Scaling a slow-wave sleep cortical network model using NEOSIM
考研英语作文1500字:睡眠Sleep
考研英语作文1500字:睡眠Sleepsleet is part of a person's daily activity cycle. there are several different stages of sleep, and they too occur in cycles. if you are an average sleeper, your sleep cycle is as follows. when you fist drift off into slumber, your eyes will roll about a bit, you temperature will drop slightly, your muscles will rela, and your breathing well slow and become quite regular. your brain waves slow and become quite regular. your brain waves slow down a bit too, with the alpha rhythm of rather fast waves 1 sleep. for the net half hour or so, as you rela more and more, you will drift down through stage 2 and stage 3 sleep. the lower your stage of sleep. slower your brain waves will be. then about 40to 69 minutes after you lose consciousness you will have reached the deepest sleep of all. your brain will show the large slow waves that are known as the delta rhythm. this is stage 4 sleep.you do not remain at this deep fourth stage all night long, but instead about 80 minutes after you fall into slumber, your brain activity level will increase again slightly. the delta rhythm will disappear, to be replaced by the activity pattern of brain waves. your eyes will begin to dart around under your closed eyelids as if you were looking at somethingoccurring in front of you. this period of rapid eye movement lasts for some 8 to 15 minutes and is called rem sleep. it is during rem sleep period, your body will soon rela again, your breathing will slip gently back from stage 1 to stage 4 sleep----only to rise once again to the surface of near consciousness some 80 minutes later.。
微型睡眠评估(MSA)
微型睡眠评估(MSA)微型睡眠评估(MSA)微型睡眠评估(Micro Sleep Assessment, MSA)是一种用于评估个人是否存在微睡眠情况的方法。
微睡眠是指无意识地在清醒状态下发生的短暂睡眠。
这种状态容易发生在长时间疲劳或缺乏睡眠的人身上,给个人的注意力和反应能力带来危险。
通过MSA,我们可以了解一个人是否在日常生活中容易发生微睡眠,并采取相应的措施来预防潜在的危险。
MSA的实施方法MSA通常通过以下步骤进行:1. 设定合适的时间段:MSA通常在一段时间内进行,例如连续24小时。
2. 监测活动水平:使用各种传感器记录被测人员的身体活动水平。
3. 记录睡眠情况:同时记录被测人员的睡眠情况,包括入睡时间、觉醒时间和睡眠时长。
4. 分析数据:通过对收集的数据进行分析,确定是否存在微睡眠的迹象。
5. 结果解读:根据分析结果,判断被测人员是否容易发生微睡眠。
MSA的应用MSA的应用主要用于以下方面:1. 驾驶员安全:驾驶中的微睡眠可能导致交通事故,通过对驾驶员进行MSA评估,可以提前发现可能存在的微睡眠风险,并采取相应的措施,如休息、换班等。
2. 工作场所安全:对那些需要集中注意力和反应能力的岗位,如操作机器、监控设备等,进行MSA评估可以保障员工和工作场所的安全。
3. 研究和医学领域:MSA可以用于睡眠相关的研究和医学实践,帮助研究人员和医生了解睡眠问题对人体健康的影响。
总结微型睡眠评估(MSA)是一种用于评估微睡眠情况的方法。
通过监测活动水平和睡眠情况,并对数据进行分析,MSA可以提供有关个人是否存在微睡眠风险的信息。
MSA的应用涵盖了驾驶安全、工作场所安全以及研究和医学领域。
通过采取相应措施,可以减少微睡眠对个人的危险和对社会的威胁。
前沿新知寻找不用睡觉的技术
前沿新知寻找不用睡觉的技术随着现代人生活节奏加快,对时间的需求也越来越迫切。
在一天的24小时之中,大部分人必须花费至少6小时来睡觉,以充分休息和恢复身体的功能。
尽管睡觉对于身体健康至关重要,但一些人厌倦了每天花费这么多时间睡觉。
因此,科学家开始研究一些不需要睡觉就能让人保持清醒的技术,这便是前沿的新知。
近年来,科学家们尝试从许多不同的角度来寻找这种不用睡觉的技术。
一些专家利用药物来达到这个目的。
他们的方法是利用药物改变人的大脑神经系统,使人的大脑处于清醒状态,并且不会感到疲劳。
其中,最为普遍的一种药物是咖啡因。
它可以刺激大脑神经系统,以有效地保持清醒状态。
然而,药物的副作用比较大,往往会对人体的健康造成不良影响,因此就不太实用。
另一种方法是通过技术手段来产生清醒状态。
例如,在2016年,研究人员在Nature Neuroscience杂志上发表了一篇论文,介绍了一种新技术——神经脊椎刺激(NSS)。
