABC DE① ②D图2图1C答案:1-15,DBBBA BCCCD CCADA16, 224x -17.化简后是22223x x a -++,结果是718,AC=319,证△ABC ≌△FBD (AAS 或ASA )20,(1)用AAS 或ASA 证三角形全等(2)由△ADC ≌△CEB 得BE=CD,CE=AD,所以BE=CD=CE-DE=AD-DE=3cm 21,(1) △ABE ≌△ACD(SAS)(2) DC BE ⊥(3)6 22,(1)a 2+b 2=112, ab=3423(1)BE=12CD (2) BQ=12PF 24,(1)①全等,用AAS 或ASA 证三角形全等;②BE=CH(2)①全等②8。
2015~2016学年度上期期中质量监测八年级数学试题附答案
C.任何一个非负数的平方根都不大于这个数 D.2是4的平方根
7.在平面直角坐标系中,点P(-2,x2+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
8.若正比例函数y=kx的图象经过点(1,2),则k的值为( )
15.计算:(1) . (2)
16.计算:
四、解答题(每小题8分,共16分)
17.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根。
18.如图,折叠长方形(四个角都是直角,对边相等)的一边AD,点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长。
五、解答题(19题10分,20题10分,共20分)
19.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为( ,5),( ,3).
⑴请在如图所示的网格平面内作出平面直角坐标系;
⑵请作出△ABC关于y轴对称的△A′B′C′;
⑶写出点B′的坐标.
20.某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时问x(小时)之间的函数图像如图所示,结合图像回答下列问题:
1
第3排
1
第4排
1
第5排
……
……
25.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.
二、解答题(本题8分)
26、已知a、b、c满足 .
湖南省娄底地区八年级上学期数学期中考试试卷
湖南省娄底地区八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2016·河池) 下列长度的三条线段不能组成三角形的是()A . 5,5,10B . 4,5,6C . 4,4,4D . 3,4,52. (2分)下列图形不是轴对称图形的是()A . 圆B . 正方形C . 直角三角形D . 等腰三角形3. (2分) (2019八上·湛江期中) 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()。
A . SSSB . SASC . ASAD . AAS4. (2分) (2017八上·上杭期末) 和三角形三个顶点的距离相等的点是()A . 三条角平分线的交点B . 三边中线的交点C . 三边上高所在直线的交点D . 三边的垂直平分线的交点5. (2分)△ABC中,∠C=60,高BE经过高AD中点F,EF=1,则BF长为()A . 2B . 3C . 4D . 56. (2分) (2019八下·商水期末) 在平面直角坐标系中,点A(2,3)与点B关于轴对称,则点B的坐标为()A . (3,2)B . (-2,-3)C . (-2,3)D . (2,-3)7. (2分)等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为()A . 50°B . 130°C . 50°或130°D . 55°或130°8. (2分)(2019·石家庄模拟) 如图,在平行四边形ABCD中,AD=2AB , F是AD的中点,作CE⊥AB ,垂足E在线段AB上,连接EF、CF ,则下列结论中一定成立的是()①∠DCF=∠BCD②S△BEC=2S△CEF:③∠DFE=3∠AEF;④当∠AEF=54°时,则∠B=68°A . ①③B . ②③④C . ①④D . ①③④9. (2分)如图3,在直角梯形ABCD中,∠B=∠C=9O°,E、F是BC上两点,若AD=ED,∠ADE=30°,∠FDC=15°,则下列结论:①∠AED=∠DFC;②BE=2CF;③AB- CF=EF;④S OAF:S DEF =AF:EF其中正确的结论是()A . ①③B . ②④C . ①③④D . ①②④10. (2分) (2019八上·榆树期中) 如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A . SASB . ASAC . SSSD . AAS11. (2分) (2019八上·新昌期中) 下列命题是假命题的是()A . 有两个角为60°的三角形是等边三角形B . 等角的补角相等C . 角平分线上的点到角两边的距离相等D . 同位角相等12. (2分)如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A . 1处B . 2处C . 3处D . 