实验三:用双线性变换设计IIR数字滤波器

合集下载

数字信号处理实验三 ——用双线性变换法设计IIR数字滤波器

数字信号处理实验三 ——用双线性变换法设计IIR数字滤波器

修正,以抵消畸变的影响。
(4
H z Ha s s 2 1z1 T 1z1
IIR数字滤波器设计流程图
模拟低通滤波器原型设计 buttap,cheb1ap,cheb2ap,
besselap,ellipap函数
设计指标
求最小阶数N,ωc Buttord,cheblord Cheb2ord,ellipord
实验原理及方法
由于幅度为1,把ω 看做Ω 的函数求解,得到:
1 j T
0 z
2 e j
1 j T
2


2 tan1

T 2



2 T
tan

2

这说明Ω和ω的关系是非线性的,但是没出现混叠。在把Ω变换为
ω时产生了非线性畸变。为了克服它带来的问题,通常要使Ω按上式预
实验内容及步骤
1、读懂所给参考程序,熟悉程序的整体结构和功能。 2 、 设 计 一 个 CB 型 低 通 DF , 通 带 截 频 fp=3000Hz , 衰 耗 满 足 Apmax=3dB , 阻 带 截 频 fT=3400Hz, 衰 耗 ATmin=31dB, 取 样 频 率 fs=8000Hz。写出其模拟滤波器方程及数字滤波器方程。 3、设计一个BW型低通DF,满足:通带截频fp=100Hz,衰耗满足 Apmax=3dB , 阻 带 截 频 fT=400Hz, 衰 耗 ATmin=15dB, 取 样 频 率 fs=2000Hz。写出其模拟滤波器方程及数字滤波器方程。 4、设计一个BW型高通DF,满足:通带截频fp=400Hz,衰耗满足 Apmax=3dB , 阻 带 截 频 fT=350Hz, 衰 耗 ATmin=15dB, 取 样 频 率 fs=1000Hz。写出其模拟滤波器方程及数字滤波器方程。

实验三IIR数字滤波器实施方案及软件实现

实验三IIR数字滤波器实施方案及软件实现

实验三IIR数字滤波器设计及软件实现1.实验目地(1)熟悉用双线性变换法设计IIR数字滤波器地原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数.b5E2R。

(3)掌握IIR数字滤波器地MATLAB实现方法.(3)通过观察滤波器输入输出信号地时域波形及其频谱,建立数字滤波地概念.2.实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛地是双线性变换法.基本设计过程是:①先将给定地数字滤波器地指标转换成过渡模拟滤波器地指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器地系统函数.MATLAB信号处理工具箱中地各种IIR数字滤波器设计函数都是采用双线性变换法.第六章介绍地滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器.本实验要求读者调用如上函数直接设计IIR数字滤波器.p1Ean。

本实验地数字滤波器地MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定地输入信号x(n)进行滤波,得到滤波后地输出信号y(n).DXDiT。

3. 实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成地复合信号st,该函数还会自动绘图显示st地时域波形和幅频特性曲线,如图10.4.1所示.由图可见,三路信号时域混叠无法在时域分离.但频域是分离地,所以可以通过滤波地方法在频域分离,这就是本实验地目地.RTCrp。

图10.4.1 三路调幅信号st 地时域波形和幅频特性曲线(2)要求将st 中三路调幅信号分离,通过观察st 地幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号地三个滤波器(低通滤波器、带通滤波器、高通滤波器)地通带截止频率和阻带截止频率.要求滤波器地通带最大衰减为0.1dB,阻带最小衰减为60dB.5PCzV 。

IIR数字滤波器设计实验报告

IIR数字滤波器设计实验报告

实验三IIR数字滤波器设计实验报告一、实验目的:1.通过仿真冲激响应不变法和双线性变换法2.掌握滤波器性能分析的基本方法二、实验要求:1.设计带通IIR滤波器2.按照冲激响应不变法设计滤波器系数3. 按照双线性变换法设计滤波器系数4. 分析幅频特性和相频特性5. 生成一定信噪比的带噪信号,并对其滤波,对比滤波前后波形和频谱三、基本原理:㈠IIR模拟滤波器与数字滤波器IIR数字滤波器的设计以模拟滤波器设计为基础,常用的类型分为巴特沃斯(Butterworth)、切比雪夫(Chebyshev)Ⅰ型、切比雪夫Ⅱ型、贝塞尔(Bessel)、椭圆等多种。

在MATLAB信号处理工具箱里,提供了这些类型的IIR数字滤波器设计子函数。

(二)性能指标1.假设带通滤波器要求为保留6000hz~~7000hz频段,滤除小于2000hz和大宇9000hz频段2.通带衰减设为3Db,阻带衰减设为30dB,双线性变换法中T取1s.四、实验步骤:1.初始化指标参数2.计算模拟滤波器参数并调用巴特沃斯函数产生模拟滤波器3.利用冲激响应不变法和双线性变换法求数字IIR滤波器的系统函数Hd (z)4.分别画出两种方法的幅频特性和相频特性曲线5.生成一定信噪比的带噪信号6.画出带噪信号的时域图和频谱图6.对带噪信号进行滤波,并画出滤波前后波形图和频谱图五、实验结果模拟滤波器的幅频特性和相频特性:101010101Frequency (rad/s)P h a s e (d e g r e e s )1010101011010-5100Frequency (rad/s)M a g n i t u d e在本实验中,采用的带通滤波器为6000-7000Hz ,换算成角频率为4.47-0.55,在上图中可以清晰地看出到达了题目的要求。

