八年级数学下册第十六章二次根式二次根式的乘除二次根式的乘法练习新人教版
人教版数学八年级下册:习题word版:第十六章 二次根式
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念基础题知识点1 二次根式的定义1.(2019·黔东南期末)下列式子中一定是二次根式的是( A )A . 2B .32C .-2D .x2.下列各式中,不一定是二次根式的为( A )A .a +1B .b 2+1C .0D .(a -b )23.小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?错(填“对”或“错”).知识点2 二次根式有意义的条件 4.(2019·黔南期中联考)二次根式x +3有意义的条件是( C )A .x >3B .x >-3C .x ≥-3D .x ≥35.当x 为何值时,下列各式有意义?(1)-x ;解:由-x ≥0,得x ≤0. ∴当x ≤0时,-x 有意义.(2)5-2x ;解:由5-2x ≥0,得x ≤52. ∴当x ≤52时,5-2x 有意义.(3)x 2+1;解:由x 2+1≥0,得x 为任意实数.∴当x 为任意实数时,x 2+1都有意义.(4)14-3x. 解:由4-3x>0,得x<43. ∴当x<43时,14-3x有意义.知识点3 二次根式的实际应用6.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为( B )A .1 dm B. 2 dm C. 6 dm D .3 dm易错点 考虑不全造成答案不完整7.若式子a +1a -2有意义,则实数a 的取值范围是( C ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >202 中档题8.(2019·毕节织金县期末)如果y =1-x +x -1+2,那么(-x)y 的值为( A )A .1B .-1C .±1D .0 9.(2020·遵义汇川区模拟)若x -1+2x -3在实数范围内有意义,则实数x 的取值范围是x ≥1且x ≠3. 10.要使二次根式2-3x 有意义,则x 的最大值是23. 11.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.(只需填一个)12.x 为何值时,下列各式在实数范围内有意义? (1)32x -1; 解:x>12.(2)21-x; 解:x ≥0且x ≠1.(3)1-|x|;解:-1≤x ≤1.(4)x -3+4-x.解:3≤x ≤4.03 综合题13.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足b =4+3a -6+32-a ,求此三角形的周长. 解:∵3a -6≥0,2-a ≥0,∴a =2,b =4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.综上,此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 (a)2=a(a ≥0) 1.计算:(3)2=3;(49)2=49. 2.把下列非负数写成一个非负数的平方的形式:(1)5=(5)2; (2)3.4=( 3.4)2; (3)16=(16)2; (4)x =(x)2(x ≥0). 3.在实数范围内分解因式:x 2-5=(x +5)(x -5).知识点2 a 2=a(a ≥0)4.(2019·黔东南期末)计算:(-1)2=1.5.若(a -2)2=2-a ,则a 的取值范围是a ≤2.6.计算:(1)49;解:原式=72=7.(2)(-5)2;解:原式=52=5.(3)-(-13)2; 解:原式=-(13)2=-13.(4)4×10-4. 解:原式=(2×10-2)2=2×10-2.知识点3 代数式用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式.7.下列式子中属于代数式的有( A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个8.若一个正方体的表面积为S ,则用含S 的代数式表示正方体的棱长a =S 6;当S =18时,a =3.知识点4 二次根式的非负性二次根式a的两个非负性:(1)被开方数a必须是非负数;(2)a的结果一定是非负数.9.已知x,y为实数,且x-1+3(y-2)2=0,则x-y的值为( D )A.3 B.-3 C.1 D.-110.当x=2_020时,式子2 021-x-2 020有最大值,且最大值为2_021.易错点运用a2=a(a≥0)时,忽略a≥011.计算:(1-2)2=2-1.02中档题12.下列等式正确的是( A )A.(3)2=3 B.(-3)2=-3 C.33=3 D.(-3)2=-3 13.化简二次根式(3.14-π)2,结果为( C )A.0 B.3.14-πC.π-3.14 D.0.114.(2020·呼伦贝尔)已知实数a在数轴上的对应点位置如图所示,则化简|a-1|-(a-2)2的结果是( D )A.3-2a B.-1 C.1 D.2a-315.若等式(x-2)2=(x-2)2成立,则字母x的取值范围是x≥2.16.计算下列各式:(1)13+23=3;(2)13+23+33=6;(3)13+23+33+43=10;(4)13+23+33+43+53=15;(5)13+23+33+…+203=210;(6)猜想13+23+33+…+n3=n(n+1)2.(用含n的代数式表示)17.比较211与35的大小.解:∵(211)2=22×(11)2=44,(35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.18.已知实数m满足(2-m)2+m-4=m2,求m的值.解:由题意,得m-4≥0,解得m≥4.∴原等式化为m-2+m-4=m.整理,得m-4=2,解得m=8.03综合题19.甲、乙两人同时解答题目:“化简并求值:a+1-6a+9a2,其中a=5.”甲、乙两人的解答不同,甲的解答是:a+1-6a+9a2=a+(1-3a)2=a+1-3a=1-2a=-9;乙的解答是:a+1-6a+9a2=a+(1-3a)2=a+3a-1=4a-1=19.(1)甲的解答是错误的;(2)(用公式表示)(3)模仿上题解答:化简并求值:|1-a|+1-8a+16a2,其中a=2.解:|1-a| +1-8a+16a2=|1-a|+(1-4a)2.∵a=2,∴1-a<0,1-4a<0.∴原式=a-1+4a-1=5a-2=8.16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 二次根式的乘法二次根式的乘法法则:a·b =ab(a ≥0,b ≥0).1.计算并化简8×2的结果为( C )A .16B . 4C .4D .162.下列各等式成立的是( D )A .45×25=8 5B .53×42=20 5C .43×32=7 5D .53×42=20 63.等式x +1·x -1=x 2-1成立的条件是( A )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≥-1 4.计算:(1)12×8=2;(2)221×(-37)=-6.5.计算:(1)2×11;解:原式=22.(2)125×15; 解:原式=125×15=25 =5.(3)32×27;解:原式=3×2×2×7=614.(4)3xy·1y .解:原式=3xy·1y=3x.知识点2 积的算术平方根积的算术平方根的性质:ab=a·b(a≥0,b≥0).6.化简40的结果是( B )A.10 B.210 C.4 5 D.20 7.化简:(1)(-3)2×6=36;(2)2y3=y2y.8.化简:(1)144×169;解:原式=144×169=12×13=156.(2)9x2y5z.解:原式=9·x2·y5·z=3x y4·y·z=3xy2yz.9.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.易错点忽视被开方数不能小于零10.化简:(-4)×(-9).解:原式=-4×-9=(-2)×(-3)=6. 以上解答过程正确吗?若不正确,请改正.解:不正确.原式=36=6.02中档题11.已知m =(-33)×(-221),则有( A ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-512.(教材P 16“阅读与思考”变式)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶(约1202-约1261)曾提出利用三角形的三边求其面积的秦九韶公式S =12a 2b 2-(a 2+b 2-c 22)2.若一个三角形的三边长分别为2,3,4,则其面积是( B ) A .3158 B .3154 C .3152 D .15213.(教材P5习题T9(2)变式)(2020·益阳)若计算12×m 的结果为正整数,则无理数m 写出一个符合条件的即可). 14.(2019·铜仁期末)计算:133x 3y 2·1212xy 2=x 2y 2. 15.化简:(1)75×20×12; 解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);解:原式=14×112 =2×72×42=2×72×42=28 2.(3)-32×45×2;解:原式=-3×16×22=-96 2.(4)200a 5b 4c 3(a >0,c >0).解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.16.将下列二次根式中根号外的因数或因式移至根号内:(1)35;解:原式=32×5=45.(2)-23;解:原式=-22×3=-12.(3)x-x.解:原式=-(-x)-x=-(-x)2·(-x)=--x3.17.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦因数,在某次交通事故调查中,测得d=20米,f=1.2,肇事汽车的车速大约是多少?(6≈2.449 5,结果精确到0.01千米/时)解:当d=20米,f=1.2时,v=16df=16×20×1.2=1624=326≈78.38(千米/时).答:肇事汽车的车速大约是78.38千米/时.03综合题18.观察分析下列数据:0,-3,6,-3,23,-15,32,…,根据数据排列的规律得到第16个数据应是(结果需化简)第2课时 二次根式的除法01 基础题知识点1 二次根式的除法二次根式的除法法则:a b =a b(a ≥0,b>0). 1.计算:10÷2=( A )A . 5B .5C .52D .1022.下列运算正确的是( D ) A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 3.计算:(1)40÷5; 解:原式=40÷5 =8=2 2.(2)322;解:原式=322=16=4.(3)45÷215; 解:原式=45÷215 =45×152= 6.(4)2a 3bab (a>0).解:原式=2a.知识点2 商的算术平方根商的算术平方根的性质:a b =a b (a ≥0,b>0). 4.下列各式成立的是( A )A .-3-5=35=35 B .-7-6=-7-6 C .2-9=2-9D .9+14=9+14=312 5.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式最简二次根式应有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.6.(2020·遵义汇川区模拟)下列各式中,是最简二次根式的是( C )A .12B .8C . 6D .0.37.把下列各个二次根式化为最简二次根式:(1)85; 解:原式=8×55×5 =22×1052 =22×1052(2)2 3;解:原式=2×3 3×3=6 3.(3)8a2b3(a>0).解:原式=8·a2·b3=22·a·b b=2ab2b.易错点忽视二次根式的被开方数为非负数8.小东在学习了ab=ab后,认为ab=ab也成立,因此他认为一个化简过程-27-3=-27-3=-3×9-3=9=3是正确的.你认为他的化简正确吗?若不正确,请指出错误,并给出正确的解答过程.解:不正确.-27-3≠-27-3.正确解答过程:-27-3=273=9=3.02中档题9.下列等式不成立的是( B )A.62×3=6 6 B.8÷2=4C.13=33D.8×2=410.计算212×34÷32的结果是( A )A.22B.33C.23D.3211.已知长方形的宽是32,它的面积是186,则它的长是12.不等式22x-6>0的解集是x>213.计算:(1)215;解:原式=115=115=11×55×5=555.(2)(2019·黔南期中)23÷223×25; 解:原式=23×38×25=1010.(3)0.9×121100×0.36. 解:原式=12140=11222×10=112110=112×1010=111020.14.先化简,再求值:x -1x 2-1÷x 2x 2+x,其中x = 3. 解:原式=x -1(x +1)(x -1)÷x 2x (x +1)=1x +1·x +1x=1x. 当x =3时,原式=13=33.15.如图,在Rt △ABC 中,∠ACB =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD , ∴AC =2S △ABC BC =2183=26(cm ), CD =2S △ABC AB =21833=236(cm ).03 综合题16.已知x -69-x =x -69-x,且x 为奇数,求(1+x)·x 2-2x +1x 2-1的值. 解:∵x -69-x =x -69-x , ∴⎩⎪⎨⎪⎧x -6≥0,9-x >0.∴6≤x <9. 又∵x 是奇数,∴x =7.∴原式=(1+x)·(x -1)2(x +1)(x -1) =(1+x)·x -1x +1=(x +1)(x -1)=(7+1)(7-1)=8×6=4 3.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.下列二次根式中,能与3合并的是( C ) A .8 B . 6 C .12 D .122.若最简二次根式2x +1和4x -3能合并,则x 的值为( C )A .-12B .34C .2D .5 3.若m 与18可以合并,则m 的最小正整数值是( D )A .18B .8C .4D .2知识点2 二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.4.下列计算18-2的结果是( C )A .4B .3C .2 2D . 25.下列计算正确的是( C )A .2+3=2 3B .52-2=5C .52a +2a =62aD .y +2x =3xy6.(2019·遵义)计算35-20的结果是5.7.(2020·遵义红花岗区模拟)计算:27-313=23. 8.三角形的三边长分别为20 cm ,40 cm ,45 cm ,这个三角形的周长是(55+210)cm .9.