北师大版数学九年级下册期末测试卷及解析1.doc

合集下载

(常考题)北师大版初中数学九年级数学下册第三单元《圆》检测(有答案解析)(1)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》检测(有答案解析)(1)

一、选择题1.将一枚飞镖投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A .12B .25C .35D .23 2.О的半径为5,cm 点Р到圆心O 的距离为7,cm 则点P 与О的位置关系是( ) A .在圆上 B .在圆内 C .在圆外 D .不确定 3.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A .3B .5C .23D .25 4.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒5.如图,在半径为1的⊙O 中,将劣弧AB 沿弦AB 翻折,使折叠后的AB 恰好与OB 、OA 相切,则劣弧AB 的长为( )A .12πB .13π C .14π D .16π 6.下列关于正多边形的叙述,正确的是( )A .正七边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720︒C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形7.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=,下列说法错误的是( )A .30B ∠=︒B .60BAD ∠=︒C .23BD = D .23AB = 8.已知:O 的半径为2,3OA =,则正确的图形可能为( )A .B .C .D .9.如图.PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,连接OA ,OB ,OP ,AB .若 OA =1,∠APB =60°,则△PAB 的周长为( )A .3B .4C .3D .3 10.如图,已知⊙O 的直径8CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为M ,2OM =,则AB 的长为( )A .2B .23C .4D .43 11.如图,O 的直径为10,弦AB 的长为6,P 为弦AB 上的动点,则线段OP 长的取值范围是( )A .35OP ≤≤B .45OP <<C .45OP ≤≤D .35OP <<12.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当AC =4,BC =3时,则阴影部分的面积为( )A .6B .6πC .52π D .12二、填空题13.如图,四边形ABCD 是O 的内接四边形,且AC BD ⊥, OF CD ⊥,垂足分别为E F 、,若52OF =,则AB =_____.14.如图,圆O 是△ABC 的外接圆,BC=2,∠BAC=30°,则圆O 的直径为___________.15.如图,在ABC 中,90ACB ∠=︒,60A ∠=︒,2AC =,ABC 绕顶点C 逆时针旋转60︒得到A B C '',点A 的对应点A '恰好落在AB 上,连接A B '',则图中阴影部分的面积为__________.16.如图,在平面直角坐标系中,过点()11,0A 作x 轴的垂线交直线y x =于点B ,以О为圆心,1OB 为半径作弧,交x 轴于点2A ;过点2A 作x 轴的垂线交直线y x =于点2B ,以O 为圆心,2OB 为半径作弧,交x 轴于点3A ;过点3A 作x 轴的垂线交直线y x =于点3B ,以О为圆心,3OB 为半径作弧,交x 轴于点4A ,……,按此做法进行下去,设由11A B ,12A A ,弧21A B 围成的图形面积记为1S ,由22A B ,23A A ,弧32A B 围成的图形面积记为2S ,由33A B ,34A A ,弧43A B 围成的图形面积记为3S ,……,那么2020S 为_______:17.如图,半径为2的O 中有弦AB ,以AB 为折痕对折,劣弧恰好经过圆心O ,则弦AB 的长度为__________.18.如图,在平面直角坐标系中,D 是直线6y x =-+上的一个动点,O 的半径为2,过点D 作O 的切线,切点为A ,则AD 长度的最小值为____________.19.如图,已知O 的半径为2,ABC 内接于O ,135ACB ∠=︒,则弓形ACB (阴影部分)的面积为_____________.20.如图,将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心,O 用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为____________________cm .(结果用含根号的式子表示)三、解答题21.已知关于x 的一元二次方程x 2+2mx ﹣n 2+5=0.(1)当m =1时,该一元二次方程的一个根是1,求n 的值;(2)若该一元二次方程有两个相等的实数根.①求m 、n 满足的关系式;②在x 轴上取点H ,使得OH =|m |,过点H 作x 轴的垂线l ,在垂线l 上取点P ,使得PH =|n |,则点P 到点(3,4)的距离最小值是 .22.如图,在Rt △ABC 中∠B =30°,∠ACB =90°,AB =6.延长CA 到O ,使AO =AC ,以O 为圆心,OA 长为半径作⊙O 交BA 延长线于点D ,连结OD ,CD .(1)求扇形OAD 的面积.(2)判断CD 与⊙O 的位置关系,并说明理由.23.已知,如图,在ABC 中,90C ∠=︒,D 为BC 边中点.(1)尺规作图:以AC 为直径作O ,交AB 于点E (保留作图痕迹,不需写作法); (2)连接DE ,求证:DE 为O 的切线.24.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的ABC ∆,且90B ∠=︒.(1)将ABC ∆绕点O 顺时针旋转90°后得到EFG ∆(其中,,A B C 三点旋转后的对应点分别是,,E F G ),画出EFG ∆.(2)设EFG ∆的内切圆的半径为r ,EFG ∆的外接圆的半径为R ,则r R=__________.25.如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆O 相交于点D ,过D 作直线//DG BC .(1)求证:DG 是O 的切线;(2)求证:DE CD =;(3)若25DE =,8BC =,求O 的半径.26.如图,已知AB 是O 的直径,BC AB ⊥,连接OC ,弦//AD OC ,直线CD 交BA 的延长线于点E .(1)求证:CD 是O 的切线; (2)若2DE BC =,O 的半径为2,求线段EA 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】算出白色区域的面积与整个图形的面积之比即为所求概率.【详解】解:如图,过点A 作AG BF ⊥于点G∵ 六边形ABCDEF 为正六边形,∴BAF=120∠︒,=60FAG ∠︒设正六边形的边长为a ,则32322a a AG FG a ==⨯=,BF=2 ∴ 空白部分的面积为:213333322ABFa a S S a ==⨯⨯⨯=△空白 正六边形的面积为:22333642S a a =⨯=六 ∴飞镖落在白色区域的概率为:2233a 14=233S P S a ==空白六 故选:A【点睛】本题考查概率的求解,确定白色区域面积占整个图形面积的占比是解题的关键. 2.C解析:C【分析】根据点与圆的位置关系的判定方法进行判断;【详解】∵O 的半径为5cm ,点P 到圆心O 的距离为7cm ,∴OP >O 的半径,∴点P 在O 外; 故答案选C .【点睛】本题主要考查了点与圆的位置关系,准确判断是解题的关键.3.A解析:A【分析】连接AD,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE是直角三角形,用勾股定理求AE即可.【详解】解:连接AD,∵∠BOD=120°,AB是⊙O的直径,∴∠AOD=60°,∵OA=OD,∴∠OAD=∠ODA =60°,∵点C为弧BD的中点,∴∠CAD=∠BAC=30°,∴∠AED=90°,∵DE=1,∴AD=2DE=2,AE=2222AD DE-=-=,213故选:A.【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.D解析:D【分析】连接OB、OC,则判断△OBC是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB、OC,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.5.A解析:A【分析】如图画出折叠后AB 所在的⊙O ',连O 'B ,O 'A ,根据题意可得O 'B ⊥OB 、O 'A ⊥OA ,且OB=OA=O 'B=O 'A,得到四边形O 'BOA 是正方形,即∠O=90°,最后根据弧长公式计算即可.【详解】解:如图:画出折叠后AB 所在的⊙O ',连O 'B ,O 'A∵AB 恰好与OA 、OB 相切∴O 'B ⊥OB 、O 'A ⊥OA∵OB=OA=O 'B=O 'A,∴四边形O 'BOA 是正方形∴∠O=90°∴劣弧AB 的长为9011801802n r πππ︒⨯⨯==︒. 故选择:A .【点睛】本题考查了折叠的性质、正方形的判定与性质、弧长公式等知识点,其中掌握弧长公式和折叠的性质是解答本题的关键.6.C解析:C【分析】根据中心对称图形、轴对称图形的定义、多边形外角和定理、正多边形的性质对各选项逐一判断即可得答案.【详解】A.正七边形是轴对称图形,不是中心对称图形,故该选项错误,B.任意多边形的外角和都等于360°,故该选项错误,C.任何正多边形都有一个外接圆,故该选项正确,D.∵正三角形的每个外角为120°,对应的每个内角为60°,∴存在每个外角都是对应每个内角两倍的正多边形,故该选项错误,故选:C.【点睛】本题考查正多边形的性质、中心对称图形、轴对称图形的定义及多边形外角和定理,熟练掌握相关性质及定理是解题关键.7.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD的度数,然后利用含30度的直角三角形三边的关系求出BD、AB的长即可.【详解】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A、B不符合题意,在Rt△ADB中,,故选项C符合题意,选项D不符合题意,故选:C.【点睛】本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.8.C解析:C【分析】根据圆的半径和OA的大小确定点A与圆的位置关系,从而作出判断即可.【详解】∵根据图的意义,得OA=2,与OA=3矛盾,∴A选项错误;∵根据图的意义,得OA<2,与OA=3矛盾,∴B选项错误;∵根据图的意义,得OA>2,且离圆较近,与OA=3相符,∴C选项正确;∵根据图的意义,得OA>2,且离圆较远,与OA=3不符合,∴D选项错误;故选C.【点睛】本题考查了点与圆的位置关系,熟练掌握圆心到点的距离与圆的半径的大小比较是解题的关键.9.C解析:C【分析】根据切线的性质和切线长定理证明△PAB是等边三角形,PA⊥AO,根据直角三角形性质求出PA,问题得解.【详解】解:∵PA,PB是⊙O的两条切线,∠APB=60°,∴PA=PB,∠APO=1∠APB=30°,PA⊥AO,2∴△PAB是等边三角形,∵PA⊥AO,∠APO==30°,∴OP=2OA=2,∴PA=∴△PAB的周长为故选:C【点睛】本题考查了切线长定理,切线的性质,等边三角形的判定,含30°角直角三角形性质,勾股定理等知识,考查知识点较多,熟知相关定理并能熟练运用是解题关键.10.D解析:D【分析】连接OB,根据勾股定理计算BM=AB=2BM计算即可.【详解】∵直径8CD =,AB CD ⊥,2OM =∴BM=22OB OM -=2242-=23,根据垂径定理,得AB=2BM=43,故选D .【点睛】本题考查了垂径定理,勾股定理,熟练掌握连接半径构造直角三角形,灵活运用垂径定理和勾股定理求解是解题的关键.11.C解析:C【分析】由垂线段最短可知当OP ⊥AB 时最短,当OP 是半径时最长.根据垂径定理求最短长度.【详解】解:如图,连接OA ,作OP ⊥AB 于P ,∵⊙O 的直径为10,∴半径为5,∴OP 的最大值为5,∵OP ⊥AB 于P ,∴AP=BP ,∵AB=6,∴AP=3,在Rt △AOP 中,OP=222594OA AP -=-=;此时OP 最短,所以OP 长的取值范围是4≤OP≤5.故选:C .本题考查了垂径定理、勾股定理,解题的关键是确定OP 的最小值,所以求OP 的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r ,弦长为a ,这条弦的弦心距为d ,则有等式r 2=d 2+(2a )2成立,知道这三个量中的任意两个,就可以求出另外一个. 12.A解析:A【分析】先根据勾股定理求出AB ,然后根据S 阴影=S 半圆AC +S 半圆BC +S △ABC -S 半圆AB 计算即可.【详解】根据勾股定理可得5=∴S 阴影=S 半圆AC +S 半圆BC +S △ABC -S 半圆AB =22211112222222AC BC AB AC BC πππ⎛⎫⎛⎫⎛⎫++•- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()222141115343222222πππ⎛⎫⎛⎫⨯⨯+⨯⨯+⨯⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=6故选A .【点睛】此题考查的是求不规则图形的面积,掌握用勾股定理解直角三角形、半圆的面积公式和三角形的面积公式是解决此题的关键. 二、填空题13.【分析】连接DO 并延长与⊙O 相交于点G 连接BGCG 由AC ⊥BDDG 是直径可得∠DBG=90°=∠DCG 可证AC ∥BG 可得可得AB=CG 由OF ⊥CD 可证OF ∥CG 可证△DOF ∽△DGC 由性质由OF=可解析:【分析】连接DO 并延长,与⊙O 相交于点G ,连接BG ,CG ,由AC ⊥BD , DG 是直径,可得∠DBG=90°=∠DCG 可证AC ∥BG ,可得AB CG =,可得AB=CG ,由OF ⊥CD ,可证OF ∥CG ,可证△DOF ∽△DGC ,由性质DO OF 1==DG CG 2,由OF=52,可求CG 5=2OF=2=52⨯即可. 【详解】解:如图,连接DO 并延长,与⊙O 相交于点G ,连接BG ,CG ,∵AC ⊥BD ,DG 是直径,∴∠DBG=90°=∠DCG,∴BG⊥DB,∴AC∥BG,∴AB CG=,∴AB=CG,∵OF⊥CD,∴OF∥CG,∴∠DOG=∠DGC∴△DOF∽△DGC,,∴DO OF1==,DG CG2∵OF=5,2∴CG5=2OF=2=5⨯,2所以AB=CG=5.故答案为:5.【点睛】本题考查平行弦的性质,圆的性质,直径所对圆周角的性质,相似三角形的判定与性质,掌握平行弦的性质,圆的性质,直径所对圆周角的性质,相似三角形的判定与性质是解题关键.14.4【分析】延长BO交⊙O于E连接CE根据圆周角定理得到∠E=∠A=30°∠ECB=90°根据直角三角形的性质即可得到结论【详解】解:延长BO交⊙O于E连接CE则∠E=∠A=30°∠ECB=90°∴B解析:4【分析】延长BO交⊙O于E,连接CE,根据圆周角定理得到∠E=∠A=30°,∠ECB=90°,根据直角三角形的性质即可得到结论.【详解】解:延长BO 交⊙O 于E ,连接CE ,则∠E=∠A=30°,∠ECB=90°,∴BE=2BC=2×2=4.故答案为:4.【点睛】本题考查了圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键. 15.【分析】先分别求解然后根据进行求解即可【详解】由题意知在中∴∴由题意旋转角为即:且∴为等边三角形设交于点∵∴∴四边形为梯形又∵∴则在中∴∴∴故答案为:【点睛】本题考查旋转的性质以及扇形面积计算相关问 解析:23π【分析】先分别求解ABC S ,BCB S '扇形,AA B C S ''梯形,然后根据ABC BCB AA B C S S S S '''=+-△阴影扇形梯形进行求解即可.【详解】由题意知,在Rt ABC 中,30ABC ∠=︒,∴24AB AC ==,23BC = ∴112232322ABC S AC BC ==⨯⨯=△, 由题意,旋转角为60︒,即:60ACA BCB ''∠=∠=︒,且AC A C '=,23BC B C '==,∴ACA '为等边三角形,2A C '=,30A CD '∠=︒,设A B ''交BC 于点D ,∵60A CA D '∠=∠=︒,∴60ACA CA D ''∠=∠=︒,∴//AC A B '',四边形AA B C ''为梯形,又∵90ACB ∠=︒,∴90CDA '∠=︒,则在Rt CDA '△中,112A D A C ''==,3CD = ∴()()112433322AABC S AC A B CD ''''=+=⨯+=梯形∴()260232360BCB S ππ'⨯==扇形,∴2323323ABC BCB AA B C S S S S ππ'''=+-=+-=-△阴影扇形梯形,故答案为:23π-.【点睛】本题考查旋转的性质以及扇形面积计算相关问题,灵活对不规则图形进行转换,运用规则图形的面积进行求解是解题关键.16.【分析】根据点A 的取法罗列出部分点A 的横坐标由此可发现规律即的横坐标为:再结合已知即可得到答案【详解】观察发现规律:的横坐标为:的横坐标为:的横坐标为:的横坐标为:的横坐标为:故答案为:【点睛】本题 解析:2017201822π-【分析】根据点A 的取法,罗列出部分点A 的横坐标,由此可发现规律,即n A 的横坐标为:)12n -,再结合已知即可得到答案.【详解】 观察,发现规律:1A 的横坐标为:1,2A 23A 的横坐标为:22,⋯,∴n A 的横坐标为:12n - n B ∴的横坐标为:12n -404020192019201720182020452122223602S ππ⨯⨯∴=-⨯⨯=⋅-故答案为:2017201822π⋅-.【点睛】本题考查了一次函数图像上点的坐标特征以及规律型中的点的变换,解题关键是找出n A 的横坐标为:12n -这一规律.17.【分析】如果过O作OC⊥AB于D交折叠前的于C根据折叠后劣弧恰好经过圆心O根据垂径定理及勾股定理即可求出AD的长进而求出AB的长【详解】解:如图过O作OC⊥AB于D交折叠前的于C∵的半径为又∵折叠后解析:23【分析】如果过O作OC⊥AB于D,交折叠前的AB于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB于C,∵O的半径为2,又∵折叠后劣弧恰好经过圆心O,∴OA=OC=2,∴OD=CD=1,在Rt△OAD中,∵OA=2,OD=1,∴2222-=-OA OD213AB=2AD=3故答案为:3【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.18.4【分析】当OD与直线y=-x+6垂直时连接AOAD此时OD最小AD也最小根据等腰直角三角形的性质得到OD根据勾股定理即可得到结论【详解】解:如图∵DA为切线∴OA⊥DAOA=∴当OD最小时AD的值解析:4【分析】当OD与直线y=-x+6垂直时,连接AO,AD,此时OD最小,AD也最小,根据等腰直角三角形的性质得到OD,根据勾股定理即可得到结论.【详解】解:如图∵DA 为切线,∴OA ⊥DA ,2∴当OD 最小时,AD 的值最小.∴当OD 与直线y=−x+6垂直时,AD 的值最小,如图,设y=−x+6交x ,y 轴于B ,C ,B(6,0),C(0,6),∴OB=OC=6.∵∠BOC= 90°,∴△OBC 为等腰直角三角形,∴22OB OC +2 ,∴OD=122 即OD 的最小值为2在Rt △OAD 中,AD 最小值22OD OA -()()22322164-==故答案为:4【点睛】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题. 19.【分析】根据圆内接四边形对角互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB 的度数然后根据弓形ACB 的面积=S 扇形OAB-S △OAB 得出结果即可【详解】解:设点D 为优弧AB 上一点连接ADBDOA解析:2π-【分析】根据圆内接四边形对角互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据弓形ACB 的面积=S 扇形OAB -S △OAB 得出结果即可.【详解】解:设点D 为优弧AB 上一点,连接AD 、BD 、OA 、OB ,如图所示,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴弓形ACB 的面积=S 扇形OAB -S △OAB =29021223602π⨯⨯-⨯⨯=2π-, 故答案为:2π-.【点睛】本题主要考查求弓形的面积,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【分析】作OC ⊥AB 根据折叠的性质得OD 等于半径的一半即OA =2OD 再根据含30°的直角三角形三边的关系得∠OAD =30°同理∠OBD =30°所以∠AOB =120°则利用弧长公式算出弧AB 的长利用圆 解析:2【分析】作OC ⊥AB ,根据折叠的性质得OD 等于半径的一半,即OA =2OD ,再根据含30°的直角三角形三边的关系得∠OAD =30°,同理∠OBD =30°,所以∠AOB =120°,则利用弧长公式算出弧AB 的长,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,得到圆锥的底面圆的半径,从而结合勾股定理求高即可.【详解】如图,过O 点作OC ⊥AB ,垂足为D ,交⊙O 于点C , 由折叠的性质可知,1122OD OC OA ==, 由此可得,在Rt AOD △中,30OAD ∠=︒,同理可得30OBD ∠=︒,在AOB 中,由三角形内角和定理,得180120AOB OAD OBD ∠=︒-∠-∠=︒. ∴弧AB 的长为()12032180cm ππ⨯=. 设围成的圆锥的底面半径为r cm ,则22ππ=r ,∴1r cm =.∴圆锥的高为()22-=.3122cm故答案为:22.【点睛】本题考查了折叠的性质,弧长公式的计算,直角三角形的性质等,掌握弧长公式的计算以及圆锥相关基本结论是解题的关键.三、解答题21.(1)2;(2)①m2+n2=5;②55【分析】(1)把m=1,x=1代入方程得1+2-n2+5=0,然后解关于n的方程即可;(2)①利用判别式的意义得到△=4m2-4(-n2+5)=0,从而得到m与n的关系;②利用勾股定理得到22m n+5P在以O5上,然后根据点与圆的位置关系判断点P到点(3,4)的距离最小值.【详解】解:(1)把m=1,x=1代入方程得1+2﹣n2+5=0,解得n=2,即n的值为2;(2)①根据题意得△=4m2﹣4(﹣n2+5)=0,整理得m2+n2=5;②∵OH=|m|,PH=|n|,∴OP22+5m n即点P在以O5∴原点与点(3,4)的连线与⊙O的交点P使点P到点(3,4)的距离最小,∵原点到点(3,422+5,34∴点P到点(3,4)的距离最小值是55故答案为55【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了点与圆的位置关系.22.(1)求扇形OAD的面积为32π;(2)CD与⊙O相切,理由见解析.【分析】(1)求出∠OAD=60°,得出等边三角形OAD,求出半径和圆心角,利用扇形的面积公式求得即可;(2)求出∠ADC=∠ACD=12∠OAD=30°,进而求出∠ODC=90°,即可证得CD是⊙O的切线.【详解】(1)证明:∵AB=4,∠ACB=90°,∠B=30°,∴AC=12AB=2,∠BAC=60°,∴∠OAD=∠BAC=60°,∵OD=OA,∴△OAD是等边三角形,∴∠AOD=60°,∵AO=AC=2,∴S扇形AOD=23623 602ππ⨯⨯=;(2)CD所在直线与⊙O相切,证明:∵△OAD是等边三角形,∴AD=OA,∵AO=AC,∴AD=AC,∴∠ADC=∠ACD,∵∠OAD=60°,∴∠ADC=30°,∴∠ODC=60°+30°=90°,∴OD⊥DC,∴CD是⊙O的切线.【点睛】本题考查了扇形的面积,切线的判定,含30度角的直角三角形的性质,勾股定理,等边三角形的性质和判定的应用,主要考查学生综合运用性质进行推理和计算的能力,综合性比较强,有一定的难度.23.(1)作图见解析;(2)见解析.【分析】(1)先作AC的中垂线,找到AC的中点O,然后以AC为直径作圆,与AB的交点即为所求;(2)由题意可知DE为Rt BEC△斜边BC上的中线,从而得到CD=DE,即=∠∠ECD DEC ,由OC=OE 得到OEC OCE ∠=∠,再由90ACB ∠=︒即可得到OE ⊥DE ,即可得证.【详解】(1)作图如图所示.(2)证明:如上图,连结OE ,CE , AC 为直径,90AEC ∴∠=︒, D 为BC 边中点,DE ∴为Rt BEC △斜边BC 上的中线,12DE DC DB BC ∴===, ECD DEC ∴∠=∠,OC OE =,OEC OCE ∴∠=∠,90OED OEC CED OCE DCE ACB ∴∠=∠+∠=∠+∠=∠=︒OD DE ∴⊥,DE ∴为O 的切线.【点睛】本题考查了尺规作图以及切线的判定,正确找到垂直条件是判断切线的关键. 24.(1)见解析;(2)25【分析】(1)根据旋转的性质,作出点A 、B 、C 的对应点,依次连接即可(2)结合图形,EG 为外接圆的直径,用勾股定理求出EG ,则可求R ,根据三角形内切圆的性质,和切线长定理可求得r ,进而可求得答案【详解】解(1)EFG ∆如图所示,(2)EFG ∆的内切圆的半径为r ,2EF FG EG r +-∴= 4,3EF FG ==,2222435EG EF FG =++= 43512r +-∴== EFG ∆的外接圆的半径为R1522R EG ∴== 25r R ∴= 【点睛】本题考查了旋转图形的画法,勾股定理,三角形内心性质,切线长定理,解题关键是熟练掌握基本知识,是中考常考题.25.(1)见解析;(2)见解析;(3)5【分析】(1)连接OD 交BC 于H ,如图,利用三角形内心的性质得到∠BAD=∠CAD ,则BD CD =,利用垂径定理得到OD ⊥BC ,BH=CH ,从而得到OD ⊥DG ,然后根据切线的判定定理得到结论;(2)利用三角形内心的性质,等腰三角形的判定和性质,同圆或等圆中等角对等弦,即可得到结论;(3)根据垂径定理可知OD 垂直平分BC ,在Rt BHD △利用勾股定理求出DH 长,设半径为r ,在Rt BHO 中利用勾股定理即可求解【详解】(1)证明:连接OD 交BC 于H ,如图,∵点E 是ABC 的内心,∴AD 平分BAC ∠,即BAD CAD ∠=∠,∴BD CD =,∴OD BC ,BH CH = ∵//DG BC ,∴OD DG ⊥,∴DG 是O 的切线;(2)连接BD ,如图,∵点E 是ABC 的内心,∴ABE CBE ∠=∠,∵DBC BAD ∠=∠,∴DEB BAD ABE DBC CBE DBE ∠=∠+∠=∠+∠=∠,BDE ∴为等腰三角形BD DE ∴=BAD CAD BD DC∠=∠∴= ∴DE DC =.(3)BD DC =,∴OD 垂直平分BC 90BHD BHO ∴∠=∠=︒8142BC BH BC =∴== 25DE BD ==∴在Rt BHD △中2220162DH BD BH -=-=设半径为r ,则,2OB r OH r ==-∴在Rt BHO 中,222OB OH BH =+()22242r r ∴=+-解得=5r ∴⊙O 的半径为:5.【点睛】本题考查了三角形的外接圆与内心,切线的判定定理,等腰三角形的判定和性质,垂径定理,勾股定理等知识,解题关键是熟练掌握三角形内心的性质:三角形的内心与三角形顶点的连线平分这个内角.26.(1)见解析;(2)22AE =.【分析】(1)连接OD ,通过证明△COD ≌△COB 得到90CDO CBO ∠=∠=︒即可得到结论; (2)根据全等三角形的性质,在结合平行线分线段成比例的性质,即可求解【详解】(1)如图,连接OD .∵//AD OC ,∴DAO COB ∠=∠,ADO COD ∠=∠.又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.∵OD OB =,OC OC =,∴在COD △和COB △中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩∴()SAS COD COB ≌△△, ∴90CDO CBO ∠=∠=︒.又∵点D 在O 的切线. ∴CD 是O 的切线.(2)∵COD COB ≌△△,∴CD CB =.∵2DE BC =, ∴2ED CD =.∵//AD OC ,∴DE AE CE OE=.∵O 的半径为2,∴2AE AE =+, ∴AE =【点睛】本题考查了圆切线的判定,以及平行线分线段成比例的性质,熟练掌握圆切线的判定定理是解题关键.。

2022-2023学年北师大版九年级上册数学期末模拟试卷+(1)

2022-2023学年北师大版九年级上册数学期末模拟试卷+(1)