这项技术通过对身体进行微弱电流刺激,可以增强认知功能,从而使人保持清醒状态,而且副作用较小。
人工智能(AI)是另一种寻找不用睡觉的技术的热门方向。
由于人工智能技术可以模拟和改变人脑中的过程,因此,它有望在未来实现让人不用睡觉的目标。
例如,AI技术可以分析人的大脑信号,以确定何时人需要休息,然后发出警告来提醒人要休息。
这样人们就可以更有效地花费时间,但目前这种技术还没有完全成熟和实用化。
除了这些技术,一些研究人员也探讨了利用基因编辑技术,以产生不用睡觉的人类的可能性。
然而,这个想法目前仍然存在着许多道德、伦理和安全的挑战,因此至少在可预见的未来,这个方向的研究并不会得到大规模的实践。
总之,前沿新知寻找不用睡觉的技术,尽管还需要解决许多困难和挑战,但这确实是当下科学家们在探寻的项目方向。
在未来,我们或许能够看到一些新技术的应用,让人们不再需要花费如此多的时间来睡觉,从而更加有效地利用自己的时间。
2周和6周冷水游泳运动对大鼠海马中神经营养素家族及其mRNA表达水平的影响
Me t h o d:A t o t a l o f 6 4 ma l e S p r a g u e — Da wl e y r a t s we r e r a n d o ml y d i v i d e d i n t o f o u r g r o u p s :b l a n k c o n t r o l g r o u p
t e r s wi mmi n g g r o u p( S 6 , n = 1 6 ) .T w e n t y - f o r u h a f t e r t h e l a s t s wi m t r a i n i n g r a t s we r e s a c r i i f c e d b y d e c a p i t a t i o n . E L I S A a n d r e a l t i me — P C R we r e u s e d t o d e t e c t t h e e x p r e s s i o n s o f b r a i n — d e r i v e d n e u r o t r o p h i c f a c t o r ( B DN F ) , n e r v e g r o wt h f a c t o r ( NG F ) , n e u r o t r o p h i n s 一 3 ( NT - 3 ) ,a n d t h e i r mR NA r e s p e c t i v e l y .
中 两腐 复 匡 学 磐 参2 0 1 3  ̄, 第2 8 卷, 第9 期
脑机接口技术改善睡眠质量的研究
脑机接口技术改善睡眠质量的研究As the world rushes into the era of digitalization, brain-computer interface (BCI) technology has emerged as a promising frontier in neuroscience. This remarkable technology establishes a direct communication link between the human brain and external computing devices, offering vast potential in various applications, including improving sleep quality.随着数字化时代的来临,脑机接口(BCI)技术已成为神经科学领域一个充满希望的前沿。
这一非凡的技术在人类大脑与外部计算设备之间建立了直接的通信链接,为包括改善睡眠质量在内的各种应用提供了巨大的潜力。
Sleep is a crucial aspect of human health, yet millions of people worldwide struggle with insomnia, sleep apnea, and othersleep-related issues. These conditions not only affect individuals' daily lives but also contribute to long-term health problems like depression, anxiety, and cardiovascular diseases.睡眠是人类健康的重要方面,然而全球有数百万人正遭受失眠、睡眠呼吸暂停等睡眠相关问题的困扰。
Sleeping and Dreaming
Deep sleep or coma.
Stages of Sleep (Brain Waves)
Stage 1: fast, irregular waves – occasional theta waves.
Hallucinate (see and hear things that aren’t there). Easily awakened.
Dreams are the person’s way of satisfying both the biological necessity of sexual expression and the moral rules against such expression.
Why Do We Dream?
Theoretical Perspectives
1. Freud’s Interpretation.
Dreams allow the symbolic expression of repressed ideas.
According to Freud, all basic biological desires, wishes and urges demand to be expressed, especially those that are sexual in nature,
The amount of sleep devoted to REM increases after learning and REM deprivation reduces learning.
Perhaps REM sleep increases the efficiency of learning by (a) consolidating short-term memories formed by the activity of the hippocampus and (b) purging the brain of connections that are associated with incorrect responding.