计算:(1)(2020·遵义汇川区期末)27-12+32;解:原式=33-23+4 3=5 3.(2)6-32-23; 解:原式=6-62-63(3)(2019·黔南期中)8+23-(27-2);解:原式=22+23-33+ 2=32- 3.(4)45+45-8+4 2.解:原式=45+35-22+4 2=75+2 2.易错点错用运算法则致错10.计算:18+98+27.解:原式=32+72+33①=102+33②=(10+3)2+3③=13 5.④(1)以上解答过程中,从③开始出现错误;(2)请写出本题的正确解答过程.解:原式=32+72+3 3=102+3 3.02中档题11.若x与2可以合并,则x可以是( A )A.0.5 B.0.4 C.0.2 D.0.112.计算|2-5|+|4-5|的值是( B )A.-2 B.2 C.25-6 D.6-2 513.如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为27,宽为12,下列是四位同学对该大长方形的判断,其中不正确的是( C )A.大长方形的长为6 3B.大长方形的宽为5 314.若a ,b 均为有理数,且8+18+18=a +b 2,则a =0,b =214.15.当y =23时,8y +4-5-4y 316.已知一个等腰三角形的周长为125,其中一边的长为25,则这个等腰三角形的腰长为17.计算: (1)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(2)8-612+12-|2-3|; 解:原式=22-32+23+2- 3= 3.(3)18-22-82+(5-1)0; 解:原式=32-2-2+1=2+1.(4)254x +16x -9x ; 解:原式=52x +4x -3x =72x.(5)(30.5-513)-(20.125-20). 解:原式=(312-513)-(218-20) =322-533-22+2 5 =2-533+2 5.面积为800 cm2,另一张面积为450 cm2,他想如果再用金色细彩带把壁画的边镶上会更漂亮,他手上现有1.2 m长的金色细彩带,请你帮忙算一算,他的金色细彩带够用吗?如果不够用,还需买多长的金色细彩带?(2≈1.414,结果保留整数)解:镶壁画所用的金色细彩带的长:4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小刚的金色细彩带不够用.197.96-120=77.96≈78(cm),即还需买78 cm的金色细彩带.03综合题19.若a,b都是正整数,且a<b,a与b可以合并,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b可以合并,a+b=75=53,且a,b都是正整数,a<b,∴a=3,b=43或a=23,b=33,即a=3,b=48或a=12,b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算二次根式的混合运算顺序:先算乘方,再算乘除,最后算加减,有括号先算括号里面的.1.下列计算错误的是( D )A .14×7=7 2B .60÷30= 2C .9a +25a =8 aD .32-2=32.(2020·朝阳)计算12-12×14的结果是( B )A .0B . 3C .3 3D .12 3.计算(515-245)÷(-5)的结果为( A )A .5B .-5C .7D .-7 4.计算:(1)(2019·南京)计算147-28的结果是0;(2)(2019·青岛)计算:24+82-(3)2=23-1.5.计算:(1)3(5-2);解:原式=3×5-3× 2=15- 6.(2)(2019·黔南期中)348-427÷23;解:原式=123-123÷2 3 =123-6.(3)(2+3)(2+2).解:原式=(2)2+32+22+6=2+52+6=8+5 2.乘法公式:(a +b)2=a 2+2ab +b 2;(a -b)2=a 2-2ab +b 2;(a +b)(a -b)=a 2-b 2.6.(2019·遵义桐梓县模拟)计算(5+4)(5-4)的结果是1.7.计算(25-2)2的结果是22-4108.计算:(1)(2019·黔东南期末)(7+43)(7-43); 解:原式=49-48=1.(2)(3-3)2.解:原式=(3)2-2×3×3+32=3-63+9=12-6 3.易错点 错用运算法则进行运算9.嘉淇计算12÷(34+233)时,想起分配律,于是她按分配律完成了下列计算: 解:原式=12÷34+12÷233=12×43+12×323 =11.她的解法正确吗?若不正确,请给出正确的解答过程.解:不正确,正确解答过程为: 原式=12÷(3312+8312) =12÷11312=23×12113 =2411.02 中档题10.计算(2+1)2 021(2-1)2 020的结果是( C )A .1B .-1C .2+1D .2-1A .14B .16C .8+5 2D .14+ 2 12.(2019·滨州)计算:(-12)-2-|3-2|+32÷118=2+43. 13.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为3. 14.计算: (1)48÷3-12×12+24; 解:原式=48÷3-12×12+2 6 =4-6+2 6 =4+ 6.(2)(2019·黔东南期末)18-412+24÷3; 解:原式=32-22+24÷3 =2+2 2 =3 2.(3)(32+23)×(32-23)-(3-2)2.解:原式=(32)2-(23)2-[(3)2-2×3×2+(2)2] =18-12-(3-26+2) =6-5+2 6 =1+2 6.15.已知x =3+2,y =3-2,求x 3y -xy 3的值. 解:原式=xy(x 2-y 2)=xy(x +y)(x -y). 当x =3+2,y =3-2时, xy =1,x +y =23,x -y =2 2. ∴原式=1×23×22=4 6.16.先化简,再求值:(a -2a 2+2a -a -1a 2+4a +4)÷a -4a +2,其中a =2-1.解:原式=[a -2a (a +2)-a -1(a +2)2]·a +2a -4=a 2-4-a 2+a a (a +2)2·a +2a -4 =a -4a (a +2)2·a +2a -4=1a (a +2).当a =2-1时,原式=1(2-1)(2-1+2)=1.03 综合题17.(2019·遵义期末改编)观察下列运算: ①由(2+1)(2-1)=1,得12+1=2-1; ②由(3+2)(3-2)=1,得13+2=3-2; ③由(4+3)(4-3)=1,得14+3=4-3; …(1)通过观察你得出什么规律?用含n 的式子表示出来; (2)利用(1)中发现的规律计算:(12+1+13+2+14+3+…+12 020+ 2 019+12 021+ 2 020)×( 2 021+1). 解:(1)1n +1+n=n +1-n(n ≥0).(2)原式=(2-1+3-2+4-3+…+ 2 021- 2 020)×( 2 021+1) =(-1+ 2 021)×( 2 021+1) =( 2 021)2-1 =2 020.小专题(一) 二次根式的性质及运算类型1 二次根式的非负性1.已知a -b +|b -1|=0,则a +1=2.2.已知x ,y 为实数,且y =x -9+9-x +4,则x -y 的值为5. 3.当x =15时,5x -1+4的值最小,最小值是4.类型2 二次根式的运算 4.计算: (1)62×136;解:原式=(6×13)2×6=212 =4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355)=-45÷3 5 =-43.(3)72-322+218; 解:原式=62-322+6 2 =2122. (4)(25+3)×(25-3). 解:原式=(25)2-(3)2 =20-3 =17.5.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53=-6920 =-69×520×5=-95 5.(2)(6+10×15)×3; 解:原式=32+56× 3 =32+15 2 =18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115=-348÷765=-3748×56=-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2. 解:原式=(32-6)2-(32+6)2 =18+6-123-(18+6+123) =-24 3.6.计算:(1)(2019·南充)(1-π)0+|2-3|-12+(12)-1; 解:原式=1+3-2-23+ 2 =1- 3.(2)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32=25-1.类型3 与二次根式有关的化简求值7.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值.解:由题意,得2★3= 3.∴7★(2★3)=7★3=7-3=2.8.已知x =3+1,求x 2-2x -3的值. 解:x 2-2x -3=x 2-2x +1-4 =(x -1)2-4. 当x =3+1时, 原式=(3+1-1)2-4 =3-4 =-1.9.已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值. 解:∵x =1-2,y =1+2,∴x -y =-22,xy =(1-2)(1+2)=-1. ∴原式=(x -y)2-2(x -y)+xy =(-22)2-2×(-22)+(-1) =7+4 2.10.(2020·烟台)先化简,再求值:(y x -y -y 2x 2-y 2)÷xxy +y 2,其中x =3+1,y =3-1.解:原式=[y (x +y )(x +y )(x -y )-y 2(x +y )(x -y )]÷xy (x +y )=xy(x +y )(x -y )·y (x +y )x=y 2x -y. 当x =3+1,y =3-1时, 原式=(3-1)22=2- 3.11.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a ,b ,m ,n 均为正整数),则有a +b 2=m 2+2n 2+22mn , ∴a =m 2+2n 2,b =2mn.这样小明就找到了一种把a +b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一) (3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn.∵2mn =4,且m ,n 为正整数, ∴m =2,n =1或m =1,n =2. ∴a =7或13.章末复习(一)二次根式01分点突破知识点1二次根式的相关概念二次根式有意义的条件:(1)1A有意义⇒A>0;(2)A+1B有意义⇒⎩⎪⎨⎪⎧A≥0,B≠0.1.(2019·黔东南期末)在二次根式a-2中,a能取到的最小值为( C ) A.0 B.1 C.2 D.2.52.(2019·毕节模拟)使代数式2x-13-x有意义的x的取值范围是x≥12且x≠3.知识点2二次根式的性质3.若a-1+(b-2)2=0,则ab的值等于( D )A.-2 B.0 C.1 D.2 4.若xy<0,则x2y化简后的结果是( D )A.x y B.x-y C.-x-y D.-x y 5.(2019·黔东南期末)若m=n-2+2-n+5,则m n=25.6.如图,数轴上点A表示的数为a,化简:a+a2-4a+4=2.知识点3二次根式的运算在二次根式的运算中,最后结果一般要求分母中不含二次根式,具体化简方法如下:(1)ab=a·bb·b=abb(a≥0,b>0);(2)abb=a(b)2b=a b(b>0).7.与-5可以合并的二次根式的是( C )A.10B.15C.20D.25 8.下列计算正确的是( D )A.3+5=8B.2÷5=2 5C.23×33=6 3 D.7-27=-79.计算: (1)68-32; 解:原式=122-4 2 =8 2. (2)27-13+12; 解:原式=33-33+2 3 =1433.(3)212×34÷2; 解:原式=2×14×12×3×12=322. (4)(48+20)-(12-5). 解:原式=43+25-23+ 5 =23+3 5.02 易错题集训10.下列计算正确的是( D )A .2+5=7B .2+2=2 2C .32-2=3D .2-12=2211.计算:23÷5×15. 解:原式=23×15×15=235.12.小明在学习中发现了一个“有趣”的现象:∵23=22×3=22×3=12,①-23=(-2)2×3=(-2)2×3=12,② ∴23=-2 3.③ ∴2=-2.④(1)上面的推导过程中,从第②步开始出现错误(填序号); (2)写出该步的正确结果.解:-23=-22×3=-22×3=-12.03 常考题型演练13.(2019·遵义期中)下列式子是最简二次根式的是( D ) A .8 B .3m 2 C .12D . 6 14.(2020·遵义汇川区模拟)下列运算正确的是( C )A .x -2x =xB .(xy)2=xy 2C .2×3= 6D .(-2)2=4 15.(2019·遵义期中)下列各式计算错误的是( C ) A .(3-2)(3+2)=1 B .2×3= 6 C .55-25=3 D .18÷2=316.(2019·黔东南期末)已知x =5+1,y =5-1,则x 2+2xy +y 2的值为( A ) A .20 B .16 C .2 5 D .4 517.已知实数a ,b 在数轴上的位置如图所示,化简:(a +1)2+(b -1)2-|a -b|=-2.18.观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n(n ≥1)的代数式表达出来n +1n +2=(n +1)1n +2(n ≥1). 19.计算: (1)(24-12)-(18+6); 解:原式=26-22-24- 6 =6-324.(2)6×13-16×18;解:原式=2-4×3 2=2-12 2=-11 2.(3)(5+3)2-(5+3)(5-3);解:原式=5+3+215-(5-3)=6+215.(4)48÷3-12×12+24;解:原式=43÷3-22×23+2 6=4-6+2 6 =4+ 6.(5)18-22-(5-1)0-82.解:原式=32-2-1- 2=2-1.20.(2019·遵义期中)先化简,再求值:a+1-2a+a2,其中a=1 010.如图是小亮和小芳的解答过程.(1)小亮的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:a2=-a(a<0);(2)先化简,再求值:x+2x2-4x+4,其中x=-2 019.解:x+2x2-4x+4=x+2(x-2)2.∵x=-2 019,∴x-2<0.∴原式=x+2(-x+2)=x-2x+4=-x+4=2 019+4=2 023.。