冲击响应不变法后的幅频特性和相频特性:0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )双线性变换法的幅频特性和相频特性:0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )00.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )通过上图比较脉冲响应不变法双线性变换法的幅频特性和相频特性,而在在幅频曲线上几乎没有差别,都能达到相同的结果。

IIR数字滤波器设计实验报告

IIR数字滤波器设计实验报告

实验三IIR数字滤波器设计实验报告一、实验目的:1.通过仿真冲激响应不变法和双线性变换法2.掌握滤波器性能分析的基本方法二、实验要求:1.设计带通IIR滤波器2.按照冲激响应不变法设计滤波器系数3. 按照双线性变换法设计滤波器系数4. 分析幅频特性和相频特性5. 生成一定信噪比的带噪信号,并对其滤波,对比滤波前后波形和频谱三、基本原理:㈠IIR模拟滤波器与数字滤波器IIR数字滤波器的设计以模拟滤波器设计为基础,常用的类型分为巴特沃斯(Butterworth)、切比雪夫(Chebyshev)Ⅰ型、切比雪夫Ⅱ型、贝塞尔(Bessel)、椭圆等多种。

在MATLAB信号处理工具箱里,提供了这些类型的IIR数字滤波器设计子函数。

(二)性能指标1.假设带通滤波器要求为保留6000hz~~7000hz频段,滤除小于2000hz和大宇9000hz频段2.通带衰减设为3Db,阻带衰减设为30dB,双线性变换法中T取1s.四、实验步骤:1.初始化指标参数2.计算模拟滤波器参数并调用巴特沃斯函数产生模拟滤波器3.利用冲激响应不变法和双线性变换法求数字IIR滤波器的系统函数Hd (z)4.分别画出两种方法的幅频特性和相频特性曲线5.生成一定信噪比的带噪信号6.画出带噪信号的时域图和频谱图6.对带噪信号进行滤波,并画出滤波前后波形图和频谱图五、实验结果模拟滤波器的幅频特性和相频特性:101010101Frequency (rad/s)P h a s e (d e g r e e s )1010101011010-5100Frequency (rad/s)M a g n i t u d e在本实验中,采用的带通滤波器为6000-7000Hz ,换算成角频率为4.47-0.55,在上图中可以清晰地看出到达了题目的要求。

冲击响应不变法后的幅频特性和相频特性:0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )双线性变换法的幅频特性和相频特性:0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )00.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )通过上图比较脉冲响应不变法双线性变换法的幅频特性和相频特性,而在在幅频曲线上几乎没有差别,都能达到相同的结果。

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

实验21用双线性变换法设计IIR 数字滤波器(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1. 加深对双线性变换法设计IIR 数字滤波器基本方法的了解。

2. 掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3. 了解MATLAB 有关双线性变换法的子函数。

二、实验内容1. 双线性变换法的基本知识。

2. 用双线性变换法设计IIR 数字低通滤波器。

3. 用双线性变换法设计IIR 数字高通滤波器。

4. 用双线性变换法设计IIR 数字带通滤波器。

5. 用双线性变换法设计IIR 数字带阻滤波器。

三、实验环境MATLAB7.0四、实验原理1.实验涉及的MATLAB 子函数Bilinear 功能:双线性变换——将s 域(模拟域)映射到z 域(数字域)的标准方法,将模拟滤波器变换成离散等效滤波器。

调用格式:[numd,dend]=bilinear(num,den,Fs);将模拟域传递函数变换为数字域传递函数,Fs 为取样频率。

[numd,dend]=bilinear(num,den,Fs,Fp);将模拟域传递函数变换为数字域传递函数,Fs 为取样频率,Fp 为通带截止频率。

[zd,pd,kd]=bilinear(z,p,k,Fs);将模拟域零极点增益系数变换到数字域,Fs 为取样频率。

[zd,pd,kd]=bilinear(z,p,k,Fs,Fp);将模拟域零极点增益系数变换到数字域,Fs 为取样频率,Fp 为通带截止频率。

[Ad,Bd,Cd,Dd]=bilinear(A,B,C,D,Fs);将模拟域状态变量系数变换到数字域,Fs 为取样频率。

2. 双线性变换法的基本知识双线性变换法是将整个s 平面映射到整个z 平面,其映射关系为11z 1z 1T 2s --+-=或2sT/12sT/1z -+=双线性变换法克服了脉冲响应不变法从s 平面到z 平面的多值映射的缺点,消除了频谱混叠现象。

实验三 IIR数字滤波器设计及实现

实验三  IIR数字滤波器设计及实现

实验三 IIR 数字滤波器设计及实现一、实验目的(1)熟悉用脉冲响应不变法和双线性变换法设计IIR 数字滤波器的原理与方法;(2)学会调用MATLAB 信号处理工具箱中滤波器设计函数设计IIR 数字滤波器,学会根据滤波需求确定滤波器指标参数。

二、实验原理设计IIR 数字滤波器一般采用脉冲响应不变法和双线性变换法。

1. 脉冲响应不变法的变换原理与步骤从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应模仿模拟滤波器的冲击响应,即h (n )是h a (t )的采样值。