4处二、填空题 (共6题;共6分)13. (1分) (2016八上·阳新期中) 如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是________.14. (1分) (2017八下·萧山期中) 一个多边形的内角和是它的外角的和的2倍,这个多边形的边数是________15. (1分)已知△ABC≌△DEF,∠A=70°,∠E=30°,则∠F的度数为 ________16. (1分)如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若△ADE的周长为19 cm,则BC=________17. (1分)我们学过的全等变换方式有________、________、________,生活中常用这三种图形变换进行图案设计.在图形的上述变换过程中,其________和________不变,只是________发生了改变.18. (1分)三角形纸片ABC中,∠A=55°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),则∠1+∠2的度数为________ 度.三、解答题 (共8题;共70分)19. (5分)(2018·绥化) 如图,在中,,,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.20. (10分)如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.21. (5分)如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE,求证:AF=AD+CF.22. (5分) (2019七下·普陀期中) 如图,已知AB∥CD,∠1 = (4x-25)°,∠2 = (85-x)°,求∠1的度数.23. (15分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)①请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;②请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.24. (10分) (2017八上·兰陵期末) 如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.25. (10分) (2019八下·南岸期中) 如图,△ABC是等边三角形,AC上有一点D,分别以BD为边作等边△BDE 和等腰△BDF,边BC、DE交于点H,点F在BA延长线上且DB=DF,连接CE.(1)若AB=8,AD=4,求△BDF的面积;(2)求证:BC=AF+CE.26. (10分)综合题。
2015~2016学年度湘教版八年级数学上期中模拟试卷含答案
2015~2016学年度八年级数学上期中模拟试卷满分: 100 分一、选择题(每小题3分,共30分)1、的平方根是()A.6 B.C.D.2.下列分式是最简分式的是()A. B. C. D.3.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线4.如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.若分式的值为零,那么的值为( )A.或B.C. D.6、若为任意实数,下列等式中成立的是()A.B.C.D.7.若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是( ) A.75°或15°B.75°C.15°D.75°或30°8.若等腰三角形的周长为26cm,一边为11cm,则腰长为( )A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对9.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )A.45°B.54°C.40°D.50°10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN第9题图第10题图二、填空题(每小题3分,共30分)11、如果分式有意义,那么的取值范围是__________.12、一个正数的平方根是和,则这个正数是________13.将一副直角三角板如图摆放,点在上,AC经过点D.已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF= .14.已知△ABC的一个外角为50°,则△ABC一定是__________ 三角形.15. 若解分式方程产生增根,则_______.16、若,且,则17.如图,在△ABC中,AD是中线,AE是角平分线,CF⊥AE于点F,AB=5,AC=2,则DF的长为 .18.要使五边形木架(用5根木条钉成)不变形,至少要再钉__________根木条.19.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.第13题图第17题图第18题图第19题20.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为2x﹣1,3x ﹣2,3,若这两个三角形全等,则x=__________.三、解答题(共19分)21.(8分)解下列分式方程:(1);(2).22.(5分)当时,求的值.23.(6分)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.四、证明题(21分)24.如图,四边形ABCD中,∠B=90°,AB ∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.25.如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB 交AB于E ,F在AC上,BD=DF .证明:(1)CF=EB.(2)AB=AF+2EB中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?