2022-2023学年人教版八年级数学下册《16-2二次根式的乘除》同步练习题(附答案)
2022-2023学年人教版八年级数学下册《16.2二次根式的乘除》同步练习题(附答案)一.选择题1.下列运算中不正确的是()A.B.C.D.2.计算的结果是()A.16B.±16C.4D.±43.下列运算中,正确的是()A.B.C.(a3b4)2=a6b8D.4.下列根式中的最简二次根式是()A.B.C.D.5.下列二次根式中,属于最简二次根式的是()A.B.C.D.6.下列说法:(1)无理数包含正无理数、零、负无理数;(2)的算术平方根为2;(3)为最简二次根式;(4)实数和数轴上的点是一一对应的;(5)﹣a2一定有平方根,其中正确的有()A.1个B.2个C.3个D.4个7.的倒数是()A.B.C.D.8.的一个有理化因式是()A.B.+C.﹣D.二.填空题9.二次根式中:、、、是最简二次根式的是.10.化简为最简二次根式的结果是.11.化简:=.12.计算:=.13.计算:=.14.化简的结果是.15.分母有理化:=.16.将(a>0,b>0)化为最简二次根式:.17.化简:=.18.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为.19.已知等式成立,化简|x﹣6|+的结果为.三.解答题20.计算:(1);(2).21.计算:÷.22.计算:2×÷.23.计算:×4÷.24.计算:3÷(•).25.计算:.26.请阅读下列材料:形如的式子的化简,我们只要找到两个正数a,b,使a+b=m,ab=n,即,那么便有(a >b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,所以.请根据材料解答下列问题:(1)填空:=.(2)化简:(请写出计算过程).参考答案一.选择题1.解:根据二次根式的性质知,A、B、C都正确,D.表示4的算术平方根,则=2,故D错误,符合题意.故选:D.2.解:原式===4.故选:C.3.解:A、,故A不符合题意;B、,故B不符合题意;C、(a3b4)2=a6b8,故C符合题意;D、a6bc÷a﹣2b=a8c,故D不符合题意;故选:C.4.解:A.符合最简二次根式的定义,因此是最简二次根式,所以选项A符合题意;B.=2,因此选项B不符合题意;C.=,因此选项C不符合题意;D.=|m|,因此选项D不符合题意;故选:A.5.解:A.==3,选项A不符合题意;B.==,选项B不符合题意;C.是最简二次根式,选项C符合题意;D.==a2,选项D不符合题意;故选:C.6.解:(1)无理数包含正无理数和负无理数,故(1)不正确;(2)的算术平方根为2,故(2)正确;(3)==,故(3)不正确;(4)实数和数轴上的点是一一对应的,故(4)正确;(5)﹣a2一定有平方根,故(5)正确;所以,上列说法其中正确的有3个,故选:C.7.解:+1的倒数是=﹣1.故选:C.8.解:A.,那么是的一个有理化因式,故A符合题意.B.根据二次根式的乘法法则,不是的一个有理化因式,故B不符合题意.C.根据二次根式的乘法法则,不是的一个有理化因式,故C不符合题意.D.根据二次根式的乘法法则,,得不是的一个有理化因式,故D不符合题意.故选:A.二.填空题9.解:==,被开方数含分母,不是最简二次根式,=2,=|x|,被开方数中含能开得尽方的因数或因式,不是最简二次根式,是最简二次根式,故答案为:.10.解:6===2.故答案为:2.11.解:原式===6.故答案为:6.12.解:原式===6x.故答案为:6x.13.解:原式=×=2=2×=1.故答案为:1.14.解:===.故答案为:.15.解:原式==﹣3﹣,故答案为:﹣3﹣.16.解:∵a>0,b>0,∴=.故答案为:.17.解:∵x﹣2>0,∴x>2,1﹣x<0,原式化简为:x﹣2+x﹣1=2x﹣3,故答案为:2x﹣3.18.解:∵长方形的面积为12,其中一边长为,∴该长方形的另一边长为:12÷2=3.故答案为:3.19.解:∵等式成立,∴,解得:3<x≤5,∴|x﹣6|+=6﹣x+x﹣2=4.故答案为:4.三.解答题20.解:(1)原式===6;(2)原式===3.21.解:原式=÷=•=.22.解:2×÷=2=2=.23.解:原式=2×4×÷4=8÷4=2.24.解:原式=÷=.25.解:原式=÷•2m=.26.解:(1)==;故答案为:﹣;(2)首先把化为,这里m=21,n=108,∵9+12=21,9×12=108,即,∴.。
人教版八年级数学下册_16.2二次根式的乘除
特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).
人教版数学八年级下册第16章 二次根式 随堂测试题含答案
word 版 学初中数16.1《二次根式》一、选择题1.已知 是二次根式,则 x、y 应满足的条件是()A.x≥0 且 y≥0B.C.x≥0 且 y>0D.2.当 a<3 时,化简的结果是( )A.-1B.1C.2a-7D.7-2a3.化简的结果是( )A.y-2xB.yC.2x-y4.下列根式中属最简二次根式的是( )D.-yA.B.C.D.5.在下列各式中,m 的取值范围不是全体实数的是( )A.B.C.D.6.给出下列各式:;其中成立的是( )A.①③④B.①②④7.下列式子中,二次根式的个数是(C.②③④ )D.①②③⑴ ;⑵ ;⑶;⑷ ;⑸;⑹;⑺.A.2B.3C.4D.58.在根式①,② ,③,④中最简二次根式是( )A.①②B.③④C.①③D.①④9.若 a<0,则的值为( )A.3B.﹣3C.3﹣2aD.2a﹣310.若代数式有意义,则实数 x 的取值范围是( )A.x≥1B.x≥2C.x>1D.x>211.已知, 则 2xy 的值为( )A.-15 12.若 y2+4y+4+A.﹣6B.15C.-7.5=0,则 yx 的值为(B.﹣8C.6D.7.5 )D.81 / 14word 版 学二、填空题 13.若是二次根式,则点 A(x,6)的坐标为_____.14.要使等式成立,则 x=________.15.当____时,式子有意义.16.已知 n 是正整数, 189 n 是整数,则 n 的最小值是.17.如图,数轴上点 A 表示的数为 a,化简:.初中数18.已知,当分别取 1,2,3,……,2020 时,所对应 y 值总和是_______.三、解答题 19.比较大小:与.20.已知互为相反数,求 ab 的值.21.已知:实数 a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.22.已知:=0,求实数 a,b 的值. 2 / 14word 版 学23.已知 a、b 满足等式.(1)求出 a、b 的值分别是多少?(2)试求的值.初中数24.已知 x,y 为实数,且满足,求 x -y 2020 2020 的值.3 / 14word 版 学初中数1.答案为:D 2.答案为:D 3.答案为:B 4.答案为:A 5.答案为:B 6.答案为:A 7.答案为:C 8.答案为:C 9.答案为:A. 10.答案为:B. 11.答案为:A 12.答案为:B 13.答案为(-3,6). 14.答案为:4. 15.答案为:3≤x<5. 16.答案为:21. 17.答案为:2. 18.答案为:2032.19.解:参考答案.因为所以,所以.20.原式=7 21.解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a) =a+1+2﹣2b﹣b+a =2a﹣3b+3. 22.解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21. 23.解:(1)由题意得,2a﹣6≥0 且 9﹣3a≥0, 解得 a≥3 且 a≤3,所以,a=3,b=﹣9;(2) ﹣ + =﹣+=6﹣9﹣3=﹣6.24.解:∵∴+=0∴1+x=0,1-y=0,解得 x=-1,y=1, X2018-y2018=(-1)2018-12018=1-1=0.人教版八年级下册 16.2 《二次根式的乘除》一.选择题1.将 化简后的结果是( )4 / 14word 版 学A.2B.C.22.计算(﹣ )2 的结果是( )A.﹣6B.6C.±63.下列二次根式中,属于最简二次根式的是( )A.B.C.4.+()2 的值为( )A.0B.2a﹣4C.4﹣2a5.实数 a,b 在数轴上对应点的位置如图所示,则化简D.4 D.36 D.初中数D.2a﹣4 或 4﹣2a 的结果为( )A.b﹣aB.a+bC.ab6.已知 x= +1,y= ﹣1,则 xy 的值为( )A.8B.48C.27.化简的结果是( )A.B.C.二.填空题8.计算:的结果是.9.化简 =.10.将 化成最简二次根式为.11.化简:=.12.计算:• (x>0)=.三.解答题(共 6 小题) 13.把下列二次根式化成最简二次根式(1)(2)D.2a﹣b D.6 D.(3)5 / 14word 版 学14.计算: ×4 ÷ .15.计算:•.16.计算:•(﹣)÷(a>0).17.化简:.18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣ .参考答案 一.选择题 1.解: =故选:C.=2 ,6 / 14初中数word 版 学2.解:(﹣ )2=6,故选:B 3.解:A、. =5,故此选项错误;B、 是最简二次根式,故此选项正确;C、 = ,故此选项错误;D、 =2 故选:B.,故此选项错误;4.解:要使有意义,必须 2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.5.解:由数轴得 a<﹣1,b>0,所以原式=|a|+|b|=﹣a+b.故选:A.6.解:当 x= +1,y= ﹣1 时,xy=( +1)( ﹣1)=( )2﹣12=7﹣1 =6, 故选:D.7.解:∵ >0,∴b<0, b =﹣=﹣ .故选:D. 二.填空题 8.解:原式= × =6 .故答案为:6 .7 / 14初中数word 版 学9.解:原式== =2 ,故答案为:2 . 10.解: = ,故答案为: .11.解:因为 >1,所以= ﹣1故答案为: ﹣1.12.解:•(x>0)===4xy2. 故答案为:4xy2. 三.解答题(共 6 小题)13.解:(1)=;(2) =4 ;(3)==.14.解:原式=2 ×4× ÷4 =8 ÷4 =2.15.解:原式= × ×2= =x2. 16.解:原式==8 / 14初中数word 版 学==.初中数17.解:原式==+.18.解:由数轴可知:a<0,b>0,a﹣b<0 所以|a﹣b|﹣ =|a﹣b|﹣|b|=b﹣a﹣b=﹣a.16.3 二次根式的加减一.选择题1.下列二次根式与 2 可以合并的是(A.3B.2.下列计算中,正确的是( )) C.A. + =B.=﹣3 C. =3.计算: ﹣ =( )D.12 D.3 ﹣ =2A.﹣B.0C.D.4.已知 是整数,则 n 的值不可能是( )A.2B.8C.32D.405.如图,从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,则余下的面积为( )A.16 cm2 6.计算 ÷ •B.40 cm2C.8 cm2(a>0,b>0)的结果是( )A.B.C.7.已知 a=2+ A.12,b=2﹣ ,则 a2+b2 的值为( )B.14C.16 9 / 14D.(2 +4)cm2 D.b D.18word 版 学8.计算的结果是( )A.0B.C.9.如果与A.0二.填空题10.化简:11.计算:的和等于 3 ,那么 a 的值是( )B.1C.2的结果为.=.12.计算(5 )( 2)=.三.解答题13.(1)2 ﹣6 ;(2)()﹣( ﹣ ).14.计算. (1) ﹣ + . (2) × ﹣ +( ﹣1)0.(3) ÷ ﹣4 +.(4)( ﹣2)2+( )﹣1﹣( )2.15.已知 a= ﹣ ,b= + ,求值:(1) + ;(2)a2b+ab2.16.已知长方形的长为 a,宽为 b,且 a=,b=.(1)求长方形的周长; (2)当 S 长方形=S 正方形时,求正方形的周长.D. D.3初中数10 / 14word 版 学初中数参考答案一.选择题1.解:A、3 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; B、 =2 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; C、 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; D、12 与 2 被开方数相等,是同类二次根式,故本选项符合题意; 故选:D.2.解:A、 + = +2,无法合并,故此选项错误;B、=3,故此选项错误;C、 =1,故此选项错误;D、3 ﹣ =2 ,正确.故选:D.3.解:原式= ﹣ =0.故选:B.4.解:A、当 n=2 时, =2,是整数;B、当 n=8 时, =4,是整数;C、当 n=32 时, =8,是整数;D、当 n=40 时, = =4 ,不是整数;故选:D.5.解:从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,大正方形的边长是 + =4+2 , 留下部分(即阴影部分)的面积是(4+2 )2﹣16﹣24=16+16+24﹣16﹣24=16 (cm2).故选:A .6.解:原式=×=11 / 14word 版 学=.故选:A. 7.解:∵a=2+ ,b=2﹣ ,∴a+b=4,ab=4﹣3=1, ∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14. 故选:B. 8.解:原式===.故选:B.9.解:∵与 =2 的和等于 3 ,∴=3 ﹣2 = ,故 a+1=3,则 a=2.故选:C.二.填空题10.解:原式=3 ﹣4 + =0.故答案为:0.11.解:原式=[( +2)( ﹣2)]2020•( =(3﹣4)2020•( ﹣2)﹣2)= ﹣2.故答案为 ﹣2.12.解:原式=5 +10﹣3﹣2 =7+3 ,故答案为:7+3 . 三.解答题13.解:(1)原式=﹣4 ;12 / 14初中数word 版 学初中数(2)原式=2 + ﹣ +=3 + .14.解:(1)原式= ﹣2 +3=2 ;(2)原式=﹣ +1=2 ﹣ +1 = +1; (3)原式=﹣2 +2=2 ﹣2 +2 =2;(4)原式=5﹣4 +4+5﹣5 =9﹣4 . 15.解:∵a= ﹣ ,b= + , ∴a+b=( ﹣ )+( + )=2 ,ab=( ﹣ )( + )=2,(1) +=====12; (2)a2b+ab2 =ab(a+b) =2×2 =4 .13 / 14word 版 学16.解:(1)∵a== ,b==2 ,∴长方形的周长是:2(a+b)=2( +2 )=;(2)设正方形的边长为 x,则有 x2=ab,∴x= === ,∴正方形的周长是 4x=12 .初中数14 / 14。
1人教版初中数学八年级下学期16.2《二次根式的乘除》(含答案)
