1.4《从三个方向看物体的形状》
1.4cuihua从三个方向看物体的形状
主视图
左视图
俯视图
利用骰子,摆成下面的图形,分别从正面、 左面、上面观察这个图形,各能得到什么平 面图形?
从正面看
从左面看
从上面看
你能根据以下的主视图、左视图来确定俯 视图中每个小正方形上面各有几个小正方 体吗?请你用数字标出来。
主视图
左视图
俯视图
你能根据以下的主视图、左视图来确定俯视图中每 个小正方形上面各有几个小正方体吗?请你用数字 标出来。
我们从不同方向观察同一物体时,可能看 到不同的图形.
从上面看 俯视图 从左边看
左视图
从正面看到的图叫做主视图,从左 面看到的图叫做左视图,从上面看 到的图叫做俯视图.
从正面看
主视图
俯视图
左视图
主视图
俯视图 左视图
主视图
俯视图
左视图
主视图
正视图
左视图
俯视图
主视图
左视图
俯视图
考考你
正视图( 左视图 ( 俯视图 (
俯视图
1 2
3 看行,取大数,上对左,下对右 1 左画三个,右画两个
俯视图
左视图
如图所示的是由几个小立方块所搭几 何体的俯视图,小正方形中的数字表 示在该位置小立方块的个数,请画出 相应几何体的主视图和左视图。
3 4
2
2
1
主视图
左视图
课堂小结
这节课我们学习了从三个不同的方向看立 体图形
1.从正面看------主视图 2.从左面看------左视图 3.从上面看------俯视图
黑 红
白
兰
绿
红
黄
兰
黄
甲
黄 黑 红 绿
乙
从三个方向看物体的形状
横看成岭侧成峰,远近高低各不同
当我们从不同的方向观察同一物体 时,通常可以看到不同的图形。
三视图的介绍: 从正面看到的图是 从左面看到的图是 从上面看到的图是 主视图 左视图 俯视图
画出右图几何体的主视 图、左视图、俯视图
主视图
左视图
俯视图
画一画
主视图
俯视图
3 2 1 1 2
俯视图
3 2 1 1 2
俯视图
试一试
【例3 】:用小立方块搭一个几何体, 使得它的主视图和俯视图如图所示. 这样的几何体只有一种吗?
主视图
俯视图
小结
1、画几何体组合的三视图 2、根据俯视图及小立方块的个数 画其他两种视图。 3、已知三视图,求小立方块的总个数。 4、已知两种视图,求小立方块的最多、 最少时的个数。
(c)
(D)
看谁找得快
如左图:左视图是( B ), 主视图是( A ), 俯视图是( D )。
(A)
(B)
(C)
(D)
看谁画得好
画出图中几何体的三视图
主视图
左视图
俯视图
问题探究:
【例1】如图是由几个小立方体块所搭几何体的俯视图, 小正方形中的数字表示在该位置小立块的个数,请画出 这个几何体的主视图和左视图。
练习:如图所示是几个小立块所搭几何体的俯视图, 小正方形中的数字表示在该位置小立方块的个数, 请画出相应几何体的主视图、左视图。
2 4 1 2 3
主 视图 左 视图
俯 视图
【例2 】、根据一下面三视图建造的建筑物是 什么样子?共有几层?一共需要多少个小立方 体?
主视图
左视图
俯视图
北师大版七年级上册1.4从三个方向看物体的形状(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《从三个方向看物体的形状》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要从不同角度观察物体的情况?”比如,当我们看到一个复杂的玩具或建筑模型时,我们需要从不同的方向去观察它,才能完整地理解它的形状。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三视图的奥秘。
2.教学难点
-空间想象能力的培养:学生需要能够将二维的视图转换为三维的物体,这对于一些空间想象能力较弱的学生来说是一大挑战。
-三视图的绘制技巧:如何准确地从三个不同方向绘制物体的视图,特别是当物体有隐藏线时,如何处理这些隐藏线。
-视图之间的转换和识别:学生需要理解不同视图之间的相互关系,并能从一个视图推断出其他视图的信息。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三视图在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
1.培养学生的空间观念,提高对物体形状和几何图形的认知能力,使学生能够从不同角度观察和分析物体。
2.培养学生的几何直观,通过观察、想象、绘制三视图,加强对物体形状的理解和感知。
1.4从三个方向看物体的形状练习及答案讲解
轻松尝试应用 5
4.如图,是从上面看由一些小立方体搭成的几何体的形状图,小正方 形内的数字表示该位置小立方体的个数,则从正面可看到 块小立方体.
关闭
8
答案
11
快乐预习感知 1
互动课堂理解 2 3 4
轻松尝试应用 5
5.5 个棱长为 1 的正方体组成如图所示的几何体.
(1)该几何体的体积是 (立方单位),表面积是 单位); (2)画出该几何体从正面与左面所看到的图形.
解析:由正方形中的数字表示该位置上的小正方体的个数可知, 该几何体从左面看到的图形中,左边是 2 个小正方形,中间是 3 个小 正方形,右边是 1 个小正方形,所以应选 B.
答案:B
6
快乐预习感知
互动课堂理解
轻松尝试应用
7
快乐预习感知 1
互动课堂理解 2 3 4
轻松尝试应用 5
1.如左下图,该几何体是由 4 个相同的小正方体组成,其从正面看到 的形状为( ).
关闭
D
答案
8
快乐预习感知 1
互动课堂理解 2 3 4
轻松尝试应用 5
2.从正面看图中所示几何体的形状是(
).
关闭
A
答案
9
快乐预习感知 1
互动课堂理解 2 3 4
轻松尝试应用 5
3.在下列几何体中,从正面、左面与上面看到的图形都是相同的圆, 该几何体是( ).
