高等数学微积分期末试卷及答案

合集下载

(完整word版)微积分期末试卷A及答案

(完整word版)微积分期末试卷A及答案

共 4 页,第 1 页 学生答题注意:勿超黑线两端;注意字迹工整。

共 4页,第 2 页) ()f x 在x a =处可导; (B )()f x 在x a =处不连续; (C)。

lim ()x af x →不存在 ; (D ) ()f x 在x a =处没有定义。

、设lnsin y x =,则dy =( )(A) 1cos x ; (B ) 1cos dx x;(C) cot x dx -; (D) cot x dx 。

6. 若()f x 的一个原函数为2x ,则()f x dx '=⎰( ) (A)12x C + (B ) 2x C + (C) x C + (D ) 2C +7、 1dx =⎰( )(A ) 2; (B ) 2π-; (C ) 0; (D )。

8、对-p 级数∑∞=11n p n ,下列说法正确的是( )(A ) 收敛; (B ) 发散;(C ) 1≥p 时,级数收敛; (D) 级数的收敛与p 的取值范围有关。

9、二元函数在(,)xy f x y ye =点0(1,1)p 可微,则(,)xy f x y ye =在0p 的全微 )00)()limx x f x x→-- .cos x ,求它的微分共 4 页,第 5 页 学生答题注意:勿超黑线两端;注意字迹工整。

共 4页,第 6 页5、(10分)求微分方程()x xe y dx xdy +=在初始条件1|0x y ==下的特解;6、(12分)判断级数211ln(1)n n ∞=+∑的敛散性。

《微积分》课程期末考试试卷参考答案及评分标准(A 卷,考试)一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题目后的括号内.每题3分,共30分)1、(C );2、(D );3、(B);4、(A );5、(D);6、(B);7、(A );8、(D );9、(A); 10、(D)。

二、填空(每题4分,共20分)1、 bx n e a b )ln (;2、 同阶无穷小;3、3- ;4、0;5、2。

微积分期末考试试题及答案

微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

微积分期末试卷附详细标准答案2

微积分期末试卷附详细标准答案2

一、填空题(每小题3分,共15分)1、已知 f(x)=e x , f N(x)] =1—x ,且中(x)之0,则9(x) = v'ln(1—x)…2c解 f(u)=e =1-x ,u =ln(1-x) ,u = .J 〕n(1 - x).2、已知 a 为常数,lim (--2— ax +1) =1,则 a =1.i : x一-ax 1) = lim (1 4 - a —) = 1 - a .x'二 x x3、已知 f ⑴=2,则 limf(1 3x)-f(1 x)=4.x )Dx解:lim[f(1 3x)-f(1)]-[f(1 x)-f(1)]=4x—0x4、函数 f(x)=(x —1)(x —2)(x —3)(x —4)地拐点数为 2.解:f (x)有 3 个零点 £,焦二:1 <彳 <2<^<3<^3<4, f "(x)有 2 个零点 %尸2:1<。