绝密★启用前 试卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1=中,关于a 、b 的取值正确的说法是( ) A .a≥0,b≥0 B .a≥0,b >0 C .a≤0,b≤0 D .a≤0,b <0 2.下列式子中,为最简二次根式的是( ) A B C D 3.估计的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 4(0,0)a b >>的结果是( ) A B C D .5.下列二次根式中,是最简二次根式的是( ) A B C D 6.下列各式计算正确的是( ) A =B =C .23= D 2=-7.下列二次根式中属于最简二次根式的是( ) A . B C D 8.下列二次根式中,是最简二次根式的是( ).○……○……A.√8x B.√x2−3C.√x−yxD.√3a2b9,2,)A B.2C D.10.下列各式属于最简二次根式的有()A B C D11=( ).A B C D.12.下列计算中,正确的是()A.B.C D﹣313.如果0ab>,0a b+<,那么下列各式:=1=,③b=-,其中正确的是( ).A.①②B.②③C.①③D.①②③14.计算√8×√2的结果是()A.√10B.4C.√6D.215.下列根式中属于最简二次根式的是()A BC D16.下列二次根式中属于最简二次根式的是()A.√24B.√0.3C.√13D.√317.下列根式中属最简二次根式的是()A B C D 18 ) A .6到7之间 B .7到8之间 C .8到9之间 D .9到10之间 19.下列二次根式中,属于最简二次根式的是( ) A B C D 20的积为无理数的是( ) A B C D 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 21.计算 ________. 22=a +b ,其中a 是整数,0<b <1,则()(a ﹣b )=_____. 23=____________. 24.若 x ﹣1,则x 3+x 2-3x+2020 的值为____________. 25=______. 26则a 的取值范围是______. 27________. 28.计算:√10÷√2 =_____. 29. 30.已知a >0,计算:(=_____.32. 33.一个直角三角形的两条直角边分别为a =b =,那么这个直角三角形的面积是________. 34.若0, 0ab a b >+<,那么下面各式:=;1=;③b =-;a =,其中正确的是______ (填序号) 35.若规定一种运算为a ★b (b -a),如3★5×(5-3)=,★=________.36.计算:√8÷√2=_____.37.观察下列各式:===3;=,…请用含n (n≥1)的式子写出你猜想的规律:__ 38=,那么m 的取值范围是_____________39.计算:323c ab ⎛⎫= ⎪-⎝⎭_________.40n 的最小值为___三、解答题41.计算:2(71)+--42.已知a =√3−1√3+1,b =√3+1√3−1,求a 3+b 3−4的值.43.(1)20182019⨯- (2)41|2|2⎛⎫-- ⎪⎝⎭44.计算:(1)(﹣1)2(﹣2)0 (245.计算:|247.计算: 3 + (4) 4849. 50.先化简,再求值: (1)2212111x x x x ⎛⎫-+-÷ ⎪-⎝⎭,其中 (2)32322222b b ab b a b a a b ab b a ++÷--+-,其中1,25a b ==参考答案1.B2.B3.C4.A5.B6.C7.A8.B9.B10.B11.A12.C13.B14.B15.D16.D17.A18.C19.C20.B21.22.923.3π-24.201925.426.12 a≥27 28.√529.3031.32.33.34.②③35-2 36.2.37.(n+ 38.m>4.39.336c 27a b -40.541.42.4843.;(2)10-+.44.(1)﹣2;(2)-.45.﹣46.247.(1)4;(2)6(3)(4)6.4849.350.(1)1 (2)10。
人教版八年级下《第16章二次根式》单元测试题((有答案))-(数学)
人教版八年级下册数学《第16章二次根式》单元测试题一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥33.化简的结果是()A.B.C.D.4.下列二次根式,最简二次根式是()A.B.C.D.5.下列式子一定成立的是()A.﹣2B.+2C.D.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式7.下列各式中,与是同类二次根式的是()A.B.C.D.8.计算的值等于()A.B.4C.5D.2+29.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=210.现将某一长方形纸片的长增加3cm,宽增加6cm,就成为一个面积为128cm2的正方形纸片,则原长方形纸片的面积为()A.18cm2B.20cm2C.36cm2D.48cm2二.填空题(共8小题)11.若a、b为实数,且b=+4,则a+b=.12.若有意义,则a的取值范围为13.已知,化简的结果是.14.计算:3﹣(﹣1)﹣1+1=.15.化简(﹣1)2017(+1)2018的结果为.16.如果最简二次根式和是同类二次根式,则a=,b=.17.二次根式:①,②,③,④中,能与合并的是(填序号).18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为.三.解答题(共7小题)19.计算:﹣3+2.20.计算:4×2÷.21.已知:a=+1,求代数式a2﹣2a﹣1的值.22.已知实数a,b,c在数轴上的位置如图,且|a|=|b|,化简|a|+|b|+|c|﹣﹣223.已知=b+1(1)求a的值;(2)求a2﹣b2的平方根.24.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.25.化简求值:已知:x=,y=,求(x+3)(y+3)的值.人教版八年级下册数学《第16章二次根式》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.【分析】根据二次根式的定义判断即可.【解答】解:A、x+y不是二次根式,错误;B、是二次根式,正确;C、不是二次根式,错误;D、不是二次根式,错误;故选:B.【点评】本题考查了二次根式的定义:形如(a≥0)叫二次根式.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥3【分析】根据二次根式的被开方数为非负数,可得出关于x的一元一次不等式,解出即可得出答案.【解答】解:∵无意义,∴3﹣x<0,解得:x>3.故选:C.【点评】此题考查了二次根式有意义的条件,关键是掌握二次根式有意义则被开方数为非负数.3.化简的结果是()A.B.C.D.【分析】本题应先判断与1的大小,再对原式进行开方.【解答】解:∵>1,∴﹣1>0,∴==﹣1.故选:B.【点评】本题考查的是二次根式的化简,解此类题目时要先讨论根号内的数的正负性,再开方.4.下列二次根式,最简二次根式是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.下列式子一定成立的是()A.﹣2B.+2C.D.【分析】根据二次根式的性质,二次根式的乘除法法则计算,判断即可.【解答】解:=|a2﹣2|,A不一定成立;=a2+2,B一定成立;当a≥﹣1时,=•,C不一定成立;当a≥0,b>0时,=,D不一定成立;故选:B.【点评】本题考查的是二次根式的化简,二次根式的乘除法,掌握二次根式的乘除法法则是解题的关键.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式【分析】根据二次根式的运算法则即可求出答案.【解答】解:由于a+b≠0,ab≠±1,∴a与b不是互为相反数,倒数、负倒数,故选:D.【点评】本题考查二次根式,解题的关键是正确理解倒数、相反数、负倒数的概念,本题属于基础题型.7.下列各式中,与是同类二次根式的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=2与是同类二次根式,故本选项正确;B、=2与不是同类二次根式,故本选项错误;C、=2与不是同类二次根式,故本选项错误;D、=3与不是同类二次根式,故本选项错误;故选:A.【点评】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.8.计算的值等于()A.B.4C.5D.2+2【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=2+3=5故选:C.【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.9.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.现将某一长方形纸片的长增加3cm ,宽增加6cm ,就成为一个面积为128cm 2的正方形纸片,则原长方形纸片的面积为( ) A .18cm 2B .20cm 2C .36cm 2D .48cm 2【分析】利用算术平方根求出正方形的边长,进而求出原矩形的边长,即可得出答案.【解答】解:∵一个面积为128cm 2的正方形纸片,边长为:8cm ,∴原矩形的长为:8﹣3=5(cm ),宽为:8﹣6=2(cm ),∴则原长方形纸片的面积为:5×2=20(cm 2).故选:B .【点评】此题主要考查了二次根式的应用,根据题意得出原矩形的边长是解题关键. 二.填空题(共8小题)11.若a 、b 为实数,且b =+4,则a +b = 5或3 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案. 【解答】解:由被开方数是非负数,得,解得a =1,或a =﹣1,b =4, 当a =1时,a +b =1+4=5, 当a =﹣1时,a +b =﹣1+4=3, 故答案为:5或3.【点评】本题考查了二次根式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.12.若有意义,则a 的取值范围为 a ≤4且a ≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零. 【解答】解:依题意得:4﹣a ≥0且a +2≠0, 解得a ≤4且a ≠﹣2. 故答案是:a ≤4且a ≠﹣2.【点评】考查了二次根式的意义和性质.概念:式子(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.已知,化简的结果是2.【分析】由于,则=x﹣2,|x﹣4|=4﹣x,先化简,再代值计算.【解答】解:已知,则=x﹣2+4﹣x=2.【点评】根据x的取值,确定x﹣2和x﹣4的符号是解此题的关键.14.计算:3﹣(﹣1)﹣1+1=2.【分析】根据分母有理化解答即可.【解答】解:原式==,故答案为:2【点评】此题考查分母有理化,关键是根据分母有理化计算.15.化简(﹣1)2017(+1)2018的结果为+1.【分析】利用积的乘方得到原式=[(﹣1)(+1)]2017•(+1),然后利用平方差公式计算.【解答】解:原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.如果最简二次根式和是同类二次根式,则a=0,b=1.【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【解答】解:依题意得:,解得.故答案是:0;1.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.17.二次根式:①,②,③,④中,能与合并的是①④(填序号).【分析】与是同类二次根式即可合并.【解答】解:=2,=3,=,=3,∴、能与合并,故答案为:①④.【点评】本题考查二次根式,解题的关键是正确理解同类二次根式与最简二次根式的定义,本题属于基础题型.18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为3﹣3.【分析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形的边长是x、y(x<y),则x2=3,y2=9,x=,y=3,则阴影部分的面积是(y﹣x)x=(3﹣)×=3﹣3,故答案为:3﹣3.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.三.解答题(共7小题)19.计算:﹣3+2.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=4﹣3×3+2×2=﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.20.计算:4×2÷.【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式=8÷=8×3 =24.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键. 21.已知:a =+1,求代数式a 2﹣2a ﹣1的值.【分析】利用完全平方公式得到原式=(a ﹣1)2﹣2,再有已知条件得到a ﹣1=,然后利用整体代入的方法计算. 【解答】解:原式=(a ﹣1)2﹣2,因为a =+1,所以a ﹣1=,所以原式=()2﹣2=5﹣2=3.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.22.已知实数a ,b ,c 在数轴上的位置如图,且|a |=|b |,化简|a |+|b |+|c |﹣﹣2【分析】根据数轴上点的位置判断出实数a ,b ,c 的符号,然后利用二次根式与绝对值的性质求解即可求得答案.【解答】解:由题意得:c <a <0<b , 又∵|a |=|b |, ∴c ﹣a <0,∴|a |+|b |+|c |﹣﹣2=﹣a +b ﹣c ﹣a +c +2c =﹣2a +b +2c .【点评】此题考查了实数与数轴,二次根式以及绝对值的性质,合并同类项,熟练掌握各自的意义是解本题的关键.23.已知=b +1(1)求a 的值;(2)求a 2﹣b 2的平方根.【分析】(1)根据二次根式的被开方数是非负数解答; (2)结合(1)求得a 、b 的值,然后开平方根即可.【解答】解:(1)∵,有意义,∴,解得:a =5;(2)由(1)知:b +1=0, 解得:b =﹣1,则a 2﹣b 2=52﹣(﹣1)2=24,则平方根是:.【点评】考查了二次根式有意义的条件,平方根.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.24.求+的值解:;设x =+,两边平方得:x 2=()2+()2+2,即x 2=3++3﹣+4,x 2=10∴x =±.∵+>0,∴+=请利用上述方法,求+的值.【分析】根据题意给出的解法即可求出答案.【解答】解:设x =+,两边平方得:x 2=()2+()2+2,即x 2=4++4﹣+6,x 2=14∴x =±.∵+>0,∴x =【点评】本题考查二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.25.化简求值:已知:x =,y =,求(x +3)(y +3)的值.【分析】将x 和y 的值分母有理化,再代入到原式xy +3x +3y +9=xy +3(x +y )+9计算可得.【解答】解:当x ===,y ===时,原式=xy +3x +3y +9 =xy +3(x +y )+9..=×+3×(+)+9=+3×+9=+3+9=+3. 【点评】此题考查了二次根式的化简求值与分母有理化,正确选择两个二次根式,使它们的积符合平方差公式及二次根式的混合运算顺序与运算法则是解答问题的关键.。