关闭
A
答案
10
快乐预习感知 1
互动课堂理解 2 3 4
关闭
C
答案
2
快乐预习感知
互动课堂理解
轻松尝试应用
3.画出下图中各物体分别从正面、左面、上面所看到的形状图.
1.4从三个方向看物体的形状
课堂小结
丰富的图形世界
(3)从上面看立体图形时,可以想象为:将几何体从上 向下压缩,使看到的面全部落在同一水平的平面内.
课后作业
作业 必做: 请完成教材课后习题
感悟新知
1 下列立体图形中,从上面看是正 方形的是( B )
2 下列几何体中,从正面看和从左 面看都是长方形的是( B )
知1-练
感悟新知
知2-讲
知识点 2 根据从不同方向看到的图形还原物体
议一议 一个几何体由几个大小 相同的小立方块搭成, 从上面和从左面看到的这个几何体的形状图如图 所示,请搭出满足条件的几何体.你搭的几何体 由几个小立方块构成?与同伴进行交流.
知2-练
A.三棱锥 C.圆柱
B.三棱柱 D.长方体
课堂小结
丰富的图形世界
从不同的方向看立体图形的技巧: (1)从正面看立体图形时,可以想象为:将几何体从前
向后压缩,使看到的面全部落在同一竖直的平面内. (2)从左面看立体图形时,可以想象为:将几何体从左
向右压缩,使看到的面全部落在同一竖直的平面内.
第一章 丰富的图形世界
第一章 丰富的图形世界
1.4 从三个方向看物体 的形状
学习目标
1 课时讲解 从不同方向看简单物体的形状图
根据从不同方向看的图形还原物体
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
课时导入
题西林壁 ---苏轼
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.
些大小相个几何体的小立方块的
个数是( B ) A.6 B.7
C.8
D.9
感悟新知
总结
知2-讲
根据从正面看到的形状图和从左面看到的形状 图在从上面看到的几何体的形状图中标上数字,然 后求和即可.
北师大版七上数学1.4《从三个方向看物体的形状》知识点精讲
识点总结(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。
一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形状,三视图就是主视图、俯视图、左视图的总称。
(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。
在许多情况下,只用一个投影不加任何注解,是不能完整清晰地、表达和确定形体的形状和结构的。
三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。
可见只用一个方向的投影来表达形体形状是不行的。
一般必须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。
课后练习1.球的三视图是( )A.三个圆B.三个圆且其中一个包括圆心C.两个圆和一个半圆弧D.以上都不对2.若一个几何体的三视图都是正方形,则这个几何体是( )A.长方体B.正方体C.圆柱D.圆锥3.下列命题正确的是( )A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上,得到的光区仍是矩形答案:1.A 2.B 3.C习题训练。
北师大版数学七年级上册1.4《从三个方向看物体的形状》课件(25张PPT)
不识庐山真面目,只缘身在此山中.
从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;
解:几何体的三种形状图如图所示. 例2.用小立方体搭一个几何体,使得它从正面和上面看到的图形如图所示,搭建这样的几何体,最多要用几个小立方块?最少要用几
个小立方块?
解:搭建这样的几何体,最多用17块小立方块,最少用11块小立方块.
5.分别从正面、左面、上面看一个由若干个正方体组成的立体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗?动手试
试看!
从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;
谈谈你在本节课的收获:
从上面看 C.从上面看到的图
D.三种一样
不识庐山真面目,只缘身在此山中.
从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;
例3.如图是一个几何体的三种形状图(含有数据),则这
个几何体的侧面展开图的面积等于( A ).
1
1
2
2
从正面看 从左面看
从上面看
A.2π
B.π
C.4
D.2
随堂练习
1.从正面看如图所示的立体图形得到的图形是( B ).
A
B
C
D
随堂练习
2.从正面看由一些大小相同的小正方体组成的几何体的形 状图如图所示,其中正方形中的数字表示在该位置上的小正方 体的个数,那么,从左面看这个几何体的形状图是( A ).
解法一:先摆出这个几何体,再画出 它的从正面看和从左面看的形状图.
21 12
探究新知
解法二:根据从上面看的图联想确定从正面看到的图有3列, 从左面看的图有2列,再根据数字确定每列方块的个数. 由此可得形状图如下:
1.4从三个方向看物体的形状
