人教版七年级上册数学能力提升、创新应用及解答:1.3.1有理数的加法
1.3.1有理数的加法七年级数学人教版(上册)(解析版)
答卷时应注意事项
1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;
3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;
4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;
5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;
6、卷面要清洁,字迹要清工整,非常重要;
7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!
第一章有理数
1.3.1有理数的加法
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
x。
数学人教新版七年级上册秋:1.3.1《有理数的加法》四维训练及答案
数学人教新版七年级上册实用资料1.3有理数的加减法1.3.1有理数的加法知识点一:有理数的加法1.下面说法正确的是(D)A.两数之和不可能小于其中的一个加数B.两数相加就是它们的绝对值相加C.两个负数相加,和取负号,绝对值相减D.不是互为相反数的两个数,相加不能得零2.下列计算错误的是(B)A.+0.5=-1B.(-2)+(-2)=4C.(-1.5)+=-4D.(-71)+0=-713.计算:(1)(+26)+(-14)+(-16)+(+18);(2)4.1++(-10.1)+7.解(1)(+26)+(-14)+(-16)+(+18)=[(-14)+(-16)]+(26+18)=-30+44=14.(2)4.1++(-10.1)+7=[4.1+(-10.1)]++7=-6+0+7=1.知识点二:有理数的加法运算律4.7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了(D)A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律5.下列变形,运用加法运算律正确的是(B)A.3+(-2)=2+3B.4+(-6)+3=(-6)+4+3C.[5+(-2)]+4=[5+(-4)]+2D.+(-1)++(+1)6.计算:(1)(+26)+(-18)+5+(-16);(2)(-1.75)+1.5+(+7.3)+(-4.25)+(-6.5).解(1)(+26)+(-18)+5+(-16)=[(+26)+(-16)]+[(-18)+5]=10+(-13)=-3.(2)(-1.75)+1.5+(+7.3)+(-4.25)+(-6.5)=[(-1.75)+(-4.25)]+[(-6.5)+1.5]+(+7.3)=-6+(-5)+7.3=-11+7.3=-3.7.拓展点一:运用有理数加法运算律进行简便运算1.用简便方法计算+(-7.89)++(-0.64)+7.89+0.64=(B)A.0B.1C.-2D.32.计算(+1.25)++(-0.6)的结果为(D)A.1B.-1C.-2D.-33.用简便方法计算下列各题:(1);(2)(-0.5)++9.75.解(1)原式==-.(2)原式=(-0.5+9.75)+=9.25+(-5)=4.25.拓展点二:有理数加法的实际应用4.如果规定向东为正,强强骑自行车向东走了2千米后,又继续走了-5千米,那么强强实际上(B)A.向东走了7千米B.向西走了3千米C.向南走了3千米D.向北走了5千米1.(2016·广东梅州中考)计算(-3)+4的结果是(C)A.-7B.-1C.1D.72.(2016·江苏南京一模)计算-3+|-5|的结果是(B)A.-2B.2C.-8D.83.导学号19054019(2016·山西阳泉模拟)如果两个数的和为正数,那么这两个数是(D)A.正数B.负数C.一正一负D.至少一个为正数4.(2015·福建云霄模拟)在一竞赛中,老师将90分规定为标准成绩,记作0分,高出此分的分数记为正,不足此分的分数记为负,五名参赛者的成绩为+1,-2,+10,-7,0.那么(D)A.最高成绩为90分B.最低成绩为88分C.平均成绩为90分D.平均成绩为90.4分5.导学号19054020(2015·重庆忠县校级期末)有理数a,b在数轴上的位置如图所示,则下列关系中正确的是(B)①a+(-b)>0;②a+b>0;③a>b;④-a+b>0.A.1B.2C.3D.46.(2015·浙江义乌市期末)计算3+5时运算律用得恰当的是(B)A.B.C.D.7.(2016·江西中考)计算-3+2=-1.8.(2016·山东邹城市期中)绝对值小于4的所有整数的和是0.9.(2015·浙江乐清市期中)计算:(1)18.56+(-5.16)+(-1.44)+(+5.16)+(-18.56);(2)4.1++(-10.1)+7;(3).解(1)18.56+(-5.16)+(-1.44)+(+5.16)+(-18.56)=[(+18.56)+(-18.56)]+[(-5.16)+(+5.16)]+(-1.44)=-1.44 .(2)4.1++(-10.1)+7=[4.1+(-10.1)+7]+=1+=1.(3)===-=-.10.(2016·福建仙游县期中)2016年9月2日早上8点,空军航空开放活动在大房身机场举行,某特技飞行队做特技表演时,其中一架飞机起飞0.5千米后的高度变化如表:高度变化记作上升2.5千+2.5千米米下降1.2千米上升1.1千米下降1.8千米(1)完成上表.(2)飞机完成上述四个表演动作后,飞机离地面的高度是多少千米?