一、选择题1、D ;2.C ;3.B;4.D;5.C;6、D;7.A;8.C;9.C;10.B;二、填空题11. 12、25 ;13.25°;14. 钝角15.; 16、11; 17.1.5;18. 2根. 19. 360°20. x=3三、解答题(共16分)21.解:(1)方程两边都乘,得.解这个一元一次方程,得.检验:把代入原方程,左边右边所以,是原方程的根.(2)方程两边都乘,得.整理,得.解这个一元一次方程,得.检验可知,当时,.所以,是原方程的增根.22.解:原式.当时,原式23.解:(1)已知AB=AC,DE是AB的垂直平分线∴∠ABE=∠A=40°.又因为∠A=40°∴∠ABC=∠ACB=70°,∴∠EBC=∠ABC﹣∠ABE=30°.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC(3分)AB=15cm,∴BC=11cm.根据垂直平分线的性质可得BE+CE=AC,∴△BCE周长=BE+CE+BC=26cm.24.解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,N∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.25.证明: ∵AD平分∠BAC,∠C=90,DE⊥AB∴CD=ED∵在RT△CDF和RT△EDB中,BD=DF,CD=ED∴RT△CDF≌RT△EDB(HL)∴CF=EB又∵在RT△ADE和RT△ADC中,AD= AD ,CD=ED∴RT△ADE≌RT△ADC(HL)∴AC=AE∴AB=AE+EB=AF+CF+EB 即AB=AF+2EB(4分)26.解:(1)设李明步行的速度为米/分,则骑自行车的速度为3米/分.根据题意,得.解得=70.经检验=70是原方程的解.答:李明步行的速度是70米/分.(2)根据题意,得,∴李明能在联欢会开始前赶到学校.。
2015-2016学年初二数学上册期中试卷及答案
2015~2016学年第一学期八年级数学期中考试卷一、选择题(每题3分,共30分)1、在△ABC和△DEF中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A、BC=EFB、∠A=∠DC、AC=DFD、∠C=∠F2、下列命题中正确个数为()①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等.A.4个 B、3个 C、2个 D、1个3、已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A、 80°B、40°C、 120°D、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A、70°B、70°或55°C、40°或55°D、70°或40°5..三角形中到三边距离相等的点是()A、三条边的垂直平分线的交点B、三条高的交点C、三条中线的交点D、三条角平分线的交点6、等腰三角形底边上的高为腰的一半,则它的顶角为()A、120°B、90°C、100°D、60°7、下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.等腰三角形的底角与顶角的度数之比为2∶1,则顶角为( )。
A. 72°B. 36°C. 36°或72°D. 18°9、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=8cm ,AB=10cm ,则△EBC 的周长为( )A 、16 cmB 、18cmC 、26cmD 、28cm10、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为( )A 、2cm ²B 、4cm ²C 、6cm ²二、填空题(每题4分,共20分)11、三角形的三条角平分线相交于一点,并且这一点到_____________相等. 12、如图:ΔABE ≌ΔACD ,AB=8cm ,AD=5cm ,∠A=60°,∠B=40°,则AE=_____,∠C=_____。
2015-2016学年八年级上数学期中考试试卷(2)含答案
A D
A' A
D B'
B
C
B
C
16 题图
17 题图
16.如图,在△ABC 中,∠A=900,BD 平分∠ABC,AC=8cm,CD=5cm,那么 D 点到直线 BC
的距离是
cm.
17.如图,把△ABC 绕 C 点顺时针旋转 30°,得到△A’B’C, A’B’交 AC 于点 D,
若∠A’DC=80°,则∠A=
-2x=-4
x=2
......
.经检验:x=2 是原方程的解. .....
∴原方程的解为:x=2
24. 解:设甲工厂每天能加工 x 件新产品,则乙工厂每天能加工 1.5x 件新产品. ...1 分
据题意: 1200 1200 10 x 1.5x
解得: x 40 经检验: x 40 是原方程的解.
A.两锐角对应相等
B.斜边和一条直角边对应相等
C.两直角边对应相等 5. 计算(- 2a )3 的结果是(
b
D.一个锐角和斜边对应相等 ).
A. 2a3 b3
B. 6a3 b3
C. 8a3 b3
8a3 D.
b3
6.如图,AC 与 BD 交于 O 点,若 OA=OD,用“SAS” 证明△AOB≌△DOC,还需条件为 .( ) A. AB=DC B.OB=OC C. ∠A=∠D D. ∠AOB=∠DOC
A.2 个
B.3 个
C.4 个
D.5 个
10.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后 得到的是( )
① ②
A.
B.
C.