课题:第一章第四节从三个方向看物体的形状课型:新授课教学目标:1.初步体会从不同方向观察同一物体可能看到不同的图形;能识别简单的三视图;会画简单几何体及其简单组合的三视图.2.经历从不同方向观察物体的活动过程,发展空间观念,积累数学经验;能在与他人交流的过程中合理清晰地表达自己的思维过程.3.通过创设情景与主动探究,培养学生学习数学的热情和兴趣,体验观察是获得知识的重要途径,形成与他人合作交流的意识,发展学生的审美情趣.教法及学法指导:根据学生已具备的知识与能力条件及本节课内容的特点,结合新课标重活动、重合作、重实践、重过程、重能力的要求,组织数学活动是本节课的重要措施.因而“观察法”贯穿始终,用“发现探究法”、“练习法”突出本节课的重点,用“演示法”、“讨论法”突破本节课的难点.让学生经历“观察、探索、操作、想象、交流”的过程,真正成为学习的主体.考虑到七年级学生具有教强烈的自我表现欲,并且在此之前已有较多的关于形状的感知经验,对一些图形的变化有了一定的观察、探索、表达能力,站在不同的位置看自己熟悉的事物发现规律、总结规律,应该说内容有趣,并富有挑战性.在本节课上有的学生可能会在观察过程中特别迅速得出结论,也可能存在有些学生抽象能力较弱看不出来.针对前者,我会在课堂中给他们展示的机会让他们当小老师,针对后者,指导他们尝试摆简单几何体,使他们尝到成功的喜悦.课前准备:教具:多媒体课件,相关物品学具:学生每人准备三个自制的正方体(大小相同)教学过程:一、创设情境欣赏漫画《9与6》师:请同学们观察下面的漫画,思考两个同学为什么争吵?生1:两位同学由于观察的方向不同,所以看到的结果也不一样.生2:两位同学所站的位置不同,观察的角度不同,结果也就不同.师:那这幅漫画给我们什么启示.生3:观察事物要从多方面观察.生4:我们从不同的方向看物体,看到的结果可能不一样.师:回答得非常好!生活中从多个角度仔细观察,才能发现事物的本质.这就是我们这节课将要学习的内容《从三个方向看物体的形状》.看什么呢?看生活中熟悉的物体和数学中熟悉的简单几何体.【设计意图】从学生熟悉的事物和情景入手,让学生经历从不同方向观察物体的活动过程,通过情景,体会从不同方向观察同一事物可能看到不同的图形,迅速进入学习状态,既激发了求知欲望,又激活了学习思维.从而引入课题..二、感知探究1.初步感知下面请三个同学做一个小实验,谁愿意?生:我愿意!(学生纷纷举手,体现了强烈的参与意识.)师:(老师摆好道具)请A、B、C同学上来.(按不同方位站好.)请告诉大家,你们分别看到了什么?A:我看到了一个小正方体和一个水壶.B:我看到了一个水杯和一个水壶.C:我看到了一个小正方体、一个水壶、一个水杯.师:讲台上明明摆着同样的东西,但他们三个人的回答却不一样,是怎么回事呢?生:因为他们站的角度不同,看到的东西就不一样了.师:现在请A、B两位同学调一下位置,看看是不是这么一回事.生:是的.师:谢谢你们的合作.确实经过同学们的实验、观察发现了……生:发现了从不同方向看,看到的东西可能不一样.师: 同学们看这幅图中,每幅图是谁看到的?生: 第(1)幅图是B 看到的,第(2)幅图是A 看到的,第(3)幅图是C 看到的,第(4)幅图是D 看到的. 师:完全正确!同学们应用生活经验解决了问题.现在你能不能举一些生活中从不同角度观察同一对象的实例呢?生:从不同的方向看一个人,看到的五官不一定相同.生:美术课,老师叫我们去写生,从不同方向画同一个物体或景色. 生:达芬奇画鸡蛋,他从不同的方向看,画出来的鸡蛋不一定相同. 生:看刑侦电影,罪犯拍照的时候要拍不同方向的照片.(其他同学大笑) 师(笑):数学也运用到犯罪学了,太精彩了!【设计意图】这段师生举例.较好地体现了数学与生活的紧密联系,体现了数学的应用价值,体现了学生的参与意识和情感态度,知识真正成为了多元目标的载体,新课程的理念得到了淋漓尽致的体现.【实际效果】这段师生举例.较好地体现了数学与生活的紧密联系,体现了数学的应用价值,体现了学生的参与意识和情感态度,知识真正成为了多元目标的载体,新课程的理念得到了淋漓尽致的体现.2.探究新知师:同学们说的这些现象都很好,并且都体现了一个问题,那就是要从不同的方向看,才能全面看清某件事物.(用多媒体展示图片)让学生观察说出下面的三幅图分别是从哪个方向看到的吗?左面上面师:有答案了吗?第一幅图请一位同学回答. 生:从后面看到的.师:相对于后面的叫什么呢? 生:正面.师:所以也可以说是从正面看到的结果.第二幅图呢?生:从上面看到的结果.师:第三幅图呢?生:从左面看到的.师:从别的面还能看到这样的结果吗?生:从右面,只不过画法有点区别.师:回答得很完整, 无论是生活中的物品,还是数学中的简单的几何体,我们从不同方向看或观察同一物体时,可能看到不同的图形.请问:我们要从几方面才能把一个物体看完整呢?生:要从六个方面:上、下、左、右、前、后.师:还有人有不同意见吗?生:还有侧面呢.师:那至少要从几个方向看呢?生:三个就对了.因为数学中的几何体可以认为是对称的.师:今天,所有同学表现得都棒极了,说的答案都很有道理.(教师总结)人们从不同的方向观察某个物体时,可以看到不同的图形.我们一般从正面;从左面看;从上面看.现在让我们继续来观察一下数学中我们熟悉的简单几何体.打开书第16页,用自己做的几何体搭一搭图1-18,摆一摆.四人小组围坐交流,边看边记录.师:为了使同学们对组合体有更进一步的认识,请同学们按屏幕显示的几何体,动手用桌子上的积木摆一摆、搭一搭,然后思考下面的问题,并小组议一议.①说说你从正面、左面、上面分别看到什么图形?②小组的各同学看到的结果是否一样?为什么?(给学生充足的时间观察讨论,并发表意见)生①:我从正面看到四个正方形,从左面看到三个正方形,从上面看到三个正方形.生②:我从正面看到三个正方形,从左面看到四个正方形,从上面看到三个正方形.生③:小组的各同学看到的结果不一样,因为坐的位置不同,方向不同.师:回答得很好.假设从右下角往左上角的方向看是从正面看,则从左向看为从左看,站在观察主视图的位置从上往下看为从上面看.(课件配合显示))师:同学们画图时要保证每个正方形大小一致.师:为了巩固一下刚才所学的知识,同学们有没有信心考考自己?生:有.师:请做课本第17页随堂练习.生:黑板上画图.【设计意图】教学中可以让学生先思考片刻,然后进行讨论和交流,在交流过程中,要求学生描述出为什么是这样的,然后教师可以展示课件,让学生有一个更为清晰的认识.对于学生的表述,注意引导他们尽可能清楚、有条理地表述.