设T 为采样周期,变换过程:如果模拟滤波器的系统函数只有单阶极点,且分母的阶数高于分子阶数,用脉冲响应不变法求数字滤波器的系统函数有简便方法:将 H a (s ) 展成部分分式的并联形式,再利用下述变换公式直接写出 H (z )2. 双线性变换法的变换原理和步骤 (1)保证s 平面压缩到s 1平面的宽为2π/T 的横带内(2)保证低频部分基本对应根据要求,确定数字滤波器指标。

如是模拟频率临界点,则要先转变)()()()(z H n h t h s H ZT nT t a ILT a −→−−−→−−→−=1111)( )(-==-=⇒-=∑∑z eTA z H s s A s H T s k N k k k N k a k )2tan()2tan(1ωC T C =Ω=ΩTC T C T C 2 2)2tan(11=Ω⋅≈Ω⋅=Ω成数字频率,以便预畸变处理。

将数字指标转换成与Ha (s )对应的模拟性能指标。

设计模拟滤波器的系统函数Ha (s ) 。

将映射关系代入Ha (s )中得数字滤波器系统函数H (z ) 。

由于数字滤波器传输函数只与频域的相对值有关,故在设计时可先将滤波器设计指标进行归一化处理。

设采样频率为Fs ,归一化频率的计算公式是:2/)()/(Fs Hz Fs s rad 实际模拟频率实际数字频率实际模拟角频率归一化频率==⨯=ππ利用典型法设计数字滤波器的步骤:1、将设计指标归一化处理。

数字信号处理课程设计用双线性变换法设计IIR滤波器

数字信号处理课程设计用双线性变换法设计IIR滤波器

目录一、摘要 (3)二、设计思想 (3)2.1 IIR数字滤波器设计思路 (3)2.2设计IIR数字滤波器的两种方法 (4)2.3双线性变换法的基本原理 (5)2.4用双线性变换法设计IIR数字滤波器的步骤 (6)三、程序源代码和运行结果 (6)3.1低通滤波器 (6)3.2高通滤波器 (9)3.3带通滤波器 (12)3.4带阻滤波器 (14)四、网络结构图 (17)五、心得体会 (19)参考文献 (19)一、摘要数字滤波器是具有一定传输选择特性的数字信号处理装置,其输入、输出均为数字信号,实质上是一个由有限精度算法实现的线性时不变离散系统。

它的基本工作原理是利用离散系统特性对系统输入信号进行加工和变换,改变输入序列的频谱或信号波形,让有用频率的信号分量通过,抑制无用的信号分量输出。

数字滤波器和模拟滤波器有着相同的滤波概念,根据其频率响应特性可分为低通、高通、带通、带阻等类型,与模拟滤波器相比,数字滤波器除了具有数字信号处理的固有优点外,还有滤波精度高(与系统字长有关)、稳定性好(仅运行在0与l两个电平状态)、灵活性强等优点。

数字滤波器按单位脉冲响应的性质可分为无限长单位脉冲响应滤波器IIR和有限长单位脉冲响应滤波器(FIR)两种。

本文介绍IIR数字滤波器的设计。

二、设计思想2.1 IIR数字滤波器设计思路IIR 数字滤波器可用一个n阶差分方程表示y(n)=Σb r x(n-r)+Σa k y(n-k)或用它的Z域系统函数:对照模拟滤波器的传递函数:不难看出,数字滤波器与模拟滤波器的设计思路相仿,其设计实质也是寻找一组系数{b,a},去逼近所要求的频率响应,使其在性能上满足预定的技术要求;不同的是模拟滤波器的设计是在S平面上用数学逼近法去寻找近似的所需特性H(S),而数字滤波器则是在Z平面寻找合适的H(z)。

IIR数字滤波器的单位响应是无限长的,而模拟滤波器一般都具有无限长的单位脉冲响应,因此与模拟滤波器相匹配。

实验三:用双线性变换设计IIR数字滤波器

实验三:用双线性变换设计IIR数字滤波器

实验三:用双线性变换设计IIR数字滤波器pb03023058 甘小华一、实验目的1、熟悉用双线性变换法设计IIR数字滤波器的原理与方法。

2、掌握数字滤波器的计算机方针方法。

3、通过观察对实际心电图信号的滤波作用,获得数字滤波器的感性知识。

二、实验原理冲激响应不变法设计IIR数字滤波器会引起频域的混叠,因此有了双线性变换设计IIR 数字滤波器。

双线性变换所采用的由s平面到z平面的映射为s=(z-1) / (z+1)即z=(1+s) / (1-s)三、实验内容1、用双线性变换法设计一个巴特沃斯低通IIR数字滤波器。