2022-2023年北师大版九年级上册数学期末模拟试卷 (1) 学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=2x -1B.y=21xC.y=13xD.y=11x2.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.抛掷次数5010020050010002000300040005000“正面向上”的次数193868168349707106914001747“正面向上”的频率0.38000.38000.34000.33600.34900.35350.35630.35000.3494下面有三个推断:①通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的;①如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确.其中正确的是()A.①①B.①①C.①①D.①①①3.下列几何体中,主视图是长方形的是()A.B.C.D.4.如图,①DEF和①ABC是位似图形点O是位似中心,点D,E,F,分别是OA,OB,OC 的中点,若①ABC的面积是8,①DEF的面积是()A.2B.4C.6D.85.把抛物线y=x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=(x+3)2+1B.y=(x+1)2+3C.y=(x﹣1)2+4D.y=(x+1)2+46.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D .7.如图,已知:AB 是O 的直径,O 的半径为1,3BD sin C ∠的值等于( )A .12B 3C 3D 2 8.已知关于x 的一元二次方程2(1)410a x x ---=有两个实数根,则a 的取值范围是( ) A .4a ≥- B .3a >- C .3a ≥-且1a ≠ D .3a >-且1a ≠9.已知:如图,菱形ABCD 的周长为20cm ,对角线AC =8cm ,直线l 从点A 出发,以1c m/s 的速度沿AC 向右运动,直到过点C 为止在运动过程中,直线l 始终垂直于AC ,若平移过程中直线l 扫过的面积为S (cm 2),直线l 的运动时间为t (s ),则下列最能反映S 与t 之间函数关系的图象是( )A .B .C .D .10.下列计算错误的是( )A 236=B 236C 1232=D 822=二、填空题(本大题共5个小题,每小题3分,共15分)11.当2x =时,函数21y x =-+的值是______. 12.-1a b a b a b a a a a---=--=( ) 13.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣6x=8(x ﹣6)的两个实数根,那么这个直角三角形的内切圆半径为_____.14.二次函数y=x 2+bx 图象的对称轴为直线x=1,若关于x 的一元二次方程x 2+bx ﹣t=0(t 为实数)在﹣1≤x≤2的范围内有解,则t 的取值范围是_____.15.如图,G 、H 分别是四边形ABCD 的边AD 、A B 上的点,①GCH =45°,CD =CB =2,①D =①DCB =①B =90°,则△AGH 的周长为_______.三、解答题(一)(本大题共3个小题,每小题8分,共24分)16.(本题8分)解下列方程(1)x 2-4x -1=0(配方法)(2)3x (x -1)=2-2x (因式分解法)17.(本题8分)如果四边形ABCD 的四个顶点坐标分别是A(2,1),B(4,3),C(6,2),D(3,-1). 试将此四边形缩小为原来的12 .18.(本题8分)如图,ABC 为等边三角形,BD AC ⊥交AC 于点D ,DE BC ∥交AB 于点E .(1)求证:ADE 是等边三角形.(2)求证:12AE AB =.四、解答题(二)(本大题共3个小题,每小题9分,共27分)19.(本题9分)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.20.(本题9分)春节期间甲乙两商场搞促销活动.甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”、“20元”、“30元”、“50元”,顾客每消费满300元,就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品.乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”、“30元”,顾客每消费满100元,就可从箱子里不放回地摸出1个球,根据两个小球所标金额之和可获相应价格的礼品. 某顾客准备消费300元,(1)若该顾客在甲商场消费,至少可得价值_________元的礼品,至多可得价值_________元的礼品;(2)请用画树状图或列表法,说明该顾客去哪个商场消费,获得礼品的总价值不低于50元的概率大.21.(本题9分)y=x+1x 是一种类似于反比例函数的对勾函数,形如y=ax+bx.其函数图像形状酷似双勾,故称“对勾函数”,也称“勾勾函数”、“海鸥函数”.y=x+1x函数图像如下图所示.根据y=x+1x 图像对函数y=|x|+1x的图像和性质进行了探究.(1)绘制函数图像:y=|x|+1 x列表:下表是x与y的几组对应值x………-3-2-1-12-131312123………y (10)35225210310352252103………描点:根据表中各组对应值,在平面直角坐标系中描出各点;连线:用平滑的曲线顺次连接各点,请你在平面直角坐标系中将y=|x|+1x图像补充完整;(2)观察发现:①写出函数y=|x|+1x的一条性质_________①函数图像与直线y=2有_________个交点,所以对应的方程|x|+120x-=有_________个实数根.(3)分析思考:①方程的|x-1|+11x--2=0的解为_________①不等式|x|+1x-52<0,x的取值范围为_________(4)延伸探究:①当x>0时,直线y=kx+3与y=|x|+1x只有一个交点,求k的值?五、解答题(三)(本大题共2个小题,每小题12分,共24分)22.(本题12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD 重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图①图①图①(一)填一填,做一做:(1)图①中,CMD∠=_______.线段NF=_______.(2)图①中,试判断AND∆的形状,并给出证明.剪一剪、折一折:将图①中的AND∆剪下来,将其沿直线GH折叠,使点A落在点A'处,分别得到图①、图①.(二)填一填图① 图①(3)图①中阴影部分的周长为_______.(4)图①中,若80A GN '∠=︒,则A HD '∠=_______°.(5)图①中的相似三角形(包括全等三角形)共有_______对;(6)如图①点A '落在边ND 上,若A N m A D n '='_______,则AG AH=_______用含m ,n 的代数式表示).23.(本题12分)如图,在Rt①ABC 中,①C=90°,AB=10cm,BC=6cm ,点P 、Q 同时从点C 出发,分别沿C→A 和 C→B 的方向运动,速度分别为2cm/s 和1cm/s.过点P 作PM①AC 交AB 于M ,分别连接PQ 、PM .当点Q 运动到B 时,两点都停止.设运动时间为t 秒.(1)当t= s 时,PQ①QM ?(2)将①PQM 沿PM 翻折,得到①PMQ /.①当t= s 时,点Q /恰好落在AB 上;①设①PMQ /与①ABC 重叠部分的面积为Scm 2,求:S 与t 的函数关系式,并指出t 的取值范围.。

北师大版数学九年级下册第三章圆(第1~3节检测题)之二附答案

北师大版数学九年级下册第三章圆(第1~3节检测题)之二附答案

第三章圆(第1~3节检测题)3.1~3.3 车轮为什么做成圆形、圆的对称性、圆周角和圆心角的关系(B卷)(50分钟,共100分)班级:_______ 姓名:_______ 得分:_______ 发展性评语:_____________一、请准确填空(每小题3分,共24分)1.如图1,M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm,最短的弦长为8 cm,则OM =_____ cm.2.如图2,⊙O的直径AC=2,∠BAD=75°,∠ACD=45°,则四边形ABCD的周长为_____(结果取准确值).3.如图3,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是_____.OMOABC DOA BP图1 图2 图34.如图4,在⊙O中,两弦AD∥BC,AC、BD相交于点E,连接AB、CD,图中的全等三角形共有_____对.相似比不等于1的相似三角形共有_____对.5.如图5,在⊙O中,直径AB和弦CD的长分别为10 cm和8 cm,则A、B两点到直线CD的距离之和是_____.6.如图6,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=_____.7.如图7,△ABC内接于⊙O,D是劣弧上的一点,E是BC延长线上一点,AE交⊙O于F,为使△ADB∽△ACE,应补充的一个条件是_____或_____.A BDEOABC DOAC DO1 2EAB COF图4 图5 图6 图78.如图8,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙已跟随冲到B点,从数学角度看,此时甲是自己射门好,还是将球传给乙,让乙射门好?答:,简述理由:.图8二、相信你的选择(每小题3分,共24分)9.如图9,点P 是半径为5的⊙O 内一点,且OP =4,在过P 点的所有⊙O 的弦中,你认为弦长为整数的弦的条数为A.6条B.5条C.4条D.2条10.如图10,在平面直角坐标系中,⊙O ′与两坐标分别交于A 、B 、C 、D 四点,已知:A (6,0),B (0,-3),C (-2,0),则点D 的坐标为A.(0,2)B.(0,3)C.(0,4)D.(0,5)图9图10 图1111.如图11,已知AB 和CD 分别是半圆O 的直径和弦,AD 和BC 相交于点E ,若∠AEC =α,则S △CDE ∶S △ABE 等于A.sin 2αB.cos 2αC.tan 2αD.与α无关12.如图12,每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是A BD C图1213.如图13,已知:AB =2,BC =2,CD =1,∠ABC =45°,则四边形ABCD 的面积为A.333+ B.4223+ C.2223+D.433+。

2022-2023学年北师大版九年级数学下册《1-4解直角三角形》同步练习题(附答案)

2022-2023学年北师大版九年级数学下册《1-4解直角三角形》同步练习题(附答案)

2022-2023学年北师大版九年级数学下册《1.4解直角三角形》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,BC=2,,则AC的长是()A.B.3C.D.2.在△ABC中,∠A和∠C都是锐角,且sin A=,tan C=,则△ABC是()A.直角三角形B.钝角三角形C.等边三角形D.不能确定3.在平面直角坐标系xOy中,已知点P(1,3)与原点O的连线与x轴的正半轴的夹角为α(0°<α<90°),那么cosα的值是()A.3B.C.D.4.如图,在Rt△ABC中,∠C=90°,sin A=,BC=,则AC的长为()A.B.3C.D.25.在Rt△ABC中,∠B=90°,如果∠A=α,BC=a,那么AC的长是()A.a•tanαB.a•cotαC.D.6.等腰三角形底边与底边上的高的比是2:,则它的顶角为()A.30°B.45°C.60°D.120°7.阅读理解:为计算tan15°三角函数值,我们可以构建Rt△ACB(如图),使得∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,可得到∠D=15°,所以tan15°====2﹣.类比这种方法,请你计算tan22.5°的值为()A.+1B.﹣1C.D.8.如图,在△ABC中,AD⊥BC于点D.若BD=9,DC=5,cos B=,E为边AC的中点,则cos∠ADE的值为()A.B.C.D.9.如图,在△ABC中,AB=AC=10,BC=12,点D为BC的中点,DE⊥AB于点E,则tan∠BDE的值等于()A.B.C.D.10.如图,在△ABC中,∠BAC=120°,AC=8,AB=4,则BC的长是()A.B.C.6D.8二.填空题11.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A,若AC=4,cos A=,则BD的长度为.12.已知等腰三角形两条边的长分别是4,6,底角为α,则cosα=.13.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为.14.如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x轴正半轴所夹的锐角为α,当n=2时,则tanα=;当tanα的值最大时,n的值为.15.如图,在△ABC中,AD⊥BC于D,点E在AC上,∠ABE=45°,tan∠CBE=,若AD=BC,AC=2,则线段BC的长是.三.解答题16.根据下列条件解直角三角形:(1)在Rt△ABC中,∠C=90°,c=8,∠A=60°;(2)在Rt△ABC中,∠C=90°,a=3,b=9.17.如图,在平面直角坐标系中,OB=4,sin∠AOB=,点A的坐标为(,0).(1)求点B的坐标;(2)求sin∠OAB的值.18.如图,点C在线段AB上,点D,E在直线AB的同侧,∠A=∠DCE=∠CBE=90°,∠ADC=∠ABD,AC=3,BC=,求tan∠CDB的值.19.如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,过B作BE⊥CD,交CD的延长线于点E,AC=30,sin B=,求:(1)线段CD的长.(2)cos∠BDE的值.20.如图(1),在Rt△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,以下是某同学推理证明的过程:证明:∵sin A=,sin B=∴c=,c=∴根据你掌握的三角函数知识,请在图(2)中的锐角△ABC中,求证:.参考答案一.选择题1.解:如图,在Rt△ABC中,∠C=90°,BC=2,∴sin A===,∴AB=3,∴AC===.故选:A.2.解:∵sin A=,∴∠A=60°,∵tan C=,∴∠C=60°,∴∠B=180°﹣∠A﹣∠C=180°﹣60°﹣60°=60°.∴△ABC是等边三角形.故选:C.3.解:如图,过P点作P A⊥x轴于A,则∠POA=α,∵点P的坐标为(1,3),∴OA=1,P A=3,∴tan∠POA===3,即tanα=3.故选:D.4.解:∵∠C=90°,sin A==,BC=,∴AB=BC=×=2,∴AC====.故选:C.5.解:如图:在Rt△ABC中,AC==.故选:D.6.解:如图,AB=AC,AD⊥BC,∴BD=CD,∵BC:AD=2:,∴tan B==,∴∠B=60°,∵AB=AC,∴△ABC是等边三角形,∴∠BAC=60°,故选:C.7.解:如图:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,∴∠BAD=∠D=22.5°,设AC=BC=1,则AB=BD=AC=,∴CD=BC+BD=1+,在Rt△ADC中,tan22.5°===﹣1,故选:B.8.解:∵AD⊥BC,BD=9,cos B=,∴AB==15,AD==12,∵DC=5,∴AC==13,∵E为边AC的中点,∴ED=,∴∠EDA=∠DAE,∴cos∠EDA=cos∠DAE=,故选:D.9.解:连接AD,∵△ABC中,AB=AC=10,BC=12,D为BC中点,∴AD⊥BC,BD=BC=6,∴AD=,∴tan∠BAD=.∵AD⊥BC,DE⊥AB,∴∠BDE+∠ADE=90°,∠BAD+∠ADE=90°,∴∠BDE=∠BAD,∴tan∠BDE=tan∠BAD=,故选:C.10.解:如图,过点C作CE⊥BA交BA的延长线于E.∵∠BAC=120°,∴∠CAE=180°﹣120°=60°,∴AE=AC•cos60°=4,EC=AC•sin60°=4,∵AB=4,∴BE=AB+AE=8,∴BC===4,故选:B.二.填空题11.解:∵∠C=90°,AC=4,cos A=,∴AB=5,∴BC===3,∵∠DBC=∠A.∴cos∠DBC=cos∠A==,∴BD=3×=,故答案为:.12.解:分两种情况:当等腰三角形的腰长为4,底边长为6时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=4,AD⊥BC,∴BD=DC=BC=3,在Rt△ABD中,cos B==,当等腰三角形的腰长为6,底边长为4时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=6,AD⊥BC,∴BD=DC=BC=2,在Rt△ABD中,cos B===,综上所述:cosα=或,故答案为:或.13.解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故答案为:2.14.解:过点A作AM⊥y轴于点M,作AN⊥BG于点N,如图所示:则∠AMC=90°,∠ANB=90°,∵直线y=﹣2与x轴平行,∴∠ABN=α,∠CGB=90°,∵AC⊥BC,∴∠ACB=90°,∵∠ACM+∠MAC=90°,∠ACM+∠BCG=90°,∴∠CAM=∠BCG,∵∠AMC=∠CGB=90°,∴△AMC∽△CGB,∴,设BG=m,∵点A坐标为(4,3),点C坐标为(0,n),∴AM=4,GC=n+2,CM=3﹣n,∴=,当n=2时,可得,解得m=1,∴GB=1,BN=3,∴tanα==;∵tanα=,当BN最小,即BG最大时,tanα最大,∵=,∴m=﹣(n﹣3)(n+2)=﹣(n﹣)2+,∵﹣<0,∴当n=时,m取得最大值,即tanα最大,故答案为:,.15.解:如图,过点A作AF⊥BE于点F,设AD与BF交于点G,∵∠ABE=45°,∴△ABF是等腰直角三角形,∴AF=BF,∵∠GDB=∠AFG=90°,∠BGD=∠AGE,∴∠GBD=∠F AG,∴tan∠GBD=tan∠F AG,∴==,设DG=x,则BD=2x,∴BG==x,设FG=a,则AF=2a,∴BF=AF=2a,AG==a,∴BG=BF﹣FG=a,∴a=x,∴AD=AG+DG=a+x=6x,∵DC=BC﹣BD=AD﹣BD=a+x﹣2x=a﹣x=4x,在Rt△ADC中,根据勾股定理得AD2+DC2=AC2,∴(6x)2+(4x)2=(2)2,∴x=1(负值舍去),∴BC=AD=6x=6.故答案为:6.三.解答题16.解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=c=4,∴a=b=12,∴∠B=30°,b=4,a=12;(2)在Rt△ABC中,∠C=90°,a=3,b=9,∴tan A===,∴∠A=30°,∴∠B=90°﹣∠A=60°,c=2a=6,∴∠A=30°,∠B=60°,c=6.17.解:(1)过点B作BC⊥OA于点C,在Rt△BOC中,OB=4,sin∠AOB=,∴BC=OB•sin∠AOB=4×=3,∴,∴点B的坐标为(,3);(2)∵点A的坐标为(,0),∴OA=,∴AC=OA﹣OC==,∵∠ACB=90°,∴,∴,∴sin∠OAB的值为.18.解:如图,设CE交BD于G.∵∠A=∠A=90°,∠ADC=∠ABD,∴△ADC∽△ABD,∴,,解得AD=5,∴DC==,DB==,∵∠A=∠ECD=∠CBE=90°,∴∠ACD+∠ECB=90°,∠ACD+∠ADC=90°,∴∠ADC=∠ECB,设∠DBA=∠CDA=α,则∠ECB=α,∴∠GCB=∠GBC=α,∴CG=GB,设CG=GB=x,∴DG=﹣x,∴()2+x2=(﹣x)2,解得x=,∴tan∠CDB==.19.解:(1)∵∠ACB=90°,AC=30,sin B==,∴AB=50,∵D为直角三角形ABC斜边上的中点,∴CD=AB=25;(2)∵AB=50,D为AB的中点,∴AD=BD=25,∵BE⊥CD,∴∠E=90°,由勾股定理得:BC===40,由勾股定理得:BE2=BD2﹣DE2=BC2﹣CE2,即252﹣DE2=402﹣(25+DE)2,解得:DE=7,∴cos∠BDE==.20.解:过C点作CD⊥AB于D,过B点作BE⊥AC于E,∴sin A=,sin B=,∴CD=b sin∠A=a sin B,∴,同理,∴.。

2022-2023学年北师大版九年级数学下册《1-5三角函数的应用》题型分类练习题(附答案)

2022-2023学年北师大版九年级数学下册《1-5三角函数的应用》题型分类练习题(附答案)

2022-2023学年北师大版九年级数学下册《1.5三角函数的应用》题型分类练习题(附答案)一.测量计算物体高度问题1.如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)2.两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部?3.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)4.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5.一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B、C、D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.求支撑杆上的点E到水平地面的距离EF是多少?(用四舍五入法对结果取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)6.“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)7.第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)8.如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)9.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号).10.图1是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,AB⊥BC,垂足为点B,EA⊥AB,垂足为点A,CD∥AB,CD=10cm,DE=120cm,FG⊥DE,垂足为点G.(1)若∠θ=37°50′,则AB的长约为cm;(参考数据:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)(2)若FG=30cm,∠θ=60°,求CF的长.11.汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)12.如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)二.实际问题数学抽象13.如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?14.日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C 处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?15.图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)16.如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部.三.三角函数的应用17.如图1是某中学教学楼的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转35°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin35°≈0.6,cos35°≈0.8,≈1.4)18.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)19.随着我国科学技术的不断发展,科学幻想变为现实.如图1是我国自主研发的某型号隐形战斗机模型,全动型后掠翼垂尾是这款战斗机亮点之一.图2是垂尾模型的轴切面,并通过垂尾模型的外围测得如下数据,BC=8,CD=2,∠D=135°,∠C=60°,且AB∥CD,求出垂尾模型ABCD的面积.(结果保留整数,参考数据:≈1.414,≈1.732)20.如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∠AFE的度数和棚宽BC的长.(2)当∠AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)参考答案一.测量计算物体高度问题1.解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DE=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,∴∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10≈3.2(cm).2.解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m,∵∠BFH=∠α=30°,在Rt△BFH中,BH=,FC=30﹣17.32=12.68,再用12.68÷3≈4.23,所以在四层的上面,即第五层,答:此刻B楼的影子落在A楼的第5层;(2)连接BC,∵BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.3.解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5米,BH=5≈8.65(米),∴DH=15(米),在Rt△ADH中,AH=≈=20(米),∴AB=AH﹣BH=20﹣8.65≈11.4(米).答:AB的长度约为11.4米.4.解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=(米),在Rt△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.32(米),∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=(米),∴AB=AN+BN=12.32+1.5≈13.8(米).5.解:方法一:如图1,过点D作DM⊥EF于M,过点D作DN⊥BA交BA延长线于N,在Rt△ABC中,∠ABC=60°,AB=32(cm),∴BC=AB•cos60°=32×=16(cm),∵DC=84(cm),∴BD=DC+BC=84+16=100(cm),∵∠F=90°,∠DMF=90°,∴DM∥FN,∴∠MDB=∠ABC=60°,在Rt△BDN中,sin∠DBN=sin60°=,∴DN=×100=50(cm),∵∠F=90°,∠N=90°,∠DMF=90°,∴四边形MFND是矩形,∴DN=MF=50,∵∠BDE=75°,∠MDB=60°,∴∠EDM=∠BDE﹣∠MDB=75°﹣60°=15°,∵DE=70(cm),∴ME=DE•sin∠EDM=70×sin15°≈18.2(cm),∴EF=ME+MF=50+18.2≈104.8≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.方法二:如图2,过点D作DH⊥BA交BA延长线于H,过点E作EG⊥HD延长线于G,在Rt△ABC中,∠ABC=60°,AB=32(cm),∴BC=AB•cos60°=32×=16(cm),∵DC=84(cm),∴BD=DC+BC=84+16=100(cm),同方法一得,DH=BD•sin60°=50(cm),∵在Rt△BDH中,∠DBH=60°,∴∠BDH=30°,∵∠BDE=75°,∴∠EDG=180°﹣∠BDH﹣∠BDE=180°﹣75°﹣30°=75°,∴∠DEG=90°﹣75°=15°,∴DG=DE•sin15°≈18.2(cm),∴GH=DG+DH=18.2+50≈104.8≈105(cm),∵∠F=90°,∠H=90°,∠G=90°,∴EF=GH≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.6.解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.7.解:如图,过点E作EN⊥BC于点N,交HG于点M,则AB=AH﹣EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG∥BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF•sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7﹣m)米,∴EM=MG•tan∠EGM=MG•tan36°≈0.73m,EM=FM•tan∠EFM=FM•tan25°≈0.47(7﹣m),∴0.73m=0.47(7﹣m),解得m≈2.7(米),∴EM≈0.47(7﹣m)=2.021(米),∴AB=AH﹣EM+EN≈32﹣2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离约是70米.8.解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.在Rt△QEN中,设EN=x米,则EQ=2x米,∵QN2=EN2+QE2,∴20=5x2,∵x>0,∴x=2,∴EN=2(米),EQ=MF=4(米),∵MN=3米,∴FQ=EM=1(米),在Rt△PFM中,PF=FM•tan60°=4(米),∴PQ=PF+FQ=(4+1)米.9.解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=AC sin30°=50×=25(cm),∵GD=50﹣30=20(cm),∴CD=CG+GD=25+20=45(cm),连接FD并延长与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90(cm),∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290(cm),在Rt△EFH中,EF=EH•tan30°=290×=(cm),答:支撑角钢CD和EF的长度各是45cm,cm.10.解:(1)如图,作EP⊥BC于点P,作DQ⊥EP于点Q,则CD=PQ=10,∠2+∠3=90°,∵∠1+∠θ=90°,且∠1=∠2,∴∠3=∠θ=37°50′,则EQ=DE sin∠3=120×sin37°50′,∴AB=EP=EQ+PQ=120sin37°50′+10=83.2(cm),故答案为:83.2;(2)如图,延长ED、BC交于点K,由(1)知∠θ=∠3=∠K=60°,在Rt△CDK中,CK==(cm),在Rt△KGF中,KF===(cm),则CF=KF﹣KC=﹣==(cm).11.解:过A作AH⊥BC于H,过E作EG⊥BC于G,则四边形EGHA是矩形,∴EG=AH=30×30=900,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=9米,∴AB=9,∴BG=BH﹣HG=7米,∵斜坡EF的坡度i=1:,∴FG=9米,∴BF=FG﹣BG=9﹣7,∴S梯形ABFE=(2+9﹣7)×9=,∴共需土石为×200=100(81﹣45)立方米.12.解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.二.实际问题数学抽象13.解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.14.解:(1)在Rt△EFH中,∵∠H=90°,∴tan∠EFH=i=1:0.75==,设EH=4xm,则FH=3xm,∴EF==5xm,∵EF=15m,∴5x=15m,x=3,∴FH=3x=9m.即山坡EF的水平宽度FH为9m;(2)∵L=CF+FH+EA=CF+9+4=CF+13,H=AB+EH=22.5+12=34.5,H1=0.9,∴日照间距系数=L:(H﹣H1)==,∵该楼的日照间距系数不低于1.25,∴≥1.25,∴CF≥29.答:要使该楼的日照间距系数不低于1.25,底部C距F处29m远.15.解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°==,∴GP=OP=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.16.解:∵BH=0.6米,sinα=,∴AB==1米,∴AH=0.8米,∵AF=FC=2米,∴BF=1米,作FJ⊥BG于点J,作EK⊥FJ于点K,∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,BF=AB,∴△EFK∽△FBJ∽△ABH,△FBJ≌△ABH,∴,BJ=BH=0.6米,即,解得,EK=1.28,∴BJ+EK=0.6+1.28=1.88<2,∴木箱上部顶点E不会触碰到汽车货厢顶部.三.三角函数的应用17.解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,∠A=35°,AB=1,∴BE=AB•sin A=1×sin35°≈0.6,∴AE=AB•cos A=1×cos35°≈0.8,在Rt△CDF中,∠D=45°,CD=1,∴CF=CD•sin D=1×sin45°≈0.7,∴DF=CD•cos D=1×cos45°≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC是平行四边形,∴BC=EM,在Rt△MEF中,FM=CF+CM=1.3,EF=AD﹣AE﹣FD=0.5,∴EM==≈1.4,答:B与C之间的距离约为1.4米.18.解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.19.解:如图,过点A作CD的垂线,交CD的延长线于F,过点C作AB的垂线,交AB 的延长线于E,∵AB∥CD,∴四边形AECF是矩形,∵∠BCD=60°,∴∠BCE=90°﹣60°=30°,在Rt△BCE中,∠BCE=30°,BC=8,∴BE=BC=4,CE=BC=4,∵∠ADC=135°,∴∠ADF=180°﹣135°=45°,∴△ADF是等腰直角三角形,∴DF=AF=CE=4,由于FC=AE,即4+2=AB+4,∴AB=4﹣2,∴S梯形ABCD=(2+4﹣2)×4=24,答:垂尾模型ABCD的面积为24.20.解:(1)∵AE=EF=AF=1m,∴△AEF是等边三角形,∴∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵△AEF是等边三角形,∴AK=(m),∴FK==(m),∴FM=2FK=(m),∴BC=4FM=4≈6.92≈6.9(m),答:∠AFE的度数为60°,棚宽BC的长约为6.9m;(2)∵∠AFE=74°,∴∠AFK=37°,∴KF=AF•cos37°≈0.80(m),∴FM=2FK=1.60(m),∴BC=4FM=6.40(m)<6.92(m),6.92﹣6.40=0.52≈0.5(m),答:当∠AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.21.解:(1)如图,过点C作CF⊥DE于点F,∵CD=CE=5cm,∠DCE=40°.∴∠DCF=20°,∴DF=CD•sin20°≈5×0.34≈1.7(cm),∴DE=2DF≈3.4cm,∴线段DE的长约为3.4cm;(2)∵横截面是一个轴对称图形,∴延长CF交AD、BE延长线于点G,连接AB,∴DE∥AB,∴∠A=∠GDE,∵AD⊥CD,BE⊥CE,∴∠GDF+∠FDC=90°,∵∠DCF+∠FDC=90°,∴∠GDF=∠DCF=20°,∴∠A=20°,∴DG=≈≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.。

北师大版九年级数学下册期末学情评估 附答案 (1)

北师大版九年级数学下册期末学情评估 附答案 (1)