(3)如果飞机平均上升1千米需消耗5升燃油,平均下降1千米需消耗3升燃油,那么这架飞机在这4个表演动作过程中,一共消耗了多少升燃油?解(1)-1.2千米+1.1千米-1.8千米(2)0.5+2.5+(-1.2)+1.1+(-1.8)=1.1(千米).答:飞机完成上述四个表演动作后,飞机离地面的高度是1.1千米.(3)2.5×5+1.2×3+1.1×5+1.8×3=27(升).答:这架飞机在这4个表演动作过程中,一共消耗了27升燃油.11.导学号19054021(2015·山东高密市期末)某商店去年四个季度盈亏情况如下(盈利为正):128.5万元,-140万元,-95.5万元,280万元.求这个商店去年总的盈亏情况.解128.5+(-140)+(-95.5)+280=128.5+280+[(-140)+(-95.5)]=408.5-235.5=173(万元).因为173>0,所以这个商店去年盈利173万元.12.导学号19054022阅读下面文字:对于+17可以如下计算:原式==[(-5)+(-9)+17+(-3)]+=0+=-1.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算+4 000.解+4000=-1++(-2000)++4000++(-1999)+=-1+(-2000)+4000+(-1999)+=(-2)+=-.。
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计一. 教材分析《有理数的加法》是人教版数学七年级上册第一章第三节的第一课时,本节课主要介绍有理数的加法运算。
学生在学习这一节之前,已经掌握了有理数的概念、加法运算的法则,以及绝对值的概念。
本节课的内容为学生以后学习更高级的数学知识打下基础。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识有一定的了解,但还需要进一步的引导和培养。
在学习本节课之前,学生已经掌握了有理数的概念和加法运算的法则,但可能对有理数加法的实质理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生掌握有理数的加法运算方法,理解有理数加法的实质。
2.培养学生运用有理数加法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.教学重点:有理数的加法运算方法,有理数加法的实质。
2.教学难点:有理数加法在实际问题中的应用。
五. 教学方法1.采用讲授法,讲解有理数加法的运算方法和实质。
2.采用案例分析法,分析实际问题中有理数加法的应用。
3.采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
六. 教学准备1.准备相关的教学案例和练习题,用于讲解和巩固有理数加法知识。
2.准备教学PPT,用于展示和讲解有理数加法的运算方法和实质。
3.准备黑板,用于板书和展示例题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生复习有理数的概念和加法运算的法则,为新课的学习做好铺垫。
2.呈现(10分钟)讲解有理数加法的运算方法和实质,结合PPT和板书,让学生清晰地理解有理数加法的运算过程。
3.操练(10分钟)让学生进行一些有关有理数加法的练习题,巩固所学知识。
教师在这个过程中要引导学生正确进行运算,并及时给予反馈。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数加法知识解决问题。
教师要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
【人教版】七年级上册数学教案:1.3.1 第2课时 有理数加法的运算律及运用
第一章 有理数 1.3 有理数的加减法 1.3.1 有理数的加法第2课时 有理数加法的运算律及运用学习目标:1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;2.能运用加法运算律简化加法运算;3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用. 学习难点:运用有理数加法法则简化运算. 课堂活动一、有理数加法运算律的探索 1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○ 和 ○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇ 和 □+(○+◇) 2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括: 字母表示 加法的结合律:文字概括: 字母表示 二、有理数加法运算律的应用 问题1.计算(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6(3))75()65()72(61++-+-+ (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)问题2:计算 (1) (-11)+8+(-14) (2)32)41()32()43(+-+-+-(3) 0.35+(-0.6)+0.25+(-5.4) (4))61(31)21()2(-++-+-三、拓展延伸问题3.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 问(1)10筐苹果共超过(不足)多少千克? (2)10筐苹果共重多少千克?