2018-2019学年人教A版数学选修2-3全册课件:第一章 1.2 1.2.2 第二课时 组合习题课
合集下载
人教a版数学【选修2-3】1.2.2《组合1》ppt课件
第一章
1.2
1.2.2
第1课时ቤተ መጻሕፍቲ ባይዱ
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
3. 从 5 本不同书中取出 2 本并成一组和取出 3 本并成一组 的组合数相同吗?为什么? 4.从含有元素 a 的 n+1 个不同元素中取出 m 个元素的组
m 合数 Cn +1,可以分成两类:一类不含元素 a,从剩余的 n 个元
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
组合数公式
思维导航 2.组合的本质是取出的 m 个元素不讲究顺序,也就是说 元素没有位置的要求,因此这 m 个元素的全排列数只对应组合
m 数中的一个, 由此你能得出求 Cn 的计算公式吗?你能不用列举
数数的方法求出前面 3 个问题中的票价种数、积的个数、线段 条数吗?
第一章
1.2
1.2.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
牛刀小试 1.C2 n=10,则 n 的值为( A.10 C.3
[答案] B
) B.5 D.4
nn-1 [解析] 由题意得 2 =10, 解得 n=5 或 n=-4(舍去),故选 B.
第一章
1.2
1.2.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
2.从 9 名学生中选出 3名参加“希望英语”口语比赛,有
( )种不同选法.( A.504 C.84 [答案] C
[解析] 只需从 9 名学生中选出 3 名即可,从而有 C3 9= 9×8×7 =84 种选法. 3×2×1
2018-2019学年人教A版数学选修2-3全册课件:第一章 1.
2 A 4 2 2 2 提示:能.因为 A2 = C A ,所以 C = =6. 4 4 2 4 A2 2
问题 4:你能把问题 3 的结论推广到一般吗?
提示:可以,从 n 个不同元素中取出 m 个元素的排列数可由 以下两个步骤得到: 第 1 步,从这 n 个不同元素中取出 m 个元素,共有 Cm n 种不 同的取法; 第 2 步,将取出的 m 个元素全排列,共有 Am m种不同的排法. m A n m m m 由分步乘法计数原理知,An =Cm · A ,故 C = . n m n Am m
8×7×6 100×99 3 2 解:(1)原式=C8+C100×1= + =56+4 3×2×1 2× 1 =5 006. C5 19 14 3 n-1 5 (2)原方程可变形为 3 +1= ,Cn-1= Cn-3, 5 5 Cn-3 n-1n-2n-3n-4n-5 即 5!
m!5-m! m!6-m5-m! 即 - 5! 6×5! 7×m!7-m6-m5-m! = , 10×7×6×5! 6-m 7-m6-m ∴1- = , 6 60 即 m2-23m+42=0,解得 m=2 或 21. 而 0≤m≤5,∴m=2.
-m m 2 3 3 ∴C8 +C5 = C + C = C 8 8 8 9=84.
1.2
1.2.2
1 理解教 材新知
知识点一
知识点二
题型一 题型二 题型三
第 一 章
第一 课时
组合 与组 合数 公式
2 突破常 考题型 3 跨越高 分障碍
4 应用落 实体验
随堂即时演练 课时达标检测
1.2
排列与组合
1.2.2
组合
第一课时
组合与组合数公式
组合与组合数 [提出问题]
问题 4:你能把问题 3 的结论推广到一般吗?
提示:可以,从 n 个不同元素中取出 m 个元素的排列数可由 以下两个步骤得到: 第 1 步,从这 n 个不同元素中取出 m 个元素,共有 Cm n 种不 同的取法; 第 2 步,将取出的 m 个元素全排列,共有 Am m种不同的排法. m A n m m m 由分步乘法计数原理知,An =Cm · A ,故 C = . n m n Am m
8×7×6 100×99 3 2 解:(1)原式=C8+C100×1= + =56+4 3×2×1 2× 1 =5 006. C5 19 14 3 n-1 5 (2)原方程可变形为 3 +1= ,Cn-1= Cn-3, 5 5 Cn-3 n-1n-2n-3n-4n-5 即 5!
m!5-m! m!6-m5-m! 即 - 5! 6×5! 7×m!7-m6-m5-m! = , 10×7×6×5! 6-m 7-m6-m ∴1- = , 6 60 即 m2-23m+42=0,解得 m=2 或 21. 而 0≤m≤5,∴m=2.
-m m 2 3 3 ∴C8 +C5 = C + C = C 8 8 8 9=84.
1.2
1.2.2
1 理解教 材新知
知识点一
知识点二
题型一 题型二 题型三
第 一 章
第一 课时
组合 与组 合数 公式
2 突破常 考题型 3 跨越高 分障碍
4 应用落 实体验
随堂即时演练 课时达标检测
1.2
排列与组合
1.2.2
组合
第一课时
组合与组合数公式
组合与组合数 [提出问题]
2018-2019学年人教A版高中数学选修2-33 1.2-1.2.1 第1课时 排列与排列数公式
栏目 导引
第一章 计数原理
2.判断下列问题是否是排列问题: (1)从 1 到 10 十个自然数中任取两个数组成直角坐标平面内的 点的坐标,可得多少个不同的点的坐标? (2)从 10 名同学中任抽两名同学去学校开座谈会,有多少种不 同的抽取方法? (3)某商场有四个大门,若从一个门进去,购买物品后再从另一 个门出来,不同的出入方式共有多少种?