三、交流提高做一做用课前准备的6个小正方体,以小组为单位,由一位同学搭几何体(可以变换不同的搭法),其他同学画出从正面、左面、上面看到的几何体的形状图,并与同伴进行交流.(实物展台投影)学生举例:正面看上面看左面看【设计意图】这一活动设计既能指导学生读书、引发学生动脑思考、动手操作,小组讨论解决问题,又给学生创设了交流的机会,引导他们学会合作、探究.【实际效果】激发了学生的学习兴趣,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中充分感受数学来源于生活又应用于生活;真正理解和掌握基本的数学知识与技能;发展学生空间观念;培养学生合作交流的能力.四、拓展应用一个几何体由几个大小相同的小立方块搭成,从上面看和从左面看所看到的形状图如图所示.搭出满足条件的几何体,你搭的几何体由几个小立方块搭成?与同伴交流.从上面看从左面看师: 从两个方向看到的形状图想象出几何体,你可以吗?生:纷纷思考.生:很多学生感觉困难.师:那同学们小组合作搭一下吧.生:合作,交流生:我们组得到答案了,是6个.生:我们认为是5个.师:那请你们给大家展示下吧.师:在平面图形还原到立体图形的探究过程中,同学们学到了哪些知识?生:通过学习我认为,今后观察事物要做到全面、细致,不然就成了“盲人摸象”.生:生活中的有些现象可能是多种原因造成的,因此遇到问题要多动动脑筋.比如,这个问题我就没有想到两种情况.生:解决问题不仅要动脑筋,而且还要动手去实践,实践才能出真知.师:(小结)刚才同学们做的模型、谈的感想都非常精彩.通过讨论,我们都知道了,这个问题的答案不只一个.如果我们不是通过做实验的方法去观察、去发现,那么我们对这个问题的认识,很有可能就是片面的,也会犯盲人摸象一样的错误.二组和三组虽然有一点点缺陷,但是这些同学的想像力是非常丰富的,精神可嘉.【设计意图】已知部分形状图及有关数据信息,反向思考几何体的构成,从而力图让学生从逐步脱离实物观察,迫使学生进入真正的想象层面,提高空间想象能力.在此过程中,通过由问题到模型,由模型再到脱离模型,较为完整地反映出一个问题解决的全貌.【实际效果】通过小组合作既锻炼了学生的小组合作能力,又提高了学生的空间想象能力,同时又因为是小组间竞争,为了小组荣誉,每位成员都积极思考,完成较好.五、总结升华这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流. 教师重点关注:1.学生的归纳总结能力.2.能否对问题有进一步的思考.3.能否发表自己的见解,倾听他人的意见,反思学习过程.4.学生对两圆位置及数量关系的掌握及熟练程度,对拓展知识的理解程度.师:同学们掌握得还不错.这节课你学到了什么?你有何收获?生:我学到了从不同方向看同一个物体,可能看到不同的结果.生:我还学到了从三个方向看正方体、长方体、圆锥.师:说得很好!你学习了从不同方向看,对你做人有何启示?生:我觉得,不仅看物体是如此,看每个人、每件事也是如此,要全面观察.师:太好了!你真聪明,想了这么多,而且很有道理.老师也有同感,从不同角度观察一件事或一个人,所得的结果也不一样.我作为一个老师,也会全面地评价每一个学生.同时也希望同学们今后看物、看人、看事要多角度、多方向分析观察,这样我们就会发现许多美好的闪光的东西,从而感受生活是多么的美好.【设计意图】如此小结,画龙点睛之笔,给人以耳目一新之感,使本课主题得以升华,而且教师也自我评价了一番,这又是对课堂评价的再发展,说明教师角色的真正转变. 六.当堂反馈1.如图,水平放置的圆柱形物体从正面,左面,上面看到的平面图形是()B.D.2. 观察图中的几何体,指出右面三幅图分别从哪个角度看到的?3.连一连:用线连接从正面看下列物品对应的平面图形水杯球领奖台4. 如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.【设计意图】通过几个题目巩固本节课所学的知识,并检验学习目标的达成度,指导下面的学习.七、作业设置学课本习题1.6(必做)1、2、3(选做)4板书设计:教学反思:本节课基本达成课前预设的教学目标,教学重点突出,难点得到突破,并彰显出新课程观下的小班化数学课堂教学的特色.教学过程中主线明确,注重展示学生对数学知识的建构过程.创设了丰富多彩的教学情景,较好地体现了新课程的基本理念,关注了学生的心理需求,拓宽了学生的学习空间,激发了学生的兴趣和动机,鼓励了学生积极参与的热情,重视了学科间的相互渗透,发展了学生的创新思维,培养了学生的实践能力和应用意识,增强了学生的合作意识和探索精神,创造性地应用了课堂教学评价原理,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂.本节课循序渐进地让学生经历由观察模型、搭建模型、画出三种形状图,到脱离模型、由数(从上面看的形状图及其相应位置的立方体的数量)悟形(立体图形)、由形(立体图形)悟形(形状图)、搭模验证等过程,充分调动学生学习积极性,发展学生的空间观念.同时,我还注意到小班化教学的特点,关注班级里每一个学生,亲自参加每一小组的活动认真倾听并给予指导.将全体学生分成10个小组,进行观察,思考和交流;在学生发言过程中,我的提问面基本覆盖到全班学生,这样一节课中每个学生都能参与到数学学习活动中.在评价方面,我采用激励的评价方式,对学生的发言、操作、课堂练习和小结给予充分地肯定,同时采取了组长对组员的评价以及组与组之间的互评达到了评价多元化的目标,大大激发了学生的学习兴趣,学生的发言是越来越精彩,课堂展示出灵动的美.。
1.4 从三个方向看物体的形状(数学鲁教版六年级上册)
六、布置作业 课本P17习题1.6 第1、2、3 题
谢谢
从正面看
二、探究新知
从上面看
从左面 看
从正面看
从左面看 从上面看
从正面看
从正面看
从左面看
从上面看
二、探究新知
你能根据行和列画出从三个方向看到的物体 的形状图吗?
