沪科版七年级数学上册复习提纲

合集下载

沪科版七年级上册数学期末复习讲义

沪科版七年级上册数学期末复习讲义

第三章 一次方程与方程组
3.1 一元一次方程及其解法 ①方程是含有未知数的等式。 ②方程都只含有一个未知数(元)x,未知数 x 的指数都是 1(次),这样 的整式方程叫做一元一次方程。 ③注意判断一个方程是否是一元一次方程要抓住三点: 1)未知数所在的式子是整式(方程是整式方程); 2)化简后方程中只含有一个未知数; (系数中含字母时不能为零) 3)经整理后方程中未知数的次数是 1. ④解方程就是求出使方程中等号左右两边相等的未知数的值, 这个值就是方 程的解。方程的解代入满足,方程成立。 ⑤等式的性质: 1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等 式不变(结果仍相等)。a=b 得:a±c=b±c。 2)等式两边同时乘以或除以同一个不为零的数,等式不变。 a=b 得: a b (c 0) a×c=b×c 或 c c 注意:运用性质时,一定要注意等号两边都要同时+、 -、×、÷;运用性质 2 时,一定要注意 0 这个数。 ⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数) →去括号→移项→合并同类项→系数化 1;以上是解一元一次方程五个基本步 骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复 使用。因此,解方程时,要根据方程的特点,灵活选择方法。在解方程时还要注 意以下几点: 1)去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母 的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质) 与分母化整(分数的基本性质)是两个概念,不能混淆; 2)去括号:遵从先去小括号,再去中括号,最后去大括号 不要漏乘括号 的项;不要弄错符号(连着符号相乘); 3)移项: 把含有未知数的项移到方程的一边,其他项都移到方程的另一 边(以=为界限), 移项要变号; 4)合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程, 不能像计算或化简题那样写能连等的形式. 5)系数化 1:(两边同除以未知数的系数)把方程化成 a·x=b(a≠0) 的形式,字母及其指数不变系数化成 1 在方程两边都除以未知数的系数 a,得到 方程的解不要分子、分母搞颠倒(刘老师提醒:不要着急,一步一步来。在计算 上丢分是最可惜的!) 3.2 一次方程的应用: (一) 、概念梳理 ⑴列一元一次方程解决实际问题的一般步骤是:审题, 特别注意关键的字和 词的意义,弄清相关数量关系,注意单位统一,注意设未知数; ①解:设出未知数(注意单位) , ②根据相等关系列出方程, ③解这个方程, ④答(包括单位名称,最好检验) 。

沪科版七年级数学上最全的知识点和方法总结

沪科版七年级数学上最全的知识点和方法总结

七年级数学(上)最全的知识点第1章有理数一、知识框架二、知识概念1、有理数:2、数轴:数轴是规定了原点、正方向、单位长度的一条直线(三者缺一不可);注意:①在数轴上到定点距离等于定长的点有两个。

(例如到原点距离等于2的点有两个:±2)②在数轴上,右边的表示的数大于左边的点表示的数;③原点左侧的为负数,原点右侧的为正数;④在数轴上的距离:右边的点表示的数-左边的点表示的数;或者两点表示的数差的绝对值.3、相反数:(1)只有符号不同的两个数互为相反数;0的相反数还是0;(2)相反数的和为0 ↔ a+b=0 ↔ a、b互为相反数.4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:在数轴上表示数a的点到原点的距离,叫做a的绝对值.(2) 绝对值可表示为:绝对值的问题经常分类讨论;5、有理数比大小:(1)数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大;(2)正数大于0,0大于负数,正数大于负数;(3)两个负数比较大小,绝对值大的反而小;(4)大数-小数>0,小数-大数<0;(5)正数大于一切负数.6、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是;若ab=1 a、b互为倒数.7、有理数加法法则:(1)同号两数相加,取与加数相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8、有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因数为0,积为0;几个不为0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

沪科版七年级数学上册基础知识点总结

沪科版七年级数学上册基础知识点总结

沪科版七年级数学上册知识总结第一章有理数1.1 正数与负数①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2 数轴①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