栏1)由于取出的两数组成点的坐标与哪一个数作横坐标,哪 一个数作纵坐标的顺序有关,所以这是一个排列问题. (2)因为从 10 名同学中抽取两人去学校开座谈会的方式不用考 虑两人的顺序,所以这不是排列问题. (3)因为从一门进,从另一门出是有顺序的,所以是排列问题. 综上,(1)、(3)是排列问题,(2)不是排列问题.
栏目 导引
第一章 计数原理
2.排列数及排列数公式
排列 从 n 个不同元素中取出 m(m≤n)个元素的所 数定 有 义 表示 法 全排 列 n 个不同元素全部取出的一个排列,叫做 n 个 元素的一个全排列,这时公式中 m=n,即有 An n=n×(n-1)×(n-2)×…×3×2×1
栏目 导引
不同排列 的个数叫做从 n 个不同元素
栏目 导引
第一章 计数原理
下面问题中,是排列问题的是(
)
A.由 1,2,3,4 四个数字组成无重复数字的四位数 B.从 60 人中选 11 人组成足球队 C.从 100 人中选 2 人抽样调查 D.从 1,2,3,4,5 中选 2 个数组成集合
答案:A
栏目 导引
第一章 计数原理
3 A2 = ________ , A 4 3=________.
答案:12 6 若 Am 10=10×9×…×5,则 m=________. 答案:6
人教A版高中数学选修2-3全册ppt课件
[一题多变] 1.[变条件]若本例条件变为个位数字小于十位数字且为偶数, 那么这样的两位数有多少个.
解:当个位数字是 8 时,十位数字取 9,只有 1 个. 当个位数字是 6 时,十位数字可取 7,8,9,共 3 个. 当个位数字是 4 时,十位数字可取 5,6,7,8,9,共 5 个. 同理可知,当个位数字是 2 时,共 7 个, 当个位数字是 0 时,共 9 个. 由分类加法计数原理知,符合条件的两位数共有 1+3+5 +7+9=25(个).
用计数原理解决涂色(种植)问题
[ 典例 ] 如图所示,要给“优”、
“化”、“指”、“导”四个区域分别涂上 3 种不同颜色中的某一种,允许同一种颜色 使用多次,但相邻区域必须涂不同的颜色, 有多少种不同的涂色方法?
[解] 优、化、指、导四个区域依次涂色,分四步.
第 1 步,涂“优”区域,有 3 种选择. 第 2 步,涂“化”区域,有 2 种选择.
利用分类加法计数原理计数时的解题流程
分步乘法计数原理的应用
[典例]
从 1,2,3,4 中选三个数字,组成无重复数字的整
数,则分别满足下列条件的数有多少个? (1)三位数; (2)三位数的偶数.
[解] (1)三位数有三个数位, 百位 十位 个位
故可分三个步骤完成: 第 1 步,排个位,从 1,2,3,4 中选 1 个数字,有 4 种方法; 第 2 步, 排十位, 从剩下的 3 个数字中选 1 个, 有 3 种方法;
2.如果一个三位正整数如“a1a2a3”满足 a1<a2 且 a3<a2,则称这样的 三位数为凸数(如 120,342,275 等),那么所有凸数个数是多少? 解:分 8 类,当中间数为 2 时,百位只能选 1,个位可选 1、0, 由分步乘法计数原理,有 1×2=2 个; 当中间数为 3 时,百位可选 1,2,个位可选 0,1,2,由分步乘法计 数原理,有 2×3=6 个;同理可得: 当中间数为 4 时,有 3×4=12 个; 当中间数为 5 时,有 4×5=20 个; 当中间数为 6 时,有 5×6=30 个; 当中间数为 7 时,有 6×7=42 个; 当中间数为 8 时,有 7×8=56 个; 当中间数为 9 时,有 8×9=72 个. 故共有 2+6+12+20+30+42+56+72=240 个.
人教a版数学【选修2-3】1.2.2《排列与组合习题课》ppt课件
成才之路 · 数学
人教A版 · 选修2-3
路漫漫其修远兮 吾将上下而求索
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
计数原理
第一章
计数原理
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
1.2 排列与组合
1.2.2 组合 第3课时 排列与组合习题课
排列组合应用题
某校为庆祝 2014 年国庆节,安排了一场文艺演 出,其中有 3 个舞蹈节目和 4 个小品节目,按下面要求安排节 目单,有多少种方法: (1)3 个舞蹈节目互不相邻; (2)3 个舞蹈节目和 4 个小品节目彼此相间.
第一章
1.2
1.2.2
第3课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
[分析] 由题目可获取以下主要信息: ①题目中涉及3个舞蹈、4个小品共7个节目; ②是同类节目互不相邻的问题. 解答本题的第 (1) 问可以先安排 4 个小品,然后让 3 个舞蹈
“插空”;第(2)问彼此相间时安排方式只能是小品占 1,3,5,7,
1.2
1.2.2
第3课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
[解析] (1)先在 6 个乒乓球中任取一个, 作为一堆, 有 C1 6种 取法,再从余下的五个乒乓球中任取两个,作为一堆,有 C2 5种 取法,再从余下三个中取三个作为一堆,有 C3 3种取法,故共有
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
1.巩固排列、组合的概念,排列数公式,组合数公式以及 组合数的性质. 2 .准确地应用两个基本原理,正确区分是排列问题还是 组合问题.