<2 <之2 <”2 <4,f "(x) =12(x —1)(x —”2),显然 f*(x)符号是:+「,+,故有 2 个拐点. dx-5、 -2 ------ - = tan x -cot x C .sin xcos x,2. 2 , ,dx cos x sin x , dx dx 斛: -- —2 --------------- 2- = 2 2-dx = ------- 2- ------------- -2- = tan x - cot x C .sin xcos x sin xcos x cos x sin x二、选择题(每小题3分,共15分)1、设f(x)为偶函数,甲(x)为奇函数,且f /(x)]有意义,则f [邛(x)]是A(A)偶函数; (B)奇函数;(C)非奇非偶函数;(D)可能奇函数也可能偶函数.1 - cosx C2—, x : 0,,,2、x=0 是函数 f (x) = { x 地 D0, x = 0.2「 1 1 x 1 斛:0 = lim — = lim ( ----(A)跳跃间断点; (B)连续点;(C)振荡间断点;(D)可去间断点.3、若函数f(x)在X0处不可导,则下列说法正确地是 B(A)f(x)在%处一定不连续;(B) f (x)在X o处一定不可微;(C)f(x)在X o处地左极限与右极限必有一个不存在;(D) f (x)在x0处地左导数与右导数必有一个不存在^4、仅考虑收益与成本地情况下,获得最大利润地必'要条件是: D(A) R"(Q)>C"(Q) ; (B) R"(Q) <C"(Q);(C) R"(Q) =C“(Q) ;(D) R'(Q) =C'(Q).5、若函数f '(x)存在原函数,下列错误地等式是: Bd(A) 一ff(x)dx=f (x) ;(B)』f (x)dx=f(x);dx(C) d f f (x)dx =f (x)dx;(D) f df (x) =f (x) +C .三、计算题(每小题6分,共60分)1、设f (x —2) =2x2"x— x,求f(x +2).答案:f(x + 2) =2x244x—x—4解:令t =x - 2,则f ⑴=2(t均24t物_(t+2) =2「*七54 T+2=2t2/_t_2,(3 分)于是f(x+2) =2(x阳2u — (x+2) -2 =2x2 七、七“ 一x —4 = 2x2 七x— x —4. (6 分)2、计算1吧m05( J n十1 一J n).答案:1n mc 0sin有-«户n m8s舄十二(3 分)解:1=lim cos —^n— n1二 11-1 nsin 11nx解:y' = (e x )'(2 分)6、求曲线xln y + y —2x=1在点(1,1)处地法线方程.答案:x+y —2 = 0解:方程两边对x 求导得:ln y + xy + y '- 2 = 0 , y_ Cos 「0 一 -1 .(6分) cos,1 0 - 13、求极限lim ( 2 n——n 2n +… 2 n 2).答案: 解:由于— nn n 21n n 22 +…2n八-7, (3分)而 lim 一=lim—=1 1 lim 一=limn —i彳二1,2 n所以lim(+…+)=1. (6 分)4、求极限lim 2ln(1 x )x —0 secx - cos x,〃2、解:lim1n(1 x)x—0secx - cosx x 02ln(1 x ) 二 lim cosxlim ——2-- x 0sin x=lim 2x1+ x 2(4 分)x 0 2sinxcosx =limx —02、 (1 x )cosx.. x lim --- x 「° sin x =1. (6 分) sin 15、求函数y = x x 地导数.答案:.1 sin —x y = xcos'nx 1sin 1)x.1 , sin - ln x 11 1 1 =e x [cos-( --2) ln x sin ] .1 , , , ,sin — 1 1 1 1 =x x ( 2cos — ln x sin ) .(6 分)1将(x, y) = (1,1)代入得法线斜率k = 一—― = _1, (3分) y⑴从而法线方程为:y_1=_1,(x—1),即:* + 丫—2 = 0.(6分),一八 1 4 3 r 一、7、求曲线y= x —x +1地凹凸区间和拐点.24答案:曲线在区间(―吗0]和[1,+“)是凹地,在区间[Q1]是凸地拐点为(0,1), (1;).31 x _ 1 x _ 1 x _ 1x_ 1x_ e cos2x e d sin 2x e cos2x e sin 2x - e sin 2xdx ,2 4 2 4 4 x 一 . 4 x.1 .一 一 、一 … , J e cos2xdx =^e (asin 2x-cos2x)+C .(6 分)10、设某商品地需求函数为 Q =100 -5P 淇中P,Q 分别表示需求量和价格,试求当总收益达到最大时,此时地需求弹性,并解释其经济意义.b5E2RGbCAP解:⑴ f (x) C(-::, ::),(2)3 2 _ .. 2f (x) =2x -3x , f (x) =6x -6x =6x(x -1),4f "(x)=0,得 x 1 =0, x 2 =1. f(0) = 1, f (1) =43 (3分)(4).... ... 4 曲线地拐点为(0,1)、(1,-).(6) 曲线在区间(―g,0]和[1,+比)是凹地,在区间[0,1]是凸地. (6分)8、计算dx.答案:66G - 6 arctan 6x + Cdx dx解 (1 3 x) x -(6x)3[1 (6x)2]56t 5dt八----- 了(3分)2A (1 t )-1 6 2dtdt =6 ! dt - = 6 । 1 t=6t -6arctant +C =66/x -6arctan6/x +C .(6分)9、计算 [exsin 2xdx 答案• —e x(-sin 2x -cos2x) +C1021 V斛: e sin 2xdx e d cos2x =一 21e xcos2x 1 2 2fe xcos2xdx (3 分)列表如答案:。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。

微积分期末测试题及答案

微积分期末测试题及答案

一单项选择题(每小题3分,共15分)1.设,那么点x=a是f(x)的()。

①连续点②可去间断点③跳跃间断点④以上结论都不对2。

设f(x)在点x=a处可导,那么()。

①②③④3.设函数f(x)的定义域为[-1,1],则复合函数f(sinx)的定义域为( ).①(—1,1) ②③(0,+∞) ④(-∞,+∞)4.设,那么f(x)在a处( ).①导数存在,但②取得极大值③取得极小值④导数不存在5。

已知及(),则。

①g(x)为任意函数时②当g(x)为有界函数时③仅当时④仅当存在时二填空题(每小题5分,共15分)1。

____________。

2.____________.3.,那么左导数____________,右导数____________.三计算题(1-4题各5分,5—6题各10分,共40分)1.2.,求3.,求dy和.4。