新部编初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)
第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______. 3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++ ③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。
初中数学同步训练必刷题(人教版八年级下册 第十六章 二次根式 全章测试卷)(学生版)
初中数学同步训练必刷题(人教版八年级下册第十六章二次根式全章测试卷)一、单选题(每题3分,共30分)1.(2022八下·中山期末)式子√x+3在实数范围内有意义,则x的取值范围是()A.x≠-3B.x≥−3C.x≥3D.x≥02.(2022八下·番禺期末)下列计算正确的是()A.√22=2B.√(−2)2=﹣2C.√−83=2D.√(−2)2=±2 3.(2022八下·防城港期末)下列各式中,是最简二次根式的为().A.√52B.√2C.√27D.√134.(2022八下·拱墅期末)−√2×√5=()A.√10B.−√10C.√7D.−√75.(2022八下·朝阳期末)若√63n是整数,则正整数n的最小值是()A.3B.7C.9D.636.(2022八下·潢川期中)下列关于2√6的表述错误的是()A.2√6是最简二次根式B.2√6是无理数C.2√6就是2×√6D.2√6大于57.(2022八下·临海期末)下列计算正确的是()A.√2+√3=√5B.2√2−√2=1C.√6×√2=2√3D.√(−2)2=−2 8.(2022八下·滨海期末)化简后,与√2的被开方数相同的二次根式是()A.√10B.√12C.√12D.√169.(2022八下·藁城期末)下列四个算式中,正确的是() A.√(−1)2=−1B.√5−√2=√3 C.√(−4)×(−9)=√−4×√−9D.√12÷√3=210.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等二、填空题(每题3分,共30分)11.(2022八下·镇海区期末)代数式2√1−x有意义,则x的取值范围是. 12.(2022八下·诸暨期末)当x=-2时,二次根式√2−7x的值是13.(2021八下·澄海期末)计算√3×√15√5的结果是.14.(2021八下·建华期末)若0≤a≤3 ,则√a2+√a2−6a+9=.15.(2021八下·新罗期末)长方形的宽是√3,面积为2√6,则长方形的长为16.(2022八下·诸暨期末)已知x,y均为实数,y=√x−2+√2−x+5,则x+y的值为17.(2022八下·灌云期末)如果最简二次根式√x+3与最简二次根式√1+2x是同类二次根式,则x=.18.(2021八下·营口期末)计算:√12+|√3−2|=.19.(2021八下·平泉期末)已知:√12+3√13=a√3+√3=b√3,则b a=.20.(2021八下·曲靖期末)如图是一个简单的数值运算程序,当输入x的值为√6时,则输出的值为.三、解答题(共6题,共60分)21.(2022八下·涿州期末)计算(1)2√7−√7(2)(√5+√6)(√6−√5)(3)(√12−√13)×√3(4)√8+√18√222.如图A,B,C三点表示的数分别为a,b,c.利用图形化简:|a−b|−√(c−b)2+√(a−c)2.23.(2019八下·岱岳期末)在一个边长为(2 √3+3 √5)cm的正方形的内部挖去一个长为(2 √3+ √10)cm,宽为(√6﹣√5)cm的矩形,求剩余部分图形的面积.24.(2020八下·潢川期中)(1)当x=54时,求√x+1的值;(2)①x为何值时二次根式√12−x的值是10?②当x=▲时二次根式√12−x有最小值.25.挖掘问题中所隐含的条件,解答下列问题:(1)如果√(x−2)2=2-x,那么()A.x<2B.x≤2C.x>2D.x≥2(2)已知√(x−3)2−(√2−x)2=2x,求x的值.(3)已知a,b是实数,且b>√a−2-2 √2−a+1,请化简:√1−2b+b2−√a2.26.(2020八下·北京期中)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明利用完全平方公式进行了以下探索:3+2√2=12+2×1×√2+(√2)2=(1+√2)2.请你仿照小明的方法解决下列问题:(1)7−4√3=(a−b√3)2,则a=,b=;的算术平方根,求4x2+4x−2020的值;(2)已知x是2−√32(3)当1≤x≤2时,化简√x+2√x−1√x−2√x−1=.答案解析部分1.【答案】B【知识点】二次根式有意义的条件【解析】【解答】解:依题意有x+3≥0,即x≥−3时,二次根式有意义.故答案为:B.【分析】根据题意先求出x+3≥0,再求解即可。
新人教版初中数学八年级下册同步练习试题及答案第16章二次根式(19页)
第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义 ,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时 ,12--x 有意义 ,当x ______时 ,31+x 有意义. 3.假设无意义2+x ,那么x 的取值范围是______. 4.直接写出以下各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.以下计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.以下各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时 ,以下各式中 ,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时 ,以下式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算以下各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.411+=-+-y x x ,那么x y 的平方根为______. 14.当x =-2时 ,2244121x x x x ++-+-=________. 二、选择题15.以下各式中 ,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.假设022|5|=++-y x ,那么x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算以下各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2 ,b =-1 ,c =-1时 ,求代数式aacb b 242-±-的值.拓广、探究、思考19.数a ,b ,c 在数轴上的位置如下列图:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.△ABC 的三边长a ,b ,c 均为整数 ,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算 ,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立 ,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.以下计算正确的选项是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时 ,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.三角形一边长为cm 2 ,这条边上的高为cm 12 ,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算 "@〞的运算法那么为:,4@+=xy y x 那么(2@6)@6 =______.10.矩形的长为cm 52 ,宽为cm 10 ,那么面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.假设b a b a -=2成立 ,那么a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内 ,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.假设(x -y +2)2与2-+y x 互为相反数 ,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算 ,能把二次根式化成最||简二次根式.课堂学习检测一、填空题1.把以下各式化成最||简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最||简单的因式 ,使得它与所给二次根式相乘的结果为有理式 ,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.以下计算不正确的选项是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最||简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算以下各式 ,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.,732.13≈那么≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.13+=a ,132-=b ,那么a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.以下各式中 ,最||简二次根式是( ).A .yx -1 B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时 ,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征 ,会进行二次根式的加、减运算.课堂学习检测一、填空题1.以下二次根式15,12,18,82,454,125,27,32化简后 ,与2的被开方数相同的有______ ,与3的被开方数相同的有______ ,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后 ,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.以下说法正确的选项是( ). A .被开方数相同的二次根式可以合并 B .8与80可以合并 C .只有根指数为2的根式才能合并 D .2与50不能合并5.以下计算 ,正确的选项是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.二次根式b a b +4与b a +3是同类二次根式 ,(a +b )a 的值是______.13.3832ab 与ba b 26无法合并 ,这种说法是______的.(填 "正确〞或 "错误〞) 二、选择题14.在以下二次根式中 ,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+ ,其中4=x ,91=y .20.当321-=x 时 ,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断以下各式是否成立?你认为成立的 ,在括号内画 "√〞 ,否那么画 "×〞.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后 ,发现了什么规律?请用含有n 的式子将规律表示出来 ,并写出n的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算 ,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时 ,最||简二次根式12-a 与73--a 可以合并. 2.假设27+=a ,27-=b ,那么a +b =______ ,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.以下各组二次根式化成最||简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.以下计算正确的选项是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b ) =|a -b | ,其中a ,b 为实数 ,那么=+7)3*7(_______.(2)设5=a ,且b 是a 的小数局部 ,那么=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.以下计算正确的选项是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘 ,如果它们的积不含有二次根式 ,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写以下各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1 , >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2 ,b =3 ,于是1<c <5 ,所以c =2 ,3 ,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577 ,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时 ,a a a ==22)(;当a <0时 ,a a -=2 ,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x 3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画 "√〞;(2)1122-=-+n n nn n n (n ≥2 ,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法 ,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.mnm 1+-有意义 ,那么在平面直角坐标系中 ,点P (m ,n )位于第______象限. 2.322-的相反数是______ ,绝||对值是______.3.