人教A版 · 选修2-3
路漫漫其修远兮 吾将上下而求索
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
计数原理
第一章
计数原理
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
1.2 排列与组合
1.2.2 组合 第3课时 排列与组合习题课
排列组合应用题
某校为庆祝 2014 年国庆节,安排了一场文艺演 出,其中有 3 个舞蹈节目和 4 个小品节目,按下面要求安排节 目单,有多少种方法: (1)3 个舞蹈节目互不相邻; (2)3 个舞蹈节目和 4 个小品节目彼此相间.
第一章
1.2
1.2.2
第3课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
[分析] 由题目可获取以下主要信息: ①题目中涉及3个舞蹈、4个小品共7个节目; ②是同类节目互不相邻的问题. 解答本题的第 (1) 问可以先安排 4 个小品,然后让 3 个舞蹈
“插空”;第(2)问彼此相间时安排方式只能是小品占 1,3,5,7,
1.2
1.2.2
第3课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
[解析] (1)先在 6 个乒乓球中任取一个, 作为一堆, 有 C1 6种 取法,再从余下的五个乒乓球中任取两个,作为一堆,有 C2 5种 取法,再从余下三个中取三个作为一堆,有 C3 3种取法,故共有
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
1.巩固排列、组合的概念,排列数公式,组合数公式以及 组合数的性质. 2 .准确地应用两个基本原理,正确区分是排列问题还是 组合问题.
2018-2019学年高中数学 第一章 计数原理 1.2.2 第1课时 组合(一)讲义 新人教A版选修2-3
含组合数的化简、证明或解方程、不
(1)对于含组合数的化简、证明或解方程、不等式等问题多利 ①组合数公式,即: Cnm=m!nn!-m!=nn-1…m!n-m+1; ②组合数的性质,即 Cnm=Cnn-m和 Cnm+1=Cmn +Cmn -1; ③排列数与组合数的关系,即 Anm=Cmn Amm. (2)当含有字母的组合数的式子要进行变形论证时,利用阶乘 便.
1.由 Cx1+0 1+C1170-x可得不相同的值的个数是
A.1
B.2
C.3
D.4
[解析]
x+1≤10 ∵x1+7-1≥x≤010,∴7≤x≤9,
17-x≥0
又 x∈Z,∴x=7,8,9.
当 x=7 时,C810+C1100=46
当 x=8 时,C910+C910=20 当 x=9 时,C1100+C810=46.
规律总结』 1.性质“Cnm=Cnn-m”的意义及作用. 反映的是组合数的对称性,即从n个不
意义 → 同的元素中取m个元素的一个组合与 剩下的n-m个元素的组合相对应
作用 → 当m>n2时,计算Cnm通常转化为计算Cnn-m
2.与排列组合有关的方程或不等式问题要用到排列数、组 组合数的性质,求解时,要注意由 Cnm中的 m∈N+,n∈N+,且 的范围,因此求解后要验证所得结果是否适合题意.
序写出,即
• ∴所有组合为ABC,ABD,ABE,ACD,ACE BCD,BCE,BDE,CDE.
解法二:画出树形图,如图所示.
∴所有组合为 ABC,ABD,ABE,ACD,ACE,ADE,BCD CDE.
命题方向2 ⇨组合数公式
典例 2 (2018·江西玉山一中检测)若 20C5n+5=4(n+4)Cnn+- 的值.
2019-2020年人教A版高中数学选修2-3:1.2排列与组合1.2.1排列课件 (共29张PPT)
课时作业
[自主梳理] 1.排列的有关概念 (1)定义:一般地,从 n 个 不同 元素中取出 m(m≤n)个元素,按照一定的顺序 排成一列,叫作从 n 个 不同 元素中取出 m 个元素的一个排列. (2)相同排列:两个排列相同,当且仅当两个排列的元素 完全相同 ,且元素的 排列顺序 也相同.
2.排列数与排列数公式
后面,则他可选的密码个数共有( )
A.A66
B.A68
C.A35+A33
D.A35·A33
解析:分两步.第一步选 3 个数字安排在后三位,有 A35种方法,第二步把 3 个字母
安排在前三位,有 A33种方法,故共有 A35·A33个密码.
答案:D
探究三 “在”与“不在”的问题 [典例 3] 7 位同学站成一排. (1)若甲站在中间的位置,则共有多少种不同的排法? (2)甲、乙只能站在两端的排法共有多少种? (3)甲、乙不能站在排头和排尾的排法共有多少种? (4)甲不能站排头、乙不能站排尾的排法共有多少种? [解析] (1)先考虑甲站在中间,有 1 种排法,再在余下的 6 个位置排另外 6 位同学, 共 A66=720 种排法. (2)先考虑甲、乙站在两端,有 A22种排法,再在余下的 5 个位置排另外 5 位同学,有 A55种排法,共 A22A55=240 种排法.
1.2 排列与组合 1.2.1 排 列重点:排列的概念;排列数公
2.了解排列数的概念.
式;用排列知识解决简单的实
3.掌握排列数公式的推导方法.
际问题.
4.能用排列知识解决简单的实际问题. 难点:排列数公式的推导方法.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要 表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法 主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.
[自主梳理] 1.排列的有关概念 (1)定义:一般地,从 n 个 不同 元素中取出 m(m≤n)个元素,按照一定的顺序 排成一列,叫作从 n 个 不同 元素中取出 m 个元素的一个排列. (2)相同排列:两个排列相同,当且仅当两个排列的元素 完全相同 ,且元素的 排列顺序 也相同.