课堂反馈:1.从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?知识巩固 一、填空1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.2.绝对值小于5的所有负整数的和为3.已知a 是最小的正整数,b 是a 的相反数,c 的绝对值为3,则a +b +c =4.某天股票A 的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A 这天的收盘价是 元.5.如果a<0,则︱a ︱+a= 二、计算(1) )4(1)3()1(3-++-+-+ (2)(-9)+4+(-5)+8;(3)(-36.35)+(-7.25)+26.35+(+714) (4))2(9465195-+++(5))127(25)125()23(-++-+- (6)(-13)+(+25)+(+35)+(-123)三、解答题1. 一天早晨的气温是-7ºC,中午上升了11ºC,半夜又降了9ºC,则半夜的气温是多少?2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克): 1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?3. 某种袋装奶粉标明净含量为400g ,检查其中8袋,记录如下表:请问这8袋被检奶粉的总净含量是多少?4.一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走的路线如下:(单位:千米)8,9,4,7,2,10,18,3,7,5+-++--+-++ ⑴ 问收工时离出发点A 多少千米?⑵ 若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?6.已知c b a ,7,2-==的相反数为-5,试求a +)(b -+(-c )7.计算:|1-12|+|12-13|+|13-14|+…+|19-110|课后反思:学习小结:课后作业:。
人教版七年级数学上册优秀教学案例:1.3.1有理数的加法
在讲授新知后,我会组织学生进行小组讨论,让他们运用所学知识解决实际问题。例如,我可以让学生分组讨论以下问题:“如何计算以下有理数的和:(-3)+(-2),(+5)+(-4)?”通过小组讨论,学生可以互相交流思路,共同解决问题,提高他们的合作能力和解决问题的能力。
(四)总结归纳
在学生小组讨论后,我会引导学生进行总结归纳。我会让学生回顾所学知识,总结有理数加法的法则,并强调这些法则的应用。通过总结归纳,学生可以加深对有理数加法的理解,形成系统的知识结构。
在设计本节课的教学案例时,我充分考虑了学生的年龄特点和认知水平。针对七年级学生的思维发展特点,我采用了情境教学法,通过生活实例引入有理数的加法,激发学生的学习兴趣。同时,我还将分层教学法融入到课堂中,针对不同层次的学生设置不同难度的任务,使每个学生都能在课堂上得到有效的锻炼。
在教学过程中,我注重启发式教学,引导学生通过自主探究、合作交流来发现有理数加法的规律。通过设计丰富的课堂活动,让学生在实践中掌握加法法则,提高运算能力。此外,我还注重培养学生的数学思维,让学生在解决实际问题的过程中,体会到数学的魅力。
这些亮点体现了本节课在教学方法、学生学习方式、情感态度与价值观培养以及教学评价等方面的优秀实践,为学生的全面发展和数学素养的提高提供了有力的支持。
(五)作业小结
在课堂的最后,我会布置一些作业,让学生巩固所学知识。同时,我会提醒学生在完成作业时要注意运算的准确性,培养他们的细心和耐心。在下一节课开始时,我会对学生的作业进行讲评,指出其中的错误和不足,帮助学生提高。
五、案例亮点
本节课作为“人教版七年级数学上册”的1.3.1有理数的加法,具有以下五个亮点:
2.能够进行简单的有理数加法运算;
1.3.1有理数的加法(2)人教版七年级上册 数学
想一想,计 算中使用了哪 些运算定律?
解:每袋小麦超过90kg的记作正数,不足的记作负数. 10袋小麦对应 的分别为:
+1,+1,+1.5, -1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1 1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1 =[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8 +1.1) =5.4
答案:(1)28元;(2)32元,28元; (3)29000元.
课堂总结
本节小结: 1、通过具体有理数的计算,把加法运算律从非负数
范围扩大到有理数的范围。 2、掌握加法运算律的法则及公式,并适当的运用运
算律进行简化计算。 3、有理数加法解决实际问题,体会求简意识。
作业布置
教材课后配套作业题。
解:原式
4.1
(-
10.1)(
1 2
)(-
1 4
)
7
=(-100)+0+(+15) =-85
6 7 1 1 1 1 1 4 44
4. 有6筐蔬菜,每筐质量分别为(单位:kg): 48,52,47,49,53,54.
(1)如果以50kg为基准,超过的千克数记为正数,不足的千克数记 为负数,则用正、负数表示这6筐蔬菜的质量分别为(单位:kg):
a+ b = b + a
解: 30+(-20) =30-20 =10
(-20)+30 =30-20 =10
两次所得的和 相同吗?
从上述计 算中,你 得出什么
结论?
归纳:
加法交换律:
两个数相加,交换加数的位置,和不变.