METHOD AND APPARATUS FOR IMPROVING SLOW WAVE SLEEP
专利名称:METHOD AND APPARATUS FORIMPROVING SLOW WAVE SLEEP STAGE 发明人:DEMENTIENKO, Valery V.,MAEV, RomanG.,BUGAEV, Alexander S.,INDURSKY,Peter,MARKELOV, ViacheslavV.,SHAKHNAROVICH, ViacheslavM.,STRUMBAN, Emil E.申请号:EP17764203申请日:20170310公开号:EP3426330A4公开日:20191127专利内容由知识产权出版社提供摘要:A method and apparatus is disclosed for slow wave sleep improvement. The method includes recording a biosignal from a skin area of a patient using an electrode system. The slow wave stage of NREM sleep is detected by analyzing an oscillation rate of the biosignal. If the slow wave stage is detected, threshold electrocutaneous stimulation is applied to improve the quality of sleep. The described embodiment relates to an apparatus for slow wave sleep improvement comprising an electrode system, a measuring unit, a therapy unit and a processor. The processor is coupled to the measurement unit for receiving the biosignal corresponding to the electrodermal activity. The processor proceses the biosignal to determine the slow wave sleep stage and activates the therapy unit to deliver threshold electrocutaneous therapy to the patient with the purpose of improving the slow wave sleep stage.申请人:Dreamstone, Inc.更多信息请下载全文后查看。
脑网络一些基本概念
节点度(degree)、度分布(degree distribution). 度是对节点互相连接统计特性最重要的描述, 也反映重要的网络演化特性. 度k 定义为与节点直接相连的边数. 节点的度越大则该节点的连接就越多, 节点在网络中的地位也就越重要. 度分布P(k)是网络最基本的一个拓扑性质, 它表示在网络中等概率随机选取的节点度值正好为k 的概率, 实际分析中一般用网络中度值为k 的节点占总节点数的比例近似表示. 拥有不同度分布形式的网络在面对网络攻击时会表现出截然不同的网络行为.集群系数(clustering coefficient).或称聚类系数.集群系数衡量的是网络的集团化程度, 是度量网络的另一个重要参数, 表示某一节点i 的邻居间互为邻居的可能. 节点i 的集群系数C i 的值等于该节点邻居间实际连接的边的数目(e i)与可能的最大连接边数(k i(k i–1)/2)的比值(图1(a)), 即网络中所有节点集群系数的平均值为网络的集群系数, 即易知0≤C≤1. 由于集群系数只考虑了邻居节点间的直接连接, 后来有人提出局部效率(local efficiency) E loc 的概念. 任意节点i 的局部效率为其中, G i 指节点i 的邻居所构成的子图, l jk 表示节点j,k 之间的最短路径长度(即边数最少的一条通路). 网络的局部效率为所有节点的局部效率的平均, 即集群系数和局部效率度量了网络的局部信息传输能力, 也在一定程度上反映了网络防御随机攻击的能力.最短路径长度(shortest path length).最短路径对网络的信息传输起着重要的作用, 是描述网络内部结构非常重要的一个参数. 最短路径刻画了网络中某一节点的信息到达另一节点的最优路径,通过最短路径可以更快地传输信息, 从而节省系统资源. 两个节点i,j 之间边数最少的一条通路称为此两点之间的最短路径, 该通路所经过的边的数目即为节点i,j 之间的最短路径长度, l ij (图1(b)). 网络最短路径长度L 描述了网络中任意两个节点间的最短路径长度的平均值.通常最短路径长度要在某一个连通图中进行运算, 因为如果网络中存在不连通的节点会导致这两个节点间的最短路径长度值为无穷. 因此有人提出了全局效率(global efficiency)E glob的概念.最短路径长度和全局效率度量了网络的全局传输能力. 最短路径长度越短, 网络全局效率越高, 则网络节点间传递信息的速率就越快.中心度(centrality). 中心度是一个用来刻画网络中节点作用和地位的统计指标, 中心度最大的节点被认为是网络中的核心节点(hub). 最常用的度中心度(degree centrality)以节点度刻画其在网络中的中心程度, 而介数中心度(betweenness centrality)则从信息流的角度出发定义节点的中心程度. 对于网络G 中的任意一点i, 其介数中心度的计算公式如下:其中σjk 是从节点j 到节点k 的所有最短路径的数量,σjk(i)是这些最短路径中通过节点i 的数量.“小世界”网络. 研究表明, 规则网络具有较高的集群系数和较长的最短路径长度, 与此相反,随机网络拥有较低的集群系数和较短的最短路径长度. 兼具高集群系数和最短路径长度的网络称为“小世界”网络. 将随机网络作为基准,如果所研究网络相对于随机网络具有较大的集群系数和近似的最短路径长度, 即γ = C real/C random>> 1, λ= L real/L random ~ 1 (其中脚标random 表示随机网络,real 表示真实网络), 则该网络属于“小世界”网络范畴.σ =γ /λ来衡量“小世界”特性, 当σ>1 时网络具有“小世界”属性, 且σ越大网络的“小世界”属性越强.概念:小世界网络( small-world network)无标度网络( scale-free network)随机网络( random network)规则网络( regular network)无向网络( undirected network)加权网络( weighted network)图论( Graph theory)邻接矩阵( adjacency matrix)结构性脑网络( structural brain networks 或anatomical brain networks) 功能性脑网络( functional brain networks)因效性脑网络( effective brain networks)感兴趣脑区( region of interest,ROI)血氧水平依赖( BOLD,blood oxygenation level depended)体素( voxel)自发低频震荡( spontaneous low-frequency fluctuations,LFF)默认功能网络( default mode network,DMN)大范围皮层网络( Large-scale cortical network)效应连接(effective connectivity)网络分析工具箱(Graph Analysis Toolbox,GAT)自动解剖模板(automatic anatomical template,AAL)技术:脑电图(electroencephalogram, EEG)脑磁图(magnetoencephalogram, MEG)功能磁共振成像(Functional magnetic resonance imaging, fMRI)弥散张量成像(Diffusion Tensor