由方程确定隐函数y=f(x),求.5.设,求.6.,求常数a,b。

四证明题(每小题10分,共30分)1.设f(x)在(-∞,+∞)上连续,且,证明:存在,使.2。

若函数f(x)在[a,+∞]上可导,对任意x∈(a,+∞),有,M是常数,则.3。

证明函数在(c,1)内一致连续,但在(0,1)内非一致连续。

答案一单项选择题(每小题3分,共15分)1。

④ 2.① 3.④ 4.③5。

②二填空题(每小题5分,共15分)1.__1_ .2。

__e_。

3.,那么左导数__-1__,右导数__1__。

三计算题(1—4题各5分,5—6题各10分,共40分)2.,求3.,求dy和.4。

由方程确定隐函数y=f(x),求。

5。

设,求.6。

,求常数a,b.四证明题(每小题10分,共30分)1.设f(x)在(-∞,+∞)上连续,且,证明:存在,使。

2。

若函数f(x)在[a,+∞]上可导,对任意x∈(a,+∞),有,M是常数,则.3.证明函数在(c,1)内一致连续,但在(0,1)内非一致连续.。

微积分试题及答案

微积分试题及答案

微积分试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 1 \) 处的导数是:A. 0B. 1C. 2D. 3答案:C2. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. 1/3B. 1/4C. 1/2D. 1答案:B3. 函数 \( y = \ln(x) \) 的原函数是:A. \( x \)B. \( x^2 \)C. \( e^x \)D. \( x\ln(x) - x \)答案:D4. 微分方程 \( y'' - y' - 6y = 0 \) 的特征方程是:A. \( r^2 - r - 6 = 0 \)B. \( r^2 + r - 6 = 0 \)C. \( r^2 - 6 = 0 \)D. \( r^2 + 6 = 0 \)答案:A5. 函数 \( f(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是:A. \( 1 + x + x^2 \)B. \( 1 + x + x^2/2 \)C. \( 1 + x + x^2/6 \)D. \( 1 + x + x^3/6 \)答案:B二、简答题(每题5分,共10分)1. 请解释什么是不定积分,并给出一个简单函数的不定积分的例子。

答案:不定积分是求原函数的过程,即给定一个函数 \( f(x) \),找到另一个函数 \( F(x) \),使得 \( F'(x) = f(x) \)。

例如,函数 \( f(x) = 2x \) 的不定积分是 \( F(x) = x^2 + C \),其中\( C \) 是积分常数。

2. 请解释什么是偏导数,并给出一个二元函数的偏导数的例子。

答案:偏导数是多元函数对其中一个变量的局部变化率的度量。

例如,对于函数 \( f(x, y) = x^2y + y^3 \),关于 \( x \) 的偏导数是 \( f_x(x, y) = 2xy \),而关于 \( y \) 的偏导数是\( f_y(x, y) = x^2 + 3y^2 \)。

高等数学微积分期末试卷及答案

高等数学微积分期末试卷及答案

大一高等数学微积分期末试卷 选择题(6×2)1~6 DDBDBD一、填空题 1 In 1x + ; 2 322y x x =-; 3 2log ,(0,1),1xy R x =-; 4(0,0)5解:原式=11(1)()1mlim lim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题1、 无穷多个无穷小的和是无穷小( )2、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )3、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限2120lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞-2 若34()(10),''(0)f x x f =+求解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 3 240lim(cos )x x x →求极限4 (3y x =-求5 3tan xdx ⎰6arctan x xdx ⎰求四、证明题。

1、 证明方程310x x +-=有且仅有一正实根。

证明:设3()1f x x x =+-2、arcsin arccos 1x 12x x π+=-≤≤证明() 五、应用题1、 描绘下列函数的图形3.4.补充点7179(2,).(,).(1,2).(2,)2222---50lim (),()0x f x f x x →=∞∴=有铅直渐近线 6如图所示:2.讨论函数22()f x x Inx =-的单调区间并求极值 由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和单调递增区间为(1,0)1-+∞和(,)且f(x)的极小值为f(-1)=f(1)=1。

微积分试题及答案

微积分试题及答案

微积分试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是:A. 0B. 1C. 2D. 32. 曲线 \( y = x^3 - 2x \) 在 \( x = 1 \) 处的切线斜率是:A. -1B. 1C. 3D. 53. 若 \( \int_{0}^{1} x^2 dx \),则该积分的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{2}{3} \)D. 14. 函数 \( y = \ln(x) \) 的原函数是:A. \( x \)B. \( x^2 \)C. \( e^x \)D. \( x\ln(x) \)5. 已知 \( \frac{dy}{dx} = 3x^2 - 2x \),当 \( x = 1 \) 时,\( y \) 的值是:A. 0B. 1C. 2D. 36. 函数 \( y = \sin(x) \) 的二阶导数是:A. \( -\sin(x) \)B. \( -\cos(x) \)C. \( \cos(x) \)D. \( \sin(x) \)7. 若 \( \int x e^x dx \) 可以用换元积分法求解,设 \( u = x \) 则 \( du \) 是:A. \( e^x \)B. \( e^x dx \)C. \( x dx \)D. \( 1 \)8. 函数 \( y = x^3 + 3x^2 + 3x + 1 \) 的泰勒展开式在 \( x = 0 \) 处的前三项是:A. \( 1 + 3x + 3x^2 \)B. \( 1 + x + x^2 \)C. \( 1 + 3x + 9x^2 \)D. \( 1 + 3x + 3x^3 \)9. 函数 \( y = e^{2x} \) 的不定积分是:A. \( \frac{1}{2}e^{2x} \)B. \( e^{2x} \)C. \( 2e^{2x} \)D. \( 2x e^{2x} \)10. 若 \( \frac{dy}{dx} = y - 1 \),且 \( y = 2 \) 当 \( x =0 \),则 \( y \) 的通解是:A. \( y = x + 2 \)B. \( y = e^x + 1 \)C. \( y = e^x - 1 \)D. \( y = 1 - e^x \)二、填空题(每空2分,共20分)11. 若 \( f(x) = x^3 - 6x^2 + 11x - 6 \),则 \( f'(x) = \)__________。