D
二.、耐心填一填(每小题 2 分,共 16 分)
2015-2016学年新人教版八年级(上)期中数学试卷及答案
2015-2016学年八年级(上)期中数学试卷一、选择题:(每小题3分,共36分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm3.点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)4.已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是()A.5 B. 6 C.7 D.85.在三角形ABC中,BD是∠ABC的平分线,若∠A=60°,∠C=50°,则∠DBC=()A.40度B.45度C.35度D.55度6.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个9.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或1610.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360° B.540° C.720° D.900°11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.① B.② C.③ D.①和②12.黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A.B.C.D.二、填空题:(每小题3分,共24分)13.三角形的三边长分别为5,x,8,则x的取值范围是.14.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=.15.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是.17.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的.18.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有处.19.如图,已知∠ABD=20°,∠ACD=25°,∠A=35°,则∠BDC=.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件时,就可得到△ABC≌△FED,依据是(只需填写一个你认为正确的条件).三.作图题:21.(10分)(2014秋•平凉校级期中)如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.四.解答题:(50分)22.已知一个多边形的内角和与外角和的差为1080°,求这个多边形的边数.23.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,求∠BCD.24.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.25.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.26.如图,已知△ABC的周长为24,OB,OC分别平分∠ABC,∠ACB,OD⊥BC于点D,且OD=2,求△ABC的面积.27.(10分)(2014秋•万州区校级期末)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm考点:三角形三边关系.分析:根据在三角形中任意两边之和>第三边进行分析即可.解答:解:A、2+3=5,不能组成三角形,故此选项错误;B、5+6>10,不能组成三角形,故此选项正确;C、1+1<3,能组成三角形,故此选项错误;D、3+4<9,不能组成三角形,故此选项错误;故选:B.点评:本题主要考查了三角形的三边关系,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的横坐标互为相反数,纵坐标相等回答即可.解答:解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2).故选:A.点评:本题主要考查的是关于坐标轴对称的点的坐标特点,关于y轴对称点的横坐标互为相反数,纵坐标相等;关于x轴对称点纵坐标互为相反数,横坐标相等.4.已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是()A.5 B. 6 C.7 D.8考点:多边形内角与外角.分析:根据多边形的内角和等于它的外角和的3倍可求得多边形的内角和,然后利用多边形的内角和公式计算即可.解答:解:∵多边形的内角和等于它的外角和的3倍,∴多边形的内角和=360°×3.设多边形的边数为n,根据题意得:(n﹣2)×180°=360°×3.解得n=8.故选:D.点评:本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键.5.在三角形ABC中,BD是∠ABC的平分线,若∠A=60°,∠C=50°,则∠DBC=()A.40度B.45度C.35度D.55度考点:三角形内角和定理.分析:根据题意画出图形,由三角形内角和定理求出∠ABC的度数,由角平分线的定义即可得出结论.解答:解:如图所示,∵在△ABC中,∠A=60°,∠C=50°,∴∠ABC=70°.∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,故选C点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°考点:全等三角形的判定与性质.分析:根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.