北师大版九年级数学下册期末学情评估一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt △ABC 中,∠C =90°,若AC =4,AB =5,则cos B 等于( )A.34B.35C.45D.432.如图,AB 是⊙O 的直径,∠D =40°,则∠AOC =( )A .80°B .100°C .120°D .140°(第2题) (第4题) (第5题)3.在平面直角坐标系中,将抛物线y =x 2先向右平移3个单位长度,再向上平移1个单位长度后,所得抛物线对应的函数表达式为( ) A .y =(x +3)2+1 B .y =(x -3)2-1 C .y =(x +3)2-1 D .y =(x -3)2+14.如图,小明在C 处看到西北方向的A 处有一只小猫,若小猫沿正东方向跑到B 处,测得B 在C 的北偏东α方向,且BC =a 米,则A 处与B 处之间的距离为( )A .a (cos α+sin α)米B .a (cos α-sin α)米C.⎝ ⎛⎭⎪⎫a cos α+a sin α米D.⎝ ⎛⎭⎪⎫acos α-a sin α米 5.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A .当-1<x <2时,y <0B .a +c =bC .当x >12时,y 随x 的增大而增大D .若顶点坐标为⎝ ⎛⎭⎪⎫12,m ,则方程ax 2+bx +c =m -1有实数根6.如图,在Rt △ABC 中,∠C =90°,sin B =45,AC =5 cm ,若以点C 为圆心,2cm 长为半径作圆,则⊙C 与AB 的位置关系是( )A .相离B .相交C .相切D .相切或相交(第6题) (第7题) (第8题)7.如图,在⊙O 中,AO =3,∠C =60°,则AB ︵的长度为( )A .6πB .9πC .2πD .3π8.如图,在4×4的正方形网格中,△ABC 的顶点都在格点上,则∠BAC 的正弦值是( ) A.55B.12C.2 55D. 59.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG在AB 上,若BG =2-1,则△ABC 的周长为( ) A .4+2 2B .6C .2+2 2D .4(第9题) (第10题)10.如图,有边长分别为1和2的两个等边三角形,开始时它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移至完全移出大三角形为止.设小三角形移动的距离为x ,两个三角形重叠部分的面积为y ,则y 关于x 的函数图象是( )二、填空题(本大题共5小题,每小题3分,共15分)11.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且c=3a,则tan A的值为________.12.如果将抛物线y=-2x2+8向下平移a个单位后恰好经过点(1,4),那么a的值为________.13.如图,⊙O的半径为9 cm,AB是弦,OC⊥AB于点C,将劣弧AB沿弦AB 折叠,交OC于点D,若D是OC的中点,则AB的长为________.(第13题)(第15题)14.已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴的一个交点为(-1,0),则关于x的一元二次方程ax2-2ax+c=0的根是________.15.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处出发以每小时20 n mile的速度沿南偏西50°方向匀速航行,1 h后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离约是______n mile(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:3tan 30°-tan2 45°+2sin 60°.17.一抛物线以(-1,9)为顶点,且经过点(-4,0),求该抛物线的解析式及抛物线与y轴的交点坐标.18.如图,在小山的东侧A 处有一热气球,由于受风力影响,它以35 m/min 的速度沿着与水平线成75°角的方向飞行,40 min 后到达C 处,此时热气球上的人发现热气球与山顶P 及小山西侧的B 处在一条直线上,同时测得B 处的俯角为30°.在A 处测得山顶P 的仰角为45°,求A 与B 间的距离及山高(结果保留根号).(第18题)四、解答题(二)(本大题共3小题,每小题9分,共27分)19.△ABC 中,∠A 、∠B 都是锐角,且⎝ ⎛⎭⎪⎫cos A -122+|tan B -1|=0.(1)分别求出△ABC 三个内角的度数; (2)若AC =2,求AB 的长度.20.如图,四边形ABCD 内接于⊙O ,∠1=∠2,延长BC 到点E ,使得CE =AB ,连接ED . (1)求证:BD =ED ;(2)若AB =5,BC =7,∠ABC =60°,求tan ∠DCB 的值.(第20题)21.某商店购进一批额温枪,每个进价为30元.若每个售价定为42元,则每周可售出160个.经调查发现,每个售价每增加1元,每周的销售量将减少10个.设每个额温枪的售价为x元(x≥42),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出x的取值范围;(2)求每个售价为多少时,每周的销售利润最大;(3)若该商店在某周销售这种额温枪获利1 600元,求这周每个额温枪的售价.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.如图,AB是⊙O的直径,AD、BC分别是⊙O的切线,连接OC、OD、CD,且CO平分∠BCD.(1)求证:CD是⊙O的切线;(2)求证:OC⊥OD;(3)若⊙O的半径是2,sin∠BCD=23,且AD<BC,求tan∠BOC的值.(第22题)23.如图,在平面直角坐标系中,抛物线y=ax2+bx-6与x轴交于A,B两点,与y轴交于点C,AB=8,OA=3OB,点P是直线AC下方抛物线上的一个动点.过点P作PE∥x轴,交直线AC于点E.(1)求抛物线的解析式;(2)若点M是抛物线对称轴上的一个动点,则BM+CM的最小值是________;(3)求PE的最大值;(4)在抛物线的对称轴上找一点N,使△ACN是以AC为斜边的直角三角形,请直接写出点N的坐标.(第23题)答案一、1.B 2.B 3.D 4.A 5.D 6.A7.C8.A9.A 10.B二、11.2412.213.6 5 cm14.x1=-1,x2=315.24三、16.解:3tan 30°-tan2 45°+2sin 60°=3×33-12+2×32=3-1+ 3=2 3-1.17.解:由题意,可设抛物线的解析式为y=a(x+1)2+9,将(-4,0)代入y=a(x+1)2+9,得0=9a+9,解得a=-1,∴抛物线的解析式为y=-(x+1)2+9.令x=0,则y=8,∴抛物线与y轴的交点坐标为(0,8).18.解:过点A作AD⊥BC,垂足为D.由题意得,∠ACD=75°-30°=45°,AC=35×40=1 400(m).∴AD=AC·sin 45°=1 400×22=700 2(m).在Rt△ABD中,由题意可知,∠B=30°,∴AB=2AD=1 400 2 m.过点P作PE⊥AB,垂足为E,∴易得AE=PE,BE=3PE.∴AB=AE+BE=PE+3PE=1 400 2 m.∴PE=700(6-2)m.答:A与B间的距离是1 400 2 m,山高是700(6-2)m.四、19.解:(1)∵⎝ ⎛⎭⎪⎫cos A -122+||tan B -1=0,∴cos A -12=0,tan B -1=0, ∴cos A =12,tan B =1, 又∵∠A 、∠B 都是锐角, ∴∠A =60°,∠B =45°, ∴∠C =180°-∠A -∠B =75°. (2)过点C 作CH ⊥AB 于H , 在Rt △ACH 中,AC =2,∠A =60°, ∴AH =AC ·cos A =2×12=1, CH =AC ·sin A =2×32= 3.在Rt △CHB 中,CH =3,tan B =1, ∴BH =CH tan B =31=3, ∴AB =AH +BH =1+ 3. 20.(1)证明:∵∠1=∠2,∴AD ︵=DC ︵,∴AD =DC . ∵四边形ABCD 内接于⊙O , ∴∠BAD +∠BCD =180°, ∵∠ECD +∠BCD =180°, ∴∠BAD =∠ECD . 在△ABD 和△CED 中,⎩⎨⎧AD =CD ,∠BAD =∠ECD ,AB =CE ,∴△ABD ≌△CED ,∴BD =ED . (2)解:过点D 作DM ⊥BE 于M ,如图.(第20题)∵BC=7,CE=AB=5,∴BE=BC+EC=12,∵BD=ED,DM⊥BE,∴BM=ME=12BE=6,∴CM=BC-BM=1.∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM·tan∠2=6×33=2 3,∴tan∠DCB=DMCM=2 3.21.解:(1)根据题意知y=(x-30)[160-10(x-42)]=-10x2+880x-17 400(42≤x<58).(2)y=-10x2+880x-17 400=-10(x-44)2+1 960.∵-10<0,42≤x<58,∴当x=44时,y取得最大值,最大值为1 960.答:当每个售价为44元时,每周的销售利润最大.(3)令y=1 600,则-10(x-44)2+1 960=1 600,解得x=50或x=38(不合题意,舍去).答:这周每个额温枪的售价为50元.五、22.(1)证明:过点O作OH⊥CD于点H,如图,则∠CHO=90°,∵BC是⊙O的切线,∴∠OBC=90°,∴∠CHO=∠CBO.∵CO平分∠BCD,∴∠HCO=∠BCO,又∵OC=OC,∴△CHO≌△CBO,∴OH=OB,∴CD是⊙O的切线.(2)证明:∵AD是⊙O的切线,∴∠DAO=90°. 在Rt△DAO和Rt△DHO中,AO=HO,DO=DO,∴Rt△DAO≌Rt△DHO,∴∠AOD=∠HOD.∵△CHO≌△CBO,∴∠COH=∠COB.∵∠AOH+∠BOH=180°,∴∠DOH+∠COH=90°,∴∠DOC=90°,即OC⊥OD.(3)解:延长CD交BA的延长线于点F,如图.(第22题)∵∠OHC=∠OBC=90°,∴易得∠FOH=∠DCB,∵sin∠BCD=2 3,∴sin∠FOH=FHFO=2 3,∴可设FH=2m,FO=3m,∵OH=2,∴(3m)2-(2m)2=22,解得m=2 55(负值已舍去),∴FH=4 55,FO=6 55.∵∠FHO =∠FBC =90°,∠F =∠F ,∴△FOH ∽△FCB ,∴OH ∶FO =BC ∶FC ,∴易得2 ∶6 55=BC ∶⎝⎛⎭⎪⎫BC +4 55, 解得BC =3+5,∴tan ∠BOC =BC OB =3+52.23.解:(1)∵AB =OA +OB =8,OA =3OB ,∴OB =2,OA =6,∴A (-6,0),B (2,0).将点A ,B 的坐标代入y =ax 2+bx -6,得⎩⎨⎧36a -6b -6=0,4a +2b -6=0,解得⎩⎪⎨⎪⎧a =12,b =2.∴y =12x 2+2x -6.(2)6 2(3)令x =0,则y =-6,∴C (0,-6).设直线AC 的解析式为y =kx +m ,将点A ,C 的坐标代入,得⎩⎨⎧-6k +m =0,m =-6, 解得⎩⎨⎧k =-1,m =-6.∴y =-x -6.设P ⎝ ⎛⎭⎪⎫t ,12t 2+2t -6,其中-6<t <0, 则E ⎝ ⎛⎭⎪⎫-12t 2-2t ,12t 2+2t -6, ∴PE =-12t 2-2t -t =-12t 2-3t =-12(t +3)2+92,∴当t =-3时,PE 取得最大值92.即PE的最大值为9 2.(4)点N的坐标为(-2,17-3)或(-2,-17-3).。

北师大版九年级数学下册答案

北师大版九年级数学下册答案

数学北师大版九年级下册答案第一章第4页练习答案1.解:∵AB=BC,BD⊥AC,∴DC=1/2AC=1/2×4=2 .在Rt△BDC中,tanC=BD/DC=1.5/2=3/4.2.解:在Rt△ABC中,(m),∴tanA=BC/AC≈0.286.答:山的坡度约为0.286.习题1.1答案1. 解:在Rt△ABC中,∠C=90°,AC=5,AB=13,∴tanA=BC/AC=5/12 .2.解:在Rt△ABC中,∠C=90°,tanA=BC/AC=5/12.∵BC=3,∴AC=36/5.3.提示:结合自己的实际回答。

4.解:在Rt△ABC中,阿和BC=a,AC=b,则有tanA∙tanB=a/b∙b/a=1,即tanA与tanB的关是互为倒数.第6页练习答案1.解:如图1-1-29所示,过点A作AD⊥BC于点D.∵AB=AC,∴BD=1/2BC=1/2×6=3.在Rt△ABD中,∴sinB=AD/AB=4/5,cosB=BD/AB=3/5,tanB=AD/BD=4/3.2.解:在Rt△ABC中,∵sinA=BC/AB=4/5,BC=20,∴AB=25,∴△ABC的为AB+BC+AC=60,面积为1/2AC∙BC=1/2×15×20=150习题1.2答案第9页练习答案习题1.3答案第14页练习答案习题1.4答案第17页练习答案习题1.5答案第20页练习答案习题1.6答案习题1.7答案第一章复习题答案第2章第30页练习答案习题2.1答案习题2.2答案第36页练习答案习题2.3答案第38页练习答案习题2.4答案第41页练习答案习题2.5答案第43页练习答案习题2.6答案第45页练习答案习题2.7答案第47页练习答案习题2.8答案第49页练习答案习题2.9答案。

2022-2023学年北师大版九年级数学下册第三章圆《3-1—3-5》综合测试题(附答案)

2022-2023学年北师大版九年级数学下册第三章圆《3-1—3-5》综合测试题(附答案)

2022-2023学年北师大版九年级数学下册第三章圆《3.1—3.5》综合测试题(附答案)一.选择题(共8小题,满分40分)1.如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AD=,BC=1,则⊙O 的半径为()A.B.C.D.2.如图,AB为⊙O的直径,C为半圆的中点,E为上一点,CE=,AB=,则EB的长为()A.B.2C.D.3.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AD=DC,分别延长BA、CD,交点为E,作BF⊥EC,并与EC的延长线交于点F.若AE=AO,BC=6,则CF的长为()A.B.C.D.4.如图,AB是半⊙O的直径,点C是半圆弧的中点,点D是弧BC的中点,下列结论中:①∠CBD=∠DAB;②CG=CH;③AH=2BD;④BD2+GD2=AG2;⑤AG=DG.其中正确的结论有()A.2个B.3个C.4个D.5个5.如图,在半径为5的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=8,垂足为E.则tan∠OEA的值是()A.1B.C.D.6.如图,⊙O的直径AB与弦CD相交于点P,且∠APC=45°,若PC2+PD2=8,则⊙O 的半径为()A.B.2C.2D.47.如图,点C是半圆O的中点,AB是直径,CF⊥弦AD于点E,交AB于点F,若CE=1,EF=,则BF的长为()A.B.1C.D.8.如图,半径为R的⊙O的弦AC=BD,且AC⊥BD于E,连接AB、AD,若AD=,则半径R的长为()A.1B.C.D.二.填空题(共8小题,满分40分)9.如图,AB为⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠C=23°,则∠EOB的度数为.10.如图,在四边形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,过A,B,D三点的⊙O分别交BC,CD于点E,M,下列结论:①DM=CM;②;③⊙O的直径为2;④AE=AD.其中正确的结论有(填序号).11.如图,在⊙O中,弦BC,DE交于点P,延长BD,EC交于点A,BC=10,BP=2CP,若=,则DP的长为.12.如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是.13.如图,已知A、B、C是⊙O上的三个点,且AB=15cm,AC=3cm,∠BOC=60度.如果D是线段BC上的点,且点D到直线AC的距离为2cm,那么BD=cm.14.如图,在△ABC中,tan∠BAC•tan∠ABC=1,⊙O经过A、B两点,分别交AC、BC 于D、E两点,若DE=10,AB=24,则⊙O的半径为.15.如图,已知在Rt△ABC中,∠ACB=90°,cos B=,BC=3,P是射线AB上的一个动点,以P为圆心,P A为半径的⊙P与射线AC的另一个交点为D,直线PD交直线BC 于点E.设线段BE的中点为Q,射线PQ与⊙P相交于点F,点P在运动过程中,当PE ∥CF时,则AP的长为.16.如图,在平行四边形ABCD中,以对角线AC为直径的圆O分别交BC,CD于点E,F.若AB=13,BC=14,CE=9,则线段EF的长为.三.解答题(共4小题,满分40分)17.如图,⊙O的直径MN⊥弦AB于C,点P是AB上的一点,且PB=PM,延长MP交⊙O 于D,连接AD.(1)求证:AD∥BM;(2)若MB=6,⊙O的直径为10,求sin∠ADP的值.18.如图,在△ABC中,AB=AC,∠BAC=90°,以AB为直径的⊙O交BC于点F,连接OC,过点B作BD∥OC交⊙O于点D.连接AD交OC于点E(1)求证:BD=AE.(2)若OE=1,求DF的值.19.已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.20.如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:P A•PB=PC•PD;(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF⊥AD;(3)若AB=8,CD=6,求OP的长.参考答案一.选择题(共8小题,满分40分)1.解:如图延长DO交⊙O于E,作EF⊥CB交CB的延长线于F,连接BE、EC.∵∠AOD=∠BOE,∴=,∴AD=BE=,∵∠DOC=∠COE=90°,OC=OB=OE,∴∠OCB=∠OBC,∠OBE=∠OEB,∴∠CBE=(360°﹣90°)=135°,∴∠EBF=45°,∴△EBF是等腰直角三角形,∴EF=BF=1,在Rt△ECF中,EC===,∵△OCE是等腰直角三角形,∴OC==.故选:C.2.解:连接AC、BC,延长BE,过C作CH⊥BE的延长线于H,∵AB为⊙O的直径,C为半圆的中点,∴∠ACB=90°,AC=BC,∴∠CAB=45°,∴∠2=135°,∴∠1=45°,∵CH⊥BE,∴∠CHE=90°,∴∠HCE=45°,∴CH=HE,∵CE=,∴CH=HE=1,∵AB=,∴BC=,∴BH==3,∴EB=3﹣1=2,故选:B.3.解:如图,连接AC,BD,OD,∵AB是⊙O的直径,∴∠BCA=∠BDA=90°.∵BF⊥EC,∴∠BFC=90°,∵四边形ABCD是⊙O的内接四边形,∴∠BCF=∠BAD,∴Rt△BCF∽Rt△BAD,∴=,即=,∵OD是⊙O的半径,AD=CD,∴OD垂直平分AC,∴OD∥BC,∴=,∴△EOD∽△EBC,∴==,=,而AE=AO,即OE=2OB,BE=3OB,BC=6∴===,=2,∴OD=4,CE=DE,又∵∠EDA=∠EBC,∠E公共角,∴△AED∽△CEB,∴DE•EC=AE•BE,∴DE•DE=4×12,∴DE=4,∴CD=2,则AD=2,∴=,∴CF=.故选:A.4.解:连接BG,延长BD交AC的延长线于T.∵AB是直径,∴∠ACB=90°,∵=,∴AC=CB,OC⊥AB,∴∠ACO=∠BCO=45°,∠CAB=∠CBA=45°,∵=,∴∠CBD=∠DAB=∠CAD,故①正确,∵∠CGH=∠ACG+∠CAG=45°+∠CAG,∠CHG=∠CBO+∠DAB=45°+∠DAB,∴∠CGH=∠CHG,∴CG=CH,故②正确,∵∠ACH=∠BCT=90°,AC=CB,∠CAH=∠CBT,∴△ACH≌△BCT(ASA),∴AH=BT,∵AB是直径,∴∠ADB=∠ADT=90°,∴∠DAB+∠ABD=90°,∠CAD+∠T=90°,∴∠T=∠ABD,∴AT=AB,∵AD⊥BT,∴BD=DT,∴AH=2BD,∵OC⊥AB,OA=OB,∴GA=GB,∵∠GDB=90°,∴BD2+DG2=BG2=AG2,故④正确,∵GA=GB,∴∠GAB=∠GBA,∵∠CAB=45°,∠CAD=∠DAB=∠CBD,∴∠GAO=∠GAB=∠CBD=22.5°,∵∠CBA=45°,∴∠CBG=22.5°,∴∠DBG=45°,∴△DBG是等腰直角三角形,∴BG=AG=DG,故⑤正确,故选:D.5.解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理得:BM=AM=AB=4,DN=CN=CD=4,由勾股定理得:OM===3,同理:ON=3,∵弦AB、CD互相垂直,OM⊥AB,ON⊥CD,∴∠MEN=∠OME=∠ONE=90°,∴四边形MONE是矩形,∴ME=ON=3,∴tan∠OEA==1,故选:A.6.解:作CM⊥AB于M,DN⊥AB于N,连接OC,OD,∴∠NDP=∠MCP=∠APC=45°又∵OC=OD,∴∠ODP=∠OCP,∵∠COM=45°+∠OCD,∠ODN=45°+∠ODC,∴∠NDO=∠COM,在Rt△ODN与Rt△COM中,,∴Rt△ODN≌Rt△COM,∴ON=CM=PM,OM=ND=PN又∵OC2=CM2+OM2,OD2=DN2+ON2∴OC2=CM2+PN2,OD2=DN2+PM2∴OC2+OD2=CM2+PN2+DN2+PM2=PC2+PD2=8∴OC2=4,∴OC=2,故选:B.7.解:如图,连接AC,BC,OC,过点B作BH⊥CF交CF的延长线于H,设OC交AD 于J.∵=,∴AC=BC,OC⊥AB,∵AB是直径,∴ACB=90°,∴∠ACJ=∠CBF=45°,∵CF⊥AD,∴∠ACF+∠CAJ=90°,∠ACF+∠BCF=90°,∴∠CAJ=∠BCF,∴△CAJ≌△BCF(ASA),∴CJ=BF,AJ=CF=1+=,∵OC=OB,∴OJ=OF,设BF=CJ=x.OJ=OF=y,∵∠AEC=∠H=90°,∠CAE=∠BCH,CA=CB,∴△ACE≌△CBH(AAS),∴EC=BH=1,∵∠ECJ=∠FCO,∠CEJ=∠COF=90°,∴△CEJ∽△COF,∴==,∴==,∴EJ=,∵BF=CJ,∠H=∠CEJ,∠CJE=∠BFH,∴△BHF≌△CEJ(AAS),∴FH=EJ=,∵AE∥BH,∴=,∴=,整理得,10x2+7xy﹣6y2=0,解得x=y或x=﹣y(舍弃),∴y=2x,∴=,解得x=或﹣(舍弃).∴BF=,故选:A.8.解:∵弦AC=BD,∴,∴,∴∠ABD=∠BAC,∴AE=BE;如图,连接OA,OD,∵AC⊥BD,AE=BE,∴∠ABE=∠BAE=45°,∴∠AOD=2∠ABE=90°,∵OA=OD,∴AD=R,∵AD=,∴R=1,故选:A.二.填空题(共8小题,满分40分)9.解:∵CD=OA,OA=OD,∴CD=OD,∵∠C=23°,∴∠DOC=∠C=23°,∴∠EDO=∠C+∠DOC=46°,∵OD=OE,∴∠E=∠EDO=46°,∴∠DOE=180°﹣∠E﹣∠EDO=88°,∵∠DOC=23°,∴∠EOB=180°﹣∠DOC﹣∠DOE=180°﹣23°﹣88°=69°,故答案为:69°.10.解:如下图,连接AM,连接MB,∵∠BAD=∠CDA=90°,∴AM过圆心O,而A、D、M、B四点共圆,∴四边形ADMB为矩形,而AB=1,CD=2,∴CM=2﹣1=1=AB=DM,即:①DM=CM,正确;又AB∥CD,∴四边形ABMC为平行四边形,∴∠AEB=∠MAE,=,故②正确;∵四边形ADMB为矩形,∴AB=DM,∴=,∴∠DAM=∠AMB,过点O作OG⊥AD于G,OH⊥AE于H,∴OG=OH,∴AD=AE,∴④正确;由题设条件求不出直径的大小,故③⊙O的直径为2,错误;故答案为①②④.11.解:如图,作CH∥DE交AB于H.设DP=2a.∵PD∥CH,∴===,∴CH=3a,∵BD:AD=2:3,∴BD:AD=BD:BH,∴AD=BH,∴BD=AH,∴AH:AD=2:3,∴CH∥DE,∴==,∴DE=a,∴PE=a﹣2a=a,∵BC=10,BP:PC=2:1,∴PB=,PC=,∵PB•PC=PD•PE,∴5a2=,∴a=(负根已经舍弃),∴PD=2a=.故答案为.12.解:连接AC,由圆周角定理知,∠C=∠B,∵AD=BD∴∠B=∠DAB,∴∠DAP=∠C∴△DAP∽△DCA,∴AD:CD=DP:AD,得AD2=DP•CD=CD•(CD﹣PC),把AD=4,PC=6代入得,CD=8.13.解:作DE⊥AC于E,BF⊥AC于F∵∠BOC=60°,∴∠A=30°在Rt△ABF中,AB=15cm∴BF=cm,AF=cm∴CF=AF﹣AC=cm在Rt△BCF中,BC==3cm ∵DE∥BF∴=设BD=x,则=解得x=,即BD=cm.14.解:如图,延长AO交⊙O于H,连接AE,BH.∵tan∠BAC•tan∠ABC=1,∴∠BAC+∠ABC=90°,∴∠C=90°,∴∠CAE+∠AEC=90°,∵∠AEC+∠AEB=180°,∠AEB+∠H=180°,∴∠AEC=∠H,∵∠H+∠BAH=90°,∴∠CAE=∠BAH,∴=,∴DE=BH=10,∵AH是直径,∴∠ABH=90°,∴AH===26,∴OA=OH=AH=13,故答案为13.15.解:如图,连接CF,过点P作PG⊥AC于G,设P A=x.在Rt∠ACB中,∵ACB=90°,BC=3,cos B==,∴AB=5,AC===4,∵PG⊥AD,∴AG=DG=P A•cos∠BAC=x,∴AD=x,CD=4﹣x,∵∠ABC+∠A=90°,∠PEC+∠CDE=90°,∵∠A=∠PDA,∴∠ABC=∠PEC,∵∠ABC=∠EBP,∴∠PEC=∠EBP,∴PB=PE,∵点Q为线段BE的中点,∴PQ⊥BC,∴PQ∥AC∴当PE∥CF时,四边形PDCF是平行四边形,∴PF=CD,当点P在边AB的上时,x=4﹣x,x=,当点P在边AB的延长线上时,x=x﹣4,x=,综上所述,当PE∥CF时,AP的长为或.16.解:如图,连接AE,AF.∵BC=14,CE=9,∴BE=BC﹣EC=14﹣9=5,∵AC是直径,∴∠AEC=∠AEB=90°,∴AE===12,∴AC===15,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=13,∴∠DAC=∠ACB,∵∠AFE=∠ACB,∴∠AFE=∠DAC,∵∠AEF=∠ACD,∴△AFE∽△DAC,∴=,∴=,∴EF=,故答案为.三.解答题(共4小题,满分40分)17.(1)证明:∵PB=PM,∴∠PMB=∠PBM,∵∠PBM=∠D,∴∠PMB=∠D,∴AD∥BM.(2)解:连接OB,设OC=x,BC=y,∵MN⊥AB,∴∠BCO=∠BCM=90°,则有,解得x=,∴MC=5﹣=,由(1)可知,∠ADP=∠ABM,∴sin∠ADP=sin∠ABM===.解法二:设MC=x,在直角三角形MCB和OCB中,利用勾股定理可以得到x的值,从而求出角D的正弦值.18.(1)证明:∵AB是直径,∴∠ADB=90°,∵BD∥OC,∴∠AEO=∠ADB=90°,∵∠OAC=90°,∴∠OAE+∠AOC=90°,∠AOC+∠ACO=90°,∴∠BAD=∠ACE,∵AB=AC,∠ADB=∠AEC=90°,∴△ADB≌△CEA(AAS),∴AE=BD.(2)∵OE∥BD,AO=OB,∴AE=ED,∴BD=2OE=2,∴AE=BD=DE=2,∴AB==2,∵△ADB≌△CEA,∴EC=AD=4,设AD交BC于K.∵EC∥BD,∴==2,∴DK=,∴BK==,∵∠ABK=∠FDK,∠AKB=∠FKD,∴△AKB∽△FKD,∴=,∴=,∴DF=.19.解:(1)∵∠ADC=∠BCD=90°,∴AC、BD是⊙O的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD是矩形,∵AD=CD,∴四边形ABCD是正方形,∴AC⊥BD;(2)连接DO,延长交圆O于F,连接CF、BF.∵DF是直径,∴∠DCF=∠DBF=90°,∴FB⊥DB,又∵AC⊥BD,∴BF∥AC,∠BDC+∠ACD=90°,∵∠FCA+∠ACD=90°∴∠BDC=∠FCA=∠BAC∴四边形ACFB是等腰梯形,∴CF=AB.根据勾股定理,得CF2+DC2=AB2+DC2=DF2=20,∴DF=,∴OD=,即⊙O的半径为.20.(1)证明:∵∠A、∠C所对的圆弧相同,∴∠A=∠C,∴Rt△APD∽Rt△CPB,∴,∴P A•PB=PC•PD;(2)证明:∵F为BC的中点,△BPC为直角三角形,∴FP=FC,∴∠C=∠CPF.又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,∴∠DPE+∠D=90°,∴EF⊥AD;(3)解:作OM⊥AB于M,ON⊥CD于N,连接PO,∴OM2=(2)2﹣42=4,ON2=(2)2﹣32=11,易证四边形MONP是矩形,∴OP=.。

2022-2023学年北师大版九年级数学《第1章特殊的平行四边形》单元综合测试题(附答案)

2022-2023学年北师大版九年级数学《第1章特殊的平行四边形》单元综合测试题(附答案)