假设3:2:=y x ,那么=-xy y x 2)(______.4.直角三角形的两条直角边长分别为5和52 ,那么这个三角形的周长为______. 5.当32-=x 时 ,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时 ,式子2)2(,2,2,2-+--a a a a 中 ,有意义的有( ). A .1个 B .2个 C .3个 D .4个7.以下各式的计算中 ,正确的选项是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.假设(x +2)2=2 ,那么x 等于( ). A .42+B .42-C .22-±D .22± 9.a ,b 两数满足b <0<a 且|b |>|a | ,那么以下各式中 ,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.A 点坐标为),0,2(A 点B 在直线y =-x 上运动 ,当线段AB 最||短时 ,B 点坐标( ).A .(0 ,0)B .)22,22(- C .(1 ,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.a 是2的算术平方根 ,求222<-a x 的正整数解.18.:如图 ,直角梯形ABCD 中 ,AD ∥BC ,∠A =90° ,△BCD 为等边三角形 ,且AD 2= ,求梯形ABCD 的周长.附加题19.先观察以下等式 ,再答复以下问题.①;211111*********2=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息 ,猜想2251411++的结果; (2)请按照上面各等式反映的规律 ,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形 ,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1 ,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1 ,对角线);cm (0.733712721222≈=+(2)拼成2×3 ,对角线3.431312362422≈=+(cm).。
人教版初中八年级数学下册第十六章《二次根式》基础卷(含答案解析)
一、选择题1.下列说法:①带根号的数是无理数;③实数与数轴上的点是一一对应的关系;④两个无理数的和一定是无理数;⑤已知a=2b=2a、b是互为倒数.其中错误的个数有()A.1个B.2个C.3个D.4个B解析:B【分析】对五个命题进行判断,即可求解.【详解】解:①带根号的数是无理数,判断错误;③实数与数轴上的点是一一对应的关系,判断正确;④两个无理数的和一定是无理数,判断错误;⑤已知a=2b=2a、b是互为倒数,判断正确.所以错误的有两个命题.故选:B【点睛】本题考查了无理数的定义,算术平方根、立方根的定义,实数与数轴的关系,实数的运算,二次根式的乘法,熟知相关知识点是解题关键.2.下列式子中正确的是()=-A=B.a b=-C.(a bD2== C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A、不是同类二次根式,不能合并,故错误,不符合题意;B、计算错误,不符合题意;C、符合合并同类二次根式的法则,正确,符合题意.D、计算错误,不符合题意;故选:C.【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.3.是同类二次根式的是()A B C D解析:D【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.【详解】A不符合题意;B不符合题意;,因此选项C不符合题意;是同类二次根式,因此选项D符合题意;故选:D.【点睛】本题考查同类二次根式的意义,将二次根式化成最简二次根式后,被开方数相同的二次根式是同类二次根式.4.下列计算正确的是()A=±B.=C=D2= B解析:B【分析】根据二次根式的性质进行化简和计算,然后进行判断即可.【详解】解:A=,所以此选项错误;===B,3C-D,故选:B.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.5.如x为实数,在“1)□x”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x不可能是()A 1B 1C .D .1-解析:C【分析】 根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.6.2a =-,那么下列叙述正确的是( )A .2aB .2a <C .2a >D .2a A 解析:A【分析】根据二次根式的性质可得a-2≤0,求出a 的取值范围,即可得出答案.【详解】解:|2|2=-=-a a ,20a ∴-,2a ∴,故选:A .【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.7.下列运算正确的有( )个.①6-==7==2=④=⑤=5==A.1 B.2 C.3 D.4A 解析:A【分析】根据二次根式的运算法则分别进行计算,计算出正确结果即可作出判断.【详解】①-===①错误.②21122===②错误.=22=-2=,故③错误.④==④错误.⑤12=⨯122=⨯24=,故⑤错误.==5=,故⑥正确.∴①②③④⑤⑥中只有⑥1个正确.故选A..【点睛】本题主要考查二次根式的运算,解题的关键是能熟练运用二次根式的性质和运算法则进行计算.8.下列计算正确的是()A7=±B7=-C112=D2= D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C==D==【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键. 9.如图为实数a ,b 在数轴上的位置,则222()()()b a a b +---=( )A .-aB .bC .0D .a-b C 解析:C【分析】由数轴可得a 、b 和a-b 的正负,再由二次根式性质去根号、合并同类项即可.【详解】根据实数a 、b 在数轴上的位置得知:-1<a <0<b <1,∴a-b <0,则原式=b-a-(b-a )=b-a-b+a=0.故选:C .【点睛】 考查了数轴及二次根式的化简,解题关键是由数轴得出a 、b 和a-b 的正负情况. 10.已知,22a a 那么a 应满足什么条件 ( ) A .a >0B .a≥0C .a =0D .a 任何实数B 解析:B【分析】 a 与2a a 的取值范围即可得到答案.【详解】∵a a 的取值范围是0a ≥2a a 的取值范围是任意实数, 故a 应满足的条件是0a ≥,故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件.二、填空题11.计算((2323⨯+的结果是_____.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.12.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2-※=2=2-=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.13.已知最简根式a =________,b =________.【分析】根据同类二次根式的定义得到解方程组即可【详解】由题得:解得:故答案为:1【点睛】此题考查最简二次根式同类二次根式的定义解二元一次方程组正确理解最简二次根式同类二次根式的定义列出方程组是解题的 解析:72根据同类二次根式的定义得到122531ba b+=⎧⎨-=-⎩,解方程组即可.【详解】由题得:122531ba b+=⎧⎨-=-⎩,解得:721ab⎧=⎪⎨⎪=⎩.故答案为:72,1.【点睛】此题考查最简二次根式、同类二次根式的定义,解二元一次方程组,正确理解最简二次根式、同类二次根式的定义列出方程组是解题的关键.14.计算:=_________.【分析】根据二次根式的除法法则运算即可【详解】解:解法一===-4解法二==-4故答案为:-4【点睛】本题考查了二次根式的除法可以直接被开方数相除也可以先化简两个二次根式再相除解析:4-【分析】根据二次根式的除法法则运算即可.【详解】解:解法一,===-4.解法二,=2-,=-4.故答案为:-4.【点睛】本题考查了二次根式的除法,可以直接被开方数相除,也可以先化简两个二次根式再相除.15.若3,m,5________.【分析】先根据三角形三边的关系判断2-m和m-8的正负然后根据二次根式的性质化简即可【详解】解:∵3m5为三角形的三边长∴5-3<m<5+3∴2<m<8∴2-m<0m-8<0∴=-(2-m)+(m-m-解析:210【分析】先根据三角形三边的关系判断2-m和m-8的正负,然后根据二次根式的性质化简即可.【详解】解:∵3,m,5为三角形的三边长,∴5-3<m<5+3,∴2<m<8,∴2-m<0,m-8<0,∴=-(2-m)+(m-8)=-2+m+m-8=2m-10.故答案为:2m-10.【点睛】本题考查了三角形三条边的关系,以及二次根式的性质,熟练掌握二次根式的性质是解答本题的关键.+的平方根为_________.±5【分析】先根据二16.已知17y=,则x y次根式有意义的条件求得x的值然后再求得y的值最后再求x+y的平方根即可解答【详解】解:∵x-8≥08-x≥0∴x=8∴∴x+y的平方根为故答案为±5【点睛】本题考查了二次根式的意解析:±5【分析】先根据二次根式有意义的条件求得x的值,然后再求得y的值,最后再求x+y的平方根即可解答.【详解】解:∵x-8≥0,8-x≥0∴x=8∴1717y===±.∴x+y的平方根为5故答案为±5.【点睛】本题考查了二次根式的意义和代数式求值,根据二次根式的意义求得x的值成为解答本题的关键.a>=______.-b【分析】先确定b的取值范围再利用二次根17.)0式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b 的取值范围及理解被开平方数具有非负性.18.已知2160x x-=,则x 的值为________.4或2【分析】先求出x 的取值范围然后分或求解即可;【详解】解:由题意得x≠0且x-2≥0∴x≥2且x≠0∵∴或当时则x2-16=0解得x=4或x=-4(舍去);当时则x-2=0解得x=2;∴x 的值是解析:4或2【分析】先求出x 的取值范围,然后分2160x x-=0=求解即可; 【详解】解:由题意得x≠0,且x-2≥0,∴x≥2,且x≠0,∵2160x x-=, ∴2160x x-=0=, 当2160x x-=时, 则x 2-16=0,解得x=4,或x=-4(舍去);0=时,则x-2=0,解得x=2;∴x 的值是4或2,故答案为:4或2.【点睛】本题考查了二次根式有意义的条件,分式的值为零的条件,以及分类讨论的数学思想,分类讨论是解答本题的关键.19.(1015293-⎛⎫-++= ⎪⎝⎭__________.5【分析】根据零指数幂负整指数幂绝对值二次根式化简的运算法则化简然后根据实数的运算法则计算即可【详解】==5答案为:5【点睛】本题考查实数的综合运算能力是各地中考题中常见的计算题型解决此类题目的关键解析:5【分析】根据零指数幂、负整指数幂、绝对值、二次根式化简的运算法则化简,然后根据实数的运算法则计算即可.【详解】(1015293-⎛⎫++ ⎪⎝⎭52314=-++-,=544--=5,答案为:5.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.20y =,则x y +=________.2【分析】先根据非负数的性质得出关于xy 的方程求出xy 的值代入x+y 进行计算即可【详解】解得故答案为:2【点睛】本题考查的是非负数的性质解题的关键是掌握非负数的性质即几个非负数的和为0时这几个非负数解析:2【分析】先根据非负数的性质得出关于x 、y 的方程,求出x 、y 的值,代入x+y 进行计算即可.【详解】220x y -+=,20x ∴-=,0y =,解得2x =,202x y +=+=.故答案为:2.【点睛】本题考查的是非负数的性质.解题的关键是掌握非负数的性质,即几个非负数的和为0时,这几个非负数都为0.三、解答题21.先化简再求值:2211,211a a a a a ----+-其中a = 解析:()()211a a -+,1. 【分析】分母先分解因式化简,两个异分母分式通分后相减,再把a 值代入求解即可.【详解】2211211a a a a a ----+- =211(1)(1)(1)a a a a a ----+- =1111a a --+ =()()(1)(1)11a a a a +---+=()()211a a -+,当a =原式231=-=1【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.|1.解析:1.【分析】 根据二次根式的性质、绝对值的性质、立方根的性质依次化简再计算加减法.【详解】解:原式12=+1=.【点睛】此题考查实数的混合运算,二次根式的加减运算,掌握二次根式的性质、绝对值的性质、立方根的性质是解题的关键.23.计算:(101122-⎛⎫- ⎪⎝⎭解析:3-【分析】先分别计算负指数、二次根式化简、0指数和绝对值,再进行加减即可.【详解】解:原式(212=--- ,212=---+=3-【点睛】本题考查了负指数、二次根式化简、0指数和绝对值有关的实数计算,熟练按照法则进行计算是解题关键.24.解答下列各题:(1)计算:2(1-. (2)解方程组:125x y x y +=⎧⎨-=⎩①②. (3)解不等式组331213(1)8x x x x -⎧+>+⎪⎨⎪---⎩①②,并把解集在数轴上表示出来.解析:(1)4;(2)21x y =⎧⎨=-⎩;(3)21x -<,画图见解析. 【分析】(1)先用完全平方公式运算括号里的,再进行根式乘法运算,最后计算加减; (2)运用加减消元法运算求解即可;(3)先分别计算两个不等式,画出数轴可判断出解集.【详解】(1)2(1+13=++4=+(2)125x y x y +=⎧⎨-=⎩①②, ①+②得36,2x x ==,把2x =代入①, 21,1y y +==-,∴方程组的解为21x y =⎧⎨=-⎩. (3)()33121318x x x x -⎧+>+⎪⎨⎪---⎩①②, 由①得6232x x +>+-2236x x ->+- 1x ->-1x <;由②得1338x x -+-1383x x +--24x -2x -,∴不等式组解集为21x -<,∴数轴表示如下:【点睛】本题考查实数的混合运算,二元一次方程组的求解,一元一次不等式组的求解,属于基础题,需要有一定的运算求解能力,熟练掌握运算法则是解决本题的关键.25.计算 (1)38232182)(325)(325)解析:(122)-17【分析】(1)先化简二次根式,再合并即可;(2)利用平方差计算即可.【详解】解:(1)3823218628232=(683)2=-+=(2)22=-320=-17=-【点睛】本题考查了二次根式的运算、平方差公式,准确掌握运算法则,合理利用公式是解题关键.26.已知1,1x y ==,求下列代数式的值:(1)22xy +; (2)y x x y+. 解析:(1)8;(2)4.【分析】(1)先计算出x y +和xy 的值,再利用完全平方公式求解即可;(2)通分后利用(1)的结论求解即可.【详解】(1)∵11x y ==,,∴1)2x y xy +===,∴22x y +2()2x y xy =+-222=-⨯124=-8=;(2)∵22118x y x y ==+=,,,2xy =, ∴y x x y+ 22x y xy+= 82= 4=.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.注意整体代入的方法的运用.27.计算:(1)(2)0|1(3)1)π+--.解析:(1)6-2)2-【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.【详解】(1)原式33=⨯23=⨯-6=;(2)原式116(31)2=+-⨯--2=2=-.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,另外有理数的运算律在实数范围内仍然适用.28.先化简,再求值:21()111x x x x -÷---,其中x +1.解析:2x +.【分析】先根据分式的混合运算法则化简原式,然后再将x 的值代入计算即可.【详解】 解:原式=2(1)11x x x x ⎛⎫+⨯- ⎪--⎝⎭=2(1)1x x x +⨯-- =x +2.把x .【点睛】本题主要考查分式的混合运算,二次根式的加法,掌握分式的混合运算顺序和运算法则是解答本题的关键.。