列1 列2 列3 行1 行2 行3 从正面看 从左面看
从上面看
二、探究新知 下面是由7块小正方体木块堆成的物体,从三个方向看 到的 形 状 图 如下,请同学们说出哪一个是 从 正 面 看 到 的?哪一个是从左面看到的?哪一个是从上面看到的?
从正面看
从左面看
从上面看
五、课堂小结
1. 画从三个方向看由小方块搭成的形状图时,关键是 确定它们有几列,以及每列方块的个数。
2. 由从上面看小方块搭成的几何体的形状图画从正面 看和从左面看它的形状图的方法有两种:
(1)先摆出几何体,再画从正面看和从左面看的形状图。
(2)先由从上面看的形状图确定从正面看的形状图,从 左面看的形状图的列及每列方块的个数,再画出从 正面看的形状图,从左面看的形状图
四、课堂检测
2.如图所示是由8个相同的小正方体组成的一个几何体,
则从正面看到的形状图是( A )
四、课堂检测
3.从上面看如图的几何体得到的图形是( B )
四、课堂检测
4.如图是一个L形的机器零件,这个零件从上面看到
的图形是( B )
四、课堂检测 5.画出如图所示的几何体从正面、左面、上面看到的 该几何体的形状图.
从正面看 从上面看 从左面看
二、探究新知
(2)如图所示的两幅图分别是从上面看由几个小立方块 所搭几何体的形状图,小正方形中的数字表示在该位置 小立方块的个数,请画出相应几何体的从上面和从左面 看的形状图.
初中数学北师大版七年级上册《1.4从三个方向看物体的形状》课件
课后作业
习题:1、2、3、4.
1.4
谢谢大家
数学北师大版 七年级上
A.4个 B.5个 C.6个 D.7个
课堂练习
2.画出右边这个几何 体的三个形状图.
从正面看
从左面看
从上面看
拓展提高
1、如图是从上面看到的几个小立方体块所搭几何体的图形, 小正方形中的数字表示在该位置小立块的个数,请画出从正 面和左面看到的这个几何体的图形.
从正面看
从左面看
拓展提高
2、下图是一个立体图形从三个方向看到的图形,请写出这个立体图形的名 称,并计算这个立体图形的体积(结果保留π).
新知讲授
做一做
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
新知讲授
做一做
从正面看
从左面看
从上面看
新知讲授
做一做
从正面看
从左面看
从上面看
新知讲授
三视图: 从正面看到的图——主视图; 从左面看到的图——左视图; 从上面看到的图——俯视图. 画物体的三视图时,要注意位置: 主视图:看列,取最高层。 左视图:看行,取最高层。 俯视图:看根基,画根基。
解:该立体图形为圆柱. ∵圆柱的底面半径r=5, 高h=10, ∴圆柱的体积V=πr2h
=π×52×10=250π. 答:立体图形的体积为250π.
从正面看 从上面看
从左面看
拓展总结
几何体
三
视察
形
状
判断
图
从正面看 从左面看 从上面看
拓展总结
归纳:
13 21
看列,取大数,左右相对应 左画两个,右画三个
一个几何体由几个大小相同的小立方块搭成。从上面视察这个几
1.4从三个方向看物体的形状
3 1
1 2
1
从上面看 从左面看
从正面看
4、从正面看到的图列数与从上面看到的图列数相同, 其每列方块数是从上面看到的图列该列的最大数字。 从左面看到的图列数与从上面看到的图的行数相同, 其每列方块数是从上面看到的图中该行的最大数字。
由图定数
一个几何体有几个大小相同的小立方块搭成, 从上面和左面看到的这个几何体的形状图如图所示, 请搭出满足条件的几何体,你搭的几何体由几个小 立方体块构成?与同伴交流。
13.如图,由四个小正方体组成的几何体中,若每个小正方体的棱 长都是1,则该几何体从上面看它的形状图的面积是____3 .
14.(2014·黔东南)在桌上摆着一个由若干个相同正方体组成的几何 体,从正面和从左面看到的形状图如图所示 ,设组成这个几何体的 小正方体的个数为n,则n的最小值为____5 .
4.下列几何体中,有一个几何体从正面看这个几何体的形状图与
从上面看这个几何体的形状图的形状不一样,这个几何体是( C )
5 . 从正面、左面、上面观察如图所示的几何体 ,分别画出你所看到
的几何体的形状图.
解:如图:
知识点2:由从不同方向看到的形状图确定实物形状 6.某几何体从三个不同方向看到的形状如图,则该几何体是( )B A.圆锥 B.圆柱 C.球 D.长方体
从上面看
从左面看
由图定数
用小立方块搭一个几何体,使得它的从正面看和从上 面看的形状图如图所示。
从正面看
从上面看
这样的几何体只有一种吗?它最少需要多少个小立方块? 最多需要多少个小立方块?