设计参数:在通带内频率低于0.2*pi时,最大衰减小于1dB;在阻带内[0.3*pi,pi]频率区间上,最小衰减大于15dB。

2、以0.02*pi为采样间隔,打印出数字滤波器在频率区间[0,pi/2]上的幅频响应特性曲线。

3、用所设计的滤波器对实际心电图信号序列进行仿真滤波处理,可采用filter函数。

4、求得满足本实验要求的数字滤波器系统函数H(z)=H1(z)+H2(z)+H3(z)Hi(z)=A(1+2/z+1/zz) / (1-Bi/z-Ci/zz)式中A=0.09036B1=1.2686 C1=-0.7051B2=1.0106 C2=-0.3583B3=0.9044 C3=-0.21555、实验所用的matlab程序为:x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10 ,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0]k=1;close all;figure(1);subplot(2,2,1);n=1:56;stem(n,x,'.');axis([0 56 -100 50]);hold on;n=0:60;m=zeros(61);plot(n,m);xlabel('n');ylabel('x(n)');title('心电图信号采样序列x(n)');B=[0.09036 2*0.09036 0.09036];A=[1.2686 -0.7051];A1=[1.0106 -0.3583];A2=[0.9044 -0.2155];while(k<=3)y=filter(B,A,x);x=y;if k==2A=A1;endif k==3A=A2;endk=k+1;endsubplot(2,2,3);n=1:56;stem(n,y,'.');axis([0 56 -15 5]);hold on;n=0:60m=zeros(61);plot(n,m);xlabel('n');ylabel('y(n)');title('三级滤波后的心电图信号');A=[0.09036,0.1872,0.09036];B1=[1,-1.2688,0.7051];B2=[1,-1.0106,0.3583];B3=[1,-0.9044,0.2155];[H1,w]=freqz(A,B1,100);[H2,w]=freqz(A,B2,100);[H3,w]=freqz(A,B3,100);H4=H1.*(H2);H=H4.*(H3);mag=abs(H);db=20*log10((mag+eps)/max(mag)); subplot(2,2,2);plot(w/pi,db);axis([0,0.6,-50,10]);xlabel('w/pi');ylabel('20log10|H(jw)|');title('滤波器的幅频响应曲线');6、 运行该程序,得到下面三幅图n x (n )(b)ny (n )(c)w/pi20l o g 10|H (j w )|(a)图(a) 滤波器的幅频衰减曲线(b) 心电图信号采样序列 (c) 三级滤波后的心电图信号7、 实验总结:(1) 双线性变换的特点:双线性变换采用的是非线性频率映射,消除了冲激响应不变法中的频域混叠现象,并且幅频响应的衰减比较快,这正是我们所希望的。

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

数字信号处理实验matlab版⽤双线性变换法设计IIR数字滤波器实验21⽤双线性变换法设计IIR 数字滤波器(完美格式版,本⼈⾃⼰完成,所有语句正确,不排除极个别错误,特别适⽤于⼭⼤,勿⽤冰点等⼯具下载,否则下载之后的word 格式会让很多部分格式错误,)XXXX 学号处XXXX⼀、实验⽬的1. 加深对双线性变换法设计IIR 数字滤波器基本⽅法的了解。

2. 掌握⽤双线性变换法设计数字低通、⾼通、带通、带阻滤波器的⽅法。

3. 了解MATLAB 有关双线性变换法的⼦函数。

⼆、实验容1. 双线性变换法的基本知识。

2. ⽤双线性变换法设计IIR 数字低通滤波器。

3. ⽤双线性变换法设计IIR 数字⾼通滤波器。

4. ⽤双线性变换法设计IIR 数字带通滤波器。

5. ⽤双线性变换法设计IIR 数字带阻滤波器。

三、实验环境MATLAB7.0四、实验原理1.实验涉及的MATLAB ⼦函数Bilinear 功能:双线性变换——将s 域(模拟域)映射到z 域(数字域)的标准⽅法,将模拟滤波器变换成离散等效滤波器。

调⽤格式:[numd,dend]=bilinear(num,den,Fs);将模拟域传递函数变换为数字域传递函数,Fs 为取样频率。

[numd,dend]=bilinear(num,den,Fs,Fp);将模拟域传递函数变换为数字域传递函数,Fs 为取样频率,Fp 为通带截⽌频率。

[zd,pd,kd]=bilinear(z,p,k,Fs);将模拟域零极点增益系数变换到数字域,Fs 为取样频率。

[zd,pd,kd]=bilinear(z,p,k,Fs,Fp);将模拟域零极点增益系数变换到数字域,Fs 为取样频率,Fp 为通带截⽌频率。

[Ad,Bd,Cd,Dd]=bilinear(A,B,C,D,Fs);将模拟域状态变量系数变换到数字域,Fs 为取样频率。

2. 双线性变换法的基本知识双线性变换法是将整个s 平⾯映射到整个z 平⾯,其映射关系为11z 1z 1T 2s --+-=或2sT/12sT/1z -+=双线性变换法克服了脉冲响应不变法从s 平⾯到z 平⾯的多值映射的缺点,消除了频谱混叠现象。

双线性变换法IIR数字滤波器设计

双线性变换法IIR数字滤波器设计

双线性变换法IIR 数字滤波器设计一、实验目的1、掌握用双线性变换法设计低通IIR 数字滤波器的基本原理和算法。

2、掌握用双线性变换法设计高通和带通IIR 数字滤波器的基本原理和算法。

3、进一步了解数字滤波器和模拟滤波器的频率响应特性。

二、实验原理与计算方法1、双线性变换法设计IIR 低通数字滤波器的基本原理和算法双线性变换法设计数字滤波器,采用了二次映射的方法,就是先将整个s 平面压缩到s 1平面的一个Tj Tj ππ~-的横形条带范围内,然后再将这个条带映射到z 平面上,就能建立s 平面到z 平面的一一对应关系。