人教版八年级下册数学第十六章 二次根式测试题含答案
人教版八年级下册数学第十六章测试卷一、选择题(每小题3分,共30分)1.下列计算正确的是( )A .532=+B .2553=-C .3226=⨯D .326=÷2.如果a 为任意实数, 下列各式中一定有意义的是( )AB CD 3.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .31 4.下列二次根式,不能与12合并的是( )A .48B .18C .311D .-755.下列计算正确的是( )A =B 1==C .(21-+=D=6.已知ab <0,则b a 2化简后为( )A .b aB . b a -C .b a -D .b a --7.在△ABC 中,BC =,BC 上的高为cm ,则△ABC 的面积为( )A . 2B .cm 2C . 2D .28.( )ABCD9.|3﹣y |=0( )A .9B .C .D .﹣910.实数a 在数轴上的位置如图所示,则错误!未找到引用源。
化简后为( )A . 7B . -7C . 错误!未找到引用源。
D .无法确定第10题图二、填空题(每小题3分,共30分)11.当6-=x 时,二次根式73x -的值为12.小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?________ (填对或错)13.若代数式2-x x有意义,则x 的取值范围是_____________ 14.已知y =44x x -+-+3,则(y ﹣x )2017= .15.当a = 时,最简二次根式2a -与102a -是同类二次根式;16.把1m m--根号外的因式移到根号内,则得 . 17.如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是3和-1,则点C 所对应的实数是 .第17题图18.已知a 、b 、c 是△ABC ()2940a b --=,则第三边c 的取值范围是____________.19.已知a ,b 18a b +=a +b = .20. 2 2 6 22 10 ⋅⋅⋅、、、、 (第n 个数). 三、解答题(共60分)21.(6分)化简(1(2)60061243--22.(6分)(1)(2)先化简,在求值:22()a b ab b a a a--÷-,其中1a =,1b =.23.(6分)求值: (1)已知a =21,b =41,求b a b --ba b +的值.(2)已知x =251-,求x 2-x +5的值.24.(6分)x 为偶数,求(1+x .25.(8分)一个三角形的三边长分别为,54.(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.26.(8分)在一块边长为m 的正方形土地中,修建了一个边长为m 的正方形养鱼池,问:剩余部分的面积是多少?27.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax +b =0,其中a 、b 为有理数,x 为无理数,那么a =0且b =0.运用上述知识,解决下列问题:(1)如果032)2(=++-b a ,其中a 、b 为有理数,那么a = ,b = ; (2)如果5)21()22(=--+b a ,其中a 、b 为有理数,求2a b +的值.28.(10分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如(231+=+,善于思考的小明进行了如下探索:设(2a m +=+,(其中a 、b 、m 、n 均为正整数)则有2222a m n +=+222,2a m n b mn ∴=+=这样,小明找到了把部分a +. 请你仿照小明的方法探索并解决问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b 得,a = ,b =(2)若(2a m +=+且a 、b 、m 、n 均为正整数,求a 的值.参考答案1.C2.C3.B【解析】最简二次根式是指不能继续化简的二次根式,A 、原式=3;B 为最简二次根式;C 、原式=25;D 、原式=334.B【解析】本题首先将所有的二次根式的化简,如果化简后被开方数相同,则能够进行合并.3212=;3448=;2318= 5.A .【解析】A ==B ==;故该选项错误;C 、(2451+=-=-,故该选项错误;D 212==;故该选项错误.故选A . 6.B【解析】根据题意可得:a <0,b >0,则原式=a .7.C【解析】由三角形面积公式得11422ABC S BC h ==⨯==△(cm 2). 8.B【解析】二次根式的乘除法运算属于同级运算,按照从左到右的运算顺序运算即可. 9.C【解析】根据非负数的性质列出算式,分别求出x 、y 的值,根据二次根式的性质计算即可. 解:由题意得,x ﹣12=0,3﹣y =0,解得,x =12,y =3, 则﹣=2﹣=,故选:C . 10.A 【解析】二次根式的性质为:⎩⎨⎧≤-≥=)0()0(2a a a a a a ,根据数轴可得:a -4 0,a -11 0,则原式=114-+-a a =a -4+11-a =7.11.5. 【解析】当6x =-时,()73736255x -=--==.12.错【解析】二次根式是指含有的式子.13.x ≥0且x ≠2【解析】二次根式的被开方数为非负数,分式的分母不为零.根据性质可得:x ≥0且x -2≠0,解得:x ≥0且x ≠2. 14.﹣1【解析】直接利用二次根式有意义的条件得出x ,y 的值,进而代入求出答案. 解:∵y =++3,∴x =4,y =3,则(y ﹣x )2017=(3﹣4)2017=﹣1. 故答案为:﹣1. 15.4.【解析】根据同类二次根式的定义可得,a -2=10-2a ,解得a =4. 故答案为:4. 16.m -【解析】根据题意可得:m <0,所以211()()m m m m--=--=- 17.23+1.【解析】解:设点C 所对应的实数是x .则有x (-1),解得x =1. 18.5<c <13【解析】根据题意可得:a -9=0,b -4=0,解得:a =9,b =4,则a -b <c <a +b ,即5<c <13. 19.10.==,x 、y 都是正整数,是同类二次根式, ∴28a b ==⎧⎨⎩或82b a ==⎧⎨⎩, ∴a +b =10.20【解析】的倍数,的1倍,依此类推,第n21.(1)-1;(2 【解析】(1)利用平方差公式计算;(2)先将各式化简成最简二次根式,然后合并同类二次根式即可. 解:(1)原式=223-2)()( =2-3 =-1 (2)60061243--= 61066166-- =6)10616(-- =6625-22.(12【解析】(1)先根据绝对值、负整数指数幂、二次根式等知识点分别进行计算,最后进行加减运算即可.(2)先化简分式,再把a 、b 的值代入化简的式子即可求值. 解:(1)原式=34-+1.(2)原式=222a b a ab b a a--+÷=2()a b aa ab -⨯- =1a b-把1a =,1b =代入上式得:12=.23.(1)2;(2)7+【解析】(1)首先根据二次根式的计算法则将所求的二次根式进行化简,然后将a 和b 的值代入化简后的式子进行计算;(2)首先根据二次根式的化简法则将x 进行化简,然后将x 的值代入所求的代数式进行计算. 解:(1)原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时, 原式=4121412-⨯=2. (2)∵x =-251-=4525-+=25+.∴=x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45. 24.6a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩ ∴6<x ≤9 ∵x 为偶数 ∴x =8∴原式=(1+x=(1+x=(1+x∴当x =86.25.(1(2)当x =20或当x 等)【解析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并解:(1)周长=+54;(2)当x =2025=(或当x =455=等)262.【解析】解:22-====m 2).答:剩余部分的面积是m 2.27.(1)a=2,b=-3;(2)5 3 -.【解析】(1),b是有理数,则a﹣2,+3都是有理数,根据如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.即可确定(2)首先把已知的式子化成ax+b=0,(其中a、b为有理数,x为无理数)的形式,根据a=0,b=0即可求解.解:(1)2,﹣3;(2)整理,得(a+b)2+(2a﹣b﹣5)=0.∵a、b为有理数,∴250a ba b+=⎧⎨--=⎩,解得:5353ab⎧=⎪⎪⎨⎪=-⎪⎩,∴523a b+=-.第11 页共11 页。
第16章二次根式期末综合复习知识点分类训练(附答案)2020-2021学年八年级数学人教版下册
2021年人教版八年级数学下册《第16章二次根式》期末综合复习知识点分类训练(附答案)一.二次根式的定义及其意义1.下列各式中是二次根式的是()A.B.C.﹣D.22.下列各式一定是二次根式的是()A.B.C.D.3.若是二次根式,则a的值不可以是()A.4B.C.90D.﹣24.若代数式有意义,则实数x的取值范围是()A.x>2B.x≥2C.x<2D.x≤25.若式子有意义,则x的取值范围为()A.x>4B.x<4C.x≥4D.x≤46.使代数式有意义,则a的取值范围为()A.a≥﹣2且a≠1B.a≠1C.a≥﹣2D.a>﹣27.设x,y为实数,且,则|y﹣x|的值是()A.1B.9C.4D.58.若a,b为实数,且b=++4,则a+b的值为()A.﹣13B.13C.﹣5D.5二.二次根式的性质与化简9.下列各式中正确的是()A.=﹣2B.=2C.=2D.=±210.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与11.若,则a的取值范围是()A.a B.a>C.a<D.a12.若3<a<4,则﹣|a﹣4|等于()A.2a﹣7B.﹣1C.7﹣2a D.113.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣b B.b C.﹣2a﹣b D.﹣2a+b三.最简二次根式与二次根式的乘除14.下列二次根式中,是最简二次根式的是()A.B.C.D.15.下列式子是最简二次根式的是()A.B.C.D.16.化简:=;=;(2)2=.17.计算÷的结果是.18.计算:=.四.二次根式的加减19.计算﹣的结果是.20.计算﹣+2的结果是.21.如果最简二次根式与可以合并,则x=.22.若与最简二次根式3可以合并,则a=.23.如果最简二次根式和可以合并,则ab=.五.二次根式的混合计算与化简求值24.下列计算正确的是()A.=B.=2C.=D.(3﹣)2=7 25.下列计算:①()2=2,②=﹣2,③(﹣2)2=12,④=2,⑤﹣=,⑥()(﹣)=﹣1,其中结果正确的个数为()A.1B.2C.3D.426.下列各式计算正确的是()A.2﹣=2B.2×=2C.=2D.﹣=27.计算:=.28.计算(2﹣3)÷=.29.已知a=,b=,求ab的值为.30.已知a=3+,b=3﹣,则代数式的值是.31.已知x=﹣1,则代数式x2﹣5x﹣6=.32.已知(a﹣3)2+|b﹣4|=0,则a+的值是.33.已知m+n=10,则的最小值=.六.分母有理化与二次根式的应用34.分母有理化:=.35.已知长方形的面积为18,一边长为2,则长方形的另一边为.36.若x=+1,y=﹣1,则的值为.37.若直角三角形的边长分别是3,m,5.(1)求m;(2)先化简再求值.38.(1)已知a=3+2,b=3﹣2,求代数式a2b﹣ab2的值.(2)(﹣)÷,其中x=﹣2.39.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化,根据上述材料,计算:+++…+=.40.阅读材料:如果一个三角形的三边长分别为a,b,c,记p=,那么这个三角形的面积为S=.这个公式叫“海伦公式”,它是利用三角形的三条边的边长直接求三角形面积的公式,中国秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦﹣﹣秦九韶公式”.完成下列问题:如图,在△ABC中,a=5,b=3,c=4.(1)求△ABC的面积;(2)过点A作AD⊥BC,垂足为D,求线段AD的长.参考答案一.二次根式的定义及其意义1.解:A、是三次根式,不合题意;B、根号下部分是负数,无意义,不是二次根式,不合题意;C、﹣,符合二次根式的定义,符合题意;D、2不是二次根式,不合题意.故选:C.2.解:A、x<0时,不是二次根式,故A不符合题意;B、是二次根式,故B符合题意;C、二次根式的被开方数是非负数,故C不符合题意;D、,根指数不是2,不是二次根式,故D不符合题意;故选:B.3.解:∵是二次根式,∴a≥0,故a的值不可以是﹣2.故选:D.4.解:由题意得:x﹣2≥0,解得:x≥2,故选:B.5.