④只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(绝对值等于本身的有:正数和0,绝对值等于其相反数的有:负数和0)⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值大的反而小。

⑧倒数:如果两个数的乘积为1,则这两个数互为倒数。

倒数等于其本身的有1和-11.3 有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。

②负数小于零,零小于正数,负数小于正数。

③两个负数的比较大小,绝对值大的反而小。

1.4 有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。

(注:单独一个数字或字母也是代数式)2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。

最新沪科版七年级期数学上册期末复习提纲

最新沪科版七年级期数学上册期末复习提纲

第一章有理数--------------1.1 正数与负数①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。

整数和分数统称有理数。

⑥非负数就是正数和零;非负整数就是正整数和0。

-------------1.2 数轴①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

④只有符号不同的两个数叫做互为相反数(和为零)。

(例:2的相反数是-2,;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。

⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值大的反而小。

⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5-------------1.3 有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。

②负数小于零,零小于正数,负数小于正数。

③两个负数的比较大小,绝对值大的反而小。

-------------1.4 有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

②有理数减法法则:减去一个数,等于加这个数的相反数。

-------------1.5 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

七年级上数学沪教版知识点

七年级上数学沪教版知识点

七年级上数学沪教版知识点七年级上数学沪教版是中学数学的一个重要阶段,涉及到很多重要的数学知识点。

在这个阶段,学生需要熟悉掌握应用基本的数学概念和技巧,为将来的数学学习打下坚实的基础。

下面是七年级上数学沪教版中需要掌握的一些重要的数学知识点。

一、整数整数是恰好包含正整数,0和负整数的数字系统。

在七年级上数学沪教版中,学生需要学习整数的加减乘除,整数的绝对值,以及与整数相关的一些基本概念和性质。

学生需要了解整数的乘法和除法的运算法则;掌握整数乘除法的应用;学会计算带正数和负数的复杂问题。

此外,学生还需要了解同号和异号整数的加减规则以及几何意义。

二、有理数有理数是整数和分数的统称,在七年级上数学沪教版中,学生需要学习有理数的加减乘除,掌握有理数加减乘除的运算法则和求相反数、倒数的方法。

同时,还需要了解不同格式(标准分数和非标准分数)的分数的应用和运算方法。

掌握有理数的相关概念和性质,在实际应用中熟练使用有理数解决问题。

三、代数式代数式是使用字母和数字来表示一种数学关系的一种符号表示方法。

在七年级上数学沪教版中,学生需要学会代数式的基本概念和性质,以及如何运用代数式求解应用问题。

学生需要了解变量、系数、指数、多项式、单项式和同类项等基本概念,熟悉代数式之间的基本运算规律,如加减法和乘法。

四、图形的认识图形是根据形状和属性来描述和区分的物体,在七年级上数学沪教版中,学生需要熟悉基本的几何图形的几何定义和性质,如点、直线、线段、射线、角、平行线和垂直线等。

同时需要学会绘制、识别和测量长度和角度,熟悉几何图形的对称,能够运用几何常识解决实际问题。

五、平面图形和空间几何平面图形和空间几何是中学数学的重要部分,涉及到平面图形、空间图形、相似和全等、投影图以及空间直角坐标系等。

在七年级上数学沪教版中,学生需要深入了解平面图形和空间几何,熟悉各种平面图形和空间几何的性质和应用方法。

同时,学生需要掌握建立空间直角坐标系进行空间几何问题的处理,了解相似和全等的定义和性质,能够完成有关相似和全等等的运用题目。

沪科版七年级上册数学知识点归纳

沪科版七年级上册数学知识点归纳

1.1 正数与负数①⼤于0的数叫正数。

②在正数前⾯加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;⾼低;增长减少等。

⑤正整数、0、负整数统称整数(结合数轴和⼀元⼀次⽅程出题),正分数和负分数统称分数。

整数和分数统称有理数。

⑥⾮负数就是正数和零;⾮负整数就是正整数和0。

⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相⽐较的数的代数和;平均数的求法:基准数+与基准数相⽐较的数的代数和÷个数(写出原数,也可⽤⼩学知识解答);“⾮基准”题:⽆固定的基准数,如明天和今天⽐,后天和明天⽐。