Imaging, DTI)弥散谱成像( diffusion spectrum imaging ,DSI)细胞结构量化映射( quantitative cytoarchitecture mapping)正电子发射断层扫描(PET, positron emisson tomography)精神疾病:老年痴呆症( Alzheimer’ s disease,AD)癫痫( epilepsy)精神分裂症( Schizophrenia)抑郁症( major depression)单侧注意缺失( Unilateral Neglect)轻度认知障碍(mild cognitive impairment, MCI)正常对照组(normal control, NC)指标:边( link,edge)节点(vertex 或node)节点度(degree)区域核心节点(provincial hub)度分布(degree distribution)节点强度( node strength)最短路径长度(shortest path length)特征路径长度( characteristic path length)聚类系数( clustering coefficient)中心度(centrality)度中心度(degree centrality)介数中心度( betweenness centrality)连接中枢点( connector hub)局部效率(local efficiency)全局效率( global efficiency)相位同步( phase synchronization)连接密度(connection density/cost)方法:互相关分析( cross-correlation analysis)因果关系分析( Causality analysis)直接传递函数分析( Directed Transfer Function,DTF)部分定向相干分析( Partial Directed Coherence,PDC)多变量自回归建模( multivariate autoregressive model,MV AR) 独立成分分析( independent component analysis,ICA)同步似然性(synchronization likelihood, SL)结构方程建模(structural equation modeling, SEM)动态因果建模(dynamic causal modeling, DCM)心理生理交互作用模型(Psychophysiological interaction model) 非度量多维定标(non-metric multidimensional scaling)体素形态学(voxel-based morphometry, VBM)统计参数映射(statistical parametric mapping,SPM)皮尔逊相关系数(Pearson correlation)偏相关系数(Partial correlation)脑区:楔前叶( precuneus)后扣带回( posterior cingulated cortex,PCC)腹侧前扣带回( ventral anterior cingulated cortex,vACC)前额中分( medial prefrontal cortex,MPFC)额叶眼动区( the frontal eye field,FEF)副视区( the supplementary eye field,SEF)顶上小叶( the superior parietal lobule,SPL)顶内沟( the intraparietal sulcus,IPS)。
用了助眠产品,为何失眠更重
用了助眠产品,为何失眠更重作者:暂无来源:《读报参考》 2020年第9期随着生活节奏加快、工作压力增大,柔软舒适的床垫、高度适中的枕头成了许多人的助眠好物,还有备受追捧的各种可穿戴设备,可以搭配手机应用程序监控睡眠情况,让你清楚地知道昨晚那一觉究竟能得几分。
但是,这些睡眠追踪器真的能帮助你改善睡眠吗?睡眠追踪器正是在最近几年随着智能手机、可穿戴设备的广泛应用而出现的。
《经济学人》杂志预测,就像每天共享健身数据那样,人们也很快会开始在社交媒体上共享自己的睡眠数据。
“睡眠追踪器显示漂亮的图形、图片、数字,很直观、很吸引人。
”提起现在越来越多人使用睡眠追踪器,伊夫琳娜伦敦儿童医院儿童睡眠顾问迈克尔·法夸尔说,“人们开始尝试监测睡眠质量,前所未有地真正对待和思考自己的睡眠,我认为这具有积极作用。
”尤其是对于喜欢熬夜的人来说,睡眠追踪器可以让他们认识到,自己花在床上的时间是有多可怜。
但《夜间大脑》一书的作者、神经科学专家盖伊·莱斯齐纳和法夸尔认为,在某些情况下,睡眠追踪器的负面作用可能更大。
医生说她睡得很沉,追踪器给出相反结论澳大利亚南威尔士州的亚历克斯·怀特克罗斯9个月前购买了一个小设备用来检测运动情况,其中的睡眠监控功能让他颇感兴趣。
但怀特克罗斯非但没能改善睡眠,反而越睡越少。
因为他半夜醒来看到睡眠监控显示自己的深度睡眠远远“不达标”时,就会心里发慌。
结果便是,晚上睡不好,白天更疲惫,越睡越少,形成了恶性循环。
而27岁的B小姐每晚11时上床睡觉,一觉睡到早上7时50分被闹钟吵醒,将近9个小时的睡眠时间足以令大多数人羡慕不已。
B小姐从不起夜,白天也精神很好,按照睡眠医生的说法,她拥有健康完美的睡眠。
但B小姐的睡眠追踪器却得出了完全相反的结论。
首要问题自然是,睡眠追踪器究竟能不能追踪睡眠,并给出正确的评分?对这个问题感到疑惑的不只是B小姐。
C女士使用的睡眠追踪器告诉她,她的平均睡眠效率只有60%;但是医院给出的专业报告却显示,她睡觉很沉。
慢波睡眠英语
慢波睡眠英语Slow Wave SleepThe human body is a remarkable and intricate machine, designed to function with precision and efficiency. One of the most critical components of this complex system is the sleep cycle, a vital process that allows our bodies and minds to rest, rejuvenate, and prepare for the challenges of the day ahead. Within the sleep cycle, there is a phase known as slow wave sleep (SWS), a crucial component that plays a vital role in our overall health and well-being.Slow wave sleep is the deepest and most restorative stage of the sleep cycle, characterized by low-frequency, high-amplitude brain waves. During this phase, the body enters a state of profound relaxation, with a significant decrease in heart rate, blood pressure, and breathing rate. This physiological state allows the body to focus its resources on essential processes, such as tissue repair, muscle growth, and the regulation of hormones.One of the primary functions of slow wave sleep is the consolidation of memories. During this stage, the brain processes and organizes the information gathered throughout the day, transferring short-term memories into long-term storage. This process is