对于低通数字滤波器,映射关系为zzT z z T s ++-=+-=--11211211 (1) 其中T 为抽样周期。

用双线性变换法设计低通IIR 数字滤波器的基本步骤,首先根据设计要求确定相应的模拟滤波器的传递函数)(s H a ,再应用(1)式得数字滤波器的传递函数)(z Hzz T s a s H z H ++-==112)()( (2)通常可以给定的参数为:低通数字滤波器通带边界频率p p f πΩ21=、阻带边界频率s s f πΩ21=和对应的通带衰减函数p α、阻带衰减函数s α。

s 1平面中的模拟角频率1Ω与数字角频率ω的关系为线性关系T 1Ωω=,在计算模拟滤波器的阶数N 、极点s i 和传递函数)(s H a 之前,应作预畸变处理22tan 22tan 21T f TT TπΩΩ== (3)模拟滤波器的阶数N 、极点s i 和传递函数)(s H a 的计算方法与冲激响应不变法相同,可以采用Butterworth 逼近或Chebyshev 逼近。

2、双线性变换法设计IIR 高通、带通、带阻数字滤波器的基本原理和算法由于双线性变换法获得的数字滤波器频率响应特性中不会出现混叠现象,因此可以适用于高通、带通和带阻滤波器的设计。

IIR 数字滤波器的设计通常要借助于模拟低通滤波器的设计,由原型低通滤波器到其他形式(高通、带通、带阻)IIR 数字滤波器的频带变换有模拟频带变换法和数字频带变换法。

实验三IIR滤波器的设计与信号滤波

实验三IIR滤波器的设计与信号滤波

实验三 IIR 滤波器的设计与信号滤波1、实验目的(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。

(2)掌握数字滤波器的计算机仿真方法。

(3)通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。

2、实验仪器:PC 机一台 MATLAB 软件3、实验原理利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。

如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率s p w w 和的转换,对s p αα和指标不作变化。

边界频率的转换关系为)21tan(2w T =Ω。

接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数)(p H a ;最后,将c s p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输函数)(s H a 。

之后,通过双线性变换法转换公式11112--+-=zz T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。

利用所设计的数字滤波器对实际的心电图采样信号进行数字滤波器。

4、实验步骤及内容(1)复习有关巴特沃斯模拟滤波器的设计和用双线性变换法设计IIR 数字滤波器的内容,用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。

设计指标参数为:在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。

(2)绘制出数字滤波器的幅频响应特性曲线。

(3)用所设计的滤波器对实际心电图信号采样序列(实验数据在后面给出)进行仿真滤波处理,并分别绘制出滤波前后的心电图信号波形图,观察总结滤波作用与效果。

(4)输入为20Hz 正弦和200Hz 的正弦的叠加波形,要求用双线性变换法设计一巴特沃斯数字低通滤波器滤除200Hz 的正弦,使输出中只保留20Hz 的正弦波。

试验三用双线性变换法设计IIR滤波器

试验三用双线性变换法设计IIR滤波器

实验三 用双线性变换法设计I IR滤波器一、实验目的1、了解两种工程上最常用的变换方法:脉冲响应不变法和双线性变换法。

2、掌握双线性变换法设计IIR 滤波器的原理及具体设计方法,熟悉双线性法设计低通、带通和高通II R滤波器的计算机程序。

3、观察用双线性变换法设计的滤波器的品与特性,并与脉冲响应不变法相比较,了解双线性变换法的特点。

4、熟悉用双线性变换法涉及数字Butterworth 和Chebyshev 滤波器的全过程。

5、了解多项式呈几何多项式乘方运算的计算机变成方法。

二、实验原理与方法从模拟滤波器设计IIR 数字滤波器具有四种方法:微分—差分变换法、脉冲响应不变法、双线性变换法、匹配Z 变换法:在工程上常用的是其中两种:脉冲响应不变法、双线性变换法。

脉冲响应不变法需要经历如下步骤:由已知系统传输函数)(s H 计算系统冲激响应)(t h :对)(t h 进行等间隔取样得到)()(nT h t h =,由)(t h 获得数字滤波器的系统响应)(z H 。

这种方法非常直观,其算法宗旨是保证所设计的IIR 滤波器的脉冲响应和响应模拟滤波器的冲激响应在采样个点上完全一致。

而双线性变换法的设计准则是使数字滤波器的频率响应与参考模拟滤波器的频率响应相似。

脉冲响应不变法一个重要的特点是频率坐标的变换式现行的,其缺点是有频谱的周期延拓效应,存在频谱混淆的现象。

为了克服脉冲响应不变法可能产生的频谱混淆,提出了双线性变换法,它依靠双线性变换式:ss z z z s -+=+-=--11,1111 其中,jw re z j s =Ω+=,σ 建立起s 平面和z 平面的单值映射关系,数字频域和模拟频域之间的关系:Ω==Ωarctg w w tg 2),2( (3—1)由上面的关系式可知,当∞>-Ω时,w 中止在折叠频率π=w 处,整个Ωj 周单值的对应于单位圆的一周。

因此双线性变换法不同于脉冲响应不变法,不存在频谱混淆的问题。

(完整word版)用双线性变换法设计IIR数字低通滤波器课程设计

(完整word版)用双线性变换法设计IIR数字低通滤波器课程设计

V=课程设计报告书姓名:班级:学号:时间:设计题目用双线性变换法设计IIR数字低通滤波器设计要求1. 通过实验加深对双线性变换法设计IIR滤波器基本方法的了解.2. 了解MATLAB有关双线性变换法的子函数。