由图定数
从正面看
从上面看
1 1 3
1 1 2
1
最少摆法中其中之一所需个数: 最多时所需小立方块个数: 3+2+1+1+1+1+1=10 3+3+3+2+2+2+1=16
北师大版七年级上册数学第一章1.4《从三个方向看物体的形状》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三视图的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对三视图的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学过程中,我深刻地感受到了学生们对三视图知识的学习热情。从导入新课到实践活动,大家积极参与,课堂氛围十分活跃。然而,在授课过程中,我也发现了一些值得反思的地方。
首先,关于理论知识的讲解,我意识到需要更加贴近学生的生活实际,用他们熟悉的事物举例,以便让他们更好地理解和接受三视图的概念。在今后的教学中,我会尝试引入更多与学生们生活相关的例子,激发他们的学习兴趣。
三、教学难点与重点
1.教学重点
(1)理解三视图的概念及作用:主视图、左视图、俯视图是描述物体形状的重要工具,学生需要掌握它们的基本概念,并了解它们在实际中的应用。
举例:通过展示常见物体的三视图,让学生理解主视图、左视图、俯视图分别从物体的前、左、上方向观察得到,强调它们对表达物体形状的重要性。
(2)掌握三视图的绘制方法:学生需要学会如何从不同方向观察物体,并准确地绘制出三视图。
1.认识三视图,理解其概念和作用;
2.学习从三个方向观察物体,分析物体的形状;
3.掌握三视图的绘制方法,能准确地画出物体的三视图;
4.通过实际例子,让学生体会三视图在生活中的应用,提高学生的实际操作能力。
§1.4 从三个方向看物体的形状(教)
§1.4 从三个方向看物体的形状【学习目标】1、经历从不用方向观察物体的活动过程,发现空间的概念;2、在观察过程中初步体会从不同的方向观察同一物体可能看到不同的形状;3、能认识从三个方向看到简单物体的形状,会画立方体及简单组合体从方向看到的形状,并能够根据看到的形状描述基本几何体或实物模型。
【课前知多少】1、截面:用一个平面去截一个几何体,截出的面叫做截面;2、截面的形状与被截的几何体有关,还与截面的角度和方向有关。
【合作探究 问题解决】一、从不同的方向观察物体我们从不同的角度观察同一物体,可能看到不同的情况(如右图)。
我们可根据正面、上面、左面三个不同方向看物体,然后描绘出观察者所看到的形状,这样就可以把一个立体图形转化为平面图形。
例1、一辆小汽车从小明的面前经过,请按照汽车被摄入镜头先后顺序给下面的照片编号.答:先后顺序为:例2:下面五幅图分别是从右图中什么方向看到的?答:图(1)是从面 背 看到的,图(2)是从面 上 看到的,图(3)是从面 左 看到的,图(4)是从面 正 看到的,图(5)是从面 右 看到的,① ② ③ ④ ⑤二、物体的三视图问题:请同学们根据下图中堆放好立方体块,然后从三个方向看,思考分别看到哪些图象?从上面的活动中可以体会到从不同的方向看同一物体时,可能看到不同的图形.其中,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯视图, 即物体的三视图.例3、下面是由7块小正方体木块堆成的物体,从三个方向看到的图形如下,请说出哪一个是主视图?哪一个是左视图?哪一个是俯视图?视图视图 视图例4、请画出下列几何体的三视图从左面看 从上面看从正面看例5、请说出下图中右边三幅图分别是从哪个方向看到的?视图 视图 视图三、根据其俯视图,画出其余视图例6、如图是由几个小立方体块所搭几何体的俯视图,小正方形中的数字表示在该位置小立块的个数,请画出这个几何体的主视图和左视图。
北师大版七年级数学上册1.4 《从三个方向看物体的形状》 课件(共22张PPT)
3. 下列四个几何体中,其从三个方向看到的形状图中只有两个相同的是(D ) 4. 下面四个立体图形中,从正面看到的形状图是三角形的是( C )
D 5.从三个方向看到的是由大小一样的小正方体摆成的立体图形的形状如图所示,则小正方体的个数为( )
A, 5; B, 8; C, 7; D, 6
课堂小结
1.例如,图1是由小相同的立方块搭成的几何体,从正面、左面、 上面看到的几何体的形状图如图2所示。
图1
从正面看
从左面看 图2
从上面看
活动2
变式训练一
各小组同学将刚才五个小立方块自己重新摆放,摆出不同的几何体, 并画出从三个方向看到的形状图。
要求:每小组至少摆出两种。
活动3
变式训练二(你画我摆)
教学目标
知识与技能 1能辨认从不同方向看到的物体的形状图,会画立方体及其简单组
合体从三个不同方向看到的形状图。 过程与方法 2. 经历从不同方向观察物体的活动,体会从不同方向观察同一物体
可能看到不同的图形,发展空间观念。 情感、态度与价值观 3.能在与他人交流的过程中,合理清晰地表达自己的思维过程。
创设情境,导入新课
活动1
当我们从不同的方向观察同一个物体 时,通常可以看到不同的图形。下面 是四位摄影爱好者从各自的方向进行 观察拍摄的图片。
请指出下面四幅图片分别是哪位摄影 爱好者拍摄的。
学生用自制小立方块照样子摆放好后,从各个方向去观察,教 师请个别同学到黑板上指出从不同方向看到的几何体的面
从正面看
从左面看
从上面看
活动4
变式训练三(巩固画法) 有五个立方块增加到六个,学生自己先摆后画,进一步巩固画法。