crucial for cognitive function, as it allows us to retain and retrieve important information, enhance problem-solving skills, and improve overall learning abilities.In addition to memory consolidation, slow wave sleep also plays a crucial role in the regulation of the body's immune system. During this phase, the body releases growth hormones and cytokines, which are essential for fighting off infections and promoting the healing of wounds and injuries. This process is particularly important for individuals who are recovering from illness or injury, as it helps to accelerate the healing process and strengthen the immune system.Another significant benefit of slow wave sleep is its impact on mood and emotional regulation. Studies have shown that individuals who experience disruptions in their sleep cycle, particularly in the slow wave sleep phase, are more likely to suffer from mood disorders, such as depression and anxiety. This is because slow wave sleep is responsible for the regulation of neurotransmitters, such as serotonin and dopamine, which are essential for maintaining a healthy emotional state.Furthermore, slow wave sleep has been linked to the regulation of appetite and weight management. During this phase, the body releases hormones that regulate hunger and satiety, such as leptinand ghrelin. When the sleep cycle is disrupted, these hormones can become imbalanced, leading to increased hunger, cravings, and weight gain.Despite the numerous benefits of slow wave sleep, many individuals struggle to achieve the recommended amount of this critical sleep stage. Factors such as stress, age, and certain medical conditions can all contribute to a decrease in slow wave sleep, leading to a range of negative health consequences.To combat this issue, it is essential to prioritize sleep hygiene and establish healthy sleep habits. This may include maintaining a consistent sleep schedule, creating a relaxing sleep environment, and avoiding stimulating activities before bedtime. Additionally, engaging in regular physical activity and practicing stress-reduction techniques, such as meditation or yoga, can help to promote better sleep quality and increase the amount of slow wave sleep.In conclusion, slow wave sleep is a vital component of the sleep cycle, offering a range of benefits for physical, cognitive, and emotional well-being. By understanding the importance of this stage and implementing strategies to optimize our sleep patterns, we can take proactive steps towards improving our overall health and enhancing our quality of life.。
褪黑素对阿尔茨海默病小鼠模型钙离子昼夜节律的调节作用及机制
【Abstract】 Objective To observe the regulation and mechanism of melatonin ( MT) on the calcium ion concentration circadian rhythm of Alzheimer's disease( AD) model mice' autonomic activities and cognitive ability. Methods The animal model of AD was founded by injecting beta-amyloid ( Abeta1 ~42 ) into the lateral cerebral ventricle of BALB / c mice,then the AD model was intervented with MT. ZZfatigue rota-rod,Morris water maze,biochemical analysator were used to test the change of autonomic activity,cognitive ability,calcium ion concentration of hippocampal tissue. Results The circadian rhythm of AD model mice autonomic activities and spatial learning and memory ability had been ameliorated on the effect of MT,and MT significantly combated the rise of total calcium ion concentration in brain tissue of mice. Conclusions The exogenous MT remarkably improves the irregular circadian rhythm of AD model mice,and inhibits the intracellular calcium ion shifting to neuron to perform the regulatory effect of anti-AD.