微积分下学期末试卷及答案

微积分下学期末试卷及答案

微积分下期末试题一一、填空题每小题3分,共15分1、 已知22(,)y f x y x yx +=-,则=),(y x f ___2(1)1x y y -+__________.2、 已知, π=⎰∞+∞--dx ex 2则=⎰∞+--dx e x x213、函数22(,)1f x y x xy y y =++-+在 点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f __1______.5、以x e x C C y 321)(+=21,C C 为任意常数为通解的微分方程是 ____________________."6'0y y y -+= 二、选择题每小题3分,共15分6知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是 C .A 1p >B 1p <C 12p <<D 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数 B .A 在原点无定义B 在原点二重极限不存在C 在原点有二重极限,但无定义D 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是 A.A 123I I I >> B213I I I >> C123I I I <<D213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解 D .A b ax y +=B xe b ax y 3)(+=C x e bx ax y 32)(+=D x e bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna D .A 绝对收敛B 条件收敛C 发散D 不定11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x=的函数为23,0x y y =>;且4=x 时,8=y ;于是)6()3(分分24882233837730(4)16(80)33128128(80)775127V y dy y dyy ππππππππ=-=--⎡⎤=-⋅=-⋅-⎢⎥⎣⎦=⎰⎰12、求二重极限11lim22220-+++→→y x y x y x .解:原式11)11)((lim 22222200-++++++=→→y x y x y x y x 3分2)11(lim 220=+++=→→y x y x 6分13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2.解:设(,,)zF x y z z e xy =+-,则x F y=-,y F x=- ,1zz F e =+11x z z z z F y y x F e e ∂-=-=-=∂++, 11y z z z F z x x y F e e ∂-=-=-=∂++ 3分222111(1)1(1)z z z zz z z ze y e z ye xy yx y y e e e e ∂+-⋅⋅∂∂∂⎛⎫===-⎪∂∂∂++++⎝⎭6分14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 解:222(1)1222z x x x x =+-+=-+ 令'420z x =-=,得12x =,"40z =>,12x =为极小值点. 3分故221z x y =++在1y x =-下的极小值点为11(,)22,极小值为326分 15、计算⎰⎰1 212dxe dy yyyx .解:2112123182xyyy I dy e dx e e ==-⎰⎰ 6分 16、计算二重积分22()Dxy dxdy+⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.解:22()Dx y dxdy +⎰⎰=1320d r drπθ⎰⎰=8π6分17、解微分方程x y y +'=''.解:令y p '=,p y '='',方程化为x p p +=',于是])1([1C e x e x x ++-=-x e C x 1)1(++-= 3分 ⇒2121)1(21])1([C e C x dx e C x dx p y x x +++-=++-==⎰⎰ 6分18、判别级数)11(133∑∞=--+n n n 的敛散性.解:=3分因为lim 11n n →∞==19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.解:由于3113131x x -⋅=-,已知 ∑∞==-011n nx x ,11<<-x , 3分 那么 ∑∑∞=+∞===-01031)3(3131n nn n n xx x ,33<<-x . 6分20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R 万元与电台广告费用1x 万元的及报纸广告费用2x 万元之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略 解:公司利润为22212121211028311315x x x x x x x x R L ---++=--= 令⎪⎩⎪⎨⎧=--='=--=',020831,04813211221x x L x x L x x 即⎩⎨⎧=+=+,31208,13842121x x x x得驻点)25.1,75.0()45,43(),(21==x x ,而 3分0411<-=''=x xL A ,821-=''=x x L B ,2022-=''=x x L C , 064802>-=-=B AC D ,所以最优广告策略为:电台广告费用75.0万元,报纸广告费用25.1万元. 6分 四、证明题每小题5分,共10分21、设1133ln()z x y =+,证明:13z z xy x y ∂∂+=∂∂. 证:2233113311113333,x y z z xyx yx y --∂∂==∂∂++22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n n v u 收敛.证:由于)(22)(022222n n n n n n n n v u v u v u v u +≤++=+≤, 3分 并由题设知∑∞=12n nu与∑∞=12n nv都收敛,则)(2212n n n v u∑∞=+收敛,从而∑∞=+12)(n n nv u收敛; 6分微积分下期末试题二一、填空题每小题3分,共15分1、设)(y x f y x z -++=,且当0=y 时,2x z =,则=z ;答案2222x xy y y -++2、计算广义积分⎰+∞13x dx = ;答案12 3、设xye z =,则=)1,1(dz ;答案)(dy dx e +4、微分方程x xe y y y 265=+'-''具有 形式的特解. 答案xe bx ax 22)(+5、设14n n u ∞==∑,则11122n n n u ∞=⎛⎫-=⎪⎝⎭∑_________;答案1二、选择题每小题3分,共15分1、2222003sin()lim x y x y x y →→++的值为 A.0 C D.不存在2、),(00y x f x 和),(00y x f y 存在是函数),(y x f 在点),(00y x 可微的 A ;A.必要非充分的条件;B.充分非必要的条件;C.充分且必要的条件;D.