用6个小立方块搭成不同的几何体,画出从正面、左面、上面看到 的几何体的形状图,并与同伴进行交流。
北师大数学七年级上册第一单元《丰富的图形世界》1.4从三个方向看物体的形状--例题讲解
4 从三个方向看物体的形状1.三种形状图从不同的方向观察同一物体,由于方向和角度不同,通常可以看到不同的图形.如图所示.【例1】有一辆汽车如图所示,小红从楼上往下看这辆汽车,小红看到的形状是图中的( ).解析:小汽车从上面看只能看到驾驶室的顶部和车身的上面,从上面看到的是两个长方形,故选B.答案:B2.基本几何体的三种形状图【例2】如图所示的4个立体图形中,从正面看到的形状是四边形的个数是( ).A.1 B.2 C.3 D.4解析:正方体及圆柱从正面看到的形状是四边形,球与圆锥从正面看到的形状分别是圆与三角形,所以这4个几何体中从正面看到的形状是四边形的个数为2.答案:B点技巧判断几何体三个不同方向的形状图首先要弄清几何体的形状,然后想象从正面、左面、上面观察时能看到几何体的哪些部分,从而得出三个不同方向的形状图.3.三种形状图的画法(1)常见几何体的三种形状图的画法①确定从不同方向看到的几何体的形状.例如圆锥从正面看到的是三角形,从左面看到的是三角形,从上面看到的是带圆心的圆.②虚实要求:画图时,看得见的轮廓线画实线,看不见的轮廓线画虚线.(2)正方体搭建的几何体的画法画三种形状图,要注意从相应的方向看几何体有几列,每列有几个正方体(即有几层),根据看到的列数、层数,画出相应的图.___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【例3】画出下面几何体的三种形状图.分析:从正面看,有3列,左边第1列有1层,第2列有3层,第3列有2层;从左面看,有2行,前面一行有1层,后面一行有3层;从上面看,有3列,从左面数第1列,有1个正方形,第2列有2个正方形,第3列有1个正方形(横着叫行,竖着叫列).解:4.三种形状图的运用(1)根据三种形状图确定几何体都从某一个方向看,不同的几何体也可能会得到相同的平面图形(如球),因此,要全面了解一个几何体的形状,常需要从正面、左面和上面三个不同的方向进行观察.物体长度、高度和宽度的确定:①三种形状图中的从正面看到的形状图和从左面看到的形状图反映物体的高度; ②从正面看到的形状图和从上面看到的形状图反映物体的长度;③从左面看到的形状图与从上面看到的形状图反映物体的宽度.(2)由三种形状图判断小正方体的个数如图,①从正面看到的形状图和从左面看到的形状图中可以看出几何体的层数有3层;②从左面看到的形状图和从上面看到的形状图中可得到排数有3排;③从正面看到的形状图和从上面看到的形状图中可得到列数有2列.具体数量:从上面看到的形状图中第一排和第三排只有1列,而从左面看到的形状图中看出第一排有3层,第三排有1层,故第一列第一排位置上有3个小正方体;同样的方法,由从上面看到的形状图和从正面看到的形状图可以确定第二列第二排有1个小正方体,从左面看到的形状图看出第二排有两层,故第一列第二排位置上有2个小正方体.【例4-1】 如图是某几何体的三种形状图.(1)说出这个几何体的名称;(2)画出它的表面展开图;(3)若从正面看到的形状图的长为15 cm ,宽为4 cm ;从左面看到的形状图的宽为3 cm ,从上面看到的形状图的最长边长为5 cm ,求这个几何体的所有棱长的和为多少?它的侧面积为多大?它的体积为多大?分析:由三种形状图可确定该几何体为三棱柱,然后确定出各棱的长,从而可画出它的表面展开图,并计算出它的侧面积和体积.解:(1)这个几何体是三棱柱;(2)它的表面展开图如图所示;(3)它的所有棱长之和为(3+4+5)×2+15×3=69(cm).它的侧面积为3×15+4×15+5×15=180(cm 2);它的体积为12×3×4×15=90(cm 3).【例4-2】如图是一个由小正方体摆成的几何体,无论从正面,还是从左面都可以看到如图所示的图形,请你判断一下:最多可以用几个小正方体?最少可以用几个小正方体?分析:先画出从上面看到的图形,然后作出正确的判断.分别画出最多和最少正方体从上面看到的形状图,如图所示(其中小正方形中的数字代表该位置上的小正方体的数目):由所画的图形可以作出判断:最多可以用2×4+1×5=13(块),最少可以用2×2+1=5(块).解:最多可以用13块,最少可以用5块.。
最新北师大版数学七年级上册《1.4 从三个方向看物体的形状》精品教学课件
C.圆柱 D.圆锥
从正面看
从左面看
从上面看
课堂检测 基础巩固题
4.从三个方向看一个几何体的平面图形如图所示,则这个几 何体是( C )
从正面看 从左面看 从上面看
A. B.
C.
D.
课堂检测
基础巩固题
5.如图,从上面看由三个小立方体搭成的几何体,得到的平面 图形是( A )
正面
A.
B.
C.
D.
课堂检测
巩固练习
变式训练
由4个相同的小立方体搭成的几何体如图,它从正面看得 到的图形是( A )
A.
B.
C.
D.
探究新知 知识点 2 画出从三个方向看到的几何体的形状图 画出从正面、左面和上面看正方体得到什么图形?
探究新知
从正面看 从左面看
从上面看 结论:(1)从正面、左面、上面三个不同的方向看物体,看到 的都是平面图形,这样可将立体图形转化为平面图形;(2)物 体摆放的方式不同,看到的图形也不同;(3)不要忘记所看 到的面与面的交线或顶点等.
探究新知
做一做 桌面上放着一个圆柱和一个长方体请说出下面三幅 图分别是从哪一个方向看到的?