a+ b
人教版七年级数学上册1.3.1有理数的加法(教案)
5.通过有理数加法的学习,培养学生的逻辑思维能Байду номын сангаас和解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言进行表达与交流的能力,通过有理数加法的学习,增强数学表达和逻辑推理的素养。
2.激发学生的数学抽象思维,提高对有理数概念及其加法法则的理解,培养数学抽象和模型构建的核心素养。
人教版七年级数学上册1.3.1有理数的加法(教案)
一、教学内容
人教版七年级数学上册1.3.1有理数的加法,主要包括以下内容:
1.掌握有理数的定义,了解有理数的分类(正有理数、负有理数、零)。
2.学习有理数的加法法则,包括同号相加、异号相加、零与任何有理数相加的情况。
3.能够运用有理数加法法则解决实际问题,进行数值计算。
3.培养学生运用数学知识解决实际问题的能力,将加法运算与生活实际相结合,提升数学应用和问题解决的素养。
4.培养学生的数据分析和逻辑推理能力,通过有理数加法运算的训练,提高数据处理和推理的素养。
5.培养学生的团队合作意识,在小组讨论和互助学习中,增强合作交流与批判性思考的能力。
三、教学难点与重点
1.教学重点
五、教学反思
在今天的有理数加法教学中,我发现学生们对于有理数的概念和加法法则的理解整体上是积极的。他们对于正有理数、负有理数的分类能够较快掌握,但在异号相加的规则上,尤其是绝对值的处理上,还存在一些困难。这让我意识到,在讲解这部分内容时,需要更加细致和具体。
我尝试通过生活实例引入有理数加法,如温度变化、收支情况等,学生们对这些例子很感兴趣,能够更好地将数学与实际联系起来。但在实际操作中,我发现在将问题抽象为数学运算这一步骤上,学生们还是显得有些吃力。这可能是因为他们还没有形成将实际问题转化为数学模型的思维方式。
【人教版】七年级数学上册 1.3.1 有理数的加法教案及练习(含答案)
1.3.1 有理数的加法(一)一、选择题1.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③正数加负数,其和一定等于0.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.A.1个 B.2个 C.3个 D.4个2.在1,-1,-2这三个数中,任意两数之和的最大值是()A.1B.0C.-1D.33.一个数是2015,另一个数比2015的相反数大2,那么这两个数的和为()A.24 B.-24 C.2 D.-24.已知│x│=4,│y│=5,则│x+y│的值为()A .1B .9C .9或1D .±9或±1二、填空题5.某天早晨的气温是-5℃,中午上升了10℃,•则中午的气温是 .6.数轴上A 、B 两点所表示的有理数的和是________7.某足球队在一场比赛中上半场负7球,下半场胜4球,•那么全场比赛该队净胜 球.8.有理数中,所有整数的和等于 .9.已知两数512 和-612,这两个数的相反数的和是 ,两数和的相反数是 ,两数绝对值的和是 ,两数和的绝对值是 .10. 绝对值小于2015的所有整数和为 .11. 计算(1)(-15)+27= (2))17()16(-+- =(3)-8+│-5│= (4)(-423)+(+316)=三、解答题12.列式计算(1)求313的相反数与-223的绝对值的和.(2)某市一天早晨的气温是10℃,上午上升2℃,半夜又下降15℃,则半夜的气温是多少.参考答案:1.A 2.B 3.C 4.D 5. 5℃ 6.-1 7.-3 8.09. 1,1,12,1 10. 0 11.(1)12 (2)-33 (3)-3, (4) -11212.(1) -23, (2)-3℃-3。
人教版七年级数学上册:1.3.1《有理数的加法》教学设计3
人教版七年级数学上册:1.3.1《有理数的加法》教学设计3一. 教材分析《有理数的加法》是人教版七年级数学上册第一章第三节的第一课时,本节课的主要内容是让学生掌握有理数的加法法则,并能够熟练地进行有理数的加法运算。
教材通过引入日常生活中借贷的概念,让学生感受正负数的加法运算,从而引出有理数的加法法则。
通过本节课的学习,为学生后续学习有理数的减法、乘法和除法打下基础。
二. 学情分析学生在进入七年级之前,已经学习了整数和分数的加减法运算,对于加法的概念和运算规则有一定的了解。
但是,对于有理数的加法,学生可能还存在着一定的困惑,特别是在理解正负数的加法运算时。
因此,在教学过程中,需要引导学生从日常生活中熟悉的概念出发,逐步过渡到有理数的加法运算。
三. 教学目标1.理解有理数的加法概念,掌握有理数的加法法则。
2.能够熟练地进行有理数的加法运算。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:有理数的加法法则,有理数的加法运算。
2.教学难点:理解正负数的加法运算,掌握有理数的加法法则。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过引入日常生活中借贷的概念,让学生感受正负数的加法运算,从而引出有理数的加法法则。
同时,通过设计丰富的例题和练习题,让学生在实践中掌握有理数的加法运算。
在教学过程中,鼓励学生积极参与,进行小组讨论,培养学生的团队合作能力。
六. 教学准备1.教学课件:制作精美的教学课件,内容包括教材中的重点知识点、例题和练习题。
2.教学素材:准备一些与生活相关的实例,如购物、存钱等,用于引导学生理解有理数的加法。
3.练习题:准备一些有梯度的练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)利用课件展示一些与生活相关的实例,如购物、存钱等,引导学生思考这些实例中涉及的加法运算。
通过与学生互动,引出有理数的加法概念。
2.呈现(10分钟)利用课件呈现有理数的加法法则,引导学生理解并记忆这些法则。
新人教版七年级数学上册1.3.1《有理数的加法(一)》教学设计1
新人教版七年级数学上册1.3.1《有理数的加法(一)》教学设计1一. 教材分析新人教版七年级数学上册1.3.1《有理数的加法(一)》是学生在掌握了有理数的概念和分类之后,进一步学习有理数运算的第一节内容。
本节课主要介绍有理数的加法运算规则,包括同号相加、异号相加以及绝对值不等的异号相加。