解答:解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.点评:本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个考点:三角形三边关系.分析:取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.解答:解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.点评:考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个考点:等腰三角形的性质.分析:由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.解答:解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选D.点评:本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.9.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或16考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:因为底边和腰不明确,分两种情况进行讨论.解答:解:(1)当4是腰时,符合三角形的三边关系,所以周长=4+4+6=14;(2)当6是腰时,符合三角形的三边关系,所以周长=6+6+4=16.故选D.点评:注意此题一定要分两种情况讨论.但要注意检查是否符合三角形的三边关系.10.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360° B.540° C.720° D.900°考点:多边形内角与外角;多边形的对角线.分析:首先确定出多边形的边数,然后利用多边形的内角和公式计算即可.解答:解:∵从一个顶点可引对角线3条,∴多边形的边数为3+3=6.多边形的内角和=(n﹣2)×180°=4×180°=720°.故选:C.点评:本题主要考查的是多边形的对角线和多边形的内角和公式的应用,掌握公式是解题的关键.11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.① B.② C.③ D.①和②考点:全等三角形的应用.分析:此题可以采用排除法进行分析从而确定最后的答案.解答:解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.点评:此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.12.黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A.B.C.D.考点:剪纸问题.分析:本题主要考查学生的动手能力及空间想象能力.解答:解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到结论.故选C.点评:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.二、填空题:(每小题3分,共24分)13.三角形的三边长分别为5,x,8,则x的取值范围是3<x<13.考点:三角形三边关系.分析:由三角形的两边的长分别为8和5,根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和,即可求得答案.解答:解:根据三角形的三边关系,得:8﹣5<x<8+5,即:3<x<13.故答案为:3<x<13.点评:本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.14.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=70°.考点:全等三角形的判定与性质.分析:首先根据全等三角形的性质可得∠EDF=∠BCA,再根据三角形内角和定理计算出∠BCA=70°,进而得到答案.解答:解:∵△ABC≌△FED,∴∠EDF=∠BCA,∵∠A=30°,∠B=80°,∴∠BCA=70°,∴∠EDF=70°.故答案为:70°.点评:此题主要考查了全等三角形的性质,解题的关键是掌握全等三角形的对应边相等,题目比较简单,是中考常见题型.15.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.考点:多边形内角与外角;三角形的外角性质.分析:根据∠CNE为△CDN的外角,得到∠CNE=∠C+∠D,根据∠FMN为△ABM的外角,得到∠FMN=∠A+∠B,由四边形内角和为360°,所以∠CNE+∠FMN+∠E+∠F=360°,即∠A+∠B+∠C+∠D+∠E+∠F=360°.解答:解:如图,∵∠CNE为△CDN的外角,∴∠CNE=∠C+∠D,∵∠FMN为△ABM的外角,∴∠FMN=∠A+∠B,∵四边形内角和为360°,∴∠CNE+∠FMN+∠E+∠F=360°,即∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.点评:本题考查了多边形的内角与外角,解决本题的关键是运用三角形的一个外角等于和它不相邻的两个内角和,将已知角转化在同一个四边形中,再根据四边形内角和为360°求解.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是30°.考点:多边形内角与外角.分析:由多边形的内角和公式求得多边形的边数,然后根据任意多边形的外角和是360°求解即可.解答:解:设这个多边形的边数为n.根据题意得:(n﹣2)×180°=1800°.解得:n=12.360÷12=30°.故答案为:30°.