从 上 面 看 从左面看
从
从
左
正
面
面
看
看
(1)
(2)
从
上
面
(3)
看
探究新知
练一练 桌面上放着长方体、棱锥和圆柱,请说出下面三幅图分
别是从哪一个方向看到的? 从 上 面 看
(1) 从正面看
(2) 从左面看
从左面看
从上面看
圆柱
探究新知 练一练 由各形状图判断几何体的形状? 从正面看 从左面看
《备课参考》 从三个方向看物体的形状
1.4 从三个方向看物体的形状【学习目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.图1—27(2)球:三视图都是圆.图1—28提醒:在所有几何体中,只有正方体与球这两种几何体的三视图是相同的.(3)圆柱体:图1—29(4)圆锥体:图1—30圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?(1)由照片画三视图.由照片可以清楚地看到每个小正方体的位置,这样画三视图比较直观.画三视图,都要注意从这个方向看时几何体有几列,每列有几个正方体(即有几层),根据看到的列数、层数,画出相应的图.注意:主视图与左视图中每列的正方形都是从下往上排,底层整齐,不能出现悬空.而俯视图则有可能出现中空的现象.如右图:从正面看,2列,每列一层;从左面看,2列,每列一层;从上面看,2列,左列2层,右列一层.则三视图是:图1—31注意:照片中的几何体为了使大家看清前后情况,因此照片中的物体一般朝左偏的位置是正面.(2)由俯视图画主视图、左视图.解法一:根据俯视图摆出几何体,按照(1)的方法画主视图、左视图.解法二:直接由俯视图确定主视图、左视图的列数、层数,并画出图.①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字,就是这一横行逆时针转90°所成的左视图中的列的层数.如:俯视图俯视图2列,则主视图也有两列,左列中的三个方框中最大的是3,右列是1,所以主视图左列三层,右列一层;俯视图三行,则左视图有三列,俯视图从上至下三行最大数字分别为1,2,3,则左视图三列从左至右分别有1,2,3层.画图如下.(3)其他几何体的三视图:从某方向看时,这个几何体最大边缘的形状及能够看到的顶点及棱.【学习方法指导】[例1]根据每组三视图,判断几何体形状:(1)先看什么比较明显呢?图1—33(2)图1—34点拨:(1)中俯视图是六边形,说明是柱或是锥,而主视图、左视图都是矩形,说明是柱即六棱柱.(2)中由主视图、左视图是三角形说明是锥体,而底面是四边形,说明不是圆锥,而是棱锥,是四棱锥.俯视图中的点是锥点,四条线段是锥的四条棱.解答:(1)六棱柱(2)四棱锥[例2]用长∶宽∶高=3∶1∶1的两个长方体如图1—35摆放,画出三视图.图1—35点拨:只要把较长的长方体看作由三个正方体排起来的即可,主视图左部分三份,右部分一份,都只有一层;左视图两列,左列1份,右列两份(挡住一份);俯视图是两个长3份的长方形交叉放.三视图如下:[例3]用小立方体搭成一个几何体,使它的主视图和俯视图如图所示.搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?图1—37点拨:①由于主视图每列的层数即是俯视图中该列的最大数字,因此,用的方块数最多的情况是每个方框都用该列的最大数字.即如图1—36所示;此种情况共用小立方体17块.图1—36图1—37②而搭建这样的几何体,每列只要有一个最大数字即可满足条件,其他方框内的数字可减少到最少的1,即如图1—37所示;这样的摆法只需立方体11块.解:摆这样的几何体,最多用17块立方体,最少用11块立方体.【拓展训练】某几何体左视图是长方形,说出这个几何体的两种可能性.点拨:对于棱柱,长方体的左视图可以是长方形;而圆柱,也可以符合条件.说明:考虑这类问题,可先从柱、锥、球开始,再往下细分,逐步排除不可能的,缩小思考范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4从三个方向看物体的形状
课标要求
知道从不同方向观察同一物体可能看到不同的图形,能辨认从不同方向看到的物体的形状图,会画正方体及其组合体从三个方向看到的形状图.
学习目标
1.明确物体的三视图及画法.
2.能画简单物体的三视图.
学习重点
明确物体的三视图及画法.
学习过程
一、温故知新
(1)正方体:三个方向图形都是_________;球:三个方向图形都是_______.
(2)看课本P17 图1-21每台摄像机拍到的分别是(1)-(4)中的哪张照片?
A(前)______ B(后) _______ C(左)________ D(右)_______
归纳:当我们___________观察同一物体时,通常可以看到_________的图形.
二、新课导学
1.自主学习
(1)用6个大小相同的小正方体搭成不同的几何体,分别画出从正面、左面、上面看到的几何体的形状图,并与同桌交换检查.
从正面看 从左面看 从上面看
(2)一个几何体由几个大小相同的小正方体搭成,从上面和左面看到的这个几何体的形状图如下图所示,请搭出满足条件的几何体.你搭的几何体由几个小正方体构成?独立操作与思考后与同伴进行交流.
2.典例解析
如图,是由几个大小相同的小正方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在这个位置小正方体的个数.请画出从正面、左面看到的几何体的形状图.把你的解法在小组内交流.
从正面看 从左面看
跟踪练习: 如图,是由几个大小相同的小正方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在这个位置小正方体的个数.请画出从正面、左面看到的几何体的形状图.
从正面看 从左面看
2 1 1 2
2 3 1
从上面看 从左面看
三、课堂小结
通过本节课的学习,你有什么收获?你还有困惑吗?请写在下面吧!
四、当堂检测
1.由四个大小相同的正方体组成的几何体如左图所示,那么它的俯视图是( )
A .
B .
C .
D .
2.图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )
3.右图是由几个相同的小正方体搭成的几何体
的三种视图,则搭成这个几何体的小正方体的
个数是( )
A .3
B .4
C .5
D .6
4.5个棱长为1的正方体组成如下图的几何体.
(1)该几何体的体积是 (立方单位),表面积是 (平方单位)
(2)画出该几何体的从正面方向得到的图形和从左面方向得到的图形 从正面看 从左面看
俯视图 图1 A B C D
俯视图
左视图主视图
五、日清练习
1.由四个大小相同的长方体搭成的立体图形的从左面方向得到的图形 如图下图所示,则这个立体图形的搭法不可能是( )
2.物体的形状如图所示,则此物体的俯视图是( )
3.如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方
体的个数是( )
A.4
B.5
C.6
D.7
主视图 左视图 俯视图
4.长方体的从正面方向得到的图形与从上面方向得到的图形如图1-4-26所示,则这个长方体的体积为
2。