3.掌握用双线性变换法设计数字低通滤波器的方法。

本次课程设计是采用双线性变换法基于MATLAB设计一个IIR数字低通滤波器, 其中要求通带截止频率为ωp=0.25π;通带最大衰减Rp=1dB;阻带最小衰减As=15dB;阻带截止频率ωs=0.4π;滤波器采样频率Fs=100Hz.设计过程摘要: 根据IIR滤波器的特点, 在MATLAB坏境下用双线性变换法设计IIR数字滤波器。

利用MATLAB设计滤波器, 可以随时对比设计要求和滤波器特性调整参数, 直观简便, 极大的减轻了工作量, 有利于滤波器设计的最优化。

1.关键词:双线性变换法 , 数字滤波器 , MATLAB , IIR2.设计原理与步骤1.1设计原理滤波器的种类很多, 从功能上可分为低通、高通、带通和带阻滤波器, 每一种又有模拟滤波器和数字滤波器两种形式。

如果滤波器的输人和输出都是离散时间信号, 则该滤波器的冲击响应也必然是离散的, 这种滤波器称之为数字滤波器。

数字滤波器是一种用来过滤时间离散信号的数字系统, 通过对抽样数据进行数学处理来达到频域滤波的目的。

数字滤波器也是具有一定传输选择特性的数字信号处理装置, 其输入、输出均为数字信号, 实质上是一个由有限精度算法实现的线性时不变离散系统。

IIR数字滤波器采用递归型结构, 即结构上带有反馈环路。

IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成, 可以组合成直接型、正准型、级联型、并联型四种结构形式, 都具有反馈回路。

数字滤波器根据其冲激响应函数的时域特性, 可分为两种, 即无限长冲激响应(IIR)数字滤波器和有限长冲激响应(FIR)数字滤波器。

IIR 数字滤波器的特征是, 具有无限持续时间冲激响应, 需要用递归模型来实现, 其差分方程为:(1-1)(1-2)设计IIR滤波器的任务就是寻求一个物理上可实现的系统函数H(z), 使其频率响应H(z)满足所希望得到的频域指标, 即符合给定的通带截止频率、阻带截止频率、通带衰减系数和阻带衰减系数。

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

实验21用双线性变换法设计IIR 数字滤波器(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1. 加深对双线性变换法设计IIR 数字滤波器基本方法的了解。

2. 掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3. 了解MA TLAB 有关双线性变换法的子函数。

二、实验内容1. 双线性变换法的基本知识。

2. 用双线性变换法设计IIR 数字低通滤波器。

3. 用双线性变换法设计IIR 数字高通滤波器。

4. 用双线性变换法设计IIR 数字带通滤波器。

5. 用双线性变换法设计IIR 数字带阻滤波器。

三、实验环境MATLAB7.0四、实验原理1.实验涉及的MATLAB 子函数Bilinear功能:双线性变换——将s 域(模拟域)映射到z 域(数字域)的标准方法,将模拟滤波器变换成离散等效滤波器。

调用格式:[numd,dend]=bilinear(num,den,Fs);将模拟域传递函数变换为数字域传递函数,Fs 为取样频率。

[numd,dend]=bilinear(num,den,Fs,Fp);将模拟域传递函数变换为数字域传递函数,Fs 为取样频率,Fp 为通带截止频率。

[zd,pd,kd]=bilinear(z,p,k,Fs);将模拟域零极点增益系数变换到数字域,Fs 为取样频率。

[zd,pd,kd]=bilinear(z,p,k,Fs,Fp);将模拟域零极点增益系数变换到数字域,Fs 为取样频率,Fp 为通带截止频率。

[Ad,Bd,Cd,Dd]=bilinear(A,B,C,D,Fs);将模拟域状态变量系数变换到数字域,Fs 为取样频率。

2. 双线性变换法的基本知识双线性变换法是将整个s 平面映射到整个z 平面,其映射关系为11z 1z 1T 2s --+-=或2sT/12sT/1z -+=双线性变换法克服了脉冲响应不变法从s 平面到z 平面的多值映射的缺点,消除了频谱混叠现象。

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器实验21用双线性变换法设计IIR数字滤波器(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX学号姓名处XXXX一、实验目的1. 加深对双线性变换法设计IIR数字滤波器基本方法的了解。

2. 掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3. 了解MATLAB有关双线性变换法的子函数。

二、实验内容1. 双线性变换法的基本知识。

2. 用双线性变换法设计IIR数字低通滤波器。

3. 用双线性变换法设计IIR数字高通滤波器。

4. 用双线性变换法设计IIR数字带通滤波器。

5. 用双线性变换法设计IIR数字带阻滤波器。

三、实验环境MATLAB7.0四、实验原理1.实验涉及的MATLAB子函数Bilinear功能:双线性变换——将s域(模拟域)映射到z域(数字域)的标准方法,将模拟滤波器变换成离散等效滤波器。