解:∵式子有意义,∴x﹣4>0,解得x>4,即x的取值范围为x>4,故选:A.6.解:由题意得a+2≥0且a﹣1≠0,解得a≥﹣2且a≠1,故选:A.7.解:∵,∴5﹣x≥0,5﹣x≤0,∴5﹣x=0,解得x=5,∴y=4,∴|y﹣x|=|4﹣5|=1.故选:A.8.解:由题意得:,解得a=9,∴b=4,∴a+b=9+4=13.故选:B.二.二次根式的性质与化简9.A.算术平方根具有非负性,不符合题意;B.负数的立方根是负数,不符合题意;C.负数的平方等于正数,符合题意;D.算术平方根只有一个,不符合题意.故选:C.10.解:∵=2,2与﹣2互为相反数,故A选项符合题意;=﹣2,故B选项不符合题意;(﹣)2=2,故C选项不符合题意;|﹣|=,故D选项不符合题意.故选:A.11.解:∵,∴3﹣2a≥0,解得:a≤.故选:D.12.解:∵3<a<4,∴﹣|a﹣4|=a﹣3﹣(4﹣a)=a﹣3﹣4+a=2a﹣7.故选:A.13.解:由数轴可得:﹣2<a<﹣1,0<b<1,则a﹣b<0,故原式=﹣a+b﹣a=﹣2a+b.故选:D.三.最简二次根式与二次根式的乘除14.解:A,,被开方数含有分母,不是最简二次根式,故此选项不符合题意;B,,是最简二次根式,故此选项符合题意;C,被开方数不是整数,不是最简二次根式,故此选项不符合题意;D,=,被开方数含有开的尽方的因数,不是最简二次根式,故此选项不符合题意.故选:B.15.解:A.==,不符合题意;B.=2,不符合题意;C.是最简二次根式,符合题意;D.=,不符合题意.故选:C.16.解:=3;=;(2)2=12.故答案为:3,,12.17.解:÷===2,故答案为:2.18.解:原式=4÷5×=×==.故答案为:.四.二次根式的加减法19.解:原式=﹣2=﹣.故答案为:﹣.20.解:原式=(+2)﹣=3﹣.故答案为:3﹣.21.解:∵最简二次根式与可以合并,∴2x+1=5,∴x=2.故答案为:2.22.解:∵=2,∴3=4﹣2a,∴a=,故答案为:.23.解:最简二次根式和是同类二次根式,∴b+1=2且2a+3=a+3b,解得a=0,b=1,∴ab=0.故答案为:0.五.二次根式的混合计算与化简求值24.解:A、+=3+,故此选项错误;B、﹣=2,故此选项正确;C、==,故此选项错误;D、(3﹣)2=9+2﹣6=11﹣6,故此选项错误;故选:B.25.解:①()2=2,故①正确.②=2,故②错误.③(﹣2)2=12,故③正确.④=,故④错误.⑤与不是同类二次根式,故⑤错误,⑥()(﹣)=2﹣3=﹣1,故⑥正确.故选:B.26.解:A、原式=,故A错误.B、原式=2,故B正确.C、原式==,故C错误.D、与不是同类二次根式,故不能合并,故D错误.故选:B.27.解:原式=﹣2=2﹣2.故答案为2﹣2.28.解:原式=2﹣3=8﹣9=﹣1.故答案为﹣1.29.解:a=,b=,∴ab=()()=3﹣2=1.故答案为:1.30.解:∵a=3+,b=3﹣,∴a+b=(3+)+(3﹣)=6,ab=(3+)(3﹣)=9﹣5=4,∴===2,故答案为:2.31.解:∵x=﹣1,∴x2﹣5x﹣6=(x+1)(x﹣6)=(﹣1+1)(﹣1﹣6)=(﹣7)=5﹣7.故答案为5﹣7.32.解:由题意可知:a﹣3=0,b﹣4=0,∴a=3,b=4,∴原式=3+2=5,故答案为:5.33.解:如图,∠CAB=∠DBA=90°,AB=10,AC=5,BD=7,设AP=m,BP=n,则PC=,PD=,∵PC+PD≥CD(当且仅当C、P、D共线时取等号),∴PC+PD的最小值为CD,过D点作DE⊥AC于E,如图,易得四边形ABDE为矩形,∴AE=BD=7,DE=AB=10,在Rt△CDE中,CD===2,∴的最小值为2.故答案为2.六.分母有理化与二次根式的应用34.解:===2.故答案为:2﹣.35.解:∵长方形的面积为18,一边长为2,∴长方形的另一边为:18÷2=3.故答案为:3.36.解:∵x=+1,y=﹣1,∴x+y=(+1)+(﹣1)=2,则====,故答案为:.37.解:(1)当m为斜边时,m=;当m为直角边时,m==4.综上,m的值为4或;(2)原式==|m﹣3|﹣|m﹣7|,当m=4时,原式=m﹣3﹣7+m=2m﹣10=2×4﹣10=﹣2;当m=时,原式=m﹣3﹣7+m=2m﹣10=2×﹣10=2﹣10,综上原式的值为﹣2或2﹣10,38.解:(1)∵a=3+2,b=3﹣2,∴ab=(3+2)(3﹣2)=1,a﹣b=(3+2)﹣(3﹣2)=4,∴a2b﹣ab2=ab(a﹣b)1×4=4;(2)原式=(﹣)×=×=,当x=﹣2时,原式==.39.解:原式=﹣1+﹣+﹣+…+﹣=﹣1.故答案为:﹣1.40.解:(1)∵a=5,b=3,c=4,∴p==6,∴△ABC的面积S==6;(2)如图,∵△ABC的面积=BC•AD,∴×5×AD=6,∴AD=.。
八年级下册数学课本人教版目录
⼋年级下册数学课本⼈教版⽬录 数学教材的编制质量,直接关系到⼈教版教学的效率和课程⽬标的落实。
⽬录是教材的眼。
⼩编整理了关于⼈教版⼋年级下册数学课本的⽬录,希望对⼤家有帮助! ⼈教版⼋年级下册数学课本⽬录 第⼗六章⼆次根式 16.1 ⼆次根式 16.2 ⼆次根式的乘除 16.3 ⼆次根式的加减 数学活动 ⼩结 复习题16 第⼗七章 勾股定理 17.1 勾股定理 17.2 勾股定理的逆定理 数学活动 ⼩结 复习题17 第⼗⼋章 平⾏四边形 18.1 平⾏四边形 18.2 特殊的平⾏四边形 数学活动 ⼩结 复习题18 第⼗九章 ⼀次函数 19.1 函数 19.2 ⼀次函数 14.3 课题学习选择⽅案 数学活动 ⼩结 复习题19 第⼆⼗章 数据的分析 20.1 数据的集中趋势 20.2 数据的波动程度 20.3 课题学习体质健康测试中的数据分析 数学活动 ⼩结 复习题20 部分中英⽂词汇索引 ⼈教版⼋年级数学下册知识点:⼆次根式 1、⼆次根式:形如a(a 0)的式⼦。
①⼆次根式必须满⾜:含有⼆次根号“”;被开⽅数a必须是⾮负数。
②⾮负性 2、最简⼆次根式:满⾜:①被开⽅数不含分母;②被开⽅数中不含能开得尽⽅的因数或因式的⼆次根式。
3、化最简⼆次根式的和步骤: (1)如果被开⽅数含分母,先利⽤商的算数平⽅根的性质把它写成分式的形式,然后利⽤分母有理化进⾏化简。
(2)如果被开⽅数含能开得尽⽅的因数或因式,先将他们分解因数或因式,然后把能开得尽⽅的因数或因式开出来。
⼆次根式有关公式 (1)(a)2a(a 0) (2)a2 a (3)乘法公式ab a b(a 0,b 0) (4)除法公式aba(a 0,b 0) 4、⼆次根式的加减法则:先将⼆次根式化为最简⼆次根式,再将被开⽅数相同的⼆次根式进⾏合并。
5、⼆次根式混合运算顺序:先乘⽅,再乘除,最后加减,有括号的先算括号⾥的。
⼈教版⼋年级数学下册知识点:反⽐例函数 1.定义:形如y= (k为常数,k≠0)的函数称为反⽐例函数。
八年级数学下册《二次根式的乘除》练习题及答案(人教版)
八年级数学下册《二次根式的乘除》练习题及答案(人教版)一单选题1.估计√3×√6的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间2.下列为最简二次根式的是()A.√26B.√32C.√0.5D.√123.如图在长方形ABCD中无重叠放人面积分别为16cm2和12cm2的两张正方形纸片则图中空白部分的面积为()A.(−12+8√3)cm2B.(16−8√3)cm2C.(8−4√3)cm2D.(4−2√3)cm24.如果√12⋅√x是一个正整数那么x可取的最小正整数值为()A.2B.4C.3D.125.计算1√2−1的结果是()A.√2B.√22C.√2−1D.√2+16.在√16x3√23−√0.5√a x√253中最简二次根式的个数是()A.1B.2C.3D.4 7.计算√2×√8+√−273的结果为()A.﹣1B.1C.4−3√3D.7 8.√2+1的倒数是()A.√2B.√2+1C.√2﹣1D.√22+19.已知a=1√2+1b=1√2−1则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等10.下列计算中错误的是()A.√14×√7=7√2B.√60÷√30=√2C.√3×√6=9√2D.√8√2a=2√a a二 填空题11.当a =﹣1时 二次根式 √2−7a 的值为 . 12.记1√5−2的整数部分是a 小数部分是b 则a b 的值为 . 13.分母有理化 √2= . 14.一个长方形相邻两边的长分别为 √2 √8 则它的周长和面积分别是15.计算 4√ab 3·12√a 3b = 三 解答题16.先化简 再求值 a √b a −2b √ab 3+3√ab 其中b= √a −2+√2−a +3 . 17.如图所示 在Rt△ABC 中 △ACB=90° CD△AB 于点D .若S△ABC =3 √2 cm 2 BC= √3 cm 求AC 和CD 的长.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度 所用的经验公式是 v =16√df其中 v 表示车速(单位 km/h ) d 表示刹车后车轮滑过的距离(单位 m ) f 表示摩擦因数.在某次交通事故调查中 测得 d =20 m f =1.2 该路段限速60km/h 该汽车超速了吗?请说明理由(已知 √2≈1.4,√3≈1.7 ) 19.计算 2√ab 3×34√a 3b ÷3√1a 20.已知 1√2+2√1 + 2√3+3√2 + 3√4+4√3 +…+ n √n+1+(n+1)√n = 4950 求n 的值. 21.习题集上有一道题为 “先化简 再求值 2a −√a 2−4a +4 其中a= √3 小刚的解法如下 2a −√a 2−4a +4 = 2a −√(a −2)2 =2a -a+2=a+2 当a= √3 时 原式= √3 +2 小刚的解法正确吗?若不正确 请写出正确的解法。
人教版八年级数学下册二次根式(全章)习题及答案
人教版八年级数学下册二次根式(全章)习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 1x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a ,则- )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A==( ) A. 24a + B. 22a + C. ()222a + D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥ 19.)A. 0B. 42a -C. 24a -D. 24a -或42a -20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()421.2440y y -+=,求xy 的值。
22. 当a 取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
人教版八年级下册数学精品教学课件 第十六章 二次根式 二次根式的乘除 第1课时 二次根式的乘法
5
2
=20,
3
3
2 =32
3 2 =27,
又∵20<27,
∴ 2 5 2 < 3 3 2,即 2 5<3 3 .
(2) 2 13与-3 6.
解:∵ 2 13= 22 13= 52,
3 6= 32 6= 54, 又∵52<54,
∴ 52< 54 ,
两个负数比较 大小,绝对值 大的反而小
讲授新课
一 二次根式的乘法 计算下列各式:
(1) 4 9 = __2_×_3__=__6__; 4 9 =___3_6___6__;
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36= __5_×_6__=__3_0_; 25 36 =__9_0_0___30__.
( 2 ) 6 12 = __6__2___ ;
( 3 ) 32 2 __2_6__.
4. 比较下列两组数的大小(在横线上填“>”“<” 或“=”):
(1)5 4 > 4 5;(2) 4 2 < 2 7.
5.计算: ( 1 ) 2 3 5 21 ;
解: (1) 2 35 21
25 321 10 327 30 7;
3
解: (1) 3 5 15;
(2) 1 27 1 27 9 3.
3
3
可先用乘法结合 律,再运用二次 根式的乘法法则
(3) 2 3 5 ( 2 3) 5 6 5 30.
归纳 (3)只需其中两个结合就可实现转化进行计算, 说明二次根式乘法法则同样适合三个及三个以上的二
次根式相乘,即 a b k a b k(a 0,b 0,k 0) .
3.如果因式中有平方式(或平方数),应用关系式 a2 = a 把这个因式(或因数)开出来,将二次根 式化简 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.2 二次根式的乘除
第1课时二次根式的乘法
1.下列等式一定成立的是( )
A.9-4= 5
B.5×3=15 C.9=±3 D.--92=9 2.[2020·益阳]下列各式化简后的结果为32的是( ) A. 6 B.12
C.18 D.36 3.[2020·潍坊]|1-2|=( )
A.1- 2 B.2-1
C.1+ 2 D.-1- 2
4.计算2×8+3
-27的结果为( )
A.-1 B.1
C.4-3 3 D.7
5.化简二次根式-52×3的结果为( ) A.-5 3 B.5 3
C.±5 3 D.75
6.把-25根号外面的数移到根号里面,得( ) A.-10 B.20
C.-20 D.-50
7.[2020·镇江]计算:1
2
×8= .
8.若长方形的宽为315 cm,长为245 cm,则长方形的面积为90 3 cm2. 9.(1)若x2-1=x+1·x-1,则x的取值范围是;
(2)若2x+12-x=2x+1·2-x,则x的取值范围是.10.比较大小:3 6 4 5.
11.计算:
(1)3×27;(2)12×32;(3)2a ·8a .
12.化简:
(1)49×121;
(2)-25×-169;
(3)49×0.16;
(4)24;
(5)12a 2b 2
(a ≥0,b ≥0);
(6)0.04×9×0.64×324.
13.计算:
(1)-3×-16×-36; (2)2×13
3×6; (3)
135×23×⎝ ⎛⎭⎪⎫-1210.
14.如图16-2-1所示是工人师傅做的一块三角形铁板材料,BC 边的长为235 cm ,BC 边上的高AD 为28 cm ,求该三角形铁板的面积.
图16-2-1
15.[2020·吉林模拟]已知b >0,化简-a 3b 的结果是( )
A .a ab B.-a ab
C .-a -ab D.a -ab
16.把(a -2)1
2-a 根号外的因式移到根号内后,其结果是 .
参考答案
16.2 二次根式的乘除
第1课时 二次根式的乘法
【分层作业】
1.B 2.C 3.B 4.B 5.B 6.C 7.2
8.90 3 9.(1)x ≥1 (2)-1
2≤x ≤2 10.<
11.(1)9 (2)4 (3)4a
12.(1)77 (2)65 (3)2.8 (4)2 6 (5)23ab
(6)8.64
13.(1)-24 3 (2)2 (3)-4 3
14.三角形铁板的面积为14 5 cm 2.
15.C 16.-2-a。