点评:本题主要考查的是多边形的内角和和外角和,由多边形的内角和公式求得多边形的边数是解题的关键.17.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的稳定性.考点:三角形的稳定性.分析:根据三角形的稳定性解答即可.解答:解:加固后构成三角形的形状,利用了三角形的稳定性.故答案为:稳定性.点评:本题考查了三角形的稳定性,是基础题.18.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有4处.考点:三角形的内切圆与内心;直线与圆的位置关系.专题:应用题.分析:由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.解答:解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故填4.点评:此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.19.如图,已知∠ABD=20°,∠ACD=25°,∠A=35°,则∠BDC=80°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠DBC+∠DCB的度数,进而可得出∠BDC的度数.解答:解:∵∠ABD=20°,∠ACD=25°,∠A=35°,∴∠DBC+∠DCB=180°﹣20°﹣25°﹣35°=100°,∴∠BDC=180°﹣100°=80°.故答案为:80°.点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件AB=EF时,就可得到△ABC≌△FED,依据是SAS(只需填写一个你认为正确的条件).考点:全等三角形的判定.专题:开放型.分析:先证出BC=FD,由SAS即可证明△ABC≌△EFD.解答:解:添加条件:AB=EF;依据是SAS;理由如下:∵BD=FC,∴BC=FD.在△ABC和△EFD中,,∴△ABC≌△EFD(SAS);故答案为:AB=EF,SAS.点评:本题考查了三角形全等的判定方法;熟练掌握全等三角形的判定方法,并能进行推理论证是解决问题的关键.三.作图题:21.(10分)(2014秋•平凉校级期中)如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:利用基本作图,作出∠MON的平分线和AB的中垂线,那么它们的交点为所求的P 点.解答:解:∠MON的角平分线和线段AB的垂直平分线相交于点P,这点P为所求.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四.解答题:(50分)22.已知一个多边形的内角和与外角和的差为1080°,求这个多边形的边数.考点:多边形内角与外角.分析:已知一个多边形的内角和与外角和的差为1080°,外角和是360度,因而内角和是1440度.n边形的内角和是(n﹣2)•180°,代入就得到一个关于n的方程,就可以解得边数n.解答:解:根据题意,得(n﹣2)•180=1080+360,解得:n=10.故这个多边形的边数是十.点评:考查了多边形内角与外角,已知多边形的内角和求边数,可以转化为解方程的问题解决.23.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,求∠BCD.考点:线段垂直平分线的性质;等腰三角形的性质.分析:首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.解答:解:∵AB=AC,∠A=30°∴∠ABC=∠ACB=75°根据线段垂直平分线的性质可推出AD=CD∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.点评:本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,利用线段垂直平分线的性质是解答此题的关键.24.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.考点:全等三角形的判定与性质.专题:证明题.分析:(1)由等式的性质就可以得出BF=CE,由平行线的性质就可以得出∠B=∠C,根据SAS就可以得出结论;(2)由△ABF≌△DCE就可以得出∠AFB=∠DEC就可以得出结论.解答:证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE.∵AB∥CD,∴∠B=∠C.在△ABF和△DCE中,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴AF∥DE.点评:本题考查了等式的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.25.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.考点:三角形的面积;三角形的角平分线、中线和高;三角形的外角性质.分析:(1)根据三角形内角与外角的性质解答即可;(2)过E作BC边的垂线即可得:E到BC边的距离为EF的长,然后过A作BC边的垂线AG,再根据三角形中位线定理求解即可.解答:解:(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)过E作BC边的垂线,F为垂足,则EF为所求的E到BC边的距离,过A作BC边的垂线AG,∴AD为△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵△ABC的面积为40,∴BC•AG=40,即×10•AG=40,解得AG=8,∵EF⊥BC于F,∴EF∥AG,∵E为AD的中点,∴EF是△AGD的中位线,∴EF=AG=×8=4.∴E到BC边的距离为4.