2.排列数与排列数公式
后面,则他可选的密码个数共有( )
A.A66
B.A68
C.A35+A33
D.A35·A33
解析:分两步.第一步选 3 个数字安排在后三位,有 A35种方法,第二步把 3 个字母
安排在前三位,有 A33种方法,故共有 A35·A33个密码.
答案:D
探究三 “在”与“不在”的问题 [典例 3] 7 位同学站成一排. (1)若甲站在中间的位置,则共有多少种不同的排法? (2)甲、乙只能站在两端的排法共有多少种? (3)甲、乙不能站在排头和排尾的排法共有多少种? (4)甲不能站排头、乙不能站排尾的排法共有多少种? [解析] (1)先考虑甲站在中间,有 1 种排法,再在余下的 6 个位置排另外 6 位同学, 共 A66=720 种排法. (2)先考虑甲、乙站在两端,有 A22种排法,再在余下的 5 个位置排另外 5 位同学,有 A55种排法,共 A22A55=240 种排法.
1.2 排列与组合 1.2.1 排 列重点:排列的概念;排列数公
2.了解排列数的概念.
式;用排列知识解决简单的实
3.掌握排列数公式的推导方法.
际问题.
4.能用排列知识解决简单的实际问题. 难点:排列数公式的推导方法.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要 表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法 主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.
高中数学人教A版选修2-3第一章二项式定理各种题型归纳课件
题型7:求奇数(次)项偶数(次)项系数的和
例12 已知(3x 1)7 a0x7 a1x6 a6x a7
求(1)a1 a3 a5 a7 (2)a0 a2 a4 a6
(3) a0 a1 a2 a7
解 :设f (x) (3x 1)7
(3)f所f因 ((1以1)为 )a0aa01a,0aaa31a1,1a5aaa,222a7a是3 负 aa7数7 a7
解:原式化为[(x2 2) 3x]5
其通项公式为 Tr1 C5r (x2 2)5r (3x)r
要使x的指数为1,只需r 1
T2 C51(x2 2)4 3x
15x(x8 4 2x6 6 4x4 4 8x2 24 )
所以x的系数为15 24 240
例题点评 括号里含有三项的情况可以把某两项合并为一项,合 并时要注意选择的科学性.也可因式分解化为乘积二 项式.
[(x 1) 1]5 1
x5 1
例题点评 逆向应用公式和变形应用公式是高中数学 的难点,也是重点,只有熟练掌握公式的正 用,才能掌握逆向应用和变式应用
题型4 求多项式的展开式中特定的项(系数)
例8 (x 1) (x 1)2 (x 1)3 (x 1)4 (x 1)5
的展开式中,x2 的系数等于___________
注意(1)二项式系数与系数的区别.
(2) Tr1 Cnranrbr表示第 r 项.
题型3 二项式定理的逆用 例6 计算并求值
(1) 1 2Cn1 4Cn2 2nCnn
(2) (x 1)5 5(x 1)4 10(x 1)3 10(x 1)2
5(x 1)
解(1):将原式变形
原式 Cn01n Cn11n1 2 Cn21n2 22 Cnn 2n
人教a版数学【选修2-3】第1章《计数原理》归纳总结ppt课件
2.(2012·浙江理,6)若从1、2、3、„、9这9个整数中同
时取4个不同的数,其和为偶数,则不同的取法共有( A.60种 C.65种 [答案] D B.63种 D.66种 )
[解析] 本题考查了排列与组合的相关知识.取出的 4 个 数和为偶数,可分为三类.
4 2 2 四个奇数 C4 5,四个偶数 C4,二奇二偶,C5C4. 4 2 2 共有 C4 + C + C 5 4 5C4=66 种不同取法. [点评] 分类讨论思想在排列组合题目中应用广泛.
1 n n ③各二项式系数的和:C0 + C +„+ C = 2 . n n n
第一章
章末归纳总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
(4)解决二项式定理问题的注意事项
n-k k ①运用二项式定理一定要牢记通项 Tk+1=Ck a b ,注意(a n
+b)n 与(b+a)n 虽然相同, 但具体到它们展开式的某一项时是不 同的.另外,二项式系数与项的系数是两个不同概念,前者指
第一章
章末归纳总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
3.在(x2+x+1)(x-1)5的展开式中,含x4项的系数是(
)
A.-25
C.5 [答案] B
B.-5
D.25
[解析] (x2+x+1)(x-1)5=(x3-1)(x-1)4,其展开式中 x4
中任何一种方法都不能完成这件事情,只能完成事件的某一部
分,只有当各步全部完成时,这件事情才完成.
第一章 章末归纳总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
2.排列与组合 (1)排列与组合的定义
高中数学 第一章 计数原理 1_2 排列与组合 1_2_2_1课件 新人教A版选修2-3
(仿照教材P23例6的解析过程)
【解析】(1)从口袋里的8个球中任取5个球,不同取法 的种数是
8 7 6 C C 56. 3 2 1 5个球,其中恰有一个红球, (2)从口袋里的8个球中任取
5 8 3 8
可以分两步完成: 第一步,从7个白球中任取4个白球,有 第二步,把1个红球取出,有
主题2:组合数公式与组合数性质 从1,3,5,7中任取两个相除,
1.可以得到多少个不同的商?
提示: =4×3=12个不同的商.