通过本节课的学习,学生能够掌握有理数加法的基本运算方法,并能够熟练运用到实际问题中。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和分类有了初步的了解。
但在运算方面,部分学生可能还对符号的运算规则不够熟悉,对有理数加法的实际应用能力有待提高。
因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行引导和辅导。
三. 教学目标1.理解有理数加法的运算规则,掌握同号相加、异号相加以及绝对值不等的异号相加的计算方法。
2.能够运用有理数加法解决实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维能力,提高学生对数学运算的兴趣。
四. 教学重难点1.教学重点:掌握有理数加法的运算规则,能够熟练计算同号相加、异号相加以及绝对值不等的异号相加。
2.教学难点:理解并掌握绝对值不等的异号相加的运算方法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过生活实例引入有理数加法,激发学生的学习兴趣,提高学生的实际应用能力。
2.讲授法:讲解有理数加法的运算规则,引导学生理解和掌握。
3.小组合作学习:让学生在小组内进行讨论和实践,培养学生的团队协作能力。
4.练习法:通过大量练习,巩固学生对有理数加法的掌握程度。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示教学内容。
2.练习题:准备一定量的练习题,用于课堂练习和课后巩固。
3.教学道具:准备一些教学道具,如卡片、小黑板等,用于展示和演示。
七. 教学过程1.导入(5分钟)通过一个生活实例,如购物时找零,引出有理数加法的概念,激发学生的学习兴趣。
新人教版七年级数学上册1.3.1《有理数的加法(一)》教学设计2
新人教版七年级数学上册1.3.1《有理数的加法(一)》教学设计2一. 教材分析新人教版七年级数学上册1.3.1《有理数的加法(一)》是学生学习有理数运算的第一部分,为学生今后的数学学习打下基础。
本节课主要介绍有理数的加法运算,通过加法运算的学习,使学生掌握有理数加法的基本规则,培养学生对数学运算的兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的概念,对基本的运算规则有一定的了解。
但是,对于有理数的加法运算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生利用已有的知识经验,探究有理数加法运算的规律,提高学生的运算能力。
三. 教学目标1.理解有理数加法的基本概念,掌握有理数加法的基本规则。
2.能够进行简单的有理数加法运算,并能解释运算过程。
3.培养学生的运算能力,提高学生对数学运算的兴趣。
四. 教学重难点1.教学重点:有理数加法的基本概念,有理数加法的基本规则。
2.教学难点:有理数加法运算的规律,有理数加法运算的灵活运用。
五. 教学方法1.情境教学法:通过生活情境,引导学生理解有理数加法的基本概念。
2.引导发现法:教师引导学生利用已有的知识经验,发现有理数加法的基本规则。
3.实践操作法:学生通过实际的运算练习,掌握有理数加法的基本运算方法。
六. 教学准备1.教学课件:制作有关有理数加法的教学课件,帮助学生直观地理解有理数加法的基本概念和运算规则。
2.练习题:准备一些有关有理数加法的练习题,用于学生的课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过生活情境,如购物场景,引导学生理解有理数加法的基本概念。
例如,小明买了一支铅笔2元,又买了一块橡皮1元,他一共花了多少钱?通过这样的情境,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件展示有理数加法的基本概念和运算规则,让学生直观地理解有理数加法的基本概念。
例如,有理数加法的定义,有理数加法的法则等。
人教版数学七年级上册1.3.1《有理数的加法》教案2
人教版数学七年级上册1.3.1《有理数的加法》教案2一. 教材分析《有理数的加法》是初中数学的重要内容,也是学习更复杂数学运算的基础。
本节课的内容主要包括有理数的加法法则、加法的运算律以及加法运算的优先级。
通过学习,学生能够理解有理数加法的概念,掌握有理数加法的运算方法,并能够运用加法法则解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数的概念、加减法的基本运算,对数学运算有一定的基础。
但部分学生可能对有理数加法的理解不够深入,对于加法的运算律和优先级规则可能存在模糊之处。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.理解有理数加法的概念,掌握有理数加法的运算方法。
2.掌握有理数加法的运算律和优先级规则。
3.能够运用加法法则解决实际问题。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数加法的运算方法。
2.有理数加法的运算律和优先级规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过案例分析,让学生深入了解有理数加法的应用;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.PPT课件。
2.教学案例和习题。
3.的黑板和粉笔。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的加法实例,如购物时物品的总价、烹饪时食材的配比等,引导学生关注加法在实际生活中的应用。
同时,提出问题:“你们认为加法有什么运算规律吗?”2.呈现(10分钟)通过PPT课件呈现有理数加法的定义和运算方法,讲解加法的运算律和优先级规则。
结合案例,让学生了解加法在数学中的应用。
3.操练(10分钟)让学生进行有理数加法的运算练习,教师巡回指导,及时发现并纠正学生的错误。
在此过程中,引导学生发现加法的运算律和优先级规则,并加以运用。
4.巩固(5分钟)通过PPT课件呈现一些有关有理数加法的应用题,让学生独立解答。
七年级数学人教版(上册)【知识讲解】1.3.1有理数的加法课件
探究新知
结果是仍在起点处,写成算式就是 5+(-5)=0 ⑤
算式⑤表明,互为相反数的两个数相加,结果为0.