点评:本题考查了三角形外角的性质、三角形中位线定理及三角形的面积公式,涉及面较广,但难度适中.添加适当的辅助线是解题的关键.26.如图,已知△ABC的周长为24,OB,OC分别平分∠ABC,∠ACB,OD⊥BC于点D,且OD=2,求△ABC的面积.考点:角平分线的性质.分析:连接OA,作OE⊥AB于E,OF⊥AC与F,根据角平分线的性质求出OE、OF的长,根据△ABC的面积=△A0B的面积+△BOC的面积+△AOC的面积计算即可.解答:解:连接OA,作OE⊥AB于E,OF⊥AC与F,∵OB,OC分别平分∠ABC,∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OE=OD=2,△ABC的面积=△A0B的面积+△BOC的面积+△AOC的面积=AB•OE+AC•OF+CB•OD=×(AB+AC+BC)×2=24.答:△ABC的面积是24.点评:本题主要考查平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意辅助线的作法要正确.27.(10分)(2014秋•万州区校级期末)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.考点:全等三角形的判定与性质;直角三角形斜边上的中线.分析:根据SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM=AE,BN=CN=DN=CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.解答:解:BM=BN,BM⊥BN,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,∵∠ABD=∠DBC,∠ABD+∠DBC=180°,∴∠ABD=∠DBC=90°,∵M为AE的中点,N为CD的中点,∴BM=AM=EM=AE,BN=CN=DN=CD,∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBA,∠NCB=∠NBC,∵∠EAB=∠BDC,∠AEB=∠DCB,∴∠ABM=∠DBN,∠EBM=∠NBC,∴∠ABC=2∠DBN+2∠EBM=180°,∴∠EBN+∠EBM=90°,∴BM⊥BN.点评:本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,等腰三角形的性质的应用,主要考查学生的推理能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年湖南省娄底市八年级(上)期中数学试卷一、选择题:(每题3分,共30分)1.(3分)下列语句是命题的是()A.三角形的内角和等于180°B.不许大声讲话C.一个锐角与一个钝角互补吗?D.今天真热啊!2.(3分)下列式子中是分式的是()A.﹣3x B.﹣C. D.x2y3.(3分)若分式的值是0,则y的值是()A.﹣3 B.0 C.1 D.1或﹣34.(3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B.5 C.7 D.95.(3分)下列分子中,是最简分式的是()A.B.C.D.6.(3分)一个等腰三角形的两个内角和为100°,则它的顶角度数为()A.50°B.80°C.50°或80°D.20°或80°7.(3分)已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙8.(3分)下列运算正确的是()A.2﹣3=﹣6 B.(﹣2)3=﹣6 C.()﹣2=D.2﹣3=9.(3分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣610.(3分)若3x=4,9y=7,则3x﹣2y=()A.B.C.D.二、填空题:(每题3分,共24分)11.(3分)当x=时,分式无意义.12.(3分)计算:2x2y3÷xy2=.13.(3分)如图,△ABC≌△BAD,A与B,C与D是对应点,若AB=4cm,BD=4.5cm,AD=1.5cm,则BC=cm.14.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.15.(3分)把命题“三边对应相等的两个三角形全等”写成“如果…,那么…”的形式是.16.(3分)如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD=cm.17.(3分)化简:=.18.(3分)若,则x=.三、耐心算一算(共计36分)19.(12分)计算:(1)(x﹣2y)﹣3(2).20.(14分)解方程:(1)(2).21.(10分)先化简,再求值:(﹣)÷,其中x满足x=﹣3.四、用心做一做(共计30分)22.(10分)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.23.(10分)已知,如图,∠B=∠C,AB∥DE,EC=ED,求证:△DEC为等边三角形.24.(10分)一艘轮船在两个码头之间航行,顺水航行60km所需时间与逆水航行48km所需时间相同,已知水流速度是2km/h,求轮船在静水中的航行速度?2015-2016学年湖南省娄底市八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1.(3分)下列语句是命题的是()A.三角形的内角和等于180°B.不许大声讲话C.一个锐角与一个钝角互补吗?D.今天真热啊!【解答】解:A、是命题;B、祈使句,不是命题;C、疑问句,不是命题;D、感叹句,不是命题;故选:A.2.(3分)下列式子中是分式的是()A.﹣3x B.