A
2 4
2.如何用分步乘法计数原理求商的个数? 提示:第1步,从这四个数中任取两个数,有
第2步,将每个组合中的两个数排列,有
步乘法计数原理,可得商的个数为
2 C2 A 4 2
4.计算
CA
3 4
3 3
=________.
3 3 3 4
【解析】
答案:24
C A A 4 3 2 24.
3 4
5.一个口袋里装有7个白球和1个红球,从口袋中任取5 个球. (1)共有多少种不同的取法? (2)其中恰有一个红球,共有多少种不同的取法?
(3)其中不含红球,共有多少种不同的取法?
C 28得
2 n
n n 1 2
=28,所以n=8或n=-7(舍).
2.给出下面几个问题,其中是组合问题的是 ①某班选10名同学参加计算机汉字录入比赛;
(
)
②从1,2,3,4中选出2个数,构成平面向量a的坐标; ③从1,2,3,4中选出2个数分别作为实轴长和虚轴长,构
成焦点在x轴上的双曲线的方程;
4 种取法.C 7
种取法;
C1 1
故不同取法的种数是:
4 1 4 C7 C1 C7 C3 7 35. (3)从口袋里任取5个球,其中不含红球,只需从7个白球
【解析】(1)从口袋里的8个球中任取5个球,不同取法 的种数是
8 7 6 C C 56. 3 2 1 5个球,其中恰有一个红球, (2)从口袋里的8个球中任取
5 8 3 8
可以分两步完成: 第一步,从7个白球中任取4个白球,有 第二步,把1个红球取出,有
主题2:组合数公式与组合数性质 从1,3,5,7中任取两个相除,
1.可以得到多少个不同的商?
提示: =4×3=12个不同的商.
A
2 4
2.如何用分步乘法计数原理求商的个数? 提示:第1步,从这四个数中任取两个数,有
第2步,将每个组合中的两个数排列,有
步乘法计数原理,可得商的个数为
2 C2 A 4 2
4.计算
CA
3 4
3 3
=________.
3 3 3 4
【解析】
答案:24
C A A 4 3 2 24.
3 4
5.一个口袋里装有7个白球和1个红球,从口袋中任取5 个球. (1)共有多少种不同的取法? (2)其中恰有一个红球,共有多少种不同的取法?
(3)其中不含红球,共有多少种不同的取法?
C 28得
2 n
n n 1 2
=28,所以n=8或n=-7(舍).
2.给出下面几个问题,其中是组合问题的是 ①某班选10名同学参加计算机汉字录入比赛;
(
)
②从1,2,3,4中选出2个数,构成平面向量a的坐标; ③从1,2,3,4中选出2个数分别作为实轴长和虚轴长,构
成焦点在x轴上的双曲线的方程;
4 种取法.C 7
种取法;
C1 1
故不同取法的种数是:
4 1 4 C7 C1 C7 C3 7 35. (3)从口袋里任取5个球,其中不含红球,只需从7个白球
人教版A版高中数学选修2-3:排列与组合_课件1
(2)方法 1:先把甲、乙作为一个“整体”,看作一个人, 有 A55种站法,再把甲、乙进行全排列,有 A22种站法,根椐分 步计数原理,共有 A55·A22=240 种站法.
方法 2:先把甲、乙以外的 4 个人作全排列,有 A44种站法, 再在 5 个空档中选出一个供甲、乙放入,有 A15种站法,最后 让甲、乙全排列,有 A22种方法,共有 A44·A15·A22=240 种.
三 几何型排列组合问题
【例 3】已知平面 a∥β 在 a 内有 4 个点,在 β 内有 6 个点. (1)过这 10 个点中的 3 点作一平面,最多可作多少个
不同平面? (2)以这些点为顶点,最多可作多少个三棱锥? (3)上述三棱锥中最多可以有多少个不同的体积?
【解析】 (1)所作出的平面有三类: ①α 内 1 点,β 内 2 点确定的平面,有 C14·C26个; ②α 内 2 点,β 内 1 点确定平面,有 C24·C16个; ③α,β 本身,共 2 个. 所以所作的平面最多有 C14·C26+C24·C16+2=98(个).
(2)要使六位数为奇数,其个位数字必须是 1 或 3 或 5,所 以所求六位奇数的个数是 A13A14A44=288.
(3)要使六位数能被 5 整除,个位数字必须是 0 或 5,当个 位数字是 0 时,有 A55个;当个位数字是 5 时,有 4A44个,因 此,能被 5 整除的六位数的个数是 A55+4A44=216.
相邻问题捆绑法;
不相邻问题插空法;
多排问题单排法; 定序问题倍缩法; 定位问题优先法; 有序分配问题分步法; 多元问题分类法; 交叉问题集合法; 至少(或至多)问题间接法; 选排问题先取后排法; 局部与整体问题排除法; 复杂问题转化法.
3.解答组合应用题的总体思路 (1)⑥ 整体分类 .从集合的意义讲,分类要 做到各类的并集等于全集,以保证分类的不 遗漏,任何两类的交集等于空集,以保证分 类的不重复,计算结果是使用分类计数原理. (2)⑦ 局部分步 .整体分类以后,对每一类 进行局部分步,分步要做到步骤连续,以保证 分步的不遗漏.同时步骤要独立,以保证分步 的不重复.计算结果时用分步计数原理.
新人教A版高中数学(选修2-3)1.2《排列与组合》(组合)
例6.甲、乙、丙3位志愿者安排在周一至
周五的5天中参加某项志愿者活动,要求
每人参加一天且每天至多安排一人,并要
求甲安排在另外两位前面。不同的安排方
法共有( )
种方法,
所以,一共有90+360+90=540种方法.