如果物体第1s向右(或左)运动5m,第2s原地不动,那么2s后物体从起点向
右(或左)运动了5 m.写成算式就是
5+0=5 (或(-5)+0=-5) ⑥
从①~⑥算式你可 以总结出什么结论
吗?
有理数的加法法则
有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加。 2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并 用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0。 3.一个数同0相加,仍得这个数。
经典例题
例1 计算: (1)(-2)+(-14); (2)(-8.3)+7.9; (3)(-9.1)+0
先定符号, 再算绝对值
。
解: (1)-(2+14)=-16; (2)-(8.3-7.9)=-0.4; (3)-(9.1+0)=-9.1
探究新知
计算 10+(-40),(-40)+10 两次计算结果相同吗?换几个数再试试。
结合该计算 ,你能得到 什么结论?
有理数的加法中,两个数相加,交换加数的位置,和不变。 加法交换律:a+b=b+a
探究新知
计算 [7+(-10)]+(-40),7+[(-40)+(-10)] 两次计算结果相同吗?换几个数再试试。
结合该计算 ,你能得到 什么结论?
有理数的加法中,三个数相加,先把前两个数相加,或者先 把后两个数相加,和不变。
人教版七年级数学上册 1.3.1有理数的加法(有理数的加法运算律) 课后练习(含答案)
第1章 有理数 1.3.1有理数的加法(有理数的加法运算律)一、选择题1.小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断2.计算(-3.68)+29+(-5.32),下列简便运算正确的是( )A .[(-3.68)+29]+(-5.32)B .(-3.68)+[29+(-5.32)]C .(-29)+(3.68+5.32)D .[(-3.68)+(-5.32)]+293.下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13; ③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4)=⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4). A .0个 B .1个 C .2个 D .3个4.计算4+(-3)+(-2)+(-1)+2的结果是( )A .0B .1C .2D .35.储蓄所办理了几笔储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这时储蓄所的存款增加了( )A .12.25万元B .-12.25万元C .12万元D .-12万元二、填空题6.运用加法运算律填空:212+(-313)+612+(-823)=(212+________)+[________+(-823)]. 7.已知a +c =-2019,b +d =2020,则a +d +c +b 的值是________.8.五袋优质大米以每袋50 kg 为基准,超过的记为正,不足的记为负,称重记录(单位:kg)如下:+4.5,-4,+2.3,-3.5,+2.5.那么这五袋大米共超重__________kg ,总质量为__________kg.三、解答题10.用适当的方法计算下列各题:(1)(+7)+(-21)+(-7)+(+21);(2)-4+17+(-36)+73;(3)⎝ ⎛⎭⎪⎫-37+⎝ ⎛⎭⎪⎫+15+⎝ ⎛⎭⎪⎫+27+⎝⎛⎭⎪⎫-115;(4)(-2.125)+⎝⎛⎭⎪⎫+315+⎝ ⎛⎭⎪⎫+518+(-3.2);(5)(+6)+(+14)+(-3.3)+(+3)+(-6)+(+0.3)+(+8)+(+6)+(-16)+(-614).11.小明用32元钱买了8块毛巾,准备以一定价格出售,如果以每块5元的价格为标准,超出的记为正,不足的记为负,记录如下(单位:元):0.5,-1,-1.5,1,-2,-1,2,0.当小明卖完毛巾时,是盈利还是亏损?盈利或亏损多少钱?12.股民小王上星期五以收盘价67元买进某公司股票1000股,下表为本周内(除星期六、星期日)每日该股票的涨跌情况(上涨记为正,下跌记为负):(1)星期三收盘时,该股票每股多少元?(2)本周内该股票每股最高价为多少元?最低价为多少元?13.(1)请观察下列算式:11×2=1-12,12×3=12-13,13×4=13-14,14×5=14-15,…. 则第10个算式为__________=__________,第n 个算式为__________=____________(n 是正整数);(2)运用以上规律计算:12+16+112+…+190+1110+1132.14.模仿与迁移先阅读例题的计算方法,再根据例题的计算方法计算.例 计算:-556+⎝ ⎛⎭⎪⎫-923+1734+⎝⎛⎭⎪⎫-312. 解:-556+⎝ ⎛⎭⎪⎫-923+1734+⎝⎛⎭⎪⎫-312 =⎣⎢⎡⎦⎥⎤(-5)+⎝ ⎛⎭⎪⎫-56+⎣⎢⎡⎦⎥⎤(-9)+⎝ ⎛⎭⎪⎫-23+ ⎝ ⎛⎭⎪⎫17+34+⎣⎢⎡⎦⎥⎤(-3)+⎝ ⎛⎭⎪⎫-12 =[(-5)+(-9)+17+(-3)]+[(-56)+ (-23)+34+(-12)] =0+⎝ ⎛⎭⎪⎫-54=-54.计算:⎝⎛⎭⎪⎫-201956+⎝ ⎛⎭⎪⎫-202023+404023+⎝ ⎛⎭⎪⎫-112.参考答案1.C2.D3.D 4.A5.A [解析] 记取出为负,存入为正,则(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(+5)+(+12)+(+25)]+[(-9.5)+(-8)+(-10.25)+(-2)]=(+42)+(-29.75)=12.25.6.612 (-313) 7.1 [解析] a +d +c +b =(a +c)+(b +d)=-2019+2020=1.8.1.8 251.8 [解析] (+4.5)+(-4)+(+2.3)+(-3.5)+(+2.5)=[(+4.5)+(+2.3)+(+2.5)]+[(-4)+(-3.5)]=(+9.3)+(-7.5)=1.8(kg).50×5+1.8=251.8(kg).9.0 0 [解析] 绝对值小于3的整数有±2,±1,0,其和为2+(-2)+1+(-1)+0=0. 