﹣C. D.x2y【解答】解:A、﹣3x的分母中均不含有字母,因此它们是整式,而不是分式,故本选项错误;B、﹣的分母中均不含有字母,因此它们是整式,而不是分式,故本选项错误;C、分母中含有字母,因此是分式,故本选项正确;D、x2y的分母中均不含有字母,因此它们是整式,而不是分式,故本选项错误;故选:C.3.(3分)若分式的值是0,则y的值是()A.﹣3 B.0 C.1 D.1或﹣3【解答】解:依题意得:y﹣1=0.y+3=1+3=4≠0,所以y=1符合题意.故选:C.4.(3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B.5 C.7 D.9【解答】解:根据三角形的三边关系,得:第三边>两边之差,即4﹣3=1,而<两边之和,即4+3=7,即1<第三边<7,∴只有5符合条件,故选:B.5.(3分)下列分子中,是最简分式的是()A.B.C.D.【解答】解:A、该分式的分子、分母中含有公因式(x+y),不是最简分式,故本选项错误;B、该分式的分子、分母不含有公因式,不能再约分,是最简分式,故本选项正确;C、该分式中含有公因式(a+3),不是最简分式,故本选项错误;D、该分式的分母=(x﹣2)(x+1),分式的分子、分母中含有公因式(x+1),不是最简分式,故本选项错误;故选:B.6.(3分)一个等腰三角形的两个内角和为100°,则它的顶角度数为()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当100°角是顶角和一底角的和,则另一个底角=180°﹣100°=80°,所以顶角=100°﹣80°=20°;②当100°角是两底角的和,则顶角=180°﹣100°=80°;故选:D.7.(3分)已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙【解答】解:甲、边a、c夹角不是50°,∴甲错误;乙、两角为58°、50°,夹边是a,符合ASA,∴乙正确;丙、两角是50°、72°,72°角对的边是a,符合AAS,∴丙正确.故选:D.8.(3分)下列运算正确的是()A.2﹣3=﹣6 B.(﹣2)3=﹣6 C.()﹣2=D.2﹣3=【解答】解:A、2﹣3==,选项错误;B、(﹣2)3=﹣8,选项错误;C、()﹣2=()2=,选项错误;D、2﹣3==,选项正确.故选:D.9.(3分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣6【解答】解:0.000 021=2.1×10﹣5.故选:C.10.(3分)若3x=4,9y=7,则3x﹣2y=()A.B.C.D.【解答】解:9y=7即32y=7,则3x﹣2y=3x÷32y=.二、填空题:(每题3分,共24分)11.(3分)当x=﹣3时,分式无意义.【解答】解:由题意得,2x+6=0,解得,x=﹣3,故答案为:﹣3.12.(3分)计算:2x2y3÷xy2=2xy.【解答】解:2x2y3÷xy2=2xy.故答案为:2xy.13.(3分)如图,△ABC≌△BAD,A与B,C与D是对应点,若AB=4cm,BD=4.5cm,AD=1.5cm,则BC= 1.5cm.【解答】解:∵△ABC≌△BAD,∴BC=AD,∵AD=1.5cm,∴BC=1.5cm;故答案为:1.5.14.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=40°.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∴∠C===40°.15.(3分)把命题“三边对应相等的两个三角形全等”写成“如果…,那么…”的形式是如果两个三角形的三边对应相等,那么这两个三角形全等.【解答】解:如果两个三角形的三边对应相等,那么这两个三角形全等.16.(3分)如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD=3cm.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵CD∥OB,∴∠BOC=∠DCO,∴∠AOC=∠DCO,∴CD=OD=3cm.故答案为:3.17.(3分)化简:=.【解答】解:原式==,故答案为:18.(3分)若,则x=﹣1.【解答】解:∵,∴x2﹣1=0,解得x=±1,∵x﹣1≠0,∴x=﹣1,故答案为﹣1.三、耐心算一算(共计36分)19.(12分)计算:(1)(x﹣2y)﹣3(2).【解答】解:(1)原式=()﹣3=()3=;(2)原式===.20.(14分)解方程:(1)(2).【解答】(1)解:两边乘以最简公分母2x(x﹣3),得5(x﹣3)﹣2x=0,即5x﹣15﹣2x=0,解得:x=5,检验:把x=5代入原方程,左边==右边,则x=5是原方程的解;(2)解:方程两边同乘最简公分母(x+2)(x﹣2)得x+2=4,解得:x=2,检验:把x=2代入最简公分母中,(x+2)(x﹣2)=(2+2)(2﹣2)=0,则x=2是原方程的增根,原方程且无解.21.(10分)先化简,再求值:(﹣)÷,其中x满足x=﹣3.【解答】解:原式=•=•=,当x=﹣3时,原式==﹣.四、用心做一做(共计30分)22.(10分)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴,∴△ABC≌△DEF(ASA).23.(10分)已知,如图,∠B=∠C,AB∥DE,EC=ED,求证:△DEC为等边三角形.【解答】证明:∵∠B=∠C,AB∥DE,∴∠DEC=∠C,∵EC=ED,∴∠C=∠EDC,∴∠DEC=∠C=∠EDC=60°,∴△DEC为等边三角形.24.(10分)一艘轮船在两个码头之间航行,顺水航行60km所需时间与逆水航行48km所需时间相同,已知水流速度是2km/h,求轮船在静水中的航行速度?【解答】解:设轮船在静水中的航行速度为x km/h,根据题意得:,解得:x=18.经检验:x=18是原方程的解.答:船在静水中的航行速度为18km/h.。