元素相同问题隔板策略
例.有10个运动员名额,再分给7个班,每 班至少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成 一排。相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板, 可把名额分成7份,对应地分给7个 班级,每一种插板方法对应一种分法 将n个相同共的有元__素__分__成__m__份_种(分n,法m。为正整数),每 份至少一个元素,可以用m-1块隔板,插入n个元素 排成一排的n-1个空隙中,所有分法数为
组合数性质1: 2:
特别地:
练习一
(1) (2)
(3) (4) (5)求
0 7
1,或5
的值 511
例题解读
求证: 证明:因为
左边= =左边,所以等式成立
评注: 注意阶乘的变形形式:
练习精选: 证明下列等式 : (1)
(2)
例题解读:
例1.6本不同的书,按下列要求各有多少种 不同的选法: (1)分给甲、乙、丙三人,每人2本;
你发现ad了b bda dba
acd
什么ac?d cad dac
adc cda dca
bcd cbd dbc
bcd
bdc cdb dcb
(三个元素的)1个组合,对应着6个排列
对于 ,我们可以按照以下步骤进行
概念讲解
组合数公式
排列与组合是有区别的,但它们又有联系. 一般地,求从n个不同元素中取出m个元素的
2019-2020学年人教A版高中数学选修2-3课件:第1章 计数原理1.2.2(2)
第一章
计数原理
1.2 排列与组合 1.2.2 组合(二)
课前 教材预案 课堂 深度拓展 课末 随堂演练 课后 限时作业
课前教材预案
要点 求解组合问题的常用方法
• 常用的方法分直接法与间接法两大类.所谓直接法,就是利 用分类或者分步计数原理,准确地分类或者分步,直接计算 出结果;所谓的间接法,则是采用迂回战术,先求出不受限 制条件下的组合数,再减去不符合题意的组合数的方法.
第一类,这 4 人全部入选,另一组 4 人由余下的 8 人中任选 4 人组成,有 C44C48=70 种方法;
第二类,这 4 人中恰有 3 人入选日语翻译小组,必 有 1 名“双面手”入选日语翻译小组,有 C34C12C47=280 种方法;
第三类,这 4 人中恰有 2 人入选日语翻译小组,必 有 2 名“双面手”都入选日语翻译小组,有 C24C22C46=90 种方法;
• 【例题2】 车间有11名工人,其中5名是钳工,4名是车工, 另外2名既能做钳工又能做车工,从中选出4名钳工4名车工, 问有多少种不同方法?
• 思维导引:可以从“既会钳工又会车工”的2名工人考虑分 类求解,也可以从“只会钳工”的5名工人考虑分类求解.
解析 方法一 以“既会钳工又会车工”的 2 人(记 为 A,B)来考虑分类,A,B 都不在内,有选法 C45C44=5 种;A,B 都在内时又分“都做钳工”“都做车工”“一 个做钳工一个做车工”三类,合计有选法 C22C25C44+C22C45 C24+A22C35C34=120 种;A,B 仅有一人在内,又有“做钳 工”和“做车工”两种选择,此时有选法 C12C35C44+C12C45 C34=60 种.由分类加法计数原理,合计共有不同的选法 185 种.
第三类:共线的 4 个点中没有点为三角形的顶点, 共有 C38=56 个不同的三角形.
计数原理
1.2 排列与组合 1.2.2 组合(二)
课前 教材预案 课堂 深度拓展 课末 随堂演练 课后 限时作业
课前教材预案
要点 求解组合问题的常用方法
• 常用的方法分直接法与间接法两大类.所谓直接法,就是利 用分类或者分步计数原理,准确地分类或者分步,直接计算 出结果;所谓的间接法,则是采用迂回战术,先求出不受限 制条件下的组合数,再减去不符合题意的组合数的方法.
第一类,这 4 人全部入选,另一组 4 人由余下的 8 人中任选 4 人组成,有 C44C48=70 种方法;
第二类,这 4 人中恰有 3 人入选日语翻译小组,必 有 1 名“双面手”入选日语翻译小组,有 C34C12C47=280 种方法;
第三类,这 4 人中恰有 2 人入选日语翻译小组,必 有 2 名“双面手”都入选日语翻译小组,有 C24C22C46=90 种方法;
• 【例题2】 车间有11名工人,其中5名是钳工,4名是车工, 另外2名既能做钳工又能做车工,从中选出4名钳工4名车工, 问有多少种不同方法?
• 思维导引:可以从“既会钳工又会车工”的2名工人考虑分 类求解,也可以从“只会钳工”的5名工人考虑分类求解.
解析 方法一 以“既会钳工又会车工”的 2 人(记 为 A,B)来考虑分类,A,B 都不在内,有选法 C45C44=5 种;A,B 都在内时又分“都做钳工”“都做车工”“一 个做钳工一个做车工”三类,合计有选法 C22C25C44+C22C45 C24+A22C35C34=120 种;A,B 仅有一人在内,又有“做钳 工”和“做车工”两种选择,此时有选法 C12C35C44+C12C45 C34=60 种.由分类加法计数原理,合计共有不同的选法 185 种.
第三类:共线的 4 个点中没有点为三角形的顶点, 共有 C38=56 个不同的三角形.
高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案
1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.