绝对值不大于2020的整数有±2020,±2019,±2018,…,±1,0,其和为0.10.解:(1)原式=[(+7)+(-7)]+[(-21)+(+21)]=0.(2)原式=[(-4)+(-36)]+(17+73)=-40+90=50.(3)原式=⎣⎢⎡⎦⎥⎤(-37)+(+27)+⎣⎢⎡(+15)+ ⎦⎥⎤(-115)=-17+(-1)=-87. (4)原式=⎣⎢⎡⎦⎥⎤(-2.125)+(+518)+⎣⎢⎡⎦⎥⎤(+315)+(-3.2)=3+0=3. (5)原式=⎣⎢⎡⎦⎥⎤(+6)+(+14)+(-614)+[(-3.3)+(+3)+(+0.3)]+[(-6)+(+6)]+[(+8)+(-16)]=0+0+0+(-8)=-8.11.解:0.5+(-1)+(-1.5)+1+(-2)+(-1)+2+0=-2(元).总销售额为5×8-2=38(元),成本价为32元,因此共盈利38-32=6(元).故当小明卖完毛巾时,是盈利,盈利6元.12.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,该股票每股74.5元.(2)本周内该股票每股最高价为67+(+4)+(+4.5)=75.5(元);最低价为67+(+4)+(+4.5)+(-1)+(-2.5)+(-6)=66(元).13.解:(1)110×11 110-111 1n (n +1) 1n -1n +1=11×2+12×3+13×4+…+111×12=1-12+12-13+13-14+…+111-112=1-112=1112.14.解:(-201956)+(-202023)+404023+(-112)=[(-2019)+(-56)]+[(-2020)+(-23)]+(4040+23)+[(-1)+(-12)]=[(-2019)+(-2020)+4040+(-1)]+[(-56)+(-23)+23+(-12)]=0+(-43)=-43.。
人教版七年级数学上册 第一章:有理数_1.3.1:有理数的加法 学案(含答案)
初中七年级数学上册第一章:有理数——1.3.1:有理数的加法(解析)一:知识点讲解知识点一:有理数加法法则有理数加法法则:✧同号两数相加,取相同的符号,并把绝对值相加;✧绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
✧一个数同0相加,仍得这个数。
有理数的加法运算遵循“一定二求三加减”的顺序:1)确定和的符号;2)求加数的绝对值;3)依据加法法则确定是把绝对值相加还是相减。
例1:计算:①()()8.25.3++-;②⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-31272;解:原式=﹣0.7解:原式=21132-③527435+⎪⎭⎫ ⎝⎛-;④⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-653653;解:原式=20131 解:原式=0⑤()05+-解:原式=﹣5知识点二:有理数的加法运算律加法运算律:✧ 加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
a b b a +=+。
✧ 加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
()()c b a c b a ++=++。
在运算时,一定要根据需要灵活运用一下规律,以达到简化运算的目的:✧ 相反数结合法:互为相反数的两个数可先相加; ✧ 同分母结合法:同分母的分数可先相加; ✧ 凑整法:几个数相加得整数时,可先相加; ✧ 同号结合法:符号相同的数可先相加;✧ 同形结合法:带分数可拆成整数和真分数两部分再相加。
例2:计算:1) ()()781312-++-+;解:原式=02) ()6.081523125.1-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+;解:原式=﹣33)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++21746571;解:原式=212-4) ()()⎪⎭⎫ ⎝⎛++-++-+85275.18335.6431。
解:原式=﹣0.5二:知识点复习知识点一:有理数加法法则1. 计算()53+-的结果等于( A )A. 2B. ﹣2C. 8D. ﹣82. 下列计算错误的是( B )A. 15.0211-=+⎪⎭⎫ ⎝⎛-B.()()422=-+-C.()71071-=+-D.()42125.1-=⎪⎭⎫⎝⎛-+-3. 下列说法中,正确的是( D )A. 两个有理数相加,符号不变,绝对值相加B. 两个有理数的和一定大于任意一个加数C.()()25757-=--=-+-D. 两个负数相加,和取负号,并把它们的绝对值相加4. 一个数是15,另一个数比15的相反数大4,则这两个数的和是( D )A. 26B. ﹣4C. ﹣26D. 45.31与绝对值等于32的数的和等于( D ) A.31B. 1C. ﹣1D.31-或1 6. 绝对值不大于414的所有整数的和是 0 。
人教版七年级数学上册1.3.1有理数的加法能力提升及答案.doc
1.3有理数的加减法1.3.1有理数的加法能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D.可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a,b在数轴上的位置如图,则a+b的值()A.大于0B.小于0C.小于aD.大于b3.若a与1互为相反数,则|a+1|等于()A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则()A.三个数一定同号B.三个数一定都是0C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x的相反数是-2,|y|=4,则x+y的值为.6.绝对值小于2 016的整数有个,它们的和是.7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)=.8.