即非充分又非必要的条件; 3、由曲面z x y =--422和z =0及柱面x y 221+=所围的体积是 D ;A.d d θπr r r4222-⎰⎰;B.204d rπθ⎰⎰;C、20d rπθ⎰⎰; D.442012d d θπr r r-⎰⎰4、设二阶常系数非齐次线性方程()y py qy f x '''++=有三个特解x y =1,xe y =2,x e y 23=,则其通解为 C ;A.xx e C e C x 221++; B.x x e C e C x C 2321++;C.)()(221x x x e x C e e C x -+-+;D.)()(2221x e C e e C xx x -+-5、无穷级数∑∞=--11)1(n pn n p 为任意实数 D A 、收敛 B 、绝对收敛 C 、发散 D 、无法判断三、计算题每小题6分,共60分1、求下列极限:00x y →→;解:0x y →→00x y →→= …3分1)112x y →→==+= …6分2、求由x y =与直线1=x 、4=x 、0=y 所围图形绕x 轴旋转的旋转体的体积;解:421d x V xπ=⎰ …4分7.5π= …6分3、求由xyz e z=所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂; 解:方程两边对x 求导得:x z xyyz x z e z∂∂+=∂∂,有)1(-=-=∂∂z x z xy e yz x z z …3分方程两边对y 求导得:y z xy xz y z e z∂∂+=∂∂,有)1(-=-=∂∂z y z xy e xz y z z …6分4、求函数322(,)42f x y x x xy y =-+-的极值;解:322(,)42f x y x x xy y =-+-,则2(,)382x f x y x x y=-+,(,)22y f x y x y=-,(,)68xx f x y x =-,(,)2xy f x y =,(,)2yy f x y =-,求驻点,解方程组23820220x x y x y ⎧-+=⎨-=⎩,,得)0,0(和(2,2). …2分对)0,0(有(0,0)80xx f =-<,(0,0)2xy f =,(0,0)2yy f =-,于是2120B AC -=-<,所以)0,0(是函数的极大值点,且(0,0)0f = …4分对(2,2)有(2,2)4xx f =,(2,2)2xy f =,(2,2)2yy f =-,于是2120B AC -=>, (2,2)不是函数的极值点;6、计算积分⎰⎰D d x y σ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域;解:221x x Dyy d dx dyx x σ=⎰⎰⎰⎰. (4)分213924xdx ==⎰ …6分7、已知连续函数)(x f 满足⎰+=xx x xf dt t f 0)(2)(,且0)1(=f ,求)(x f ;解:关系式两端关于x 求导得:1)(2)(2)(+'+=x f x x f x f 即x x f x x f 21)(21)(-=+' …2分这是关于f )(x 的一阶线性微分方程,其通解为:=1)(1-=+-x c c x x…5分又0)1(=f ,即01=-c ,故1=c ,所以11)(-=xx f …6分8、求解微分方程212y y y '-+''=0 ;解:令y p '=,则dp y pdy ''=,于是原方程可化为:221dp p p dy y +=- …3分即201dp p dy y +=-,其通解为22111(1)dy yp c e c y --⎰==- …5分21)1(-=∴y c dx dy 即dx c y dy 12)1(=-故原方程通解为:2111c x c y +-= …6分9、求级数1n n ∞=的收敛区间; 解:令2t x =-,幂级数变形为1n n ∞=1lim 1n t n n n a R a →∞+===. …3分当1-=t 时,级数为0(1)nn ∞=-∑收敛;当1=t 时,级数为1n ∞=.故1n n ∞=)1,1[-=t I , (5)分那么1n n ∞=的收敛区间为[1,3)x I =. …6分10、 判定级数∑∞=⋅1!)2sin(n n n x 是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛;解:因为sin(2)1!!n x n n ⋅≤ (2)分由比值判别法知11!n n ∞=∑收敛1(1)!lim 01!n n n →∞+=, …4分从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑绝对收敛. …6分四、证明题每小题5分,共10分1、设正项级数1nn u∞=∑收敛,证明级数1n ∞=也收敛;证:)(2111+++≤n n n n u u u u , …3分 而由已知∑++)(211n n u u 收敛,故由比较原则,∑+1n n u u 也收敛; …5分2、设)(22y x f y z -=,其中)(u f 为可导函数, 证明211y zy z y x z x =∂∂+∂∂.证明:因为22f f xy xz '-=∂∂, …2分222f f y f y z '+=∂∂ (4)分所以222212211y zyf yf f y f f f y y z y x z x =='++'-=∂∂+∂∂. …5分微积分下期末试题三一、填空题每小题3分,共15分1、设()z x y f y x =++-,且当0x =时,2z y =,则=z ;答案2222x xy x y -++2、计算广义积分21dxx +∞⎰= ;答案13、设)1ln(22y x z ++=,则(1,2)dz=;答案1233dx dy +4、微分方程x e x y y y 3)1(596+=+'-''具有 形式的特解.xe bx ax 323)(+ 5、级数∑∞=+1913n nn 的和为 ;答案58二、选择题每小题3分,共15分1、2222003sin()lim x y x y x y →→++的值为 BA 、0B 、3C 、2D 、不存在2、),(y x f x 和),(y x f y 在),(00y x 存在且连续是函数),(y x f 在点),(00y x 可微的 BA.必要非充分的条件;B.充分非必要的条件;C.充分且必要的条件;D.即非充分又非必要的条件; 3、由曲面z x y =--422和z =0及柱面224x y +=所围的体积是 BA. 240d rπθ⎰⎰;B.2204d rπθ⎰⎰;C、20d rπθ⎰⎰;D.204d rπθ⎰⎰4、设二阶常系数非齐次微分方程()y py qy f x '''++=有三个特解21y x =,x e y =2,x e y 23=,则其通解为 D A 、22212()()x x x C e e C e x -+-; B 、22123x xC x C e C e ++;C 、2212x xx C e C e ++; D 、)()(22212xx x e x C e e C x -+-+ 5、无穷级数121(1)n pn n -∞=-∑p 为任意实数 A A 、无法判断 B 、绝对收敛 C 、收敛 D 、发散 三、计算题每小题6分,共60分1、求下列极限:00x y →→;解:0000x x y y →→→→=…3分0011224x y →→-===-+ …6分2、求由在区间]2,0[π上,曲线x y sin =与直线2π=x 、0=y 所围图形绕x 轴旋转的旋转体的体积;解:220sin d x V x xππ=⎰ …4分214π= …6分3、求由xy xyz z=-e 所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂;解:一令=),,(z y x F xy xyz z--e 则 y yz x F --=∂∂, x xz y F --=∂∂, xy z F z -=∂∂e利用公式,得xy y yz xy y yz z F x Fx z zz -+=----=∂∂∂∂-=∂∂e e …3分 xy x xz xy x xz z F y Fy z zz -+=----=∂∂∂∂-=∂∂e e …6分二在方程两边同时对x 求导,得解出xy y yz x z z-+=∂∂e , …3分同理解出xy x xz y z z-+=∂∂e …6分4、求函数33812),(y xy x y x f +-=的极值;解:33812),(y xy x y x f +-=,则yx y x f x 123),(2-=,xy y x f y 1224),(2-=,x y x f xx 6),(=,12),(-=y x f xy ,,y y x f yy 48),(=求驻点,解方程组⎪⎩⎪⎨⎧=-=-,,01224012322x y y x 得)0,0(和)1,2(. …2分对)0,0(有0)0,0(=xx f ,12)0,0(-=xy f ,0)0,0(=yy f ,于是01442>=-AC B ,所以)0,0(点不是函数的极值点. …4分对)1,2(有12)1,2(=xx f ,12)1,2(-=xy f ,48)1,2(=yy f ,于是048121442<⨯-=-AC B ,且012>=A ,所以函数在)1,2(点取得极小值,33(2,1)21221818f =-⨯⨯+⨯=- …6分 …5分6、计算二重积分⎰⎰+D d y x σ)2(,其中D 是由x y x y 1,==及2=y 所围成的闭区域; 解:211(2)(2)yyDx y d dy x y dxσ+=+⎰⎰⎰⎰ …4分2221119(21)6y dy y =--=⎰ …6分7、已知连续函数)(x f 满足0)(2)(0=++⎰xx x f dt t f ,求)(x f ;解:关系式两端关于x 求导得:01)(2)(=+'+x f x f 即21)(21)(-=+'x f x f …2分这是关于f )(x 的一阶线性微分方程,其通解为:2221)(x x xce c e e --+-=+-= …5分又0)0(=f ,即c +-=10,故1=c ,所以1)(2-=-xex f …6分8、求微分方程02)1(2='-''+y x y x 的通解;解 这是一个不明显含有未知函数y 的方程作变换 令 dyp dx =,则22d y dp dx dx =,于是原方程降阶为2(1)20dpx px dx +-=…3分, 分离变量221dp xdx p x =+,积分得21ln ln(1)ln p x C =++即 21(1)p C x =+,从而 21(1)dyC x dx =+ …5分再积分一次得原方程的通解y =312()3x C x C ++ …6分9、求级数∑∞=-1)3(n nn x 的收敛区间; 解:令3-=x t ,幂级数变形为∑∞=1n n n t ,11lim 1n tn n n a n R a n →∞++===. …3分当1-=t 时,级数为∑∞=-01)1(n nn 收敛;当1=t 时,级数为∑∞=11n n 发散.故∑∞=1n nn t 的收敛区间是)1,1[-=t I , (5)分那么∑∞=-1)3(n n n x 的收敛区间为)4,2[=x I . …6分 10、 判定级数1cos()!n n x n ∞=⋅∑是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:解:因为cos()1!!n x n n ⋅≤ …2分 由比值判别法知11!n n ∞=∑收敛1(1)!lim 01!n n n →∞+=, …4分从而由比较判别法知1cos()!n n x n ∞=⋅∑收敛,所以级数1cos()!n n x n ∞=⋅∑绝对收敛. …6分四、证明题每小题5分,共10分1、设级数21nn a∞=∑收敛,证明1(0)nn n a a n ∞=>∑也收敛;证:由于)1(21||22n a n a n n +≤, …3分 而∑2na ,∑21n 都收敛,故∑+)1(2122n a n 收敛,由比较原则知 n a n ∑收敛.;…5分 2、设)2(cos 22tx z -=,证明:02222=∂∂∂+∂∂t x z t z ;证明: 因为)2sin()21()2sin()2cos(22t x t x t x t z -=-⋅--⋅-=∂∂, …2分)2cos(22t x t z --=∂∂,22222)2cos(2t zt x x t z t x z ∂∂-=-=∂∂∂=∂∂∂, …4分所以02222=∂∂∂+∂∂t x z t z (5)分微积分下期末试题及答案四一、选择题每题2分1、设x ƒ()定义域为1,2,则lg x ƒ()的定义域为 A 、0,lg2 B 、0,lg2] C 、10,100 D 、1,22、x=-1是函数x ƒ()=()221x x x x --的 A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14 B 、0 C 、1 D 、∞4、若1y xx y +=,求y '等于A 、22x y y x --B 、22y x y x --C 、22y x x y-- D 、22x y x y +-5、曲线221xy x=-的渐近线条数为 A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射A 、2y x = (,)x R y R +-∈∈B 、221y x =-+C 、2y x =D 、ln y x = (0)x > 二、填空题每题2分1、__________ 2、、2(1))lim ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题每题2分1、221x y x=+函数是有界函数 2、有界函数是收敛数列的充分不必要条件 3、limββαα=∞若,就说是比低阶的无穷小4、可导函数的极值点未必是它的驻点5、曲线上凹弧与凸弧的分界点称为拐点 四、计算题每题6分 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求3、2326x xy y y x y -+="已知,确定是的函数,求4、20tan sin lim sin x x xx x→-求 5、计算6、210lim(cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100Rx x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大8分2、描绘函数21y x x=+的图形12分六、证明题每题6分1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则2、证明方程10,1xxe =在区间()内有且仅有一个实数 试题四答案 一、 选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、 2、 3、 解: 4、解: 5、 解:6、解: 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x2、 解:图象六、证明题1、证明:2、证明:。