人教a版数学【选修2-3】1.2.1《排列2》ppt课件
第一章
1.2
1.2.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
2.5名同学排成一排,其中甲、乙、丙三人必须排在一起
的不同排法有(
A.70 C.36 [答案] C
)
B.72 D.12
[解析] 甲、乙、丙先排好后视为一个整体与其他 2 个同
3 学进行排列,共有 A3 A 3 3=36 种排法.
3 .间接法:先不考虑附加条件,计算出总排列数,再减
不合要求 的排列数. 去__________ 捆绑 法,相离问题 ______ 插空 法,定元、定位 4 .相邻元素 ______ 优先排 法,至多、至少______ 间接 法,定序元素__________ 最后排 法. ________
第一章
1.2
成才之路 · 数学
人教A版 · 选修2-3
路漫漫其修远兮 吾将上下而求索
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
计数原理
第一章
计数原理
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章 1.2 排列与组合
1.2.1 排列
1.2
1.2.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
明确问题的限制条件,能够解决含有特殊元素 ( 或特殊位 置)的排列问题,会用间接法求解有限制条件的排列问题.
第一章
1.2
1.2.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
mAm n-1 __________
人教A版高二数学选修2-2:1.2类比推理 课件 (共19张PPT)
圆的性质
球的性质
球的表面积 S = 4πR 2 球的体积 V = πR 3 3 球心与不过球心的截面(圆面) 的圆心的连线垂直于截面
与球心距离相等的两截面面积相等 与球心距离不相等的两截面面积 不相等,距球心较近的面积较大
4
圆的面积 S =πR 2 圆心与弦(非直径)中点的连线 垂直于弦
与圆心距离相等的两弦相等 与圆心距离不相等的两弦不相 等,距圆心较近的弦较长
以点(x0,y0)为圆心, r为半径的 以点(x0,y0,z0)为球心, r为半 圆的方程为(x-x0)2+(y-y0)2 = r2 径的球的方程为 (x-x0)2+(y-y0)2+(z-z0)2 = r2
议 3、进行类比推理的步骤:
(1)找出两类对象之间可以确切表述的相似特征; (2)用一类对象的已知特征去猜测另一类对象的特征, 从而得出一个猜想; (3)检验这个猜想.
所以A类事物具有P
导
3、归纳推理的步骤:
实验观察
大胆猜想
检验猜想
思 情景引入:
1、据说春秋时代鲁国的公输班(后人称 鲁班,被认为是木匠业的祖师)一次去林 中砍树时被一株齿形的茅草割破了手,这 桩倒霉事却使他发明了锯子.
鲁班的思路是这样的: 茅草是齿形的; 茅草能割破手. 我需要一种能割断木头的工具; 它也可以是齿形的.
思考:平面几何中的哪一类图形可以作为四面体的类比对象
构成几何体的元素数目:三角形 平面图形(二维) 点
四面体
立体图形(三维) 点或线
线
平面直角坐标系
线或面
空间直角坐标系
议
合作探究
A
探究一:类比平面内直角三角形的勾股定 理,试给出空间中四面体性质的猜想.
新课标高中数学人教版选修2-3精品课件-【数学】1.3.1《二项式定理习题课》课件(新人教A版选修2-3)
(3)Cn1 2Cn2 3Cn3 ... nCnn
(4)Cn0
1 2
Cn1
1 3
Cn2
...
1 n
1
Cnn
6、(1-2x)6 a0 a1x a2 x2 a3x3 ... a6x6, 则 a0 a1 a2 ... a6 的值为( ) A.1 B.64 C.243 D.729
⑷“第一盒中恰有三球”的概率。
P A
24 34
16 81
PB
C41 23 34
32 81
PC
C42 22 34
24 81
P
D
C43 34
2
8 81
如何产生[a,b]区间上均匀随机数呢?
利用计算器或计算机产生[0,1]上的均匀随机数
x=RAND,然后利用伸缩和变换,x x1 *(b a) a
7、若(2x 3)4 a0 a1x a2x2 a3x3 a4x4 , 则(a0 +a2 +a4 )2 (a1 a3 )2的值为( ) A.1 B.-1 C.0 D.2
8、(2x3
+
1 x2
)n
(n
N
* )的展开式中,若存在
常数项,则n的最小值是( )
A.3 B.5 C.8 D.10
i=1
s=0
s=0
i<=100? 否 输出s
结束
i=i+1
是
s=s+i
WHILE i<=100 s=s+i i=i+1
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
何3点共线.以这些点为顶点,可构成多少个不同的三角形?
[解] 的标准. 第1类:共线的4个点中有2个点为三角形的顶点,共有
2 1 C4 C8=48个不同的三角形;
法一:以从共线的4个点中取点的多少作为分类
第2类:共线的4个点中有1个点为三角形的顶点,共有
1 2 C4 C8=112个不同的三角形;
第3类:共线的4个点中没有点为三角形的顶点,共有C 3 8= 56个不同的三角形. 由分类加法计数原理知,共有 48+112+56=216个不同的三角形.
法.
[类题通法] 解答有限制条件的组合问题的基本方法是“直接法” 和“间接法(排除法)”.其中用直接法求解时,则应坚持 “特殊元素优先选取”的原则,优先安排特殊元素的选 取,再安排其他元素的选取.而选择间接法的原则是“正 难则反”,也就是若正面问题分类较多、较复杂或计算量 较大,不妨从反面问题入手,试一试看是否简捷些,特别 是涉及“至多”“至少”等组合问题时更是如此.