睡眠医学相关专有名词翻译
睡眠医学相关专有名词翻译睡眠医学相关专有名词翻译Actigraph活动记录器测量活动量之仪器。
见actigraphy。
Actigraphy (actometry) 活动记录检查由于「睡眠-清醒」周期(sleep-wakefulness cycle) 和「休息-活动」周期(rest-activity cycle) 有近乎一对一的相关性,且活动量变化和各睡眠分期(sleep stage) 中的肌肉张力(muscle tone) 变化也有相关,研究者因而发展出一些测量活动量的方法以间接测量「睡眠-清醒」状态。
其中之一较为广泛应用的技术为活动记录,其以加速度传感器感应动作变化,进而量化并储存该项数据。
具感测、量化处理、储存等三部份装置的活动记录器(actigraph) 体积大小相当于一只男用手表,其配装表带后可以配带于手腕。
活动记录器所记录储存的数据可达数天至数周甚至数月,因此比以脑波测量为主的多频道睡眠记录仪(polysomnograph) 更适宜长期监测「休息-活动」周期之用。
参考文献:Kripke DF et al. Wrist actigraph measures of sleep andrhythms. Electroencephalogr Clin Neurophysiol 1978;44:674-8.Activation-synthesis hypothesis 「活化─整合」假说、「活化─合成」假说由美国睡眠研究学者J. A. Hobson及R. W. McCarley于公元1977年所提出之理论,用以解释梦的形成。
根据「活化─整合」假说,梦的出现与特征是快速动眼睡眠(rapid-eye-movement sleep, REM sleep) 状态时生理运作的产物。
当快速动眼睡眠由桥脑(pons) 活化所启动时,和意识有关的大脑网络接受桥脑刺激讯号也呈现活化状态,因而大脑将这些由下而上的刺激讯号混合整理后即为梦的展现。
睡眠剥夺减弱幼鼠空间学习记忆能力及海马信号转导
[ b t c] 0be t e T n e t ae t e r l o E K o e r i n mo y i a me ti- A sr t a j ci o iv si t h oe fp R n l nn a d me r mp i n n v g a g r
we e u e O m a D o 1 M o rs wat rm a e we e us d f he t s i a s lar ng a e or r s d t ke S m de. r i e z r e ort e tng ofr t "e ni nd m m y
a it ,b sn mmu o itc e s r to Od tc h x rs ino E bl y y u ig i i n hso h mityme h dt eett ee p e so fp RK1 2 i / n CA1 ,CA2a e ra
o ip c mp s fhp o a u .Reut p sl s ERK1 2e p e so 1 / x rs ini CA ,CA2ae fS g o pwa infcn l s n n rao D r u ssg i a tyl sa d i e
we k rt a h t e wo c n r l r u s( < 0 0 ) a e h n t e o h rt o t o o p P g . 1 .At h s a fM o rs wa e z r i i g,e — e 1 td y o r i t t rma e tan n v
齐齐哈尔医学院学报 21 0 0年 第 3 1卷 第 1 2期
睡 眠 剥 夺 减 弱 幼 鼠空 间 学 习记 忆 能 力 及 海 马信 号 转 导
睡眠稳态的电生理机制
睡眠稳态的电生理机制
肖雪;陈栋;刘佳丽;王亮
【期刊名称】《生物化学与生物物理进展》
【年(卷),期】2024(51)2
【摘要】大脑需要稳态系统来维持神经元的正常活动。
睡眠不足会影响到有机体的生理功能,因此清醒时不断累积的睡眠压力会迫使哺乳动物进入睡眠状态,长时间清醒(睡眠剥夺)则会延长或加深随后的睡眠,这一现象被称为睡眠稳态(sleep homeostasis)。
探明睡眠稳态的电生理机制有利于改善睡眠,治疗相关疾病,但目前仍存在许多问题。
鉴于此,本文围绕睡眠稳态的电生理机制,首先关注睡眠稳态公认的电生理标志物——慢波活动,接下来介绍神经元放电率的相关研究,最后从脑区差异、睡眠阶段、学习记忆和物种差异几个方面进行展望。
【总页数】9页(P369-377)
【作者】肖雪;陈栋;刘佳丽;王亮
【作者单位】中国科学院心理健康重点实验室(中国科学院心理研究所);中国科学院大学心理学系
【正文语种】中文
【中图分类】Q428;B845
【相关文献】
1.超急性期心肌梗死的细胞电生理基础和心电图表现(二)——心电图表现、电生理机制和临床诊断要点
2.T波电交替预测心肌梗死患者并发心源性猝死的电生理机
制和临床价值3.犬左上肺静脉电刺激诱发心房颤动的电生理机制探讨4.家族性长QTU综合征伴发扭转型室速的电生理机制及电药理评价
因版权原因,仅展示原文概要,查看原文内容请购买。
艾纳诗慢波睡眠机招标信息参数
艾纳诗慢波睡眠机招标信息参数(最新版)目录1.招标信息概述2.艾纳诗慢波睡眠机简介3.招标参数详细说明4.投标要求与相关事项5.招标文件的获取与联系方式正文一、招标信息概述根据相关招标公告,我们了解到艾纳诗慢波睡眠机即将进行招标。
本次招标旨在寻找优秀的合作伙伴,共同推广艾纳诗慢波睡眠机,为广大消费者提供优质的睡眠体验。
二、艾纳诗慢波睡眠机简介艾纳诗慢波睡眠机是一款集高科技与实用性于一身的高品质睡眠产品。
该睡眠机通过模拟人类自然睡眠过程中的慢波,帮助用户进入深度睡眠状态,从而提高睡眠质量。
艾纳诗慢波睡眠机在市场上已经获得了良好的口碑和销售业绩,是一款具有广泛前景的睡眠辅助产品。
三、招标参数详细说明1.产品型号:艾纳诗慢波睡眠机2.产品功能:模拟慢波睡眠,提高睡眠质量3.产品尺寸:长×宽×高(具体尺寸待定)4.产品颜色:白色(其他颜色可根据需求定制)5.产品配件:睡眠机主机、充电器、使用说明书等四、投标要求与相关事项1.投标人需具备合法有效的营业执照、组织机构代码证、税务登记证等相关资质。
2.投标人应具备良好的商业信誉和完善的售后服务体系。
3.投标人需在规定时间内提交投标文件,包括产品报价、产品介绍、销售策略等。
4.投标文件需加盖公章,并密封递交。
五、招标文件的获取与联系方式1.有意参与招标的投标人,可于招标公告发布之日起至报名截止日期前,向我公司领取招标文件。
2.招标文件费用:人民币 500 元/份,售出不退。
3.联系方式:地址:(具体地址待定)联系人:(具体姓名待定)联系电话:(具体电话待定)电子邮箱:(具体邮箱待定)4.有关招标事宜,可随时向我公司咨询。
体位治疗体位性阻塞性睡眠呼吸暂停有效性meta分析