微积分期末试题及答案

微积分期末试题及答案

微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。

2. 求函数 f(x) = e^x 的不定积分。

3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。

4. 设函数 f(x) = ln(x),求 f'(x)。

5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。

6. 设函数f(x) = √(x^2 + 1),求 f'(x)。

7. 求函数 f(x) = 3x^2 - 6 的不定积分。

8. 计算定积分∫(0 to π/2) cos(x) dx 的值。

9. 设函数 f(x) = e^(2x),求 f'(x)。

10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。

11. 计算定积分∫(0 to 1) x^2 dx 的值。

12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。

13. 求函数 f(x) = 2e^x 的不定积分。

14. 计算定积分∫(1 to e) ln(x) dx 的值。

15. 设函数 f(x) = x^2e^x,求 f'(x)。

16. 求函数 f(x) = ln(2x + 1) 的不定积分。

17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。

18. 设函数 f(x) = e^(3x),求 f'(x)。

19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。

20. 计算定积分∫(0 to π) sin^2(x) dx 的值。

第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。

微积分期末试题及答案

微积分期末试题及答案

微积分期末试题及答案一、选择题1.微积分的概念是由谁提出的?A.牛顿B.莱布尼茨C.高斯D.欧拉答案:B2.一个物体在 t 秒后的位移函数为 s(t) = 4t^3 - 2t^2 + 5t + 1。

求该物体在 t = 2 秒时的速度。

A.10B.23C.35D.49答案:C3.定义在[a,b]上的函数 f(x) 满足f(x) ≥ 0,对于任意 x ∈ [a,b] 都有∫[a,b] f(x) dx = 0,则 f(x) =A.常数函数B.0C.连续函数D.不满足条件,不存在这样的函数答案:B4.若函数 f 在区间 [a,b] 上连续,则在区间内至少存在一个数 c,使得A.∫[a,b] f(x) dx = 0B.∫[a,b] f(x) dx = f(c)C.∫[a,b] f'(x) dx = f(b) - f(a)D.∫[a,b] f(x) dx = F(b) - F(a),其中 F 为 f 的不定积分答案:D5.已知函数 f(x) = x^2,求在点 x = 2 处的切线方程。