2022-2023学年北师大版九年级数学《第1章特殊的平行四边形》单元综合测试题(附答案)一、选择题(本题共计10小题,共计40分,)1.在菱形ABCD中,AC、BD为对角线,若AC=4,BD=8,则菱形ABCD的面积是()A.12B.16C.24D.322.能判定一个四边形是菱形的是()A.有一组邻边相等B.对角线互相垂直C.对角线相等D.四条边都相等3.下面真命题的是()A.矩形的对角线互相垂直B.菱形是中心对称图形,不是轴对称图形C.对角线互相垂直且相等的四边形是正方形D.依次连接等腰梯形各边的中点,所得四边形是菱形4.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°5.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm6.如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确的是(A.△ABE≌△DCF B.△ABE和△DCF都是等腰直角三角形C.四边形BCFE是等腰梯形D.E、F是AD的三等分点7.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE于点O,点M,N 分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.288.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为()A.1B.2C.D.9.如图,在平面直角坐标系xOy,四边形OABC为正方形,若点A(3,1),则点C的坐标为()A.(﹣1,2)B.(﹣1,3)C.(﹣2,3)D.(1,﹣3)10.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③AP=EF;④EF的最小值为2.其中正确结论有几个()A.1B.2C.3D.4二、填空题(本题共计8小题,共计32分,)11.在平行四边形ABCD中,请你添加一个条件,使它成为矩形,则你添加的条件是.12.矩形的一个内角平分线把矩形的一条边分成长为3和5两部分,则该矩形的面积是.13.如图,线段AB⊥BC,以C为圆心,BA为半径画弧,然后再以A为圆心,BC为半径画弧,两弧交于点D,则四边形ABCD是矩形,其依据是.14.如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交AD、BC 于E、F,则阴影部分的面积是.15.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.16.如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为.17.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是.18.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边=18,则BD的最小值为.形ABCD三、解答题(本题共计6小题,共计48分,)19.如图,在▱ABCD中,点E、F分别在AB,CD上,且AE=CF,DF=BF,求证:四边形DEBF为菱形.20.如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB平分∠ADC,作DE⊥BC,垂足为E.(1)求证:四边形ABCD为菱形;(2)若BD=8,AC=6,求DE的长.21.如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接EF并延长,交CB的延长线于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若∠FGB=30°,GB=AE=1,求AG的长.22.如图所示,矩形ABCD中,AB=30,AD=40,P为BC上的一动点,过点P作PM⊥AC于点M,PN⊥BD于点N,试问当P点在BC上运动时,PM+PN的值是否发生变化?若不变,请求出定值.23.如图,正方形ABCD,点E、F分别为BC、CD边上的点,连接EF,点M为EF上一点,且使AE平分∠BAM,AF平分∠DAM,证明:∠EAF=45°.24.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.参考答案一、选择题(本题共计10小题,共计40分,)1.解:∵菱形ABCD的面积=AC×BD∴菱形ABCD的面积=×4×8=16故选:B.2.解:四条边都相等四边形是菱形,对角线互相平分且垂直的四边形是菱形,故选:D.3.解:A、矩形的对角线相等但不垂直,故本选项错误;B、菱形是中心对称也是轴对称图形,故本选项错误;C、对角线互相垂直平分且相等的四边形是正方形,故本选项错误;D、因为等腰梯形的对角线相等,所以依次连接等腰梯形各边的中点,所得四边形是菱形,故本选项正确.故选:D.4.解:如图,连接BD,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°﹣∠BCE)=15°∵∠BCM=∠BCD=45°,∴∠BMC=180°﹣(∠BCM+∠EBC)=120°,∴∠AMB=180°﹣∠BMC=60°∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°故选:B.5.解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=8cm.故选:A.6.解:如图,∵四边形ABCD是矩形ABCD,∴∠A=∠D=∠DCB=∠ABC=90°.又BE、CF分别平分∠ABC和∠DCB,∴∠ABE=∠DCF=45°,∴∠AEB=∠ABE=45°,∠DFC=∠DCF=45°,∴AB=AE,DF=DC,∴△ABE和△DCF都是等腰直角三角形.故B正确;在△ABE与△DCF中,.则△ABE≌△DCF(AAS),故A正确;∵△ABE≌△DCF,∴BE=CF.又BE与FC不平行,且EF∥BC,EF≠BC,∴四边形BCFE是等腰梯形.故C正确;∵△ABE≌△DCF,∴AE=DF.但是不能确定AE=EF=FD成立.即点E、F不一定是AD的三等分点.故D错误.故选:D.7.解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE∥BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴BC==10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.8.解:过点B作BE⊥AD于点E,BF⊥CD于点F,根据题意得:AD∥BC,AB∥CD,BE=BF=1cm,∴四边形ABCD是平行四边形,∵∠BAD=∠BCD=60°,∴∠ABE=∠CBF=30°,∴AB=2AE,BC=2CF,∵AB2=AE2+BE2,∴AB=,同理:BC=,∴AB=BC,∴四边形ABCD是菱形,∴AD=,∴S菱形ABCD=AD•BE=.故选:D.9.解:过C作CD⊥x轴于D,过A作AE⊥x轴于E,如图:∵四边形OABC是正方形,∴∠AOC=90°,OA=OC,∴∠AOE=90°﹣∠COD=∠DCO,又∠CDO=90°=∠AEO,∴△COD≌△OAE(AAS),∴CD=OE,OD=AE,∵A(3,1),∴CD=3,OD=1,∴C(﹣1,3),故选:B.10.解:如图,连接PC,①∵正方形ABCD的边长为4,P是对角线BD上一点,∴∠ABC=∠ADC=∠BCD=90°,∠PDC=∠DBC=45°,AB=BC=CD=AD=4,又∵PE⊥BC,PF⊥CD,∴∠PEC=∠PEB=∠PFC=∠PFD=90°=∠BCD,∴∠DPF=∠PDF=∠BPE=∠DBC=45°,∴PF=DF,PE=BE,即△PDF和△BPE均为等腰直角三角形,∴PD=PF,∵∠PEC=∠PFC=∠BCD=90°,∴四边形PECF是矩形,∴CE=PF=DF,PE=FC,∴PD=CE,故①正确;②由①知:PE=BE,且四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2(CE+BE)=2BC=2×4=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,∵四边形ABCD为正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴AP=PC,∴AP=EF,故③正确;④由③得:EF=PC=AP,∴当AP最小时,EF最小,∴当AP⊥BD时,垂线段最短,即AP=BD=2时,EF的最小值等于2;故④错误;综上,①②③正确.故选:C.二、填空题(本题共计8小题,共计32分,)11.解:答案不唯一,∵四边形ABCD是平行四边形,∴可添加:∠A=90°、AC=BD等.故答案为:∠A=90°.12.解:∵矩形的一个内角平分线把矩形的一条边分成长为3和5两部分,∴矩形的长为8,宽为5或3.∴面积为40或24.故答案为:40或24.13.解:∵AB=CD,CB=AD,∴四边形ABCD为平行四边形(两组对边相等的四边形是平行四边形),又∵∠ABC=90°,∴平行四边形ABCD为矩形(有一个角是直角的平行四边形是矩形),故答案为:有一个角是直角的平行四边形是矩形.14.解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=三角形BOC面积=×2×1=1.故答案为:1.15.解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:AB⊥BC;故添加的条件为:AC=BD或AB⊥BC.16.证明:∵四边形ABCD为菱形,∴AC⊥BD,OA=AC=3,OD=BD=4,∴∠AOD=90°,∴AD==5=CD∵DE∥AC,CE∥BD∴四边形OCED为平行四边形,又∵AC⊥BD∴四边形OCED为矩形∴CD=OE=5故答案为:517.解:∵四边形ABCD是菱形,∴AO=AC=3,DO=BD=2,AC⊥BD,在Rt△AOD中,AD==,∴菱形ABCD的周长为4.故答案为:4.18.解:∵AB=AD,∠BAD=∠BCD=90°,∴AB2+AD2=BD2,BC2+CD2=BD2,∴2AB2=BD2,∵S四边形ABCD=S△ABD+S△BCD,∴18=+S△BCD,∴当S△BCD值最大时,BD最小,∵(CD﹣BC)2≥0∴CD2+BC2≥2BC×CD,∴BC×CD≤,∴S△BCD≤,∴当CD=BC时,S△BCD有最大值,∴当S△BCD=时,BD的长度最小,∴18=∴BD=6故答案为:6三、解答题(本题共计6小题,共计48分,)19.证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵AE=CF,∴AB﹣AE=DC﹣CF,即DF=BE,∴四边形DFBE是平行四边形,∵DF=BF,∴四边形DEBF为菱形.20.(1)证明:∵O为△ABC边AC的中点,AD∥BC,∴OA=OC,∠OAD=∠OCB,∠ADB=∠CBD,在△OAD和△OCB中,,∴△OAD≌△OCB(ASA),∴OD=OB,∴四边形ABCD是平行四边形,∵DB平分∠ADC,∴∠ADB=∠CDB,∴∠CBD=∠CDB,∴BC=DC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OB=BD=4,OC=AC=3,AC⊥BD,∴∠BOC=90°,∴BC==5,∵DE⊥BC,∴∠E=90°=∠BOC,∵∠OBC=∠EBD,∴DE=.21.(1)证明:连接AC,如图1:∵四边形ABCD是菱形,∴AC平分∠DAB,且AC⊥BD,∵AF=AE,∴AC⊥EF,∴EG∥BD.又∵菱形ABCD中,ED∥BG,∴四边形EGBD是平行四边形.(2)解:过点A作AH⊥BC于H.∵∠FGB=30°,∴∠DBC=30°,∴∠ABH=2∠DBC=60°,∵GB=AE=1,∴AB=AD=2,在Rt△ABH中,∠AHB=90°,∴AH=,BH=1.∴GH=2,在Rt△AGH中,根据勾股定理得,AG=.22.解:当P点在BC上运动时,PM+PN的值不发生变化,理由是:连接PO,∵在矩形ABCD中,AB=30,BC=AD=40,∴AC=BD,∠ABC=90°,AO=OC=BO=OD,由勾股定理得:AC=50,∴AO=OC=OB=OD=25,∴S△ABC=AB×BC=×30×40=600,∴S△BOC=S△ABC=300,∴×BO×PN+CO×PM=300,∴PM+PN=24,即当P点在BC上运动时,PM+PN的值不发生变化,永远是24.23.证明:∵四边形ABCD是正方形,∴∠BAD=90°,∵AE平分∠BAM,AF平分∠DAF,∴∠EAM=∠BAM,∠MAF=∠DAM,∴∠EAM+∠MAF=∠BAM+∠DAM=(∠BAM+∠DAM)=∠BAD=×90°=45°,即∠EAF=∠EAM+∠MAF=45°.24.(1)证明:∵在菱形ABCD中,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:设BC=CD=x,则CF=8﹣x在Rt△DCF中,∵x2=(8﹣x)2+42 ,∴x=5,∴CD=5.。

2022-2023学年北师大版九年级数学下册《1-5三角函数的应用》优生辅导练习题(附答案)

2022-2023学年北师大版九年级数学下册《1-5三角函数的应用》优生辅导练习题(附答案)

2022-2023学年北师大版九年级数学下册《1.5三角函数的应用》优生辅导练习题(附答案)一.选择题1.为出行方便,近日来越来越多的长春市民使用起了共享单车,图1为单车实物图,图2为单车示意图,AB与地面平行,点A、B、D共线,点D、F、G共线,坐垫C可沿射线BE方向调节.已知∠ABE=70°,车轮半径为30cm,当BC=60cm时,小明体验后觉得骑着比较舒适,此时坐垫C离地面高度约为()(结果精确到1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈1.41)A.90cm B.86cm C.82cm D.80cm2.2020年平阴街道进行拓宽改造,县城面貌焕然一新,拓宽后振兴街主路双向四车道16米宽,两边安装路灯,如图路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.6米B.(8﹣2)米C.(8﹣2)米D.(8﹣4)米3.如图1是一个手机的支架,由底座、连杆和托架组成(连杆AB、BC、CD始终在同一平面内),AB垂直于底座且长度为9cm,BC的长度为10cm,CD的长度可以伸缩调整.如图2,∠BCD=143°保持不变,转动BC,使得∠ABC=150°,假如AD∥BC时为最佳视线状态,则此时CD的长度为(参考数据:sin53°≈0.80.cos53°≈0.60)()A.8cm B.7.7cm C.7.5cm D.5.6cm4.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼上钩的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m5.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB =AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.B.C.D.6.如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A处,底端落在水平地面的点B处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知sinα=cosβ=,则梯子顶端上升了()A.1米B.1.5米C.2米D.2.5米7.3月26日,济南轨道交通2号线开始初期运营,路线如图所示,已知腊山南站到北园站直线距离AD长约21千米,从腊山南站到二环西路站的长AB约为4千米,路线的转弯角∠B为157.5°,∠C为150°,又测得∠D=30°,则从二环西路站到济泺路站的距离BC的长为()(tan22.5°≈0.6,sin22.5°≈0.4,cos22.5°≈0.9,≈1.7)A.14.62千米B.14.64千米C.14.66千米D.14.68千米8.春节期间,某老师读到《行路难》中“闲来垂钓碧溪上,忽复乘舟梦日边.”邀约好友一起在江边垂钓,如图,河堤AB的坡度为1:2.4,AB长为5.2米,钓竿AC与水平线的夹角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角也是60°,则浮漂D与河堤下端B之间的距离约为()(参考数据:=1.732)A.2.33米B.2.35米C.2.36米D.2.42米9.如图是某厂家新开发的一款摩托车,它的大灯射出的光线AB、AC与地面MN的夹角分别为8°和10°,该大灯照亮地面的宽度BC的长为1.4米,则该大灯距地面的高度为()米.(参考数据:sin8°≈,tan8°≈,sin10°≈,tan10≈)A.1B.1.2C.0.8D.0.8510.如图,在一块矩形ABCD区域内,正好划出5个全等的矩形停车位,其中EF=a米,FG=b米,∠AEF=30°,则AD等于()A.(a+b)米B.(a+b)米C.(a+b)米D.(a+b)米11.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B 之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.cm B.cm C.64cm D.54cm12.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米,那么新传送带AC的长是()A.8米B.4米C.6米D.3米13.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE =43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m14.重庆移动为了提升新型冠状肺炎“停课不停学”期间某片区网络信号,保证广大师生网络授课、听课的质量,临时在坡度为i=1:2.4的山坡上加装了信号塔PQ(如图所示),信号塔底端Q到坡底A的距离为3.9米.同时为了提醒市民,在距离斜坡底A点4.4米的水平地面上立了一块警示牌MN.当太阳光线与水平线成53°角时,测得信号塔PQ 落在警示牌上的影子EN长为3米,则信号塔PQ的高约为()(结果精确到十分位,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)A.10.4B.11.9C.11.4D.13.415.在商场里,为方便一部分残疾人出入,商场特意设计了一种特殊通道“无障碍通道”,如图,线段BC表示无障碍通道,线段AD表示普通扶梯,其中“无障碍通道”BC的坡度(或坡比)为i=1:2,BC=12米,CD=6米,∠D=30°,(其中点A、B、C、D 均在同一平面内)则垂直升降电梯AB的高度约为()米.A.10B.10﹣12C.12D.10+12 16.解放路上一座人行天桥如图所示,坡面BC的铅直高度与水平宽度的比为1:2,为了方便市民推车过天桥,有关部门决定在保持天桥高度的前提下,降低坡度,使新坡面AC 的坡度为1:3,AB=6m,则天桥高度CD为()A.6m B.6m C.7m D.8m二.填空题17.如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm),且AC=BD,AF∥BE,sin∠BAF=0.8,箱盖开起过程中,点A,C,F不随箱盖转动,点B,D,E绕点A沿逆时针方向转动相同角度,分别到点B′,D′,E′的位置,气簧活塞杆CD随之伸长CD′.已知直线BE⊥B′E′,CD′=2CD,那么AB的长为cm,CD′的长为cm.18.图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC =60°,∠ACB=15°,AC=40cm,则支架BC的长为cm.(结果精确到1cm,参考数据:≈1.414,≈1.732,≈2.449)19.如图1,一扇窗户打开一定角度,其中一端固定在窗户边OM上的点A处,另一端B 在边ON上滑动,图2为某一位置从上往下看的平面图,测得∠ABO为30°,∠AOB为45°,OB长为(16+16)厘米,则AB的长为厘米.20.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?;(填“是”或“否”)请简述你的理由.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)三.解答题21.在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板,始终与底座平行,连接杆DE的D点固定,点E沿AB滑动,压柄BC可绕着转轴B 旋转.已知压柄BC的长度为15cm,BD=5cm,压柄与托板的长度相等.(1)当托板与压柄夹角∠ABC=37°时,如图①点E从A点滑动了2cm,求连接杆DE 的长度;(2)当压柄BC从(1)中的位置旋转到与底座AB的夹角∠ABC=127°,如图②.求这个过程中点E滑动的距离.(答案保留根号)(参考数据:sin37°≈0.6,cos37°≈0.8.tan37°≈0.75)22.公园内一凉亭,凉亭顶部是一圆锥形的顶盖,立柱垂直于地面,在凉亭内中央位置有一圆形石桌,某数学研究性学习小组,将此凉亭作为研究对象,并绘制截面示意图,其中顶盖母线AB与AC的夹角为124°,凉亭顶盖边缘B、C到地面的距离为2.4米,石桌的高度DE为0.6米,经观测发现:当太阳光线与地面的夹角为42°时,恰好能够照到石桌的中央E处(A、E、D三点在一条直线上),请你求出圆锥形顶盖母线AB的长度.(结果精确到0.1m)(参考数据:sin62°≈0.88,tan42°≈0.90)23.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE =30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)24.如图是太阳能电池板支撑架的截面图,其中AB=300cm,AB的倾斜角为30°,BE=CA=50cm,FE⊥AB于点E.点D、F到地面的垂直距离均为30cm,点A到地面的垂直距离为50cm.求CD和EF的长度各是多少cm(结果保留根号).25.图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)参考答案一.选择题1.解:作CH⊥AB于H,作AP⊥地面于P,由题知,AP=30cm,BC=60cm,∠ABE=70°,∴CH=BC•sin70°≈60×0.94=56.4(cm),∴坐垫C离地面高度约为56.4+30≈86(cm),故选:B.2.解:如图,延长OD,BC交于点P.∵∠PDC=∠B=90°,∠P=30°,OB=8米,∠PCD=60°,∴PB===8(米),PC===4(米),∴BC=PB﹣PC=(8﹣4)米.故选:D.3.解:作BE⊥AD于点E,CF⊥AD于点F,如图3,∵∠ABC=150°,BC∥AD,∴∠BAE=30°,∴BE=AB=4.5(cm),∴CF=BE=4.5cm,∴CD=CF÷cos∠DCF,∵CF⊥AD,AD∥BC,∴∠DCF=143°﹣90°=53°,∴CD=4.5÷0.6≈7.5(cm),∴CD的长度为7.5cm.故选:C.4.解:∵sin∠CAB===,∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°==,解得:B′C′=3.故选:B.5.解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF﹣∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB=1.2米,∴AB+EH≈1.2+0.72=1.92≈1.9米.故选:A.6.解:如图所示,在Rt△ABC中,AC=sinα×AB==6(米);在Rt△DEC中,DC=cosβ×DE==6(米),EC===8(米);∴AE=EC﹣AC=8﹣6=2(米).故选:C.7.解:过点B作BN⊥AD于N,过点C作CM⊥AD于M,∵∠B=157.5°,∠C=150°,∠D=30°,∴∠A=22.5°,在△ABN中,AB=4千米,∴BN=AB×sin22.5°≈4×0.4=1.6千米,AN=AB×cos22.5°≈4×0.9=3.6千米,∠ABN =67.5°,∴∠NBC=90°,∵∠NBC=∠BND=∠CMA=90°,∴四边形BNMC是矩形,∴CM=BN=1.6千米,BC=MN,在△CDM中,DM=≈=2.72千米,∴MN=AD﹣AN﹣DM=14.68千米,∴BC=MN=14.68千米.故选:D.8.解:如图,延长CA交DB延长线于点E,过点A作AF⊥BE于点F,则∠CED=60°,∵AB的坡比为1:2.4,∴==,设AF=5x,BF=12x,在Rt△ABF中,由勾股定理知,5.22=25x2+144x2.解得:x=0.4,∴AF=5x=2(米),BF=12x=4.8(米),由题意得:AC=6米,∠CAG=∠C=60°,AG∥DF,∴∠EAF=90°﹣60°=30°,∠AEF=∠CAG=60°,∴EF=AF=(米),AE=2EF=(米),∵∠C=∠CED=60°,∴△CDE是等边三角形,∴DE=CE=AC+AE=(6+)米,∵BD=DE﹣EF﹣BF=6+﹣﹣4.8≈2.35(米),即浮漂D与河堤下端B之间的距离约为2.35米,故选:B.9.解:过点A作AD⊥MN于点D,如图所示:在Rt△ADB与Rt△ACD中,tan∠ABD==tan8°≈,tan∠ACD==tan10°≈,∴BD≈7AD,CD≈AD,∵BD﹣CD=BC,∴7AD﹣AD=1.4,解得:AD=1,即该大灯距地面的高度1米,故选:A.10.解:∵EF=a米,∠A=90°,∠AEF=30°,∴AF=EF=米,∠AFE=60°,∵∠EFG=90°,∴∠MFG=30°,∴PQ=NP=MN=FM=(米),DQ=QK•cos30°=(米),∴AD=AF+4FM+dq=a+4×+=a+b(米),故选:A.11.解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选:C.12.解:过点A作AD⊥CB延长线于点D,∵∠ABD=45°,∴AD=BD,∵AB=4,∴AD=BD=AB sin45°=4×=4,∵坡度i=1:,∴,则DC=4,故AC==8(m).故选:A.13.解:∵FD⊥EB,AC⊥EB,∴DF∥AC,∵AF∥EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∴AC=AB•sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.12(m),在Rt△DEF中,∵∠FDE=90°,∴tan∠E=,∴DE≈=2.8(m),故选:B.14.解:过点E作EF⊥PQ于点F,延长PQ交BA于点G,可得QG⊥BA,∵QA=3.9m,QG:AG=1:2.4,∴设QG=x,则AG=2.4x,∴x2+(2.4x)2=3.92,解得:x=1.5,则AG=2.4x=3.6,∴EF=NG=3.6+4.4=8(m),故tan53°==≈1.3,解得:PF=10.4(m),∵FQ=EN﹣QG=3﹣1.5=1.5(m),∴信号塔PQ的高约为:PQ=10.4+1.5=11.9(m).故选:B.15.解:如图,延长AB交DC的延长线于点E,,由BC的坡度(或坡比)为i=1:2,得BE:CE=1:2.设BE=x米,CE=2x米.在Rt△BCE中,由勾股定理,得BE2+CE2=BC2,即x2+(2x)2=(12)2,解得x=12(米),∴BE=12(米),CE=24(米),DE=DC+CE=6+24=30(米),由tan30°=,得,解得AE=10(米).由线段的和差,得AB=AE﹣BE=(10﹣12)(米),故选:B.16.解:如图作CD⊥AB于D.∵=,设CD=xm,则BD=2xm,AD=(6+2x)m,∵=,∴=,∴x=6,∴天桥高度CD为6m.故选:A.二.填空题17.解:过A作AP⊥EB延长线交于点P,∵AF∥BE,∴∠ABP=∠BAF,∴sin∠ABP=0.8,cos∠ABP=0.6,∴BP=0.6AB,由BE旋转一定角度后得到B'E'可知,旋转角度为90°,过B'作BH⊥AP,交AP于点H,∵∠P AB+∠ABP=90°,∠D'AP+∠P AB=90°,∴∠D'AP=∠ABP,B'H=AB'sin∠D'AP=AB sin∠P'AP=0.8AB,∴28=B'H+PB=0.8AB+0.6AB=1.4AB,∴AB=20cm;设CD=xcm,则AC=BD=cm,AD'=AD=x+cm,CD'=2CD=2x,∵∠D'AC=90°,∴AC2+AD'2=CD'2,∴,解得x=20,或x=﹣20(舍),∴CD'=2x=40cm,故答案为:20,40.18.解:如图2,过C作CD⊥MN于D,则∠CDB=90°,∵∠CAD=60°,AC=40(cm),∴CD=AC•sin∠CAD=40×sin60°=40×=20(cm),∵∠ACB=15°,∴∠CBD=∠CAD﹣∠ACB=60°﹣15°=45°,∴BC=CD=×20=20≈20×2.449≈49(cm),故答案为49.19.解:作AC⊥OB于点C,如右图2所示,则∠ACO=∠ACB=90°,∵∠AOC=45°,∴∠AOC=∠CAO=45°,∴AC=OC,设AC=xcm,则OC=xcm,BC=(16+16﹣x)cm,∵∠ABC=30°,∴=,解得,x=16,∴AB=2AC=32(cm),即AB的长为32cm.故答案是:32.20.解:过点A作AC⊥OB,垂足为点C,在Rt△ACO中,∵∠AOC=40°,AO=1.2米,∴AC=sin∠AOC•AO≈0.64×1.2=0.768,∵汽车靠墙一侧OB与墙MN平行且距离为0.8米,∴车门不会碰到墙(点A到OB的距离小于OB与墙MN之间的距离),故答案为:否,点A到OB的距离小于OB与墙MN之间的距离;三.解答题21.解:(1)如图①,作DH⊥BE于H,在Rt△BDH中,∠DHB=90°,BD=5,∠ABC=37°,∴,=cos37°,∴DH=5sin37°≈5×0.6=3(cm),BH=5cos37°≈5×0.8=4(cm).∵AB=BC=15cm,AE=2cm,∴EH=AB﹣AE﹣BH=15﹣2﹣4=9(cm),∴DE===3(cm).答:连接杆DE的长度为cm.(2)如图②,作DH⊥AB的延长线于点H,∵∠ABC=127°,∴∠DBH=53°,∠BDH=37°,在Rt△DBH中,==sin37°≈0.6,∴BH=3cm,∴DH=4cm,在Rt△DEH中,EH2+DH2=DE2,∴(EB+3)2+16=90,∴EB=()(cm),∴点E滑动的距离为:15﹣(﹣3)﹣2=(16﹣)(cm).答:这个过程中点E滑动的距离为(16﹣)cm.22.解:如图,连接BC、AE,交于点O,则AE⊥BC.由题意,可知OE=2.4﹣0.6=1.8(m),∠OBE=42°,∠BAO=∠BAC=62°.在Rt△OBD中,∵tan∠OBE=,∴OB=≈=2(m).在Rt△OAB中,∵sin∠OAB=,∴AB=≈≈2.3(m).答:圆锥形顶盖母线AB的长度约为2.3米.23.解:设OE=OB=2xcm,∴OD=DE+OE=(190+2x)cm,∵∠ADE=30°,∴OC=OD=(95+x)cm,∴BC=OC﹣OB=95+x﹣2x=(95﹣x)cm,∵tan∠BAD=,∴2.14=,解得:x≈9.4cm,∴OB=2x≈19cm.24.解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=AC sin30°=50×=25,∵GD=50﹣30=20,∴CD=CG+GD=25+20=45,连接FD并延长,与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90,∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290,在Rt△EFH中,EF=EH•tan30°=290×=,答:CD和EF的长度分别是45cm和cm.25.解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°==,∴GP=OP=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.。

2022-2023学年北师大版九年级数学下册《1-4解直角三角形》填空专项练习题(附答案)

2022-2023学年北师大版九年级数学下册《1-4解直角三角形》填空专项练习题(附答案)