调用格式:[numd,dend]=bilinear(num,den,Fs);将模拟域传递函数变换为数字域传递函数,Fs为取样频率。

[numd,dend]=bilinear(num,den,Fs,Fp);将模拟域传递函数变换为数字域传递函数,Fs为取样频率,Fp为通带截止频率。

[zd,pd,kd]=bilinear(z,p,k,Fs);将模拟域零极点增益系数变换到数字域,Fs为取样频率。

[zd,pd,kd]=bilinear(z,p,k,Fs,Fp);将模拟域零极点增益系数变换到数字域,Fs为取样频率,Fp为通带截止频率。

[Ad,Bd,Cd,Dd]=bilinear(A,B,C,D,Fs);将模拟域状态变量系数变换到数字域,Fs为取样频率。

2. 双线性变换法的基本知识双线性变换法是将整个s平面映射到整个z平面,其映射关系为21?z?1s?T1?z?1 或z?1?sT/21?sT/2双线性变换法克服了脉冲响应不变法从s平面到z平面的多值映射的缺点,消除了频谱混叠现象。

实验三IIR滤波器设计

实验三IIR滤波器设计

实验三 IIR 数字滤波器的设计一、实验目的(1)熟悉巴特沃思滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

(2)掌握脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理。

(3)观察脉冲响应不变法设计的滤波器的频域特性,了解脉冲响应不变法的特点。

(4)掌握双线性变换法设计IIR 数字滤波器的具体设计方法及其原理。

(5)观察双线性变换设计的滤波器的频域特性,了解双线性变换法的特点。

二、实验原理与方法 脉冲响应不变法:用数字滤波器的单位脉冲响应序列h (n )模仿模拟滤波器的冲激响应h a (t ),让h (n )正好等于h a (t )的采样值,即h (n )= h a (nT )其中T 为采样间隔,如果以H a (s)及H (z)分别表示h a (t )的拉氏变换及h (n )的Z 变换,则12()()STa z e m H z H s j m T Tπ∞==-∞=-∑ 双线性变换法:S 平面与z 平面之间满足以下映射关系:111212,,{,}112j sT z s z s j z re sT T z ωσ--+-===+Ω=+- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换(2tan()2T ωΩ=),这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容(1) 已知通带边界频率f p=0.2kHz, 通带最大衰减R p=1dB, 阻带边界频率f=0.3kHz, 阻带最小衰减A s=25dB, 采样频率F=1kHz;用脉冲响应不变法设计一s个切比雪夫Ⅰ型数字低通滤波器,写出所设计数字滤波器的系统函数H(z),并绘制其幅频特性曲线,观察通带和阻带边界处的衰减量,检查是否满足指标要求。

fp=200; %通带边界频率fs=300; %阻带边界频率rp=1; %通带最大衰减as=25; %阻带最大衰减ff = 1000;wp1 = 2*pi*fp;wr1 = 2*pi*fs;[N1,wn1] = cheb1ord(wp1,wr1,rp,as,'s'); %计算相应模拟滤波器阶数N和通带截止频率[B1,A1] = cheby1(N1,rp,wn1,'s'); %计算相应的模拟滤波器系统函数[num1,den1] = impinvar(B1,A1,ff); %脉冲响应不变法将模拟滤波器转成数字滤波器[h1,w] = freqz(num1,den1); %数字滤波器的频率响应的函数y1=unwrap(angle(h1));f=w/pi;subplot(2,1,1);plot(f,20*log10(abs(h1)),'-');title('幅频特性曲线 '); grid;xlabel('频率/Hz ')ylabel('幅度/dB');subplot(2,1,2);plot(f,y1,'-');title('相频特性曲线 '); grid;xlabel('频率/f ')ylabel('相频/w');num1: 0 0.01178z-1+0.09103z-2+0.0723z-3+0.00583z-4den1: 1-2.33928z-1+3.11057z-2-2.54118z-3+1.25896z-4-0.30813z-5不符合要求(2) 利用双线性变换法分别设计满足下列指标的巴特沃思型、切比雪夫Ⅰ型数字低通滤波器,写出所设计数字滤波器的系统函数H(z),并绘制其幅频特性曲线以验证设计结果。

实验三 用双线性变换法设计IIR数字滤波器

实验三 用双线性变换法设计IIR数字滤波器

实验_三_题目_用双线性变换法设计IIR 数字滤波器 第16周星期_3_第6,7节一. 实验目的(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。

(2)掌握数字滤波器的计算机仿真方法。

(3)通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。

二、实验容、方法、设计程序及实验结果(1)复习有关巴特沃斯模拟滤波器设计和用双线性变换法设计IIR 数字滤波器的容,用双线性变换法设计数字滤波器系统函数()z H 。

其中满足本实验要求的数字滤波器系统函数为:()()()()()212121612155.09044.013583.00106.117051.02686.1110007378.0-------+-+-+-+=zz z z z zz z H ()z H k k ∏==31(3.1)式中: ()()3211212121,,,k zC z B z z A z H k k k =--++=---- (3.2)2155.09044.03583.00106.17051.02686.109036.0332211-==-==-===C B C B C B A ,,,根据设计指标,调用MATLAB 信号处理工具箱buttord 和butter ,也可以得到()z H 。