A.y = 2x - 2B.y = 2x + 2C.y = -2x + 2D.y = -2x - 2答案:A二、计算题1.计算∫(2x - 1) dx。

解:∫(2x - 1) dx = x^2 - x + C。

2.计算极限lim(x→∞) (3x^2 - 4x + 2)。

解:lim(x→∞) (3x^2 - 4x + 2) = ∞。

3.计算导数 dy/dx,其中 y = 5x^3 - 2x^2 + 7x - 1。

解:dy/dx = 15x^2 - 4x + 7。

4.计算函数 f(x) = x^3 + 2x^2 - 5x + 3 的驻点。

解:驻点为 f'(x) = 0 的解。

f'(x) = 3x^2 + 4x - 5 = 0,解得 x = -1 或 x = 5/3。

5.计算定积分∫[0,π/2] sin(x) dx。

微积分期末测试题及答案

微积分期末测试题及答案

微积分期末测试题及答案 Prepared on 22 November 2020一 单项选择题(每小题3分,共15分)1.设lim ()x af x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对2.设f (x )在点x =a 处可导,那么0()(2)limh f a h f a h h→+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ).①(-1,1) ②,22ππ⎡⎤-⎢⎥⎣⎦③(0,+∞) ④(-∞,+∞) 4.设2()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在5.已知0lim ()0x x f x →=及( ),则0lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时③仅当0lim ()0x x g x →=时 ④仅当0lim ()x x g x →存在时 二 填空题(每小题5分,共15分)sin lim sin x x x x x→∞-=+. 31lim(1)x x x+→∞+=.3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________.三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1x x x →-- 2.t t x e y te ⎧=⎨=⎩,求22d y dx3.ln(y x =,求dy 和22d y dx .4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx . 5.设1111,11n n n x x x x --==++,求lim n x x →∞.6.lim(32x x →∞=,求常数a ,b . 四 证明题(每小题10分,共30分)1.设f (x )在(-∞,+∞)上连续,且()()lim lim 0x x f x f x x x→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2()lim 0x f x x→+∞=. 3.证明函数1sin y x=在(c ,1)内一致连续,但在(0,1)内非一致连续. 答案一 单项选择题(每小题3分,共15分)1.④2.①3.④4.③5.②二 填空题(每小题5分,共15分)sin lim sin x x x x x→∞-=+ . 2.31lim(1)x x x+→∞+= __e_.3.()f x =那么左导数(0)f -'=__-1__,右导数(0)f +'=__1__.三 计算题(1-4题各5分,5-6题各10分,共40分)2.t t x e y te⎧=⎨=⎩,求22d y dx3.ln(y x =,求dy 和22d y dx .4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx. 5.设1111,11n n n x x x x --==++,求lim n x x →∞.6.lim(32x x →∞=,求常数a ,b . 四 证明题(每小题10分,共30分)1.设f (x )在(-∞,+∞)上连续,且()()lim lim 0x x f x f x x x→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2()lim 0x f x x →+∞=. 3.证明函数1sin y x=在(c ,1)内一致连续,但在(0,1)内非一致连续.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大一高等数学微积分期末试卷
选择题(6×2)
cos sin 1.()2,()()22
()()B ()()D x x f x g x f x g x f x g x C π
==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数
2x 1
n n n n 20cos sin 1n A X (1) B X sin
21C X (1) x
n e x x n a D a π
→-=--==>、x 时,与相比是( )
A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )
A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )
n 1
X cos
n
=
2
00000001()
5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o
C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )
A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线
1~6 DDBDBD
一、填空题
1
d 1
2lim 2,,x d x
ax b
a b →++=xx2
211、( )=x+1
、求过点(2,0)的一条直线,使它与曲线y=相切。

这条直线方程为:


3、函数y=的反函数及其定义域与值域分别是:2+1
x5、若则的值分别为:
x+2x-3
1 In 1x + ;
2 3
2
2y x x =-; 3 2
log ,(0,1),1x
y R x
=-; 4(0,0) 5解:原式=11(1)()1m
lim
lim 2
(1)(3)3477,6
x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题
1、 无穷多个无穷小的和是无穷小( )
2、 0sin lim
x x
x
→-∞+∞在区间(,)是连续函数()
3、 0f"(x )=0一定为f(x)的拐点()
4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )
5、 设



(x)

[]
0,1上二阶可导且
'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有
1~5 FFFFT
三、计算题
1用洛必达法则求极限2
1
2
lim x x x e →
解:原式=2
2
2
1
1
1
33
0002
(2)lim
lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3
4
()(10),''(0)f x x f =+求
解:332233
3
3
2
3
2
2
3
3
4
3
2
'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0
f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴=
3
2
4
lim(cos )x
x x →求极限
4
I cos 22
4
I cos lim 0
22000002
lim 1
(sin )
4cos tan cos lim cos lim lim lim lim 22224
n x
x x n x x
x x x x x x e e x In x x x x In x x x x x
x e →→→→→→→-=---=====-∴=解:原式=原式
4 (3y x =-求 511
I 3112
322
1531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅
---⎤
=-+-⎥---⎦
解:
5
3tan xdx ⎰
2222tan tan sec 1)tan sec tan tan sin tan tan cos 1
tan tan cos cos 1
tan cos 2x xdx x xdx x xdx xdx x
xd x dx x xd x d x
x
x In x c
=----++⎰⎰⎰⎰⎰⎰
⎰⎰解:原式=( = = = =
6arctan x xdx ⎰求
2
22222
22211arctan ()(arctan arctan )
22111
(arctan )2111arctan (1)211arctan 22
xd x x x x d x x x x dx x x x dx x x x
x c
=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =
四、证明题。

1、 证明方程3
10x x +-=有且仅有一正实根。

证明:设3
()1f x x x =+-
[][]1221
222212222(0)10,(1)10,()0,10,1),'(0
()01)()00()00,,(),,()()0
,()0'()31f f f x f f x f x f x x x x f x x x x x f x f x x x f f ξξξξξξ=-<=>∴∈==+∞=+∞>==∴∃∈⋅==+且在上连续至少存在(使得)即在(,内至少有一根,即在(,)内至少有一实根假设在(,)有两不同实根x 在上连续,在()内可导且至少(),s t 而3110x x ≥∴+-=与假设相矛盾方程有且只有一个正实根
2、arcsin arccos 1x 12
x x π
+=-≤≤证明()
[][]
()arcsin arccos '()0,1,1()(0)arcsin 0arccos 02
(1)arcsin1arccos12
(1)arcsin(1)arccos(1)2
()arcsin arccos 1,12
f x x x
f x x f x c f f f f x x x x π
π
π
π
=+=-=∈-∴===+==+=
-=-+-=
∴=+=
∈-证明:设综上所述,,
五、应用题
1、 描绘下列函数的图形
21y x x
=+
3223
3
.Dy=(-,0)(0,+)121
2.y'=2x-1
'02
2''2''0,1
x x x y x y x y x ∞⋃∞-=
===+
==-解:1令得令得
3.
4.补充点7179(2,).(,).(1,2).(2,)2222
--- 50
lim (),()0x f x f x x →=∞∴=有铅直渐近线
6如图所示:
2.讨论函数22()f x x Inx =-的单调区间并求极值
12()22(1)(1)'()2(0)'()0,1,1Df x R
x x f x x x x x
f x x x =-+=-
=≠==-=解:令得
由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和
单调递增区间为(1,0)1-+∞和(,)
且f(x)的极小值为f(-1)=f(1)=1。

相关文档
最新文档