2022-2023学年北师大版九年级数学下册《1.4解直角三角形》填空专项练习题(附答案)1.在Rt△ABC中,∠C=90°,cos A=,AC=,则BC的长为.2.在△ABC中,∠C=90°,AB=15,sin A=,则BC的长为.3.如图,△ABC中,过点B作BD⊥AB,交AC于点D,且AD:CD=4:3,∠ABC=150°.(1)BD:BC=;(2)若AB=4,则△ABC的面积是.4.在△ABC中,AB=6,AC=2,∠B=45°,则∠C=.5.在Rt△ABC中,∠C=90°,如果cos A=,AC=2,那么AB的长为.6.在△ABC中,∠C=90°,tan A=,BC=8,那么AC的长为.7.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=5,BC=6,则cos∠ACD的值是.8.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD⊥AB,垂足为D,则sin∠BCD的值是.9.在Rt△ABC中,∠C=90°,BC=2AC,点D在BC上,且BD=AD,则cos∠BAD=.10.如图,在△ABC中,∠A=90°,斜边BC的垂直平分线分别交AB、BC交于点D、E,如果cos B=,AB=7,那么CD的长等于.11.如图,△ABC的顶点是正方形网格的格点,则cos C=.12.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A,若AC=4,cos A=,则BD的长度为.13.如图,四边形ABCD由两个直角三角形构成,已知AD=CD,tanα=,则tanβ=.14.如图,在边长为1的3×2小正方形网格中,点A、B、C都在格点上,则tan∠ACB的值是.15.如图,△ABC中,∠ACB=90°,AD是角平分线.若AC=5,BC=12,则tan∠DAC 的值为.16.已知α、β为锐角,若,,利用下列边长均为1的小正方形组成的网格图(如图),可求得tan(α+β)=.17.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠AOC的值.18.如图,点A、B、C是正方形网格中的格点,则cos∠BAC的值是.19.如图,5×6的正方形网格中,A、B、C、D为格点,连接AB、CD相交于点E,则tan ∠AEC的值是.20.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形顶点位置,那么cos B 的值为.21.如图,已知在△ABC中,AB=6,∠ABC=45°,tan∠ACB=3,过点A作直线l(l 不经过线段BC),分别过点B,C作l的垂线,垂足分别为D,E,则BD+CE的最大值为.22.如图,由边长为1的小正方形构成的网格中,△ABC的三个顶点均落在格点上,以点A 为圆心,AB为半径画弧,以点C为圆心,1为半径画弧,两弧交于点D,则tan∠ADB =.23.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC,AB于点D,E.如果BC=18,tan A=,那么CD=.24.在“镖形”ABCD中,AB=4,CB=8,∠A=∠B=∠C=30°,则点D到AB的距离为.25.如图,在Rt△ABC中,∠ACB=90°,sin B=,DE⊥AB,CD=DE,AC=12,则BD =.26.如图,在△ABC中,tan∠B=2,∠ACB=45°,AD⊥BC于点D,CE⊥AB于点E,AD、CE交于点F,若AC=5,则线段EF的长为.参考答案1.解:如图.在Rt△ABC中,∠C=90°,cos A=,∴=,又∵AC=,∴AB=2,∴BC===1.故答案为:1.2.解:在△ABC中,∠C=90°,∴sin A==,∴BC=AB=×15=9.故答案为:9.3.解:(1)过点C作CE⊥AB,交AB的延长线于点E,∵∠ABC=150°,∴∠CBE=180°﹣∠ABC=30°,∴设CE为a,则BC为2a,∵BD⊥AB,CE⊥AB,∴∠ABD=∠AEC=90°,∵∠A=∠A,∴△ABD∽△AEC,∴=,∴=,∴BD=a,∴==,故答案为:2:7;(2)由(1)得:△ABD∽△AEC,∴=,∴=,∴AE=7,∴BE=AE﹣AB=7﹣4=3,在Rt△BEC中,CE=BE tan30°=3×=,∴△ABC的面积=AB•CE=×4×=2,故答案为:2.4.解:解法一:过点A作AD⊥BC,垂足为D,分两种情况:当高AD在△ABC的内部,如图:在Rt△ABD中,AB=6,∠B=45°,∴AD=AB sin45°=6×=3,在Rt△ADC中,sin∠ACB===,∴∠ACB=60°,当高AD在△ABC的外部,如图:在Rt△ABD中,AB=6,∠B=45°,∴AD=AB sin45°=6×=3,在Rt△ADC中,sin∠ACD===,∴∠ACD=60°,∴∠ACB=180°﹣∠ACD=120°,综上所述:∠ACB为:60°或120°;解法二:过点A作AD⊥BC,垂足为D,分两种情况:当高AD在△ABC的内部,如图:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠B=45°,∴∠BAD=90°﹣∠B=45°,∴AD=BD,∵AD2+BD2=AB2,∴2AD2=36,∴AD=3或AD=﹣3(舍去),∴AD=BD=3,在Rt△ADC中,AC=2,∴CD===,∴CD=AC,∴∠CAD=30°∴∠ACB=90°﹣∠CAD=60°,当高AD在△ABC的外部,如图:∵AD⊥BC,∴∠ADB=90°,∵∠B=45°,∴∠BAD=90°﹣∠B=45°,∴AD=BD,∵AD2+BD2=AB2,∴2AD2=36,∴AD=3或AD=﹣3(舍去),∴AD=BD=3,在Rt△ADC中,AC=2,∴CD===,∴CD=AC,∴∠CAD=30°,∴∠ACD=90°﹣∠CAD=60°,∴∠ACB=180°﹣∠ACD=120°,综上所述:∠ACB为:60°或120°.5.解:在Rt△ABC中,∠C=90°,∴cos A==,∵AC=2,∴AB=3AC=6,故答案为:6.6.解:在△ABC中,∠C=90°,tan A=,BC=8,∴AC===6,故答案为:6.7.解:∵∠ACB=90°,CD是AB边上的中线,CD=5,∴CD=AD=AB,∴AB=10,∴AC===8,∴cos A===,∵CD=AD,∴∠A=∠ACD,∴cos∠ACD=,故答案为:.8.解:在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,∴AB=5.∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD.∴sin∠BCD=sin A==.故答案为:.9.解:根据题意作图如下:令AC=1,则BC=2AC=2,由勾股定理得AB==,∵BD=AD,∴∠BAD=∠B,∴cos∠BAD=cos∠B===,故答案为:.10.解:在△ABC中,∠A=90°,cos B=,AB=7,∴BC=AB÷cos B=7=8,∵斜边BC的垂直平分线分别交AB、BC交于点D、E,∴BE=BC=4,∴CD=BD=BE÷cos B=4=,故答案为:.11.解:连接BD,由图可得,BD==,AD==,AB==,∴BD2+AD2=AB2,∴△ADB是直角三角形,∠ADB=90°,同理AC=3,AD=,BC=5,∴CD=2,∴cos C==,故答案为.12.解:∵∠C=90°,AC=4,cos A=,∴AB=5,∴BC===3,∵∠DBC=∠A.∴cos∠DBC=cos∠A==,∴BD=3×=,故答案为:.13.解:根据题意设AD=CD=x,则BC=2x,在Rt△BCD中,BD==,在Rt△ABD中,tanβ==,故答案为:.14.解:连接AB,过点B作BD⊥AC,垂足为D,如图,根据题意可得,S△ABC=6﹣=2,AC==,BC==.∵S△ABC=,∴=2,∴BD=,在Rt△BDC中,CD===,在Rt△BDC中,tan∠ACB===2.故答案为:2.15.解:过点D作DE⊥AB于E,如图所示:∵AD是∠BAC的角平分线,∠ACB=90°,∴DC=DE,在Rt△ABC中,由勾股定理得:AB===13,∵S△ABC=S△ACD+S△ABD,∴AC•BC=AC•CD+DE•AB,即×5×12=×5×CD+×CD×13,解得:CD=,∴tan∠DAC===,故答案为:.16.解:设点D,点E在格点上,如图:由题意得:AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC是直角三角形,∴tan∠ABC===2,在Rt△ABD中,tan∠ABD==,在Rt△BEC中,tan∠EBC==,∵,,∴∠ABD=α,∠EBC=β,∴α+β=∠ABD+∠EBC=∠ABC,∴tan(α+β)=tan∠ABC=2,故答案为:2.17.解:设点E在格点上,连接BE,如图:由题意得:OE2=12+12=2,OB2=22+42=20,BE2=32+32=18,∴OE2+BE2=OB2,∴△OBE是直角三角形,∴tan∠BOD===3,∵∠AOC=∠BOD,∴tan∠AOC=tan∠BOD=3,故答案为:3.18.解:连接BC,如图所示:∵点A、B、C是正方形网格中的格点,设小正方形的边长为a,由勾股定理得:AB==a,AC==a,BC==2a,∵(a)2+(2a)2=(a)2,即AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∴cos∠BAC===,故答案为:.19.解:如图,连接AC、CB、BD、DA,由网格构造直角三角形,利用勾股定理得,AC=BD=CD==,BC=AD==,∴四边形ACBD是平行四边形,∴CE=CD=,∵AC2+CD2=5+5=10=AD2,∴△ACD是等腰直角三角形,即∠ACE=90°,在Rt△ACE中,tan∠AEC==2,故答案为:2.20.解:如图,连接格点A、D.∵AD⊥BD,AD=3,BD=4,∴AB==5.∴cos B==.故答案为:.21.解:如图,作AH⊥BC于H,取BC的中点F,取DE的中点G,连接AF,连接FG,∴FG是梯形BCED的中位线,∴FG∥BD∥CE,BD+CE=2FG,∵BD⊥DE,∴FG⊥DE,∴∠AGF=90°,∴FG≤AF,∵∠AHB=∠AHC=90°,∠ABC=45°,∴AH=BH=AB=6,∵tan∠ACB==3,∴CH==2,∴CH=2,∴BC=BH+CH=8,∴CF=BF=,∴FH=CF﹣CH=2,∴AF===2,∴当点G和A点重合时,FG最大=AF=2,∴BD+CE的最大值为:4,故答案为:4.22.解:如图1所示:∵AD=AB=,CD=1,∴点D是符合条件的点.在Rt△ADM中,tan∠ADB==2.如图2所示:∵AD=AB=,CD=1,∴点D是符合条件的点.∵AD=AB=,BD=,∴BD2=AD2+AB2.∴△ADB是直角三角形.在Rt△ADB中,tan∠ADB==1.故答案为:2或1.23.解:∵在Rt△ABC中,∠C=90°,BC=18,tan A=,∴AC===12,∴AB===6,cos B===,∵边AB的垂直平分线交边AB于点E,∴BE=AB=3.∵在Rt△BDE中,∠BED=90°,∴cos B==∴BD=13,∴CD=BC﹣BD=18﹣13=5,故答案为5.24.解:延长CD交AB于点E,过点E作EG⊥BC于点G,过点D作DF⊥BA于点F,如图.∵∠B=∠C=30°,∴∠CEA=∠B+∠C=60°,BE=CE.又EG⊥BC,∴BG=CG=4,∴BE===.∴AE=AB﹣BE=﹣=.又∠EDA=90°,∠A=30°,∴AD=cos30°×AE==2.∴DF===1.即D到AB距离为1.故答案为:1.25.解:∵sin B==,∠ACB=90°,AC=12,∴AB=20,∴BC==16,∵CD=DE,∴DE=BC﹣BD,∵DE⊥AB,∴∠BED=90°,∵sin B=,∴==,∴BD=10,故答案为:10.26.解:∵在△ABC中,∠ACB=45°,AD⊥BC于点D,∴△ADC为等腰直角三角形,∴AD=CD,∵AC=5,∴AD=CD=AC•sin45°=5×=5,∵AD⊥BC于点D,CE⊥AB于点E,∴∠B+∠BAD=∠AFE+∠BAD=90°,∴∠DFC=∠AFE=∠B,∵tan∠B=2,∴tan∠DFC=2,∴=2,∴DF==,∴AF=AD﹣DF=5﹣=,∵tan∠AFE=tan∠B=2,∴设AE=2x,EF=x,由勾股定理得AF=x=,∴EF=x=,故答案为:.。

北师大新版数学九年级下 第1章 直角三角形的边角关系 单元练习卷 含解析

北师大新版数学九年级下 第1章 直角三角形的边角关系 单元练习卷  含解析

第1章直角三角形的边角关系一.选择题(共15小题)1.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.2.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.B.C.D.3.已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个4.如图,在△ABC中,若∠C=Rt∠,则()A.B.C.D.5.Rt△ABC中,∠C=90°,b=,c=4,则sin A的值是()A.B.C.D.6.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.m sin35°B.m cos35°C.D.7.在Rt△ABC中,∠C=90°,tan A=,则tan B的值为()A.B.C.D.8.对于任意锐角α,下列结论正确的是()A.sinα<tanαB.sinα≤tanαC.sinα>tanαD.sinα≥tanα9.在△ABC中,tan C=,cos A=,则∠B=()A.60°B.90°C.120°D.135°10.已知:α为锐角,且=1,则tanα的值等于()A.﹣1 B.2 C.3 D.2.511.在△ABC中,AC≠BC,∠ACB=90°,CD⊥AB垂足为D,则下列比值中不等于sin A的是()A.B.C.D.12.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.13.在Rt△ABC中,若∠B=75°,∠C=90°,BC=1,则Rt△ABC的面积是()A.B.C.D.14.如图,在Rt△ABC中,∠C=90°,sin∠A=,AB=8cm,则△ABC的面积是()A.6cm2B.24cm2C.2cm2D.6cm215.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m二.填空题(共5小题)16.比较大小:cos36°cos37°.17.已知α为锐角,sin(α﹣15°)=,则α=度.18.若坡度i=,则坡角为α=19.计算;sin30°•tan30°+cos60°•tan60°=.20.在Rt△ABC中,∠ACB=90°,若tan A=3,AB=,则BC=三.解答题(共7小题)21.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)22.如图,在△ABC中,∠A=30°,cos B=,AC=6,求△ABC的面积.23.如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?24.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)25.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)26.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?27.直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.参考答案与试题解析一.选择题(共15小题)1.在△ABC中,∠C=90°,AB=12,sin A=,则BC等于()A.B.4 C.36 D.【分析】根据正弦的定义列式计算即可.【解答】解:在△ABC中,∠C=90°,sin A=,∴=,解得,BC=4,故选:B.2.如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为()A.B.C.D.【分析】直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案.【解答】解:连接DC,由网格可得:CD⊥AB,则DC=,AC=,故sin A===.故选:B.3.已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个【分析】根据锐角函数的正弦是增函数,余弦是减函数,正切是增函数,可得答案.【解答】解:由0<α<45°,得0<sinα<,故①正确;cosα>sinα,故②错误;sin2α=2sinαcosα<2sinα,故③错误;0<tanα<1,故④正确;故选:B.4.如图,在△ABC中,若∠C=Rt∠,则()A.B.C.D.【分析】根据三角函数的定义即可得到结论.【解答】解:在△ABC中,若∠C=Rt∠,sin A=,cos B=,故选:A.5.Rt△ABC中,∠C=90°,b=,c=4,则sin A的值是()A.B.C.D.【分析】由三角函数的定义,在直角三角形中,正弦等于对边比斜边易得答案.【解答】解:如图,AC=b=,AB=c=4,所以BC=a==1,由三角函数的定义可得sin A==,则sin A=,故选:A.6.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.m sin35°B.m cos35°C.D.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=m sin35°,故选:A.7.在Rt△ABC中,∠C=90°,tan A=,则tan B的值为()A.B.C.D.【分析】因为∠A与∠B互余,则tan A•tan B=1,代入计算即可.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∴tan A•tan B=1,∵tan B==,故选:D.8.对于任意锐角α,下列结论正确的是()A.sinα<tanαB.sinα≤tanαC.sinα>tanαD.sinα≥tanα【分析】直接利用锐角三角函数关系分析得出答案.【解答】解:∵sinα=,tanα=,且斜边>α的邻边,∴sinα<tanα.故选:A.9.在△ABC中,tan C=,cos A=,则∠B=()A.60°B.90°C.120°D.135°【分析】直接利用特殊角的三角函数值得出∠C=30°,∠A=30°,进而得出答案.【解答】解:∵tan C=,cos A=,∴∠C=30°,∠A=30°,∴∠B=120°.故选:C.10.已知:α为锐角,且=1,则tanα的值等于()A.﹣1 B.2 C.3 D.2.5【分析】根据同角三角函数关系tanα=进行解答.【解答】解:由=1,得=1.所以=1.解得tanα=2.5.故选:D.11.在△ABC中,AC≠BC,∠ACB=90°,CD⊥AB垂足为D,则下列比值中不等于sin A的是()A.B.C.D.【分析】利用锐角三角函数定义判断即可.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin A=sin∠BCD=,故选:D.12.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.【分析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.【解答】解:∵△ABC中,AC=BC,过点C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD===,故选:A.13.在Rt△ABC中,若∠B=75°,∠C=90°,BC=1,则Rt△ABC的面积是()A.B.C.D.【分析】根据锐角三角形的定义可求出AC的长度,然后根据三角形的面积公式即可求出答案.【解答】解:∵tan∠B=,∴=,∴AC==2+,∴Rt△ABC的面积为:×1×(2+)=,故选:D.14.如图,在Rt△ABC中,∠C=90°,sin∠A=,AB=8cm,则△ABC的面积是()A.6cm2B.24cm2C.2cm2D.6cm2【分析】在Rt△ABC中,求出BC,AC即可解决问题.【解答】解:在Rt△ACB中,∵∠C=90°,AB=8cm,∴sin A==,∴BC=6(cm),∴AC===2(cm),∴S△ABC=•BC•AC=×6×2=6(cm2).故选:D.15.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为a…,已知冬至叫长春的正午光人射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:=m,故选:C.二.填空题(共5小题)16.比较大小:cos36°>cos37°.【分析】根据余弦值随着角度的增大(或减小)而减小(或增大)求解.【解答】解:cos36°>cos37°.故答案为>.17.已知α为锐角,sin(α﹣15°)=,则α=75 度.【分析】利用特殊角的三角函数值求出α的度数即可.【解答】解:∵α是锐角,且sin(α﹣15°)=,∴α﹣15°=60°,即α=75°,故答案为:7518.若坡度i=,则坡角为α=30°【分析】根据坡度i与坡角α之间的关系计算,得到答案.【解答】解:∵坡度i=,∴tanα=,∴α=30°,故答案为:30°.19.计算;sin30°•tan30°+cos60°•tan60°=.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:sin30°•tan30°+cos60°•tan60°=×+×=.故答案为:.20.在Rt△ABC中,∠ACB=90°,若tan A=3,AB=,则BC= 3【分析】由tan A==3可设BC=3x,则AC=x,依据勾股定理列方程求解可得.【解答】解:∵在Rt△ABC中,tan A==3,∴设BC=3x,则AC=x,由BC2+AC2=AB2可得9x2+x2=10,解得:x=1(负值舍去),则BC=3,故答案为:3.三.解答题(共7小题)21.如图,一座堤坝的横断面为梯形,AD∥BC,AB坡坡角为45°,DC坡坡度为1:2,其他数据如图所示,求BC的长.(结果保留根号)【分析】根据题意可以作辅助线AE⊥BC,作DF⊥BC,然后根据AB坡坡角为45°,DC 坡坡度为1:2和题目中的数据可以分别求得CF和BE的长,从而可以求得BC的长.【解答】解:作AE⊥BC于点E,作DF⊥BC于点F,如右图所示,由题意可得,tan∠C=,CD=10m,∠B=45°,AD=6m,∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,AE=DF,设DF=x,则CF=2x,∴=102,解得,x=2,∴DF=2m,CF=4m,AE=2m,∵∠AEB=90°,∠ABE=45°,AE=2m,∴BE=2m,∴BC=BE+EF+CF=2+6+4=(6+6)m,即BC的长是(6+6)m.22.如图,在△ABC中,∠A=30°,cos B=,AC=6,求△ABC的面积.【分析】过点C作CD⊥AB于点D,根据直角三角形的性质求出CD,根据余弦的定义求出AD,根据余弦的定义求出BD,计算即可.【解答】解:过点C作CD⊥AB于点D.∵∠A=30°,∴CD=AC=3,AD=AC•cos A=3,∵cos B=,∴设BD=4x,则BC=5x,由勾股定理得,CD=3x,由题意的,3x=3,解得,x=1,∴BD=4,∴AB=AD+BD=3+4,CD=3,∴S△ABC=•AB•CD=×(3+4)×3=6+.23.如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?【分析】(1)根据三角形内角和定理求出∠ACB,根据等腰三角形的判定定理解答;(2)作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,比较得到答案.【解答】解:(1)由题意得,∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣30°﹣120°=30°,∴∠ACB=∠CAB,∴BC=AB=40(海里);(2)作CE⊥AB交AB的延长线于E,在Rt△CBE中,sin∠CBE=,∴CE=BC•sin∠CBE=40×=20,∵20>30,∴轮船继续向东航行,无触礁危险.24.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.【解答】解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴=,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=,即≈4.0,解得x=,即x≈19,答:古塔BC的高度约为19米.25.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)【分析】在Rt△CBE中,由于∠CBE=45°,所以BE=CE,AE=40+x,在Rt△ACE中,利用30°的锐角三角函数求出x,加上测角仪的高度就是CD.【解答】解:设CE的长为xm,在Rt△CBE中,∵∠CBE=45°,∴∠BCD=45°,∴CE=BE=xm,∴AE=AB+BE=40+x(m)在Rt△ACE中,∵∠CAE=30°,∴tan30°=即=,解得,x=20+20≈20×1.732+20=54.64(m)所以CD=CE+ED=54.65+1.5=56.15≈56(m)答:该建筑物的高度约为56m.26.如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?【分析】根据题意可知,实质是比较C点到AB的距离与10的大小.因此作CD⊥AB于D 点,求CD的长.【解答】解:作CD⊥AB于D,根据题意,AB=30×=20(海里),∠CAD=30°,∠CBD=60°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=20(海里),解得:CD=10>10,所以不可能.27.直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和60°,求飞机的高度PO.【分析】过P作PC⊥AB交BA的延长线于C,连接PA,PB,于是得到∠PBO=∠CPB=60°,∠CPA=30°,求得∠APB=30°,根据余角的定义得到∠ABP=90°﹣60°=30°,求出∠ABP=∠APB,根据等腰三角形的判定得到AP=AB=200,在Rt△APC中,根据含30°角的直角三角形的性质得到AC=AP=100,即可得到结论.【解答】解:过P作PC⊥AB交BA的延长线于C,连接PA,PB,则∠PBO=∠CPB=60°,∠CPA=30°,∴∠APB=30°,∵∠ABP=90°﹣60°=30°,∴∠ABP=∠APB,∴AP=AB=200,在Rt△APC中,AC=AP=100,∴PO=AC+AB=300米.答:飞机的高度PO为300米.。

2021-2022学年北师大版九年级数学下册《1-6利用三角函数测高》同步练习题(附答案)

2021-2022学年北师大版九年级数学下册《1-6利用三角函数测高》同步练习题(附答案)

2021-2022学年北师大版九年级数学下册《1.6利用三角函数测高》同步练习题(附答案)1.如图,小华站在水库的堤坝上的G点,看见水库里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角∠FDC=30°,若小华的眼睛与底面的距离DG=1.6米,BG=0.7米.BG平行于AC所在的直线,迎水坡AB的坡度i=4:3,坡长AB为8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为()米(≈1.732,结果精确到0.1米)A.8B.8.1C.8.3D.8.42.如图,河对岸有铁塔AB,在C处测得塔顶A的仰角为30°,向塔前进14m到达D,在D处测得A的仰角为45°,塔高AB为()A.m B.m C.m D.m 3.如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC为1.6m,则树的高度BD为()A.8m B.9.6m C.(4)m D.(8+1.6)m4.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为()米.A.30 B.30﹣30C.30D.305.如图,一艘轮船在A处测得灯塔P位于其东北方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()海里.A.15+15B.30+30C.45+15D.606.如图,大楼底右侧有一障碍物,在障碍物的旁边有一栋小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=40m,DE=10m,则障碍物B,C两点间的距离为m.(结果保留根号)7.为了测量某建筑物BE的高度(如图),小明在离建筑物15米(即DE=15米)的A处,用测角仪测得建筑物顶部B的仰角为45°,已知测角仪高AD=1.8米,则BE=米.8.如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°,热气球A的高度为270米,则这栋大楼的高度为米.9.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶D的仰角为20°,教学楼底部B的俯角为30°,量得实验楼与教学楼之间的距离AB=30m.(结果精确到0.1m.参考数据tan20°≈0.36,sin20°≈0.34,cos20°≈0.94,≈1.73)(1)求∠BCD的度数.(2)求教学楼的高BD.10.如图,亮亮在教学楼距水平地面5米高的窗口C处测得正前方旗杆顶部A点的仰角为45°,旗杆底部B点的俯角为30°,升旗时国旗上端挂在距地面2米处,若国旗随国歌冉冉升起,并在国歌播放45秒结束时到达旗杆顶端.(1)求旗杆AB的高度;(精确到0.1米)(2)国旗应以多少米/秒的速度匀速上升?(参考数据:=1.41,=1.73)11.一货轮在A处测得灯塔P在货轮的北偏西23°的方向上,随后货轮以80海里/时的速度按北偏东30°的方向航行,1小时后到达B处,此时又测得灯塔P在货轮的北偏西60°的方向上,求此时货轮距灯塔P的距离(参考数据:sin53°≈,cos53°≈,tan53°≈).12.某班数学兴趣小组利用数学活动课时间测量位于某山顶的一座雕像的高度.已知山的坡度i=1:,山高BC=300米,组员从山脚D处沿山坡向着雕像方向前进540米到达E 处,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.13.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正东方向,有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向,BP =6km.(1)求A、B两观测站之间的距离;(2)小船从点P处沿射线AP的方向前行,求观测站B与小船的最短距离.14.如图,某轮船在海上向正东方向航行,上午8:00在点A处测得小岛O在北偏东60°方向的16km处;上午8:30轮船到达B处,测得小岛O在北偏东30°方向.(1)求轮船从A处到B处的航速;(2)如果轮船按原速继续向东航行,还需经过多少时间轮船才恰好位于小岛的东南方向?15.如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,在顶端E点测得A的仰角∠AEF=45°,(1)若设AB为x米,请用含x的代数式表示AF的长.(2)求出发射塔AB的高度.(cosα≈,sinα≈,tanα≈)16.如图所示,建筑物MN一侧有一斜坡AC,在斜坡坡脚A处测得建筑物顶部N的仰角为60°,当太阳光线与水平线夹角成45°时,建筑物MN的影子的一部分在水平地面上MA处,另一部分影子落在斜坡上AP处,已知点P的距水平地面AB的高度PD=5米,斜坡AC的坡度为(即tan∠P AD=),且M,A,D,B在同一条直线上.(测倾器的高度忽略不计,结果保留根号)(1)求此时建筑物MN落在斜坡上的影子AP的长;(2)求建筑物MN的高度.17.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试航任务.某日航母在南海海域试航,如图,海中有一个小岛A,并测得该岛四周10海里内有暗礁,航母由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后如果航母继续向东航行,途中会有触礁的危险吗?(参考数据:sin55°=0.8,cos55°=0.6,tan55°=1.4,sin25°=0.4,cos25°=0.9,tan25°=0.5)18.济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m 至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)19.如图,一艘轮船在A处测得灯塔P在船的北偏东30°的方向,轮船沿着北偏东60°的方向航行16km后到达B处,这时灯塔P在船的北偏西75°的方向.求灯塔P与B之间的距离(结果保留根号).20.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)21.地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.22.某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.23.在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)24.如图,一艘渔船以16海里/小时的速度由西向东航行,上年10点在A处测得海中小岛C在北偏东60°方向上,10点30分航行到B处,在B处测得小岛C在东北方向上.(1)求小岛C到航线的距离(结果保留到整数,参考数据:≈1.4,≈1.7);(2)小岛C周围10海里内有暗礁,如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?判断并说明理由.25.如图,海中有一小岛A,它周围8海里内有暗礁,渔船由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.(1)求∠BAD的度数;(2)如果渔船不改变航线继续向东航行,有没有触礁的危险?26.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)参考答案1.解:过点B作BE⊥AC于点E,延长DG交CA于点H,得Rt△ABE和矩形BEHG.∵i==,AB=8米,∴BE=,AE=.∵DG=1.6,BG=0.7,∴DH=DG+GH=1.6+=8,AH=AE+EH=+0.7=5.5.在Rt△CDH中,∵∠C=∠FDC=30°,DH=8,tan30°==,∴CH=8.又∵CH=CA+5.5,即8=CA+5.5,∴CA=8﹣5.5(米)≈8.4(米).故选:D.2.解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,∴BC=AB.设AB=x(米),∵CD=14,∴BC=x+14.∴x+14=x∴x=7(+1).即铁塔AB的高为7(+1)米.故选:B.3.解:在Rt△CBH中,∠HCB=45°,CH=8m,∴,∴HB=CH•tan∠HAB=8×tan45°=8m,∴HD=HB+AC=8+1.6=9.6.答:树的高度为9.6m.故选:B.4.解:如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵tan∠DBC=,∴CD=BC•tan60°=30m,∴甲建筑物的高度为30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴乙建筑物的高度为(30﹣30)m.故选:B.5.解:作BD⊥AP,垂足为D,根据题意,得∠BAD=45°,∴AC=PC,即30+BC=PC,又∵∠BPC=30°,∴BP=2BC,PC==BC,∴30+BC=BC,即BC==15(+1),∴BP=2BC=30(+1)=30+30.故选:B.6.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=30m,∠ADF=45°,∴DF=AF=30m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(30﹣10)m.答:障碍物B,C两点间的距离为(30﹣10)m.7.解:过A作AC⊥BE于C,则AC=DE=15,根据题意:在Rt△ABC中,有BC=AC×tan45°=15,则BE=BC+CE=16.8(米),故答案为:16.8.8.解:作AD⊥CB,交CB的延长线于D点.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=270米.在Rt△ACD中,tan∠CAD=,∴AD==90(米).在Rt△ABD中,tan∠BAD=,∴BD=AD•tan30°=90×=90(米).∴BC=CD﹣BD=270﹣90=180(米).答:这栋大楼的高为180米.故答案为180.9.解:(1)过点C作CE⊥BD,则有∠DCE=20°,∠BCE=30°,∴∠BCD=∠DCE+∠BCE=20°+30°=50°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan30°≈17.32m,在Rt△CDE中,DE=CE•tan20°≈10.8m,∴教学楼的高BD=BE+DE=17.32+10.8≈28.1m,则教学楼的高约为28.1m.10.解:(1)如图,作CH⊥AB于H.在Rt△BCH中,∵∠BCH=30°,BH=5米,∴CH=BH=5(米),在Rt△ACH中,∵∠ACH=45°,∴AH=HC=5(米),∴AB=AH+BH=5+5≈13.7(米).(2)国旗上升的速度=≈0.26(米/秒).11.解:由题意可知:∠P AB=53°,由平行线的性质可知∠PBA=180°﹣30°﹣60°=90°,∵AB=80×1=80(海里),在Rt△APB中,∵∠P AB=53°,AB=80,∴PB=AB•tan53°=80×=海里,答:此时货轮距灯塔P的距离为海里.12.解:由题意知,tan D=i=,即∠D=30°,∠DBC=60°过E作EF⊥AC于F,得∠BEF=∠D=30°,而∠AEF=60°∴∠AEB=∠A=30°,∴AB=BE由于BD=2BC=600,而DE=540,故EB=60∴AB=60答:雕像AB的高度为60米.13.解:(1)如图,过点P作PD⊥AB于点D,设PD=x,所以∠PBD=45°即km因为∠P AD=90°﹣60°=30°,所以km所以A、B观测站距离:km(2)∵小船在北偏西60°的方向,∴∠F AB=30°,∴BF=km.14.解:(1)如图,过点O作OD⊥AB,垂足为D.由题意知:∠OAD=30°,∠OBD=60°.在Rt△OAD中,∵OA=16,∠OAD=30°,∴OD=8,AD=24.在Rt△OBD中,∵OD=8,∠OBD=60°.∴BD===8,∴AB=AD﹣BD=24﹣8=16(km),∴v==32(km/h)答:轮船从A处到B处的航速为32km/h.(2)过点O作∠DOE=45°交AD的延长线于点E.∵∠DOE=45°,∠ODE=90°,∴DE=OD=8km,BE=BD+DE=8+8(km),∵=(h),答:轮船按原速继续向东航行,还需要航行小时才恰好位于小岛的东南方向.15.解:(1)∵四边形EDCF为矩形,∴ED=CF=340m,又AC=(452+x)m∴AF=AC﹣CF=452+x﹣340=(112+x)m;(2)在Rt△AEF中,∵∠AEF=45°,∴EF=AF=(112+x)m=CD在Rt△ADC中,∵∠ADC=α,∴tanα=∴,∴x=28答:发射塔AB的高度为28m.16.解:(1)如图,作PH⊥MN于H.则四边形PDMH是矩形.∵tan∠P AD==,PD=5,∴AD=15,P A==5(米),∴此时建筑物MN落在斜坡上的影子AP的长为5米.(2)∵∠NPH=45°,∠PHN=90°,∴∠PNH=∠NPH=45°,∴NH=PH,设NH=PH=x米,则MN=(x+5)米,AM=(x﹣15)米,在Rt△AMN中,∵tan60°=,∴MN=AM,∴x=5+(x﹣15)解得x=(10+25)(米),∴MN=x+5=(10+30)米.17.解:如图,作AD⊥BC于点D,设AD=x海里,在Rt△ACD中,∵∠ADC=90°,∠CAD=25°,∴CD=AD•tan25°=tan25°•x.在Rt△ABD中,∵∠ADB=90°,∠BAD=55°,∴BD=AD•tan55°=tan55°•x.∵BD﹣CD=BC,∴tan55°•x﹣tan25°•x=20,∴x=≈=>10,因为A岛到货轮的航线的最短距离大于10,所以不可能触礁.18.解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30(m)19.解:过点P作PH⊥AB于点H,由题意得∠P AB=30°,∠PBA=45°,设PH=x,则AH=x,BH=x,PB=x,∵AB=16,∴x+x=16,解得:x=8﹣8,∴PB=x=8﹣8,答:灯塔P与B之间的距离为(8﹣8)km.20.解:过点C作CF⊥AB于点F,如右图所示,由题知:四边形CDBF为矩形,BD=12米,∴CF=DB=12米,∵在Rt△ACF中,∠ACF=45°,∴,∴AF=12米,∵在Rt△CEF中,∠ECF=30°,∴,∴,∴米,∴AE=AF+EF=(12+4)米,即条幅AE的长度为米.21.解:作BC⊥P A交P A的延长线于点C,作QD∥PC交BC于点D,由题意可得,BC=9.9﹣2.4=7.5米,QP=DC=1.5米,∠BQD=14°,则BD=BC﹣DC=7.5﹣1.5=6米,∵tan∠BQD=,∴tan14°=,即0.25=,解得,ED=18,∴AC=ED=18,∵BC=7.5,∴tan∠BAC==,即电梯AB的坡度是5:12,∵BC=7.5,AC=18,∠BCA=90°,∴AB==19.5,即电梯AB的坡度是5:12,长度是19.5米.22.解:由题意可得,∠AEC=30°,∠ADC=60°,∠BDC=45°,CH=DG=EF=1.5米,FG=ED=15米,∵∠ADC=∠AED+∠EAD,∴∠EAD=30°,∴∠EAD=∠AED,∴ED=AD,∴AD=15米,∵∠ADC=60°,∠ACD=90°,∴∠DAC=30°,∴DC=米,AC=米,∴AH=AC+CH=+=米,∵∠BDC=45°,∠BCD=90°,∴∠DBC=45°,∴∠BDC=∠DBC,∴BC=CD=米,∴AB=AC﹣BC=﹣=米,即AH=米,AB=米.23.解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.24.解:(1)过C作CD⊥AB于D,由题意得,∠CAB=30°,∠DBC=45°,AB=16×=8(海里),∵∠BDC=90°,∴BD=CD,在Rt△ACD中,AD==CD,∵AB=AD﹣BD=CD﹣CD=8,∴CD≈11(海里),答:小岛C到航线的距离是11海里;(2)没有触礁的危险,理由:∵CD=11>10,∴没有触礁的危险.25.解:(1)∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°.(2)过A作AC⊥BD于点C,则AC的长是A到BD的最短距离.∵∠ABD=90°﹣60°=30°.∴∠ABD=∠BAD.∴BD=AD=12海里.∵Rt△ACD中,∠CAD=30°,∴AC=AD•cos∠CAD=≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.26.解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×0.8=3.2(千米),∵△BCD中,∠CBD=90°﹣35°=55°,∴CD=BD•tan∠CBD=4.48(千米),∴BC=CD÷sin∠CBD≈6(千米).答:B、C两地的距离大约是6千米.。