-------------1.2 数轴①通常⽤⼀条直线上的点表⽰数,这条直线叫数轴。

②数轴三要素:原点、正⽅向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以⽤数轴上的点表⽰出来,但数轴上的点,不都是表⽰有理数。

④只有符号不同的两个数叫做互为相反数(和为零)。

(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表⽰数a的点与原点的距离叫做数a的绝对值,记作|a|。

从⼏何意义上讲,数的绝对值是两点间的距离(⽆⽅向性,有两个点)。

⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本⾝;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值⼤的反⽽⼩。

⑧|a|≥0(即⾮负性);绝对值等于⼀个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5-------------1.3 有理数的⼤⼩①数轴上不同的两个点表⽰的数,右边点表⽰的数总⽐左边点表⽰的数⼤。

②负数⼩于零,零⼩于正数,负数⼩于正数。

③两个负数的⽐较⼤⼩,绝对值⼤的反⽽⼩。

-------------1.4 有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较⼤的加数的符号,并⽤较⼤的绝对值减去较⼩的绝对值。

沪科版七年级数学上册基础知识点总结

沪科版七年级数学上册基础知识点总结

沪科版七年级数学上册知识总结第一章有理数1.1 正数与负数①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2 数轴①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

④只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(绝对值等于本身的有:正数和0,绝对值等于其相反数的有:负数和0)⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值大的反而小。

⑧倒数:如果两个数的乘积为1,则这两个数互为倒数。

倒数等于其本身的有1和-11.3 有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。

②负数小于零,零小于正数,负数小于正数。

③两个负数的比较大小,绝对值大的反而小。

1.4 有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。

(注:单独一个数字或字母也是代数式)2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。

(完整版)沪科版七年级数学上册复习提纲

(完整版)沪科版七年级数学上册复习提纲

沪科版七年级数学上册复习提纲第一章有理数1.1 正数与负数①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2 数轴①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

④只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值大的反而小。

1.3 有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。

②负数小于零,零小于正数,负数小于正数。

③两个负数的比较大小,绝对值大的反而小。

1.4 有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.5 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