计算:(1)(-5)+(-4);(2)|(-7)+(-2)|+(-3);(3)(-0.6)+0.2+(-11.4)+0.8;(4).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B地在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-5+17.解:原式==[(-5)+(-9)+(-3)+17]+=0+=-.(2)上述这种方法叫做拆项法,依照上述方法计算:+4 034+.创新应用★11.用[x]表示不超过x的整数中最大的整数,如[2.23]=2,[-3.24]=-4.请计算:(1)[3.5]+[-3];(2)[-7.25]+.★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升1.D2.A从数轴上可知:-1<a<0,b>1,即a,b异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6因为|4|=4,|-4|=4,所以y=±4.又因为x的相反数为-2,所以x=2.再将x,y的值代入x+y求值.6.4 03107.-1 009原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9.(2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11.(4)=(-8)+(+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B地在A地的东侧,且两地相距28km.(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L.10.解:(2)原式=+4034+=[(-2017)+(-2016)+(-1)+4034]+=0+=-2.创新应用11.解:(1)原式=3+(-3)=0.(2)原式=-8+(-1)=-9.12.解:本题答案不唯一,如:【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3有理数的加减法
1.3.1有理数的加法
能力提升
1.如果两个有理数的和是负数,那么这两个数()
A.一定都是负数
B.一定是0与一个负数
C.一定是一个正数与一个负数
D.可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数
2.有理数a,b在数轴上的位置如图,则a+b的值()
A.大于0
B.小于0
C.小于a
D.大于b
3.若a与1互为相反数,则|a+1|等于()
A.2
B.-2
C.0
D.-1
4.若三个有理数a+b+c=0,则()
A.三个数一定同号
B.三个数一定都是0
C.一定有两个数互为相反数
D.一定有一个数等于其余两个数的和的相反数
5.若x的相反数是-2,|y|=4,则x+y的值为.
6.绝对值小于2 016的整数有个,它们的和是.
7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)=.
8.计算:(1)(-5)+(-4);
(2)|(-7)+(-2)|+(-3);
(3)(-0.6)+0.2+(-11.4)+0.8;
(4)(-423)+(-313)+(+614)+(-214).
9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.
(1)B 地在A 地的哪侧?相距多远?
(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?
★10.阅读(1)小题中的方法,计算第(2)小题.
(1)-556+(-923)+(-312)+1734
. 解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34
) =[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34]
=0+(-54)=-54
. (2)上述这种方法叫做拆项法,依照上述方法计算:
(-201756)+(-201623)+4 034+(-112).
创新应用
★11.用[x]表示不超过x的整数中最大的整数,如[2.23]=2,[-3.24]=-4.
请计算:(1)[3.5]+[-3];
].
(2)[-7.25]+[-1
3
★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.
参考答案
能力提升
1.D
2.A 从数轴上可知:-1<a<0,b>1,即a ,b 异号,且|b|>|a|,故a+b>0.
3.C
4.D
5.-2或6 因为|4|=4,|-4|=4,
所以y=±4.
又因为x 的相反数为-2,
所以x=2.
再将x ,y 的值代入x+y 求值.
6.4 031 0
7.-1 009 原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.
8.解:(1)(-5)+(-4)=-(5+4)=-9.
(2)|(-7)+(-2)|+(-3)=|-9|+(-3)
=9+(-3)=6.
(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11.
(4)(-423)+(-313)+(+614)+(-214)=[(-423)+(-313)]+[(+614)+(-214)]=(-8)+(+4)=-4.
9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B 地在A 地的东侧,且两地相距28km .
(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L .
10.解:(2)原式=[(-2017)+(-56)]+[(-2016)+(-23)]+4034+[(-1)+(-12
)] =[(-2017)+(-2016)+(-1)+4034]+[(-56)+(-23)+(-12)]
=0+[(-56)+(-46)+(-36
)] =-2.
创新应用
11.解:(1)原式=3+(-3)=0.
(2)原式=-8+(-1)=-9.
12.解:本题答案不唯一,如:。