2021-2022学年北师大版九年级数学下册《1-4解直角三角形》解答题专题训练(附答案)

2021-2022学年北师大版九年级数学下册《1-4解直角三角形》解答题专题训练(附答案)

2021-2022学年北师大版九年级数学下册《1-4解直角三角形》解答题专题训练(附答案)1.如图,在△ABC中,∠A为钝角,AB=25,AC=39,sin B=,求BC的长和tan C的值.2.如图,△ABC中,∠C=90°,D是AC上一点,BD=10,∠DBC=30°,sin A=,求AB的长.3.如图,在△ABC中,BC=,∠B=30°,∠C=45°,求△ABC的面积.4.如图,在△ABC中,∠C=90°,AB=10,sin B=.求BC的长及∠A的正切值.5.如图,在△ABC中,AD⊥BC于点D,若AD=6,tan C=,BC=12.(1)求DC边的长;(2)求cos B的值.6.如图,在△ABC中,AD⊥BC,BD=8,cos∠ABC=,BF为△ABC的角平分线,BF 交AD于点E.求:(1)AD的长;(2)tan∠FBC的值.7.如图,在平面直角坐标系中,OB=5,sin∠AOB=,点A的坐标为(10,0).(1)求点B的坐标;(2)求sin∠OAB的值.8.如图.已知Rt△ABC中,∠C=90°,AC=6.(1)若∠A=60°,求BC的长度.(2)若sin A=,求AB的长度.9.如图,在△ABC中,∠A=105°,∠B=30°,AC=2.求AB的长.10.如图,在Rt△ABC中,∠BAC=90°,延长斜边BC到点D,使CD=BC,联结AD,如果tan B=,求tan∠CAD的值.11.如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的高,若sin∠CAD=,BC=25,求AC的长.12.如图,AD是△ABC的高,cos B=,sin C=,AC=10,求AB的长.13.如图,在△ABC中,∠C=90°,点D在AC上,∠BDC=45°,BD=10,AB=20.求sin A的值.14.如图,△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,DB=3.(1)求BE的长;(2)若sin∠DAB=,求△CAD的面积.15.如图在等腰三角形ABC中,AB=AC,点D、E分别是AB、BC的中点,过点B作BF ⊥AC于点F,BF与DE交于点G.(1)求证:DE⊥BF;(2)连结EF,若S△CEF=S△BDG,求cos∠CEF的值.16.如图,在△ABC中,AD是中线,∠ABC=30°,∠ADC=45°.(1)求的值;(2)求∠ACB的度数.17.如图,在Rt△ABC中,∠C=90°,D为BC的中点,AB=5,AC=3.(1)求AD的长;(2)求sin∠DAB的值.18.如图,在△ABC中,AB=AC=10,.求sin A的值.19.如图,在△ABC中,∠ACB=45°,cot B=,BC=10.(1)求AB的长;(2)如果CD为边AB上的中线,求∠DCB的正切值.20.如图,在Rt△ABC中,∠ACB=90°,AC=6,cos A=.D是AB边的中点,过点D 作直线CD的垂线,与边BC相交于点E.(1)求线段CE的长;(2)求sin∠BDE的值.21.如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD的长;(2)求∠EBC的正切值.22.如图,已知,在Rt△ABC中,∠C=90°,AB=4,BC=2,点D是AC的中点,联结BD并延长至点E,使∠E=∠BAC.(1)求sin∠ABE的值;(2)求点E到直线BC的距离.23.如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sin B =,求:(1)线段DC的长;(2)sin∠EDC的值.24.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=,解这个直角三角形.25.根据下列条件,解直角三角形:(1)在Rt△ABC中,∠C=90°,a=2,b=2;(2)在Rt△ABC中,∠C=90°,∠A=45°,c=6.26.如图,在△ABC中,∠B=30°,∠C=45°,AD⊥BC于点D,且AD=2.(1)求线段BC的长;(2)取AC的中点E,连接BE,求tan∠EBC.27.如图,在△ABC中,∠B=45°,∠C=75°,夹边BC的长为6,求△ABC的面积.28.如图,AD是△ABC的高,,,AC=10,求△ABC的周长.参考答案1.解:过点A作AD⊥BC于D,如图所示:在Rt△ABD中,AB=25,sin B==,∴=,∴AD=15,在Rt△ACD中,CD===36,∴tan C===,在Rt△ABD中,BD===20,∴BC=BD+CD=20+36=56.∴tan C=,BC=56.2.解:在Rt△BDC中,∵cos∠DBC=,∴BC=cos∠DBC×BD=cos30°×10=15;在Rt△BAC中,∵sin A==,∴AB===.3.解:作AD⊥BC与D,如图,设AD=x,在Rt△ABD中,∠B=30°,∴BD=AD=x,在Rt△ADC中,∠C=45°,∴CD=AD=x,而BD+CD=BC,∴x+x=2+2,解得x=2,即AD=2,∴△ABC的面积=×2×(2+2)=2+2.4.解:在Rt△ABC中,∵∠C=90°,AB=10,sin B=,∴AC=AB•sin B=6,∴BC=,∴tan A=.5.解:(1)∵AD⊥BC,∴△ADC是直角三角形.在Rt△ADC中,∵tan C==,AD=6,∴CD=4.(2)∵BC=12,CD=4,∴BD=8.在Rt△ADB中,AB==10.∴cos B===.6.解:(1)∵AD⊥BC,∴∠ADB=90°,∴cos∠ABC==,∵BD=8,∴AB=10,∴AD===6;(2)过E作EF⊥AB于F,如图所示:∵BF为△ABC的角平分线,ED⊥BC,∴ED=EF,在Rt△BHE和Rt△BDE中,,∴Rt△BHE≌Rt△BDE(HL),∴BH=BD=8,∴AH=AB﹣BE=2,∵∠ABC+∠BAD=90°,∠AEH+∠BAD=90°,∴∠ABC=∠AEH,∴cos∠AEH==cos∠ABC=,设ED=EH=4k,则AE=5k,则AD=5k+4k=6,解得:k=,∴ED=,∴tan∠FBC=tan∠EBD===.7.解:(1)如图,过点B作BC⊥OA于点C,在Rt△BOC中,∠OCB=90°,OB=5,sin∠AOB=,∴sin∠AOB=,∴BC=3,∴,∴点B的坐标为(4,3).(2)∵点A的坐标为(10,0),∴OA=10,∴AC=OA﹣OC=10﹣4=6,∵∠ACB=90°,∴,∴sin∠OAB=.8.解:(1)∵∠A=60°,∴tan60°===,∴BC=6;(2)设BC=4x,则AB=5x,根据勾股定理可得,(4x)2+62=(5x)2,解得x=2,所以AB=5x=10.9.解:∵∠A=105°,∠B=30°.∴∠C=45°.过点A作AD⊥BC于点D,∴∠ADB=∠ADC=90°在Rt△ADC中,∵∠ADC=90°,∠C=45°,AC=2.∴∠DAC=∠C=45°.∵sin C=,∴AD=CD=.在Rt△ADB中,∠ADB=90°,∠B=30°.∵AD=,∴AB=2AD=2.10.解:过点C作CH⊥AC,交AD于点H,∵∠ACH=∠BAC=90°,∴AB∥CH,∴△DCH∽△DBA,∴,∴,设CH=k,∴AB=3k,∴AC=4k,∴tan∠CAD=,∴tan∠CAD的值为.11.解:∵∠BAC=90°,∴∠CAD+∠BAD=90°,∵AD是BC边上的高,∴∠ADC=∠B+∠BAD=90°,∴∠B=∠CAD,∴sin B=sin∠CAD=.在Rt△ABC中,∠BAC=90°,sin B=,BC=25,∴AC=BC•sin B=25×=15.12.解:在Rt△ACD中,sin C=,∵sin C=,AC=10,∴,∴AD=6.∴CD=.在Rt△ABD中,∵cos B=,∴∠B=45°,∴∠BAD=∠B=45°,∴BD=AD=6,∴AB=6.13.解:在直角三角形BDC中,∠BDC=45°,BD=10,∴BC=BD•sin∠BDC=10×=10.在直角三角形ABC中,∠C=90°,AB=20,∴sin A===.14.解:(1)∵DE⊥AB,∴∠BED=90°.在Rt△BED中,∵cos∠ABC=,∴BE=cos45°•3=•3=3.(2)∵∠ABC=45°,∠BED=90°.∴∠EDB=45°.∴BE=DE=3.∵sin∠DAB==,∴AD=5.∴AE==4.∴AB=AE+BE=4+3=7.∴S△ABD=AB•DE=.∵AD是BC边上的中线,∴S△ADC=S△ABD=.15.证明:(1)∵点D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE∥AC.∴∠DGB=∠AFB.∵BF⊥AC,∴∠AFB=∠BFC=90°.∴∠DGB=90°,∴DE⊥BF.(2)∵∠BFC=90°,点E是BC的中点,∴EF=BE=EC,∴∠EFC=∠C.∵AB=AC,∴∠ABC=∠C.∴∠CEF=180°﹣2∠C=∠BAC.∵DE∥AC,点D是AB的中点,∴△BDG∽△BAF,∴=.∵点E是BC的中点,∴S△BFC=2S△CEF,∵S△CEF=,∴.∴S△ABC=S△ABF+S△BCF=S△ABF+2S△CEF=S△CEF.∴==S△CEF:S△CEF=,在Rt△ABF中,cos∠CEF=cos∠BAF===.16.解:(1)过点A作BD的垂线交BD的延长线于点E,在Rt△ABE中,∵∠ABC=30°,∴AB=2AE,BE==AE,在Rt△ADE中,∵∠ADC=45°,∴DE=AE,∴BD=BE﹣DE=AE﹣AE=(﹣1)AE,∴==+1;(2)如图,在AB上取一点E,使得DB=DE,连接EC.∵DB=DE,∴∠DBE=∠DEB=30°,∴∠EDC=∠B+∠DEB=60°,∵DB=DC=DE,∴△DEC是等边三角形,∴∠ECD=∠CED=60°,∴∠CEB=∠CEA=90°,∵∠ADC=45°,∴∠EDA=∠EDC﹣∠ADC=15°,∵∠DEB=∠EDA+∠AED,∴∠EDA=∠EAD=15°,∴ED=EA=EC,∵∠CEA=90°,∴∠ECA=45°,∴∠ACB=∠ACE+∠ECB=45°+60°=105°.17.解:(1)∵∠C=90°,AB=5,AC=3,∴BC===4.∵D是BC的中点,∴CD=BC=2.∴AD===.(2)过点D作DE⊥AB,垂足为E.∵D为BC的中点,∴S△ACD=S△ADB=AC×CD=3.∵S△ABD=AB×DE=3,∴DE=.∴sin∠DAB===.18.解:过点C作CD⊥AB,在Rt△CDB中,∵sin B==,设CD=4x,BC=5x,则BD=3x,∴AD=10﹣3x,在Rt△CDA中,由勾股定理得,AC2=AD2+CD2,即102=(10﹣3x)2+(4x)2,整理得:25x2﹣60x=0,解得:x=2.4或x=0(舍去),∴CD=4x=9.6,在Rt△CDA中,sin A===.19.解:(1)过A作AE⊥BC于E,作DF⊥BC于F,∵∠BCA=45°,在Rt△AEC中,AE=EC,∵cot B=,在Rt△BEA中,=,设BE=3x,AE=2x,∴BC=BE+EC=BE+AE=10,∴x=2,∴BE=6,EA=EC=4,由勾股定理得:AE2+BE2=AB2.即AB2=36+16=52.∴AB=.(2)由(1)知AB=2,又∵D为AB的中点,∴BD=AD=,∵DF⊥BC,AE⊥BC,∴DF∥AE,∵BD=AD,∴BF=FE=BE=3.∴DF=AE=2,∴FC=FE+EC=3+4=7.∴tan∠DCB=.20.解:(1)∵∠ACB=90°,AC=6,cos A=,∴=,∴AB=10,∴BC==8,又∵D为AB中点,∴AD=BD=CD=AB=5,∴∠DCB=∠B,∴cos∠DCB=,cos∠B=,∴,∴CE=;(2)作EF⊥AB交AB于F,由(1)知CE=,则BE=8﹣=,DE==,设BF=x,则DF=BD﹣BF=5﹣x,在Rt△DEF中,EF2=DE2﹣DF2=,在Rt△BEF中,EF2=BE2﹣BF2=,∴﹣(5﹣x)2=﹣x2,解得x=,∴EF2=()2﹣()2=,EF=,∴sin∠BDE==.21.解:(1)过C点作CH⊥AD于H,如图,∵CD=CA,∴AH=DH,∵∠ABC+∠BCH=90°,∠ACH+∠BCH=90°,∴∠ACH=∠ABC,∴sin∠ACH=sin∠ABC=,在Rt△ACH中,sin∠ACH==,∴AD=2AH=2;(2)在Rt△ABC中,sin∠ABC==,∴AB=3AC=9,∴BD=AB﹣AD=9﹣2=7,∵∠E=90°,而∠EDB=∠HDC,∴∠HCD=∠EBD,∴sin∠EBD==,∴DE=BD=,∴BE==,在Rt△EBC中,tan∠EBC===.22.解:(1)过D作DF⊥AB于F,如图:∵∠C=90°,AB=4,BC=2,∴AC==2,sin∠BAC=,∴∠BAC=30°,∵点D是AC的中点,∴AD=CD=,∴BD==,Rt△ADF中,DF=AD•sin∠BAC=,Rt△BDF中,sin∠ABE==;(2)过A作AH⊥BE于H,过E作EG∥AC交BC延长线于G,如图:∵∠ADH=∠BDC,∠BCD=∠AHD=90°,∴△BCD∽△AHD,∴,∵BC=2,CD=AD=,BD=,∴,解得AH=,HD=,∵∠AEB=∠BAC=30°,∴HE==,∴BE=BD+DH+HE=,∵EG∥AC,∴∠BDC=∠BEG,而∠CBD=∠GBE,∴△CBD∽△GBE,∴,即,∴EG=.方法二:过E作EG⊥BC于G,∵∠E=∠BAC,∠ABE=∠DBA,∴△ABD∽△ABE,∴=,即,∴BE=,∵DC⊥BC,EG⊥BG,∴DC∥BG,∴,即=,∴EG=,∴点E到直线BC的距离为.23.解:(1)在△ABC中,∵AD是边BC上的高,∴AD⊥BC.∴sin B==.∵AD=12,∴AB===15.在Rt△ABD中,∵BD===9,∴CD=BC﹣BD=14﹣9=5.(2)在Rt△ADC中,∵AD=12,DC=5,∴AC=13.∵E是AC的中点,∴DE=EC,∴∠EDC=∠C.∴sin∠EDC=sin∠C==.24.解:∵∠C=90°,∠B=30°,∴∠A=60°.∵sin A=,tan A=,即=,=,∴AB=,AC=.25.解:(1)c===4,∵tan B===,∴∠B=30°.∴∠A=90°﹣30°=60°;(2)∵∠A=45°,∴∠B=90°﹣45°=45°.∵sin A=sin45°=,即=,∴b=a=3.26.解:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB和Rt△ADC中,∵∠B=30°,∠C=45°,∴AB=4,CD=AD=2.∴BD==2.∴BC=BD+DC=2+2.(2)过点E,作EF⊥CD,垂足为F.∵AD⊥BC,EF⊥CD,E是AC的中点,∴EF是△ADC的中位线,∴EF=AD=1.在Rt△EFC中,∵∠C=45°.∴∠CEF=45°,∴FE=FC=1.∴BF=BC﹣CF=2+1.∴tan∠EBC===.27.解:如图,作CD⊥AB于点D.∵∠B=45°,CD⊥AB,∴∠BCD=45°,∵BC=6,∴CD=BD=3,在Rt△ACD中,∠ACD=75°﹣45°=30°,∴tan30°=,∴AD=,∴S△ABC=•AB•CD=•(3+)•3=9+3,∴△ABC的面积是9+3.28.解:在Rt△ACD中,,∵,AC=10,∴,∴AD=6.∴CD==8.在Rt△ABD中,∵,∴∠B=45°,∴∠BAD=∠B=45°,∴BD=AD=6,AB=6.∴△ABC的周长为:AB+AC+BD+CD ==.。

北师大版2020九年级数学下册第三章圆单元综合基础测试题1(附答案详解)

北师大版2020九年级数学下册第三章圆单元综合基础测试题1(附答案详解)

北师大版2020九年级数学下册第三章圆单元综合基础测试题1(附答案详解)1.如图,AB 是O 的直径,点C 在O 上,6BC =,30B ∠=,则AB 的长为( )A .12B . 43C . 23D .1?232.如图,已知圆周角∠BAC =40°,那么圆心角∠BOC 的度数是( )A .40B .60C .80D .1003.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B ,则AC 的长为( )A .2B .3C .22D .234.已知圆柱的底面直径为4cm ,高为5cm ,则圆柱的侧面积是( )A .21?0cmB .21?0? cm πC .2 20cm πD .2 40cm π5.如图,AD 是⊙O 的切线,切点为A ,AC 是⊙O 的直径,CD 交⊙O 于点B ,连接OB ,若AB 的度数为70°,则∠D 的大小为( )A .70°B .60°C .55°D .35°6.半径为8cm 的圆的内接正三角形的边长为( )A .3B .3C .8cmD .4cm7.如图,⊙O 的半径为5,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,CD=6,则弦AC 的长为( )A .6B .5C .4D .38.已知,⊙O 的半径为5cm ,点P 到圆心O 的距离为4cm ,则点P 在⊙O 的( ) A .外部 B .内部 C .圆上 D .不能确定9.如图,PA 、PB 分别切⊙O 于A 、B 两点,C 为劣弧AB 上一点,∠APB=30°,则∠ACB=( )A .60°B .75°C .105°D .120°10.将一个半径为R ,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r ,则R 与r 的关系正确的是( )A .R=8rB .R=6rC .R=4rD .R=2r11.已知一个正六边形的边心距为3,则它的半径为______ .12.如果正六边形的两条平行边间的距离是23,那么这个正六边形的边长为_____. 13.在Rt ABC 中,90C ∠=,3AC =,4BC =,以C 为圆心,2.4为半径作C ,则C 和AB 的位置关系是________.14.如图,O 是等边三角形ABC 的外接圆,D 、E 是O 上两点,则D ∠=________度,E ∠=________度.15.在△ABC 中,∠A=120°,若BC=12,则其外接圆O 的直径为_____.16.已知⊙O 直径AB 与弦AC 的夹角为35°,过C 点的切线PC 与AB 的延长线交于点P ,则∠P =____.17.已知直角坐标内,半径为2的圆心坐标为(3,-4),当该圆向上平移m 个单位长度时,若要此圆与x 轴没有交点,则m 的取值范围是 _______________.18.四边形ABCD 是⊙O 的内接四边形,且∠A=∠C,则∠A=___ ___度.19.如图,已知ABC 内接于O ,BC 是O 的直径,MN 与O 相切,切点为A ,若MAB 30∠=,则B ∠=________度.20.我们把有两条边和其中一边的对角对应相等的两个三角形叫做友好三角形。

北师大版九年级下《第3章 圆》2013年单元测试卷(1)

北师大版九年级下《第3章 圆》2013年单元测试卷(1)