1.6 有理数的乘方①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。

沪科版七年级上册数学知识点

沪科版七年级上册数学知识点

沪科版七年级上册数学知识点篇1:沪科版七年级上册数学知识点沪科版七年级上册数学知识点单项式与多项式1、没有加减运算的整式叫做单项式。

(数字与字母的积---包括单独的一个数或字母)2、几个单项式的和,叫做多项式。

其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

七年级沪科版数学重点知识点归纳

七年级沪科版数学重点知识点归纳

七年级沪科版数学重点知识点归纳在七年级的数学学习中,掌握重要的知识点是非常关键的。

本文将会对沪科版七年级数学的重点知识点进行归纳介绍。

整数的概念与运算
在数学中,整数是十分重要的基础概念。

我们需要学习整数的运算法则及其在实际生活中的应用场景。

整数的加减乘除、乘方与开方等运算也需要掌握。

比例与图形的相似性
比例也是我们数学学习的重要内容之一,需要学习比例的各种性质及其在实际生活中的应用场景。

同时,图形的相似性也是重点之一,需要掌握相似图形的判定、面积比与周长比等概念。

代数式与方程式
代数式与方程式也是七年级数学学习的重点内容,需要学习代数式的基本概念及其运算法则,同时掌握方程式的解法和应用技巧。

函数的概念与性质
在七年级数学学习中,函数也是重要的内容之一。

需要学习函数的基本概念、图形特征以及函数的应用等知识点。

掌握函数的性质对数学学习和实际应用都是有益的。

几何学的基本概念和性质
七年级几何学的学习着重于基本概念和性质的学习。

需要掌握线段、角度、三角形、四边形等图形的基本概念,以及这些图形的性质和特征。

统计学的基本概念
在统计学中,七年级需要学习基本的统计学概念,包括统计数据、频数统计、频率统计等等。

同时,学习数据的收集、整理、分析和呈现也是重要的。

以上为沪科版七年级数学的重点知识点,当然数学知识的学习和掌握是需要不断的练习和巩固的。

希望大家在学习数学的过程中,能够勤奋努力,持之以恒。

沪教版七年级上册数学复习提纲 知识点

沪教版七年级上册数学复习提纲 知识点

第九章:整式及整式的加减一部分:整式:单项式和多项式统称整式,(分数形式,分母中不含字母)知识点一、代数式的概念(补充知识)1、用字母表示数之后,可能用字母表示的有(1)具有一定数量的数;(2)一些变化的规律;(3)数的运算法则和运算定律;(4)数量关系;(5)数学公式。

2、用字母表示数的意义用字母表示数是代数的一个重要特点,它的优点在于能简明、扼要、准确地把数和数之间的关系表示出来,化特殊为一般,深刻地揭示数量之间的联系,为我们学习数学和应用数学带来方便。

3、用字母表示数学公式(1)加法、乘法的运算律;(2)平面图形的面积公式;(3)平面图形的周长公式;(4)立体图形的体积公式。

4、代数式的概念用字母表示数之后,出现了一些用运算符号把数和表示数的字母连接起来的式子,我们把它们叫做代数式。

概念剖析:①运算符号指的是加、减、乘、除、乘方、绝对值,大中小括号以及以后要学到的开方符号,但不包括大于、小于号、等号等表示数量关系的关系符号;②单个的数字和字母也是代数式。

③判断一个式子是否是代数式,只要看看它能否满足代数式的概念即可。

例1下列的式子中那些是代数式①21-++y x ②n a 10⨯ ③053>+x ④nm p 111+= ⑤5822-+x x ⑥m y x x 35732--+ ⑦()[]{}22272m y x +-+ ⑧ 57 是代数式的有_________________________(只填序号);例2、下列各式中不是代数式的是( )A 、πB 、0C 、yx +1 D 、a +b =b +a 5、书写代数式的规定(1)数字与字母、字母与字母相乘时,乘号可以省略不写或用“·”代替,省略乘号时,数字因数应写在字母因数的前面,数字是带分数时要改写成假分数,数字与数字相乘时仍要写“×”号。

(2)代数式中出现除法运算时,一般要写成分数的形式。

(一般不用÷连接)(3)用代数式表示某一个量时,代数式后面带有单位,如果代数式是和、差形式,要用括号把代数式括起来。

沪科版七年级数学上册知识要点复习提纲

沪科版七年级数学上册知识要点复习提纲

39.随机抽样往往只适用于总体个数较少的情况;系统抽样是将总体分成均衡的几个部分,每隔一定的时间或一定的编号,然后按照预先定出的规则,从每一部分中抽取相同个数的个体;当总体个数较多或事先不知道总体中个体的确切数,且分布没有明显的不均匀情况时,可采用系统抽样。

40.当总体由明显差异的几个部分组成时候,可将总体按差异情况分成不同部分,然后按各部分所占比例进行抽样,这样的抽样叫做分层抽样。

41.条形统计图能清楚地表示事物的绝对数量;折线统计图能清楚地反映事物的变化趋势;扇形统计图能清楚地表示各部分所占总体的百分率;扇形统计图的扇形中心角=360 该部分占总体的百分率42.统计图表示的数据是否从零开始,以及坐标轴上单位不完全一致会导致直观上的差异,给人以误导。

沪科版七年级数学上册复习提纲第一章有理数1.1 正数与负数①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2 数轴①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