采用RevMan5.3统计软件进行Meta分析,数 据的异质性采用F统计量检验,统计学同质性时 (PM CIO# W 50%),采用固定效应模型;统计学 异质性时(P<0.10,l2>50%))采用随机效应模型, 根据可能出现异质性因素进行亚组分析和敏感性 分析异质性来源。连续型变量采用平均差(mean difference, MD),作为疗效分析的统计量,95%可信 区间(confidence interval,CI)表示各效应量。异质性 因素行亚组分析和敏感性分析明确异质性原因。数 据分析结果用森林图表示,发表偏倚以漏斗图表 示。P<0.05表示差异有统计学意义。 2结果 2.1纳入文献基本特征及质量评价结果
研究类型:体位治疗POSA自身前后对照研 究。纳入标准:(1)研究中常用POSA分类标准o(2) 明确体位治疗仪器放置部位及治疗时间,如颈后、 前额、胸前。(3)结局指标必须包括以下一项:AHI、 仰卧位睡眠时间、仰卧位AHI、非仰卧位AHI、最低 血氧饱和度和Epworth嗜睡程度评价表。排除标 准:(1)非中英文文献;(2)没有全文的文献;(3)重 复发表的研究;(4)综述类文献;(5)不能提取数据 并且联系作者后仍无法获取的文献。 1.2文献检索
or **sleep position trainer" and ** positional obstructive sleep apnea" or "positionalOSA" or ** supine-dependent 0SA"o通过计算机检索中外数据库。 1.3文献筛选及资料提取
《新概念英语第四册》第一章至第十九章精讲
《新概念英语第四册》第一章至第十九章精讲目录1. Lesson 1 --- Finding fossil man 发现化石人2. Lesson 2 --- Spare that spider不要伤害蜘蛛3. Lesson 3 --- Matterhorn man马特霍恩山区人4. Lesson 4 --- Seeing hands能看见东西的手5. Lesson 5 --- Youth青年6. Lesson 6 --- The sporting spiri 体育的精神7. Lesson 7 --- Bats蝙蝠8. Lesson 8 --- Trading standards贸易标准9. Lesson 9 --- Royal espionage 王室谍报活动10.Lesson 10 --- Silicon valley 硅谷11.Lesson 11 --- How to grow old 如何安度晚年12.Lesson 12 --- Banks and their customers银行和顾客13.Lesson 13 --- The search for oil 探寻石油14.Lesson 14 --- The Butterfly Effect 蝴蝶效应15.Lesson 15 --- Secrecy in industry 工业中的秘密16.Lesson 16 --- The modern city 现代城市17.Lesson 17 --- A man-made disease 人为的疾病18.Lesson 18 --- Porpoises 海豚19.Lesson 19 --- The stuff of dreams 话说梦的本质Lesson 1Finding fossil man 发现化石人Why are legends handed down by storytellers useful?We can read of things that happened 5,000 years ago in the Near East, where people first learned to write. But there are some parts of the world where even now people cannot write. The only way that they can preserve their history is to recount it as sagas -- legends handed down from one generation of storytellers to another. These legends are useful because they can tell us something about migrations of people who lived long ago, but none could write down what they did. Anthropologists wondered where the remote ancestors of the Polynesian peoples now living in the Pacific Islands came from. The sagas of these people explain that some of them came from Indonesia about 2,000 years ago. But the first people who were like ourselves lived so long ago that even their sagas, if they had any, are forgotten. So archaeologists have neither history nor legends to help them to find out where the first 'modern men' came from.Fortunately, however, ancient men made tools of stone, especially flint, because this is easier to shape than other kinds. They may also have used wood and skins, but these have rotted away. Stone does not decay, and so the tools of long ago have remained when even the bones of the men who made them have disappeared without trace.New words and expressions 生词与短语fossil man (title)adj. 化石人Recountv. 叙述Sagan. 英雄故事Legendn. 传说,传奇Migrationn. 迁移,移居Anthropologistn. 人类学家Archaeologistn. 考古学家Ancestorn. 祖先Polynesianadj.波利尼西亚(中太平洋之一群岛)的Indonesian. 印度尼西亚Flintn. 燧石Rotn. 烂掉本文参考译文我们从书籍中可读到5,000 年前近东发生的事情,那里的人最早学会了写字。
失眠障碍患者记忆功能与海马结构及功能影像的相关性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IN Cells
0
0
-+
---b ---b
---+
AMPA NMDA GABAR GABAB
Fig. 1. The compartmental network model of isolated cortex.