北师大版九年级下《第3章圆》2013年单元测试卷(1)北师大版九年级下《第3章圆》2013年单元测试卷(1)一、多解题:1.(3分)一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径是_________.2.(3分)若一条弦把圆周分成2:3的两段弧,则劣弧所对圆心角的度数是_________度,弦所对的圆周角的度数是_________.3.(3分)已知⊙O的半径是5cm,弦AB∥CD,AB=6cm,CD=8cm,则AB与CD的距离是_________.4.(3分)已知弓形的弦长为8cm,所在圆的半径为5cm,则弓形的高为_________.5.(3分)若弦长等于半径,则弦所对的圆心角的度数是_________,弦所对弧的度数是_________.6.(3分)(2002•黑龙江)若⊙O是△ABC的外接圆,OD⊥BC于D,且∠BOD=48°,∠BAC=_________.7.(3分)(2002•辽宁)△ABC是半径为2的圆的内接三角形,若BC=2,则∠A的度数为_________.二、易错题:8.(3分)若所对圆心角度数是100°,所对的圆周角的度数为_________.9.(3分)点A在以O为圆心,3cm为半径的⊙O内,则点A到圆心O的距离d的范围是_________.10.(3分)(2013•大兴区二模)如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为_________.11.(3分)如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是_________.12.(3分)已知矩形ABCD的边AB=3cm,AD=4cm,以点A为圆心作圆A,使B、C、D三点至少有一个在圆内,且至少有一个在圆外,则圆A半径r范围是_________.13.(3分)在⊙O中,=2,那么_________.14.(3分)若一个圆经梯形ABCD四个顶点,则这个梯形是_________梯形,若一个圆经▱ABCD四个顶点,则▱ABCD是_________形.15.(3分)下列命题中正确的命题是_________(1)圆周角等于圆心角的一半;(2)相等的圆周角所对的弧相等;(3)在同圆或等圆中,相等的弦所对的弧相等;(4)等弧所对的圆周角相等;(5)顶点在圆周上的角就是圆周角;(6)平分弦的直径垂直于弦;(7)弦的垂直平分线经过圆心;(8)圆的对称轴是直径.16.(3分)已知如图,⊙O中直径AB交CD于E,点B是弧CD的中点,CD=8cm,AE=8cm,则⊙O的半径为_________.三、探究动手题:17.如何在操场上画出一个很大的圆?说一说你的方法.作图说明:已知点AB=4cm,到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形.18.菱形的四边中点是否在同一个圆上?如果在同一圆上,请找出它的圆心和半径.19.把如图的弧四等分.20.如图,以⊙O的半径OA为直径作⊙O1,⊙O的弦AD交⊙O1于C,则:(1)OC与AD的位置关系是_________;(2)OC与BD的位置关系是_________;(3)若OC=2cm,则BD=_________cm.四、探究动手题:21.某地有一座圆弧形拱桥,圆心为O,桥下水面宽度为7.2m,过O作OC⊥AB于D,交圆弧于C,CD=2.4m(如图所示).现有一艘宽3m、船舱顶部为正方形并高出水面AB,2m的货船要经过拱桥,此货船能否顺利通过这座拱桥?22.如图所示,M、N分别是⊙O的弦AB、CD的中点,AB=CD.求证:∠AMN=∠CNM.北师大版九年级下《第3章圆》2013年单元测试卷(1)参考答案与试题解析一、多解题:1.(3分)一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径是 6.5cm或2.5cm.2.(3分)若一条弦把圆周分成2:3的两段弧,则劣弧所对圆心角的度数是144度,弦所对的圆周角的度数是72°和108°.××××3.(3分)已知⊙O的半径是5cm,弦AB∥CD,AB=6cm,CD=8cm,则AB与CD的距离是1或7cm.AF=FB=CD=4=4=34.(3分)已知弓形的弦长为8cm,所在圆的半径为5cm,则弓形的高为2cm或8cm.AB=4cm5.(3分)若弦长等于半径,则弦所对的圆心角的度数是60°,弦所对弧的度数是60°或300°..6.(3分)(2002•黑龙江)若⊙O是△ABC的外接圆,OD⊥BC于D,且∠BOD=48°,∠BAC=48°或132°.A=∠7.(3分)(2002•辽宁)△ABC是半径为2的圆的内接三角形,若BC=2,则∠A的度数为60°或120°.2R==BC=2=二、易错题:8.(3分)若所对圆心角度数是100°,所对的圆周角的度数为50°.所对圆心角度数是所对的圆周角的度数为:×9.(3分)点A在以O为圆心,3cm为半径的⊙O内,则点A到圆心O的距离d的范围是0≤d<3cm.10.(3分)(2013•大兴区二模)如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为3.AM=×OM==311.(3分)如图,⊙O的直径为10,弦AB=8,P是弦AB上一动点,那么OP长的取值范围是3≤OP≤5.OM=)12.(3分)已知矩形ABCD的边AB=3cm,AD=4cm,以点A为圆心作圆A,使B、C、D三点至少有一个在圆内,且至少有一个在圆外,则圆A半径r范围是3<r<5.13.(3分)在⊙O中,=2,那么2.==的中点=2=,14.(3分)若一个圆经梯形ABCD四个顶点,则这个梯形是等腰梯形,若一个圆经▱ABCD四个顶点,则▱ABCD 是矩形.15.(3分)下列命题中正确的命题是④⑦(1)圆周角等于圆心角的一半;(2)相等的圆周角所对的弧相等;(3)在同圆或等圆中,相等的弦所对的弧相等;(4)等弧所对的圆周角相等;(5)顶点在圆周上的角就是圆周角;(6)平分弦的直径垂直于弦;(7)弦的垂直平分线经过圆心;(8)圆的对称轴是直径.16.(3分)已知如图,⊙O中直径AB交CD于E,点B是弧CD的中点,CD=8cm,AE=8cm,则⊙O的半径为5.CE=ED=三、探究动手题:17.如何在操场上画出一个很大的圆?说一说你的方法.作图说明:已知点AB=4cm,到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形.18.菱形的四边中点是否在同一个圆上?如果在同一圆上,请找出它的圆心和半径.19.把如图的弧四等分.的垂直平分线交的垂直平分线,与相交把20.如图,以⊙O的半径OA为直径作⊙O1,⊙O的弦AD交⊙O1于C,则:(1)OC与AD的位置关系是垂直;(2)OC与BD的位置关系是平行;(3)若OC=2cm,则BD=4cm.四、探究动手题:21.某地有一座圆弧形拱桥,圆心为O,桥下水面宽度为7.2m,过O作OC⊥AB于D,交圆弧于C,CD=2.4m(如图所示).现有一艘宽3m、船舱顶部为正方形并高出水面AB,2m的货船要经过拱桥,此货船能否顺利通过这座拱桥?AB=3.6m×≈22.如图所示,M、N分别是⊙O的弦AB、CD的中点,AB=CD.求证:∠AMN=∠CNM.参与本试卷答题和审题的老师有:gsls;sjzx;gbl210;zcx;Linaliu;MMCH;CJX;fengling;蓝月梦;HLing;zjx111;mengcl;wenming;zhjh;zhehe;ln_86(排名不分先后)菁优网2013年12月12日。

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试卷(含答案解析)(1)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试卷(含答案解析)(1)

一、选择题1.如图,ABC 是O 的内接三角形,BD 为O 的直径.若10BD =,2ABD C ∠=∠,则AB 的长度为( )A .4B .5C .5.5D .62.一定滑轮的起重装置如图,滑轮半径为6cm ,当重物上升4cm π时,滑轮的一条半径OA 按逆时针方向旋转的度数为(假设绳索与滑轮之间没有滑动)( )A .30B .60︒C .90︒D .120︒ 3.如图,AB 是O 的直径,弦CD AB ⊥于点E ,1BE =,6CD =,则AE 的长度为( )A .10B .9C .5D .4 4.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒ 5.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .126.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D E 、,则CDE △面积的最小值为( )A .2B .2.5C .3D .347.如图,已知,ABC O △为AC 上一点,以OB 为半径的圆经过点A ,且与BC OC 、交于点E D 、,设,C a A β∠=∠=,则( )A .若70αβ+=︒,则弧DE 的度数为20︒B .若70αβ+=︒,则弧DE 的度数为40︒C .若70αβ-=︒,则弧DE 的度数为20︒D .若70αβ-=︒,则弧DE 的度数为40︒ 8.如图,在ABC 中,5AB AC ==,6BC =,D ,E 分别为线段AB ,AC 上一点,且AD AE =,连接BE 、CD 交于点G ,延长AG 交BC 于点F .以下四个结论正确的是( )①BF CF =;②若BE AC ⊥,则CF DF =;③若BE 平分ABC ∠,则32FG =; ④连结EF ,若BE AC ⊥,则2DFE ABE ∠=∠. A .①②③B .③④C .①②④D .①②③④ 9.如图,AB 是O 的直径,CD 是弦,四边形OBCD 是菱形,AC 与OD 相交于点P ,则下列结论错误的是( )A .OD AC ⊥B .AC 平分OD C .2CB DP = D .2AP OP = 10.如图,ABC 内接于O ,50A ∠=︒,点E 是边BC 的中点,连接OE 并延长交O 于点D ,连接BD ,则D ∠的大小为( )A .55°B .65°C .70°D .75°11.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为( )A .12cmB .18cmC .20cmD .24cm 12.如图,四边形OABC 是平行四边形,以点O 为圆心,OA 为半径的⊙O 与BC 相切于点B ,CO 的延长线交⊙O 于点E ,连接AE ,若AB =2,则图中阴影的面积为( ).A .2πB .πC .22πD .2π二、填空题13.如图,PA 、PB 切⊙O 于A 、B ,点C 在AB 上,DE 切⊙O 于C 交PA 、PB 于D 、E ,已知PO =13cm ,⊙O 的半径为5cm ,则△PDE 的周长是_____.14.如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是()0,8.则点D的坐标是______.15.如图,把一只篮球放在高为16cm 的长方体纸盒中,发现篮球的一部分露出盒,其截图如图所示.若量得EF =24cm ,则该篮球的半径为_____cm .16.边长为6的正三角形的外接圆的周长为__________.17.如图,在ABC 中,A 30∠=︒,45B ∠=︒,72cm AB =,点O 以2/cm s 的速度在ABC 边上沿A B C A →→→的方向运动.以O 为圆心作半径为2cm 的圆,运动过程中O 与ABC 三边所在直线首次相切和第三次相切的时间间隔为__________秒.18.如图所示的是边长为4的正方形镖盘ABCD ,分别以正方形镖盘ABCD 的三边为直径在正方形内部作半圆,三个半圆交于点O ,乐乐随机地将一枚飞镖投掷到该镖盘上,飞镖落在阴影区域的概率为________.19.如图,在ABCD 中,2AD =,3AB =,45A ∠=︒,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则图中阴影部分的面积为__________(结果保留π).20.如图,正方形ABCD 的边长为8,M 是AB 的中点,一动点P 从点B C D --运动,连接PM ,以点P 为圆心,PM 的长为半径作P ,当P 与正方形ABCD 的边相切时,BP 的长为_________.三、解答题21.已知关于x 的一元二次方程x 2+2mx ﹣n 2+5=0.(1)当m =1时,该一元二次方程的一个根是1,求n 的值;(2)若该一元二次方程有两个相等的实数根.①求m 、n 满足的关系式;②在x 轴上取点H ,使得OH =|m |,过点H 作x 轴的垂线l ,在垂线l 上取点P ,使得PH =|n |,则点P 到点(3,4)的距离最小值是 .22.如图所示,在△ABC 中,AB =CB ,以BC 边为直径的⊙O 交AC 于点E .点D 在BA 的延长线上,且∠ACD =12∠ABC .(1)求证:CD 是⊙O 的切线;(2)若∠ACB =60°,BC =12,连接OE ,求劣弧BE 所对扇形BOE 的面积(结果保留π).23.如图,直径为5的M 的圆心在x 轴正半轴上,M 和x 轴交于,A B 两点,和y 轴交于,C D 两点且4CD =,抛物线2y ax bx c =++经过,,A B C 三点,顶点为N .(1)求,,A B C 三点的坐标.(2)求经过,,A B C 三点的抛物线的解析式.(3)直线NC 与x 轴交于点E ,试判断直线CN 与M 的位置关系,并说明理由. 24.如图,AB 是O 的直径,弦CD AB ⊥与点E ,点P 在O 上,1C ∠=∠.(1)求证://CB PD ;(2)若3BC =,2sin 3C ∠=,求CD 的长. 25.如图,在ABC 中,90,C ABC ∠=︒∠的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点,F O 是BEF 的外接圆.(1)求证:AC 是O 的切线;(2)过点E 作EH AB ⊥于点H ,若8,4BC EH ==,求O 的半径. 26.如图,已知BC 是O 的直径,AC 切O 于点C ,AB 交O 于点D ,E 为AC 的中点,连接CD ,DE .(1)求证:DE 是O 的切线;(2)若8BD =,6CD =,求AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接OA ,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB 是等边三角形,进一步得出结论.【详解】解:∵BD 是圆O 的直径,且BD=10∴OB=5连接OA ,如图,∵BD 是圆O 的直径,∴90ACB ABD ∠+∠=︒又2ABD C ∠=∠∴3∠C=90°,即∠C=30°,∴∠AOB=60°∴△AOB 是等边三角形,∴AB=OB=5故选:B .【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.2.D解析:D【分析】重物上升的距离恰好是滑轮转过的弧长,根据弧长公式计算即可.【详解】∵重物上升的距离恰好是滑轮转过的弧长,∴4π=n 6180π⨯⨯, 解得n=120,故选D.【点睛】 本题考查了弧长的计算,熟记弧长公式,读懂题意是解题的关键.3.B解析:B【分析】利用垂径定理EC 的长,再在Rt OEC 中,利用勾股定理求解即可.【详解】解:设OC=OB=x ,OE=OB-BE= x-1∵在O 中,AB ⊥CD ,AB 是直径,6CD = ∴11=6=322CD EC DE =⨯=, ∵在Rt OEC 中,OC 2=CE 2+OE 2,即x 2=32+(x-1)2,解得:x=5,∴OE = x-1=4,∴AE=OA+OE=5+4=9,故选:B .【点睛】本题考查垂径定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.4.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.5.C解析:C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长2253-,所以最短弦为8;所以符合题意的弦长为8到10,故选C.【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.6.A解析:A【分析】连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,先证明点C 的运动轨迹是以点(1,0)M 为圆心,1为半径的M ,设M 交MN 于点C ',解得直线DE 与坐标轴的交点,即可解得OD OE 、的长,再由勾股定理解得DE 的长,接着证明DNM DOE 解得MN 的长,最后当点C 与点C '重合时, 此时CDE △面积的最小值,据此解题.【详解】解:如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,,AC CB AM OM ==112MC OB ∴== C ∴的运动轨迹是以点(1,0)M 为圆心、半径为1的圆,设M 交MN 于点C ', 直线DE 的解析式为334y x =-, 令0x =,得3y =- (0,3)E ∴-令0y =,得4x =(4,0)D ∴3,4,OE OD ∴==3DM =22345DE ∴+=,MDN ODE MND DOE ∠=∠∠=∠DNM DOE ∴MN DM OE DE ∴= 335MN ∴= 95MN ∴= 94155C N '∴=-= 当点C 与点C '重合时,此时CDE △面积的最小值11452225DE C N '=⋅=⨯⨯= 故选:A .【点睛】本题考查圆的综合题,涉及一次函数与坐标轴的交点、勾股定理、相似三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.B解析:B【分析】连接BD ,根据直径所对的圆周角是直角,可求得∠ABD =90°,又由A β∠=,可求得∠ADB =90β︒-,再根据∠ADB =∠DBC +∠C ,可得∠DBC =90βα︒--,从而求出弧DE 的度数.【详解】解:连接BD ,∵AD 是直径,∴90ABD ∠=︒,∴90A ADB ∠+∠=︒,∴90ADB β∠=︒-,又∵∠ADB =∠DBC +∠C ,∴()90DBC αβ∠=︒-+,若70αβ+=︒,则()90907020DBC αβ∠=︒-+=︒-︒=︒,∴弧DE 的度数20240=︒⨯=︒,故选B .【点睛】此题主要考查了圆周角定理及推论、三角形外角的性质,熟练掌握圆周角定理、构造直径所对圆周角是解题的关键.8.D解析:D【分析】先证明∆BAE ≅∆CAD ,再证明∆ABG ≅ ∆ACG ,得AF 是∠BAC 的平分线,进而即可判断①;先证明BDC=∠CEB=90°,根据直角三角形的性质,即可判断②;根据角平分线的性质,得点G 到∆ABC 的三边距离都相等,结合“等积法”即可判断③;先证明B ,C ,D ,E 在以点F 为圆心的圆上,进而即可判断④.【详解】∵AB=AC ,∠BAE=∠CAD ,AE=AD ,∴∆BAE ≅ ∆CAD ,∴∠ABE=∠ACD ,∵AB=AC ,∴∠ABC=∠ACB ,∴∠ABC-∠ABE=∠ACB-∠ACD ,即:∠GBC=∠GCB ,∴BG=CG ,∴∆ABG ≅ ∆ACG ,∴∠BAG=∠CAG ,即AF 是∠BAC 的平分线,∴BF CF =,故①正确;∵BE AC ⊥,∴∠CEB=90°,由①可知:BD=CE ,∠ABC=∠ACB ,又∵BC=CB ,∴∆BDC ≅∆CEB ,∴∠BDC=∠CEB=90°,∵点F 是BC 的中点,∴CF DF =,故②正确;∵BE 平分ABC ∠,AF 平分∠BAC ,∴点G 是角平分线的交点,∴点G 到∆ABC 的三边距离都相等,且等于FG ,∵5AB AC ==,6BC =,AF ⊥BC ,∴4=, ∴S ∆ABC =12(AB+AC+BC)∙FG=12×16FG=8FG ,S ∆ABC =12BC∙AF=12, ∴8FG=12,即:32FG =,故③正确; ∵BE AC ⊥,由①可知:CD ⊥AB , ∴B ,C ,D ,E 在以点F 为圆心的圆上,∴2DFE ABE ∠=∠,故④正确. 故选D .【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,角平分线的性质,圆周角定理,熟练掌握“等腰三角形三线合一”,“直角三角形,斜边上的中线等于斜边的一半”,是解题的关键.9.D解析:D【分析】根据菱形的性质可以得出四条边平行并且都相等,又根据AB 是直径,即可知道∠ACB=90°,即可判断A ,因为三角形ABC 为直角三角形,根据求∠A 的正弦值即可判断∠A=30°,即可判断D ,根据中位线的性质即可B 、C 选项;【详解】∵ 四边形OBCD 是菱形,∴ OB ∥CD ,OD ∥BC ,OB=OD=CD=BC ,∵ AB 是直径,∴ ∠ACB=90°,∵OD ∥BC ,∴ ∠APO=90°,∴OD ⊥AC ,故A 正确; ∵12BC OD A AB AB ===sin ∠ , ∴∠A=30°,∴2OA OP = ,故D 错误,∵2OA OP =,∴2OD OP = ,∴DP=OP ,∴AC平分OD,故C正确;∴BC=2DP,故B正确;故选:D.【点睛】本题考查了菱形的性质,锐角三角函数、三角形的中位线的性质,圆周角的性质,熟练掌握知识点是解题的关键;10.B解析:B【分析】连接CD,根据圆的内接四边形的性质得到∠CDB=180°-∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论;【详解】如图:连接CD,∵∠A=50°,∴∠CDB=180°-∠A=130°,∵ E是边BC的中点,∴ OD⊥BC,∴ BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故选:B.【点睛】本题考查了三角形的外接圆与外心,圆内接四边形的性质,垂径定理,等腰三角形的性质,正确的理解题意是解题的关键.11.D解析:D【分析】连接OB,过点O作OC⊥AB于点D,交圆O于点C,由题意可知CD为8,然后根据勾股定理求出BD的长,进而可得出AB的长.【详解】如图,连接OB,过点O作OC⊥AB于点D,交圆O于点C,则AB=2BD,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ), ∴()221692512BD OB OD cm =-=-= ,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.12.A解析:A【分析】连接OB ,根据平行四边形的判定及平行线的性质得出2OF ⊥BE 于F ,根据=()OBE OEA OBE S S SS S ---阴扇扇OEA 求解即可.【详解】 解:连接OB ,∴OB=OE=OA ,∵BC 与⊙O 相切于B ,∴OB ⊥BC ,∵四边形ABCD 是平行四边形,∴BC ∥OA ,OC ∥AB ,∴∠BOA=∠OBC=90°, ∵OB=OA ,AB=2,∴∠OAB=∠OBA=45°,2,即2作OF ⊥BE 于F ,∵OA ∥BC ,∴∠COB=∠OBA=45°,∴∠EOB=180°-∠COB=180°-45°=135°, ∴2135(2)33604OBE S ππ==扇形,112sin 22sin(135)222OBE S ab C ==︒=,245(2)13604OEA S ππ==扇形, ∴=()OBE OEA OBE S S SS S ---阴扇扇OEA =32124242ππ--+=21=42ππ, 故选A .【点睛】本题考查了平行线的性质,平行四边形的判定与性质,解题的关键是正确作出辅助线.二、填空题13.24cm 【分析】连接OAOB 由切线长定理可得:PA=PBDA=DCEC=EB ;由勾股定理可得PA 的长△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB 即可求得△PDE 的周长【解析:24cm【分析】连接OA 、OB ,由切线长定理可得:PA=PB ,DA=DC ,EC=EB ;由勾股定理可得PA 的长,△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB ,即可求得△PDE 的周长.【详解】解:连接OA 、OB ,如图所示:∵PA 、PB 为圆的两条切线,∴由切线长定理可得:PA=PB ,同理可知:DA=DC ,EC=EB ;∵OA ⊥PA ,OA=5cm ,PO=13cm ,∴在Rt △POA 中,由勾股定理得:=cm,12∴PA=PB=12cm;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24cm,故答案为:24cm.【点睛】本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.14.(92)【分析】设圆与x轴y轴的切点分别是EF连接EP并延长交AC于点N连接FP并延长交BC于点M连接PCPD利用切线的性质垂径定理勾股定理计算PMCM的长即可【详解】如图设圆与x轴y轴的切点分别是解析:(9,2).【分析】设圆与x轴,y轴的切点分别是E,F,连接EP,并延长,交AC于点N,连接FP,并延长,交BC于点M,连接PC,PD,利用切线的性质,垂径定理,勾股定理计算PM,CM的长即可.【详解】如图,设圆与x轴,y轴的切点分别是E,F,连接EP,并延长,交AC于点N,连接FP,并延长,交BC于点M,连接PC,PD,∵P与x轴、y轴都相切,∴PE⊥OB,PF⊥OA,∵FO⊥OE,PE=PF,∴四边形PFOE是正方形,∵P的半径为5,∴PE=PF=PC=PD=5,∵四边形AOBC是矩形,∴PN⊥AC,PM⊥BC,∴四边形AOEN,四边形NEBC都是矩形,∵点A的坐标是()0,8,∴OA=EN=8,∴AF=PN=CM=3,∴=,∴AC=OB=AN+NC=9,∵PM⊥BC,∴CM=DM=3,∴BD=BC-CD=8-6=2,∴点D的坐标为(9,2).故答案为:(9,2).【点睛】本题考查了切线的性质,正方形的判定,矩形的性质和判定,勾股定理,垂径定理,根据题意熟练运用切线的性质是解题的关键.15.5【分析】取EF的中点M作MN⊥AD于点M取MN上的球心O连接OF 设OF=x则OM=16-xMF=12在Rt△MOF中利用勾股定理求得OF的长即可【详解】取EF的中点M作MN⊥AD于点M取MN上的球解析:5【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16-x,MF=12,在Rt△MOF中利用勾股定理求得OF的长即可.【详解】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=16cm,设OF=x cm,则ON=OF,∴OM=MN-ON=16-x,MF=12cm,在Rt△MOF中,OM2+MF2=OF2,即:(16-x)2+122=x2,解得:x=12.5 (cm),故答案为:12.5.【点睛】本题主考查垂径定理、矩形的性质及勾股定理的应用,正确作出辅助线构造直角三角形是解题的关键.16.【分析】根据题意画出图形先求出边长为6的正三角形的外接圆的半径再求出其周长即可【详解】解:如图所示连接OBOC过O作OD⊥BC于D∵△ABC 是边长为6的等边三角形BC=6∴∠BOC==120°∠BO解析:43π【分析】根据题意画出图形,先求出边长为6的正三角形的外接圆的半径,再求出其周长即可.【详解】解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵△ABC是边长为6的等边三角形,BC=6,∴∠BOC=3603︒=120°,∠BOD=12∠BOC=60°,BD=3,∴OB=3 sin603BD==︒∴外接圆的周长33.故答案为:3.【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用数形结合求解是解答此题的关键.17.【分析】要求第一次相切和第三次相切的时间间隔题目已知速度那么就要求第一次相切圆心运动的距离与第三次相切圆心运动的距离之差根据公式:时间=路程÷速度即可求解【详解】解:第一次相切如图①∵∴即第一次相切解析:521 2+【分析】要求第一次相切和第三次相切的时间间隔,题目已知速度,那么就要求第一次相切圆心运动的距离与第三次相切圆心运动的距离之差,根据公式:时间=路程÷速度即可求解.【详解】解:第一次相切如图①,∵12O P cm,1O P AC⊥,∴11222sin sin 30O P O A cm A ===︒,即第一次相切圆心运动的距离为22cm .第二次相切如图②, 22O P cm =,2O P BC ⊥, 第三次相切如图③,∵32O P cm =,3O P AB ⊥,∴3322sin O P O B cm B ===, 第三次相切圆心运动的距离为3722AB O B +=+,∴第一次相切圆心运动的距离与第三次相切圆心运动的距离之差为:72222522+-=+,∴52252122s t v +===+, 故答案为:5212+.【点睛】本题考查的是特殊角的三角函数值以及求圆平移到与直线相切时圆心经过的距离,解题的关键是求出第一次相切圆心运动的距离与第三次相切圆心运动的距离之差.18.【分析】先判断出两半圆交点为正方形的中心连接OAOD 则可得出所产生的四个小弓形的面积相等先得出2个小弓形的面积即可求阴影部分面积根据即可求得概率【详解】解:由题意易知两半圆的交点即为正方形的中心设此解析:12【分析】先判断出两半圆交点为正方形的中心,连接OA ,OD ,则可得出所产生的四个小弓形的面积相等,先得出2个小弓形的面积,即可求阴影部分面积,根据ABCD S S 阴影正方形即可求得概率.【详解】解:由题意,易知两半圆的交点即为正方形的中心,设此点为O ,连接AO ,DO ,则图中的四个小弓形的面积相等,∵两个小弓形面积=14AOD AOD AOD ABCD S S S S --△半圆半圆正方形=, 又∵正方形ABCD 的边长为4,∴各半圆的半径为2,∴两个小弓形面积=2112-44=2-424ππ⨯⨯⨯⨯, ∴=2S S ⨯阴影半圆-4个小弓形的面积=()22-22-4=8ππ⨯,∴飞镖落在阴影部分的概率为:81==162ABCD S S 阴影正方形, 故答案为:12. 【点睛】 本题考查扇形的面积、正方形的性质、几何概率,解题的关键是求出小弓形的面积. 19.【分析】过点作于点根据等腰直角三角形的性质求得从而求得最后由结合扇形面积公式平行四边形面积公式三角形面积公式解题即可【详解】解:过点作于点故答案为:【点睛】本题考查等腰直角三角形平行四边形的性质扇形 52π-【分析】过点D 作DF AB ⊥于点F ,根据等腰直角三角形的性质求得DF ,从而求得EB ,最后由ABCD EBC ADE S SS S =--阴影扇形结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.【详解】解:过点D 作DF AB ⊥于点F ,2,3,45AD AB A ==∠=︒,22DF AD ∴==, 2AE AD ==,1EB AB AE ∴=-=,ABCD EBC ADE S S S S ∴=--阴影扇形2452132123602π⨯=-⨯2322π= 22π=, 故答案为:522π-. 【点睛】 本题考查等腰直角三角形、平行四边形的性质、扇形的面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.20.3或或【分析】由线段中点的性质解得当与正方形的边相切时分别作出相应的图形分三种情况讨论:①当与正方形的边相切切点为点时设在中利用勾股定理解得的值即可解出的长;②当与正方形的边相切切点为点时可证明四边 解析:3或35【分析】由线段中点的性质解得4BM =,当P 与正方形ABCD 的边相切时,分别作出相应的图形,分三种情况讨论:①当P 与正方形ABCD 的边CD 相切,切点为点C 时, 设PC PM x ==,在Rt PBM △中,利用勾股定理解得x 的值,即可解出BP 的长;②当P 与正方形ABCD 的边AD 相切,切点为点K 时,可证明四边形PKDC 是矩形,由矩形对边相等的性质结合圆的半径相等,解得2PM PK DC BM ===,再在Rt PBM △中,利用勾股定理解题;③当P 与正方形ABCD 的边AB 相切,切点为点M 时,在Rt PMB 中,利用勾股定理解题即可.【详解】解:M 是AB 的中点,118422BM AB ∴==⨯=分三种情况讨论:①如图,当P 与正方形ABCD 的边CD 相切,切点为点C 时,设PC PM x ==,在Rt PBM △中,222PM BM BP =+2224(8)x x ∴=+-22246416x x x ∴=+-+5x ∴=5,3PC BP BC PC ∴==-=;②如图,当P 与正方形ABCD 的边AD 相切,切点为点K 时,连接PK ,则PK AD ⊥,四边形PKDC 是矩形,2PM PK DC BM ∴===48BM PM ∴==,在Rt PBM △中, 228443PB =-=;③如图,当P 与正方形ABCD 的边AB 相切,切点为点M 时,,8,4PM AB PM BC BM ⊥===在Rt PMB 中,228445BP =+=综上所述,当P与正方形ABCD的边相切时,BP的长为:3或435故答案为:3或4345【点睛】本题考查切线的性质、勾股定理等知识,是重要考点,难度一般,掌握相关知识是解题关键.三、解答题21.(1)2;(2)①m2+n2=5;②55【分析】(1)把m=1,x=1代入方程得1+2-n2+5=0,然后解关于n的方程即可;(2)①利用判别式的意义得到△=4m2-4(-n2+5)=0,从而得到m与n的关系;②利用勾股定理得到22m n+5P在以O5上,然后根据点与圆的位置关系判断点P到点(3,4)的距离最小值.【详解】解:(1)把m=1,x=1代入方程得1+2﹣n2+5=0,解得n=2,即n的值为2;(2)①根据题意得△=4m2﹣4(﹣n2+5)=0,整理得m2+n2=5;②∵OH=|m|,PH=|n|,∴OP22+5m n即点P在以O5∴原点与点(3,4)的连线与⊙O的交点P使点P到点(3,4)的距离最小,∵原点到点(3,422+5,34∴点P到点(3,4)的距离最小值是55故答案为55【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了点与圆的位置关系.22.(1)见解析;(2)12π【分析】(1)连接BE ,由圆周角定理可得出∠BEC =90°,由等腰三角形的性质得出∠ABE =∠CBE =12∠ABC ,得出∠ACD =∠CBE ,证得∠BCE+∠ACD =90°,则可得出结论; (2)求出∠BOE =120°,由扇形的面积公式可得出答案.【详解】(1)证明:连接BE ,∵BC 是⊙O 的直径,∴∠BEC =90°,∴BE ⊥AC ,又∵AB =CB ,∴∠ABE =∠CBE =12∠ABC , ∵∠ACD =12∠ABC , ∴∠ACD =∠CBE ,又∵∠BCE+∠CBE =90°,∴∠BCE+∠ACD =90°,∵点C 在⊙O 上,∴CD 是⊙O 的切线.(2)解:∵∠ACB =60°,∴∠BOE =120°,∵BC =12,∴⊙O 的半径是6,∴S 扇形BOE =21206360π⨯⨯=12π. 【点睛】本题考查了切线的性质、圆周角定理、等腰三角形的性质、扇形面积公式等知识,熟练掌握切线的判定方法是解题的关键;23.(1)点A 的坐标为()1,0-,点B 的坐标为()4,0,C 点的坐标为()0,2-;(2)213222y x x =--;(3)直线CN 与M 相切,见解析. 【分析】 (1)连接DM ,在Rt △DOM 中,求出OM ,OC 、OA 、OB ,则可求出A 、B 、C 三点的坐标即可; (2)由A 、B 两点坐标,设抛物线y =a (x +1)(x−4),将C (0,−2)代入求出a 即可解决问题;(3)连接MC ,根据勾股定理的逆定理证明CM ⊥EN 即可.【详解】(1)如图,连接DM ,∵M 的直径5,∴52DM =, ∵4CD =,∴2OD OC ==,∴C 点的坐标为()0,2-,∴2232OM DM OD =-=, ∴53122OA =-=,∴54OB OA =-=, ∴点A 的坐标为()1,0-,点B 的坐标为()4,0;(2)由A 、B 两点坐标,设抛物线()()14y a x x =+-,将()0,2C -代入,得()()-20104a =+-解得:12a =, ∴()()1142y x x =+-, ∴经过,,A B C 三点的抛物线解析式为213222y x x =--; (3)直线CN 与M 相切;如图,连接CM ,设过CN 直线的解析式为y kx b =+,∵抛物线的顶点为N , ∴332-12222b a -=-=⨯,()219424252414842ac b a ⨯⨯---==-⨯, ∴N 点的坐标为325,28⎛⎫- ⎪⎝⎭, 将C ()0,2-,N 325,28⎛⎫-⎪⎝⎭代入y kx b =+得 232528b k b =-⎧⎪⎨+=-⎪⎩ 解得342k b ⎧=-⎪⎨⎪=-⎩ , ∴CN 直线的解析式为324y x =--, 当y=0时,x=8-3∴点E 的坐标为8,03⎛⎫- ⎪⎝⎭ ∴22103CE OC OE =+=, ∴256EM OE OM =+=, ∵2254CM =,21009CE =,262536EM =, ∴222CM CE EM +=,∴ECM ∆是直角三角形,即MC EC ⊥,∴直线CN 与M 相切.【点睛】此题考查待定系数法求函数解析式,圆、垂径定理、圆的切线的判定、勾股定理以及逆定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.24.(1)见解析;(2)CD =【分析】(1)根据同弧所对圆周角相等可以确定∠C=∠P ,又知∠1=∠C ,即可得∠1=∠P ,进而得到//CB PD ;(2)先利用三角函数求出BE 的长,再根据勾股定理求EC 得长,最后根据垂径定理得DE EC =,即可求出CD DE EC =+的长.【详解】(1)证明:∵C P ∠=∠,1C ∠=∠.∴1P ∠=∠.∴//CB PD .(2)解:∵CD AB ⊥,3BC =,2sin 3C ∠=. ∴在t R △CEB 中,2sin =3BE C BC ∠=,则2=33BE . ∴=2BE .又∵3BC =,CD AB ⊥∴t R △CEB 中,DE EC ==, ∴CD DE EC =+=【点睛】本题考查了三角函数解直角三角形、勾股定理、垂径定理和圆周角性质,平行线的判定,解题的关键是利用垂径定理和圆周角定理找到边与角的关系.25.(1)见解析;(2)5【分析】(1)连接OE ,由于BE 是角平分线,则有CBE ABE ∠=∠,再证可得OE//BC ;根据平行线的性质和切线的判定即可证得结论;(2)先证明△BCE ≌△BHE ,再根据勾股定理列方程求解即可.【详解】 ()1证明:连结OE,∵BE 平分ABC ∠,CBE ABE ∴∠=∠又,=OB OE,∴∠=∠ABE BEO∴∠=∠CBE BEO ,//OE AC ∴,又90C ∠=︒,即AC BC ⊥.OE AC ∴⊥,∴AC 是O 的切线,()2解:∵BE 平分,ABC AC BC EH AB ∠⊥⊥、,CE EH ∴=,∵BE BE =,∴()Rt CBE Rt HBE HL ≌,8CB HB ∴==,设OE=OB=r ,8HO BH OB r ∴=-=-,222OE OH HE =+,()22284r r ∴=-+.解得:=5r .【点睛】本题主要考查了切线的证明、角平分线的性质定理以及全等三角形的判定与性质,勾股定理,掌握切线的证明、角平分线的性质定理以及全等三角形的判定与性质,勾股定理是解题关键.26.(1)证明见解析;(2)152 【分析】(1)连接OD ,根据切线的性质和直角三角形斜边的中线以及等腰三角形的性质得出,EDC ECD ∠=∠,ODC OCD ∠=∠,然后利用等量代换即可得出DE OD ⊥,从而证明结论;(2)首先根据勾股定理求出BC 的长度,然后证明BCD BAC ∽△△,最后利用CD BD AC BC=求解即可. 【详解】(1)证明:连接OD ,如图,∵BC 是O 的直径,∴90BDC ∠=︒,∴90ADC ∠=︒,∵E 为AC 的中点, ∴12DE EC AC ==, ∴EDC ECD ∠=∠,∵OD OC = , ∴ODC OCD ∠=∠,∵AC 切O 于点C ,∴AC OC ⊥,∴90EDC ODC ECD OCD ∠+∠=∠+∠=︒,∴DE OD ⊥,∴DE 是O 的切线;(2)解:在Rt BCD 中,∵8BD =,6CD =,∴10BC ==∵90BDC BCA ∠=∠=︒,B B ∠=∠,∴BCD BAC ∽△△, ∴CD BD AC BC=, 即6810AC =, ∴152AC =. 【点睛】 本题主要考查圆的综合问题,掌握切线的判定及性质,相似三角形的判定及性质是解题的关键.。