④只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值大的反而小。

1.3 有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。

②负数小于零,零小于正数,负数小于正数。

③两个负数的比较大小,绝对值大的反而小。

沪科版七年级上册数学复习提纲

沪科版七年级上册数学复习提纲

淮北龙兴学校2018-2019学年度七年级上册(沪科版)复习提纲第一章有理数同步练习一、填空题1. 支出元记作元,收入元记作________元.2. 计算:________.3. 年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金元,用于改造农村义务教育薄弱学校所,数据科学记数法表示为________.4. 有一个运算程序,可以使(为常数)时,得,.现在已知,那么________.5. 在下列括号中填入适当的数:________;________.6. 已知,互为相反数,,互为倒数,,则的值为________.7. 如果,与互为倒数,则________.8. 是________位数,的原数是________位数.二、解答题9. 计算:(1).10. .11. 化简:,,,.12.已知:与是互为相反数,与互为倒数,是绝对值最小的数,是最大的负整数,则:________,________,________,________.求:的值.13. 阅读下列内容:.请完成下面的问题:如果有理数,满足.试求的值.14. 若,,且,求的值.15. 若,.(1)求,的值(2)若,求的值.16. 在数轴上表示下列有理数:,,,,,,并用“”将它们连接起来.第二章整式的加减同步练习1. 多项式的最高次项是________,一次项系数是________.2. 代数式的意义是________.3. 当________时,多项式中不含项.4. 多项式是________次________项式,它最高项的系数是________.5. 已知单项式与的和是单项式,那么________,________.6. 若与是同类项,则________.7. 购买个单价为元的面包和瓶单价为元的饮料,所需钱数为________元.8. 与是同类项,则的值为________.9. 观察下面的单项式:,,,,…,根据你发现的规律,第个单项式是________,第个单项式是________.10. 合并同类项:(1)________.(2)________.11. 先化简,再求值:其中.12. 观察下面一列有规律的数:,________,,…(1)请在横线上填写第个数;(2)根据规律可知,用分式表示第个数应是________(为正整数).13. 先化简,再求值:,其中,.14. 某市电话拨号上网有两种收费方式,用户可以任选其一:计时制:元每分钟;包月制:元每月(限一部个人住宅电话上网);此外,每一种上网方式都得加收通信费元每分钟.(1)某用户某月上网的时间为小时,请分别写出两种收费方式下该用户应该支付的费用;(2)你知道怎样选择计费方式更省钱吗?15. 对于多项式(其中是大于的整数).(1)若,且该多项式是关于的三次三项式,求的值;(2)若该多项式是关于的二次单项式,求,的值;(3)若该多项式是关于的二次二项式,则,要满足什么条件?16. 先化简,再求值:,其中,.17. 观察下列各式你会发现什么规律?,而,而,而…(1)求的值,并写出与题目相符合的形式;(2)将你猜想的规律用只含一个字母的等式表示出来,并说明等式的正确性.第三章一次方程与方程组1、解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用. 因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:①去分母,在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号;③移项把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;④不要丢项合并同类项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑤把方程化成ax=b(a≠0)的形式字母及其指数不变系数化成1 在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒2、用一次方程(组)解决问题:1.概念梳理⑴列一元一次方程解决实际问题的一般步骤是:1、审题,特别注意关键的字和词的意义,弄清相关数量关系,2、设出未知数(注意单位),3、根据相等关系列出方程,4、解这个方程,5、检验并写出答案(包括单位名称).6、答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪科版七年级数学上册复习提纲第一章有理数1.1 正数与负数①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2 数轴①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

④只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值大的反而小。

1.3 有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。

②负数小于零,零小于正数,负数小于正数。

③两个负数的比较大小,绝对值大的反而小。

1.4 有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.5 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

1.6 有理数的乘方①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。

在a的n次方中,a叫做底数,n叫做指数。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何次幂都是0。

(负奇负,负偶正)(如:-22= -4,(-2)2 =4②有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

③把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。

④从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。

比如:3.5449精确到0.01就是3.54而不是3.55.(再如:0.0020100有5个有效数字、2.40万:精确到百位,有3个有效数字:2、4、0;6.5×104精确到千位,有2个有效数字:6、5)第二章整式的加减2.1用字母表示数1、偶数:能被2整除的整数叫偶数(如:-4、-2、0、2、4、)2、奇数:不能被2整除的整数叫做奇数(如:-5、-3、-1、1、3、5)2.2代数式1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。