this problem can be successfully resolved by scaling down the size of simulated network. One well-known example of this approach is a model of thalamocortical spindle Hz activity usually observed during early sleep. These oscillations oscillations-7-14 are generated as a result of interaction between thalamic relay and reticular cells and the simplest model which is able to simulate this activity can include only a few neurons [4]. However, there are problems which cannot be scaled down easily. One example is a model of slow-wave sleep (SWS) oscillations-rhythmic ( < 1 Hz) activity observed during natural sleep or under some types of anaesthesia [lo]. During SWS the whole thalamocortical network is switched periodically between up (active) and down (silent) states and the mechanisms controlling these transitions were unknown until recently. Based on the studies of an isolated cortical slab, it has been hypothesized that random summation of the miniature excitatory postsynaptic potentials (minis) in a single cortical cell (or a few cells) during silent phases of SWS can initiate network activity at each cycle of SWS oscillations [ll]. As these events occur independently in different cells, the probability of a whole network reactivation should grow as the size of the network increases thus leading to faster oscillations. Using analytical studies it was found that in a large enough cortical network ( > 100,000,000 neurons) the probability of burst initiation can increase sufficiently to provide oscillations in the frequency range of SWS activity [I 11. A computational Hodgkin-Huxley-type model of the cortical network was developed in sequential C++ to test these predictions. This model included layers of cortical excitatory cells and inhibitory interneurons interconnected with GABAa, AMPA and NMDA synapses (Fig. 1). As network size was critical factor, an artificial increase of minis amplitude was a necessary approach to study SWS activity in a small network including a few hundred cells [I]. Systematic study of the influence of the network size on the properties of spontaneously generated SWS-like oscillations requires simulations of much larger networks-the goal which possibly can be reached using parallel computer simulations.
Supported by: NIH (MH-57358) The computations were performed on the National Science Foundation ! Terascale Computing System at the Pittsburgh Supercomputing Center. * Corresponding author. E-mail addresses: fwh@ (F. Howell), bazhenov@ (M. ~azhenov), paulro@ (P. Rogister), teny@ (T. Sejnowski), nigel.goddard@(N. Goddard). 0925-2312/02/$- see front matter @ 2002 Elsevier Science B.V. All rights rese~ed. PII: SO925-2312(02)00399-5
Abstract
We describe a case study tiansforming a simulation model coded in sequential C++ to run in parallel under Neosim, to enable much larger compartmental network models to be run. For some network models cut down scale is sufficient; however, there are cases where network behaviour cannot be reproduced on a smaller model (e.g. Neurocomputing 32-33 (2000) 1041). The example we present is a model of slow-wave sleep oscillations. In an earlier paper (Neurocomputing 38 (2001) 1657) we outlined the design of the Neosim framework for scaling models, focussing on networks of compartmental neuron models built using existing simulation tools Neuron and Genesis. Here, we explain how a Hodgkin-Huxley network model coded in Cf f for a cortical network was adapted for Neosim, and describe the experiments planned. This case study should be of interest to others considering how best to scale up existing models and interface their own coded models with other simulators. @ 2002 Elsevier Science B.V. All rights reserved.
NEUROCOMPUTING
ELSEVIER
Neurocomputing 44-46 (2002) 453 - 458
Scaling a slow-wave sleep cortical network model using NEOSIM*
aDivision of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, 5 Forrest Hill, Edinburgh E M 2QL, Scotland, UK b ~ h Salk Institute, PO Box 85800, Sun Diego, CA 92186-5800, USA e
F. Howell et al. l Neurocomputing 44-46 (2002) 453- 458
+ cCellPkg narne="cellu>