3 法二(间接法):从12个点中任意取3个点,有C 12 =220种取
法,而在共线的4个点中任意取3个均不能构成三角形,即不能 构成三角形的情况有C3 4=4种.
3 故这12个点构成三角形的个数为C3 - C 12 4=216.
[类题通法] 1.解决几何图形中的组合问题,首先应注意运用处理 组合问题的常规方法分析解决问题,其次要注意从不同类型 的几何问题中抽象出组合问题,寻找一个组合的模型加以处 理. 2.图形多少的问题通常是组合问题,要注意共点、共 线、共面、异面等情形,防止多算.常用直接法,也可采用 排除法.
[活学活用] 现有10件产品,其中有2件次品,任意抽出3件检查. (1)恰有一件是次品的抽法有多少种? (2)至少有一件是次品的抽法有多少种?
解:
(1)从2件次品中任取1件,有C1 2种抽法;
从8件正品中取2件,有C2 8种抽法.
2 由分步乘法计数原理可知,共有C1 2×C8=56种不同的抽法. 2 (2)法一:含1件次品有C1 × C 2 8种抽法, 1 含2件次品有C2 2×C8种抽法.
选法. (2)至少有5名男生的选法可分为如下四类:
3 6 2 有5名男生:C 5 · C 种选法;有 6 名男生: C · C 10 6 10 6 种选 1 8 0 法;有7名男生:C 7 · C 种选法;有 8 名男生: C · C 10 6 10 6 种选 6 2 7 8 法.所以至少有5名男生共有C5 C3 C6 +C10 · C1 C0 10· 6+C10· 6+C10· 6
[类题通法] 1.解排列、组合综合问题的一般思路是“先选后排”,也 就是先把符合题意的元素都选出来,再对元素或位置进行排列. 2.解排列、组合综合问题时要注意以下几点: (1)元素是否有序是区分排列与组合的基本方法,无序的问题 是组合问题,有序的问题是排列问题. (2)对于有多个限制条件的复杂问题,应认真分析每个限制条 件,然后再考虑是分类还是分步,这是处理排列、组合综合问题 的一般方法.
[例1]
某大学要从16名大学生(男10人,女6人)中选出8名
学生组成“假期下乡送科学小组”. (1)如果小组中至少有3名女生,可有多少种不同的选法? (2)如果小组中至少有5名男生,可有多少种不同的选法? (3)如果小组中至多有3名女生,可有多少种不同的选法?
[解]
(1)至少有3名女生的选法可分为如下四类:有3
5 名女生:C3 C10 种选法;有4名女生:C4 C4 6· 6· 10种选法;有5名 5 6 2 女生:C 6 · C3 种选法;有 6 名女生: C · C 10 6 10 种选法.所以至 5 5 6 少有3名女生共有C3 C10 +C4 C4 C3 C2 6· 6· 10+C6· 10+C6· 10=8 955种
[活学活用] 四面体的一个顶点为A,从其他顶点和各棱中点中取3个点, 使它们与点A在同一平面上,有多少种不同的取法?
解:如图所示,含顶点A的四面体的3个面 上,除点A外每个面都有5个点,从中取出3点 必与点A共面,共有3C 3 5 种取法,含顶点A的三 条棱上各有三个点,它们与所对的棱的中点共面,共有3种取 法.根据分类加法计数原理,有3C3 5+3=33种种与顶点A共面 三点的取法.
1.2
1.2.2
1 回顾相 关知识
题型一 题型二 题型三
第 一 章
第二 课时
2 突破常 考题型 3 跨越高 分障碍
4 应用落 实体验
组合 习题 课
随堂即时演练 课时达标检测
1.2
排列与组合
1.2.2
组合
第二课时
组合习题课
1.排列与组合的不同点是什么?
2.在利用组合数的性质应注意什么?
组合问题的简单应用
1 1 1 4 法有C1 · C · C · C · A 2 2 2 2 4种.
第2类,当取出的4张卡片分别标有数字1,1,4,4时,不同的排 法有C2 C2 A4 2· 2· 4种. 第3类,当取出的4张卡片分别标有数字2,2,3,3时,不同的排 法有C2 C2 A4 2· 2· 4种.
1 故满足题意的所有不同的排法种数共有C 1 C1 C1 C2 · A4 2· 2· 2· 4+ 2 4 2C2 · C2 A4 =432. 2·
排列与组合的综合运用
[例3]
有4张分别标有数字1,2,3,4的红色卡片和4张分别标
有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一 行.如果取出的4张卡片所标的数字之和等于10,则不同的排 法共有4张卡片分别标有数字1,2,3,4时,不同的排
由分类加法计数原理知,共有
2 2 1 C1 2×C8+C2×C8=56+8=64种不同的抽法.
法二:从10件产品中任取3件有C3 10种抽法, 不含次品有C3 8种抽法,
3 所以至少有1件次品有C3 10-C8=64种抽法.
与几何有关的组合问题
[例2] 平面内有12个点,其中有4个点共线,此外再无任
=8 955种选法. (3)至多有3名女生的选法可分为如下四类:
1 不含女生:C8 C7 10种选法;有1名女生:C6 · 10 种选法;有2 6 名女生:C 2 C 10 种选法;有3名女生:C 3 C5 6· 6· 10 种选法.所以至 1 7 2 6 3 5 多有3名女生共有C 8 + C · C + C · C + C · C 10 6 10 6 10 6 10 =8 955种选