(注:单独一个数字或字母也是代数式)2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。

3、单项式:由数字和字母乘积组成的式子。

单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.单项式的系数:是指单项式中的数字因数;单项数的次数:是指单项式中所有字母的指数的和.4、多项式:几个单项式的和。

判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数;多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。

注意单项式和多项式的每一项都包括它前面的符号。

5、单项式和多项式统称为整式。

2.3整式的加减同类项:所含字母相同,并且相同字母的指数也相同的项。

(简称“二同”)合并同类项:把多项式中的同类项合并成一项。

可以运用交换律,结合律和分配律。

合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,所含字母部分不变,相同字母的指数不变(称为“两不变”)字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

第三章一次方程与方程组3.1 一元一次方程及其解法方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是1.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等).2)等式两边同时乘以或除以同一个不为零的数,等式不变.注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用. 因此,解方程时,要根据方程的特点,灵活选择方法. 在解方程时还要注意以下几点:①去分母,在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号;③移项把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;④不要丢项合并同类项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑤把方程化成ax=b(a≠0)的形式字母及其指数不变系数化成1 在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒3.2 二元一次方程组:由两个一次方程组成的,并含有两个未知数的方程组叫做二元一次方程组3.3消元法解方程组:1、二元一次方程组的解:使二元一次方程组中每个方程都成立的两个未知数的值,叫做~2、代入消元法:从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法。

3、加减消元法:把两个方程的两边分别相加或相减消去一个未知数的方法,叫做加减消元法,简称加减法3.4用一次方程(组)解决问题:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系,②设出未知数(注意单位),③根据相等关系列出方程,④解这个方程,⑤检验并写出答案(包括单位名称).⑵一些固定模型中的等量关系:①数字问题:abc 表示一个三位数,则有10010abc a b c =++②行程问题:基本公式:路程=时间×速度甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程甲走的时间=乙走的时间;甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间的距离③工程问题:基本公式:工作量=工作时间×工作效率各部分工作量之和 = 总工作量;④储蓄问题:本息和=本金+利息;利息=本金×利率⑤商品销售问题:商品利润=售价-进价=进价×(1+利润率)-进价;商品利润率=(售价-进价)/进价(二)、思想方法(本单元常用到的数学思想方法小结)⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a 的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.位置:相交、垂直、平行等几何体也简称体。

包围着体的是面。

常见的立体图形:圆柱、圆椎、圆台、球、长方体、四面体、三棱柱(各部分不都在一个平面内,在一个平面内就是平面图形。

)点线面体:是组成几何图形的基本元素;点动成线,线动成面,面动成体。

(2)展开与折叠:圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;正方体展开六个面可用“1字型”、“Z字型”模型认识。

(3)三视图:主视图、左视图、俯视图。

4.2 直线、射线、线段1、特点与表示方法:直线没有端点,向两方无限延伸,可用两个字母或小字字母表示;射线只有一个端点,向一方无限延伸,用端点和延伸方向中的任意一点表示;线段有两个端点,用两个端点来表示。

2、连接两点间的线段的长度,叫做这两点之间的距离。

3、经过两点有一条直线,并且只有一条直线。

(两点确定一条直线)。

4.3 线段的比较:叠合法或度量法;中点:将一条线段分成两条相等的线段的点称这条线段的中点;两点的所有连线中,线段做短(两点之间,线段最短)。

4.4 角的度量1、定义:有公共端点的两条射线组成的图形叫角。

角的端点为顶点,两条射线为角的两边。

2、1度=60分1分=60秒1周角=360度1平角=180度;钟表上分针每分钟走6°,时针每分钟走0.5°4.5 角的比较与运算角的平分线:角平分线把一个角分成两个相等的角,角平分线是一条射线。

如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

相关文档
最新文档