北师大版九年级数学下册第一章学情评估 附答案 (1)

北师大版九年级数学下册第一章学情评估 附答案 (1)

北师大版九年级数学下册第一章学情评估一、选择题(本大题共10小题,每小题3分,共30分)1.cos 30°的值为()A.12 B.32 C.22 D.332.如图,在正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则tan∠ABC等于()A.32B.1 C.22 D. 2(第2题)(第5题)3.在Rt△ABC中,如果各边的长度同时扩大为原来的2倍,那么锐角A的正弦值和余弦值()A.都扩大为原来的2倍B.都缩小为原来的1 2C.都不变D.不能确定4.若3tan (α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=5,BC=2,那么sin ∠ACD等于()A.53 B.23 C.2 53 D.526.如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是()(第6题)A.8÷sin42=B.8÷tan42=C.8÷cos42=D.8×tan42=7.在Rt△ABC中,∠C=90°,AB=4,tan A=3,则BC的长为() A.3 B.2 C. 3 D.2 38.如图,窗子高AB=m米,窗子外面上方0.2米处有一个1米长的水平遮阳板CD,当太阳光线与水平线成60°角时,太阳光线刚好不能直接射入室内,则m 的值是()A.3+0.8B.3+0.2C.3-0.2D.3-0.8(第8题)(第9题)9.如图,某水库大坝的横断面是梯形ABCD,坝高DE=5 m,斜坡BC的坡比为5 ∶12,则斜坡BC的长为()A.17 m B.13 m C.12 m D.7 m10.如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF ⊥AB交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.35 B.55 C.45 D.2 55 (第10题)(第14题)二、填空题(本大题共5小题,每小题3分,共15分)11.在Rt△ABC中,∠C=90°,AB=10,BC=6,则sin A的值为________.12.比较大小:sin 37°________cos 37°.13.若α为锐角,且sin2α+cos2 26°=1,则α=________.14.如图,一架飞机在点A处测得水平地面上的一个标志物M的俯角为α,水平飞行900米后到达点B处,此时测得标志物M的俯角为β,若tan α=23,tan β=43,则飞机与地面的距离为________米.15.如图,AD是△ABC的中线,AD=5,tan∠BAD=34,S△ADC=15,则AC的长为________.(第15题)三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:sin 30°·tan 45°+sin2 60°-2cos 60°.17.如图,在Rt△ABC中,∠C=90°,BC=2,AC=2 3.解这个直角三角形.(第17题)18.如图,在△ABC中,∠B=30°,AB=4,AD⊥BC于点D,tan∠CAD=12,求BC的长.(第18题)四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,在Rt△ABC中,∠C=90°.(1)若AB=12,sin A=13,求BC的长;(2)若BC=2,AC=6,求∠B的度数.(第19题)20.如图,在△ABC中,点D是BC的中点,连接AD,AB=AD,BD=4,tan C=1 4.(1)求AB的长;(2)求点C到直线AB的距离.(第20题)21.一条船从A处出发,以每小时40海里的速度向正东方向航行,30分钟后到达B处,已知从A,B两处分别测得小岛C在北偏东45°方向和北偏东15°方向,如图所示.(1)求∠C的度数;(2)求B处与小岛C的距离.(结果保留根号)(第21题) 五、解答题(三)(本大题共2小题,每小题12分,共24分)22.王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,如图,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走210米到达斜坡上D点,在点D处测得树顶端A 的仰角为30°,若斜坡CF的坡比为i=1∶3(点E,C,B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).(第22题)23.如图,△ABC中,AB=AC=3 cm,BC=4 cm,点P从点B出发,沿BC边以2 cm/s的速度向终点C运动,点Q从点C出发,沿C→A→B的路径以3 cm/s 的速度向终点B运动,P,Q同时出发,设点P的运动时间为t s,△CPQ的面积为S cm2.(1)求sin B;(2)求S关于t的函数关系式.(第23题)答案一、1.B 2.B 3.C 4.A 5.A 6.D7.D8.C9.B 10.A二、11.3512.<13.26°14.1 20015.210提示:如图,过点D作DE⊥AB,垂足为E,过点A作AF⊥DC,垂足为F.∴tan∠BAD=DEAE.又∵tan∠BAD=34,∴可设DE=3x,AE=4x,又∵AD=5,∴(3x)2+(4x)2=52,解得x=1(负值已舍去).∴AE=4,DE=3.∵AD是△ABC的中线,∴易得S△ADC =S△ADB=12AB·DE=15,∴12AB×3=15,∴AB=10,∴BE=AB-AE=10-4=6. 在Rt△BDE中,BD=BE2+DE2=62+32=3 5,∴S△ADB =12BD·AF=12×3 5×AF=15,∴AF=2 5.在Rt△ADF中,DF=AD2-AF2=25-20= 5. ∴FC=CD-DF=BD-DF=3 5-5=2 5.在Rt△AFC中,AF=2 5,FC=2 5,∴AC=AF2+FC2=2 10.(第15题)三、16.解:原式=12×1+⎝ ⎛⎭⎪⎫322-2×12=12+34-1=14. 17.解:在Rt △ABC 中,∠C =90°,BC =2,AC =2 3,∴AB =AC 2+BC 2=(2 3)2+22=4, tan A =BC AC =22 3=33,∴∠A =30°,∴∠B =180°-90°-30°=60°. 18.解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°.在Rt △ADB 中,∠B =30°,AB =4, ∴AD =2,∴BD =42-22=2 3.在Rt △ADC 中,tan ∠CAD =CD AD =12,AD =2, ∴CD =1.∴BC =BD +CD =2 3+1.四、19.解:(1)在Rt △ABC 中,∵sin A =BC AB =13,AB =12,∴BC =4.(2)在Rt △ABC 中,∵tan B =AC BC =62=3,∴∠B =60°.20.解:(1)如图,过点A 作AH ⊥BD ,垂足为点H .∵AB =AD ,∴BH =HD =12BD =2. ∵点D 是BC 的中点,∴BD =CD =4. ∴HC =HD +CD =6.∴tan C =AH CH =AH 6=14,∴AH =32. ∴AB =BH 2+AH 2=22+⎝ ⎛⎭⎪⎫322=52.(2)如图,过点C 作CG ⊥BA ,交BA 的延长线于点G . 由(1)易知BC =8.∵sin B =AH AB =CGBC ,∴3252=CG 8.∴CG =245.∴点C 到直线AB 的距离为245.(第20题)21.解:(1)∵∠ABC =90°+15°=105°,∠CAB =90°-45°=45°, ∴∠C =180°-105°-45°=30°. (2)过点B 作BE ⊥AC 于点E . 由题意得,AB =40×3060=20(海里). ∴BE =AB ·sin 45°=10 2海里, ∴BC =2BE =20 2海里.答:B 处与小岛C 的距离为20 2海里. 五、22.解:(1)如图,过点D 作DH ⊥CE 于点H .(第22题)由题意知CD =210米.∵斜坡CF 的坡比为i =1∶3,∴DH CH =13. 设DH =x 米,则CH =3x 米, ∵DH 2+CH 2=DC 2, ∴x 2+(3x )2=(210)2,解得x =2(负值舍去).∴DH =2米.答:王刚同学从点C 到点D 的过程中上升的高度为2米. (2)如图,过点D 作DG ⊥AB 于点G . 由题易得四边形DHBG 为矩形,∴DH =BG =2米.设AB =m 米,则AG =(m -2)米. ∵∠ACB =45°,∴BC =AB =m 米. 由(1)知CH =6米,∴BH =DG =(m +6)米. ∵∠ADG =30°,∴AG DG =tan 30°=33. ∴m -2m +6=33,解得m =6+4 3. 答:大树AB 的高度是(6+4 3)米. 23.解:(1)过点A 作AD ⊥BC ,垂足为D ,∵AB =AC ,AD ⊥BC ,BC =4 cm , ∴BD =12BC =2 cm.在Rt △ABD 中,AB =3 cm ,BD =2 cm , ∴AD =AB 2-BD 2=32-22=5(cm), ∴sin B =AD AB =53.(2)当0<t ≤1时,如图①, 过点Q 作QE ⊥BC ,垂足为E ,∵AB =AC ,∴∠C =∠B ,∴sin C =sin B =53. 由题意得CQ =3t cm ,BP =2t cm , ∴CP =BC -BP =(4-2t )cm.在Rt △CQE 中,QE =CQ ·sin C =3t ·53=5t (cm). ∵S △CPQ =12CP ·QE ,∴S =12(4-2t )·5t =2 5t -5t 2=-5t 2+2 5t ;11(第23题) 当1<t <2时,如图②,过点Q 作QE ⊥BC ,垂足为E . 由题意得CA +AQ =3t cm ,BP =2t cm ,∴CP =BC -BP =(4-2t )cm ,BQ =AB +AC -(CA +AQ )=(6-3t )cm.在Rt △BQE 中,QE =BQ ·sin B =(6-3t )·53=2 5-5t (cm),∵S △CPQ =12CP ·QE ,∴S =12(4-2t )·(2 5-5t )=5t 2-4 5t +4 5.∴S =⎩⎨⎧-5t 2+2 5t (0<t ≤1),5t 2-4 5t +4 5(1<t <2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】期末测试(一)一.选择题(共12小题)1.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.B.C.D.2.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是一般锐角三角形3.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.4.如图,为了测量河岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ABC=α,那么AB等于()A.a•sinαB.a•cosαC.a•tanαD.5.下列函数中,是二次函数的有()①y=1﹣x2②y=③y=x(1﹣x)④y=(1﹣2x)(1+2x)A.1个 B.2个 C.3个 D.4个6.抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)7.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或8.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+19.若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=010.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD11.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α12.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3) B.(3,2) C.(1,3) D.(3,1)二、填空题13.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.14.抛物线y=(x﹣2)2﹣3的顶点坐标是.15.如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A (﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.16.如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=°.三、解答题17.王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)18.随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?19.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).20.如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC 到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.21.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD.(1)求证:EB=ED.(2)若AO=6,求的长.22.如图,已知等腰直角三角形ABC,∠ACB=90°,D是斜边AB的中点,且AC=BC=16分米,以点B为圆心,BD为半径画弧,交BC于点F,以点C为圆心,CD为半径画弧,分别交AB、BC于点E、G.求阴影部分的面积.参考答案与试题解析一.选择题(共12小题)1.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.B.C.D.【考点】T1:锐角三角函数的定义.【专题】选择题【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:A、在△BCD中,sinα=,故A正确;B、在Rt△ABC中sinα=,故B正确;C、在Rt△ACD中,sinα=,故C正确;D、在Rt△ACD中,cosα=,故D错误;故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是一般锐角三角形【考点】T5:特殊角的三角函数值.【专题】选择题【分析】先根据特殊角的三角函数值求出∠A,∠B的值,再根据三角形内角和定理求出∠C即可判断.【解答】解:∵tanA=1,sinB=,∴∠A=45°,∠B=45°.又∵三角形内角和为180°,∴∠C=90°.∴△ABC是等腰直角三角形.故选B.【点评】解答此题的关键是熟记特殊角的三角函数值,三角形内角和定理及等腰三角形的判定.3.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.【考点】T7:解直角三角形;D5:坐标与图形性质.【专题】选择题【分析】利用待定系数法求得直线AB的解析式,然后求得B的坐标,进而利用正切函数定义求解.【解答】解:设直线AB的解析式是y=kx+b,根据题意得:,解得,则直线AB的解析式是y=﹣x+2.在y=﹣x+2中令y=0,解得x=.则B的坐标是(,0),即OB=.则tan∠OAB===.故选B.【点评】本题考查了三角函数的定义以及待定系数法求函数解析式,正确求得B 的坐标是关键.4.如图,为了测量河岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ABC=α,那么AB等于()A.a•sinαB.a•cosαC.a•tanαD.【考点】T8:解直角三角形的应用.【专题】选择题【分析】根据已知角的正切值表示即可.【解答】解:∵AC=a,∠ABC=α,在直角△ABC中t anα=,∴AB=.故选:D.【点评】此题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.5.下列函数中,是二次函数的有()①y=1﹣x2②y=③y=x(1﹣x)④y=(1﹣2x)(1+2x)A.1个 B.2个 C.3个 D.4个【考点】H1:二次函数的定义.【专题】选择题【分析】把关系式整理成一般形式,根据二次函数的定义判定即可解答.【解答】解:①y=1﹣x2=﹣x2+1,是二次函数;②y=,分母中含有自变量,不是二次函数;③y=x(1﹣x)=﹣x2+x,是二次函数;④y=(1﹣2x)(1+2x)=﹣4x2+1,是二次函数.二次函数共三个,故选C.【点评】本题考查二次函数的定义.6.抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)【考点】H3:二次函数的性质.【专题】选择题【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.7.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或【考点】H7:二次函数的最值.【专题】选择题【分析】将二次函数配方成顶点式,分m<﹣1、m>2和﹣1≤m≤2三种情况,根据y的最小值为﹣2,结合二次函数的性质求解可得.【解答】解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=﹣;②若m>2,当x=2时,y=4﹣4m=﹣2,解得:m=<2(舍);③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=或m=﹣<﹣1(舍),∴m的值为﹣或,故选:D.【点评】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解题的关键.8.已知二次函数的图象经过点(1,10),顶点坐标为(﹣1,﹣2),则此二次函数的解析式为()A.y=3x2+6x+1 B.y=3x2+6x﹣1 C.y=3x2﹣6x+1 D.y=﹣3x2﹣6x+1【考点】H8:待定系数法求二次函数解析式.【专题】选择题【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:y=a(x+1)2﹣2,再把(1,10)代入,求出a的值,即可得出二次函数的解析式.【解答】解:设抛物线的解析式为:y=a(x+1)2﹣2,把(1,10)代入解析式得10=4a﹣2,解得a=3,则抛物线的解析式为:y=3(x+1)2﹣2=3x2+6x+1.故选A.【点评】本题主要考查了用待定系数法求二次函数解析式,在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式.9.若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=0【考点】HA:抛物线与x轴的交点.【专题】选择题【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选A.【点评】本题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的理解题意是解题的关键.10.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD【考点】M2:垂径定理.【专题】选择题【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.11.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α【考点】M5:圆周角定理.【专题】选择题【分析】首先连接OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OBC的度数.【解答】解:∵连接OC,∵△ABC内接于⊙O,∠A=α,∴∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB==90°﹣α.故选D.【点评】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.12.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3) B.(3,2) C.(1,3) D.(3,1)【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质.【专题】选择题【分析】由已知点的坐标得出△ABC为直角三角形,∠BAC=90°,得出△ABC的外接圆的圆心是斜边BC的中点,即可得出结果.【解答】解:如图所示:∵点A,B,C的坐标为(1,4),(5,4),(1,﹣2),∴△ABC为直角三角形,∠BAC=90°,∴△ABC的外接圆的圆心是斜边BC的中点,∴△ABC外接圆的圆心坐标是(,),即(3,1).故选:D.【点评】本题考查了三角形的外接圆与外心、坐标与图形性质、直角三角形的外心特征;熟记直角三角形的外心特征,根据题意得出三角形是直角三角形是解决问题的关键.13.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【考点】T7:解直角三角形.【专题】填空题【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.14.抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).【考点】H3:二次函数的性质.【专题】填空题【分析】根据抛物线y=(x﹣2)2﹣3,可以看出该函数解析式就是二次函数的顶点式,从而可以直接得到该函数的顶点坐标,从而可以解答本题.【解答】解:∵抛物线y=(x﹣2)2﹣3∴该抛物线的顶点坐标为:(2,﹣3),故答案为:(2,﹣3).【点评】本题考查二次函数的性质,解题的关键是明确函数的顶点式,由顶点式可以直接得到顶点坐标.15.如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A (﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为①④.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【专题】填空题【分析】根据抛物线与y轴交于点B(0,﹣2),可得c=﹣2,依此判断③;由抛物线图象与x轴交于点A(﹣1,0),可得a﹣b﹣2=0,依此判断①②;由|a|=|b|可得二次函数y=ax2+bx+c的对称轴为y=,可得x2=2,比较大小即可判断④;从而求解.【解答】解:由A(﹣1,0),B(0,﹣2),得b=a﹣2,∵开口向上,∴a>0;∵对称轴在y轴右侧,∴﹣>0,∴﹣>0,∴a﹣2<0,∴a<2;∴0<a<2;∴①正确;∵抛物线与y轴交于点B(0,﹣2),∴c=﹣2,故③错误;∵抛物线图象与x轴交于点A(﹣1,0),∴a﹣b﹣2=0,无法得到0<a<2;②﹣1<b<0,故①②错误;∵|a|=|b|,二次函数y=ax2+bx+c的对称轴在y轴的右侧,∴二次函数y=ax2+bx+c的对称轴为y=,∴x2=2>﹣1,故④正确.故答案为:①④.【点评】本题考查了抛物线与x轴的交点,二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.16.如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=60°.【考点】MC:切线的性质.【专题】填空题【分析】由垂径定理易得BD=1,通过解直角三角形ABD得到∠A=30°,然后由切线的性质和直角三角形的两个锐角互余的性质可以求得∠AOB的度数.【解答】解:∵OA⊥BC,BC=2,∴根据垂径定理得:BD=BC=1.在Rt△ABD中,sin∠A==.∴∠A=30°.∵AB与⊙O相切于点B,∴∠ABO=90°.∴∠AOB=60°.故答案是:60.【点评】本题主要考查的圆的切线性质,垂径定理和一些特殊三角函数值,有一定的综合性.17.王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)【考点】T8:解直角三角形的应用.【专题】解答题【分析】根据题意作出合适的辅助线,可以求得AD和CD的长,进而可以求得DB的长,然后根据勾股定理即可得到AB的长,然后与17比较大小,即可解答本题.【解答】解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20cm,∴AD=AC•sin50°=20×0.8=16cm,CD=AC•cos50°=20×0.6=12cm,∵BC=18cm,∴DB=BC﹣CD=18﹣12=6cm,∴AB==,∵17=<,∴王浩同学能将手机放入卡槽AB内.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用直角三角形的相关知识解答.18.随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?【考点】HE:二次函数的应用.【专题】解答题【分析】(1)以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为y=a(x﹣1)2+h,代入(0,2)和(3,0)得出方程组,解方程组即可,(2)求出当x=1时,y=即可.【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为:y=a(x﹣1)2+h,代入(0,2)和(3,0)得:,解得:,∴抛物线的解析式为:y=﹣(x﹣1)2+;即y=﹣x2+x+2(0≤x≤3);(2)y=﹣x2+x+2(0≤x≤3),当x=1时,y=,即水柱的最大高度为m.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.19.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).【考点】MB:直线与圆的位置关系;MO:扇形面积的计算.【专题】解答题【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt △ODB 中,OD=OB ,∴∠B=30°, ∴∠DOB=60°,∴S 扇形AOB ==,则阴影部分的面积为S △ODB ﹣S 扇形DOF =×2×2﹣=2﹣. 故阴影部分的面积为2﹣.【点评】本题考查了切线的判定,扇形面积,以及勾股定理,熟练掌握切线的判定是解本题的关键.20.如图,△ABC 内接于⊙O ,BC 是⊙O 的直径,弦AF 交BC 于点E ,延长BC 到点D ,连接OA ,AD ,使得∠FAC=∠AOD ,∠D=∠BAF .(1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为5,CE=2,求EF 的长.【考点】ME :切线的判定与性质;S9:相似三角形的判定与性质.【专题】解答题【分析】(1)由BC是⊙O的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论;(2)连接BF,根据相似三角形的判定和性质即可得到结论.【解答】解:(1)∵BC是⊙O的直径,∴∠BAF+∠FAC=90°,∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切线;(2)连接BF,∴∠FAC=∠AOD,∴△ACE∽△DCA,∴,∴,∴AC=AE=,∵∠CAE=∠CBF,∴△ACE∽△BFE,∴,∴=,∴EF=.【点评】本题考查了切线的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.21.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD.(1)求证:EB=ED.(2)若AO=6,求的长.【考点】MN:弧长的计算;M5:圆周角定理.【专题】解答题【分析】(1)由AB=CD,根据圆心角、弧、弦的关系定理得出=,即+=+,那么=,根据圆周角定理得到∠CDB=∠ABD,利用等角对等边得出EB=ED;(2)先求出∠CDB=∠ABD=45°,再根据圆周角定理得出∠AOB=90°.又AO=6,代入弧长公式计算即可求解.【解答】(1)证明:∵AB=CD,∴=,即+=+,∴=,∵、所对的圆周角分别为∠CDB,∠ABD,∴∠CDB=∠ABD,∴EB=ED;(2)解:∵AB⊥CD,∴∠CDB=∠ABD=45°,∴∠AOD=90°.∵AO=6,∴的长==3π.【点评】本题考查了弧长的计算,圆心角、弧、弦的关系定理,圆周角定理,等腰三角形的判定,证明出∠CDB=∠ABD是解题的关键.22.如图,已知等腰直角三角形ABC,∠ACB=90°,D是斜边AB的中点,且AC=BC=16分米,以点B为圆心,BD为半径画弧,交BC于点F,以点C为圆心,CD为半径画弧,分别交AB、BC于点E、G.求阴影部分的面积.【考点】MO:扇形面积的计算;KW:等腰直角三角形.【专题】解答题【分析】根据题意和图形可以得到阴影部分的面积是△ABC的面积减去扇形BFD 的面积和右上角空白部分的面积,由题目中的数据可以求出各部分的面积,从而可以解答本题.【解答】解:等腰直角三角形ABC,∠ACB=90°,D是斜边AB的中点,且AC=BC=16分米,∴AB=16分米,∠DBF=45°,∴BF=CD=8分米,∴阴影部分的面积是:=(54+16π)平方分米,阴影部分的面积是(54+16π)平方分米.【点评】本题考查扇形面积的计算、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.。

相关文档
最新文档