由公式(3.1)和(3.2)可见,滤波器()z H 由三个二阶滤波器()z H 1、()z H 2和()z H 3级联而成,如图3-1所示。

()n y图3-1 滤波器z H 的组成此参数下的程序如下:%实验三,用双线性变换法设计 IIR数字滤波器x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,... -38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,4,... 0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0];k=1; %控制滤波循环变量close all; %关闭全部绘图窗口figure(1); %创建绘图窗口subplot(2,2,1); %定位子图 1n=0:55; %横坐标stem(n,x,'.'); %画出枝干图axis([0,56,-100,50]); %调整坐标xlabel('n'); %标注横坐标ylabel('x(n)'); %标注纵坐标title('心电图信号采集序列x(n)');%命名该子图B=[0.09036,2*0.09036,0.09036];%H1 滤波器的分子系数矩阵A=[1.2686,-0.7051]; %H1滤波器的分母系数矩阵A1=[1.0106,-0.3583]; %H2滤波器的分母系数矩阵A2=[0.9044,-0.2155]; %H3滤波器的分母系数矩阵while(k<=3)y=filter(B,A,x); %进行滤波x=y; %重新赋值X 进行下一次滤波k=k+1; %控制循环变量if k==2A=A1;else A=A2;endendsubplot(2,2,3); %定位子图3stem(n,y,'.');axis([0,56,-100,50]);xlabel('n');ylabel('y(n)');title('三级滤波后的心电图信号(原坐标)');subplot(2,2,2)stem(n,y,'.');axis([0,56,-15,5]);xlabel('n');ylabel('y(n)');title('调整坐标后的心电图信号');%求数字滤波器的幅频特性A=[0.09036,2*0.09036,0.09036];%滤波器的分子系数矩阵B1=[1,-1.2686,0.7051]; %H1滤波器的分母系数矩阵B2=[1,-1.0106,0.3583]; %H2滤波器的分母系数矩阵B3=[1,-0.9044,0.2155]; %H3滤波器的分母系数矩阵[H1,w]=freqz(A,B1,100); %进行滤波器幅频特性分析[H2,w]=freqz(A,B2,100);[H3,w]=freqz(A,B3,100);H4=H1.*(H2); %点积H=H4.*(H3);db=20*log10(abs(H)+eps);subplot(2,2,4)plot(w/pi,db);axis([0,0.5,-50,10]);xlabel('w');ylabel('|H(e^j^w)|');grid on; %显示方格title('滤波器的幅频响应曲线');(2)用双线性变换法设计一个巴特沃斯低通IIR数字滤波器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三:用双线性变换设计IIR数字滤波器
pb03023058 甘小华
一、实验目的
1、熟悉用双线性变换法设计IIR数字滤波器的原理与方法。

2、掌握数字滤波器的计算机方针方法。

3、通过观察对实际心电图信号的滤波作用,获得数字滤波器的感性知识。

二、实验原理
冲激响应不变法设计IIR数字滤波器会引起频域的混叠,因此有了双线性变换设计IIR 数字滤波器。

双线性变换所采用的由s平面到z平面的映射为
s=(z-1) / (z+1)
即z=(1+s) / (1-s)
三、实验内容
1、用双线性变换法设计一个巴特沃斯低通IIR数字滤波器。

设计参数:在通带内频率
低于0.2*pi时,最大衰减小于1dB;在阻带内[0.3*pi,pi]频率区间上,最小衰减大于15dB。

2、以0.02*pi为采样间隔,打印出数字滤波器在频率区间[0,pi/2]上的幅频响应特性曲
线。

3、用所设计的滤波器对实际心电图信号序列进行仿真滤波处理,可采用filter函数。

4、求得满足本实验要求的数字滤波器系统函数
H(z)=H1(z)+H2(z)+H3(z)
Hi(z)=A(1+2/z+1/zz) / (1-Bi/z-Ci/zz)
式中
A=0.09036
B1=1.2686 C1=-0.7051
B2=1.0106 C2=-0.3583
B3=0.9044 C3=-0.2155
5、实验所用的matlab程序为:
x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10 ,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0]
k=1;
close all;
figure(1);
subplot(2,2,1);
n=1:56;
stem(n,x,'.');
axis([0 56 -100 50]);
hold on;
n=0:60;
m=zeros(61);
plot(n,m);
xlabel('n');
ylabel('x(n)');
title('心电图信号采样序列x(n)');
B=[0.09036 2*0.09036 0.09036];
A=[1.2686 -0.7051];
A1=[1.0106 -0.3583];
A2=[0.9044 -0.2155];
while(k<=3)
y=filter(B,A,x);
x=y;
if k==2
A=A1;
end
if k==3
A=A2;
end
k=k+1;
end
subplot(2,2,3);
n=1:56;
stem(n,y,'.');
axis([0 56 -15 5]);
hold on;
n=0:60
m=zeros(61);
plot(n,m);
xlabel('n');
ylabel('y(n)');
title('三级滤波后的心电图信号');
A=[0.09036,0.1872,0.09036];
B1=[1,-1.2688,0.7051];
B2=[1,-1.0106,0.3583];
B3=[1,-0.9044,0.2155];
[H1,w]=freqz(A,B1,100);
[H2,w]=freqz(A,B2,100);
[H3,w]=freqz(A,B3,100);
H4=H1.*(H2);
H=H4.*(H3);
mag=abs(H);
db=20*log10((mag+eps)/max(mag)); subplot(2,2,2);
plot(w/pi,db);
axis([0,0.6,-50,10]);
xlabel('w/pi');
ylabel('20log10|H(jw)|');
title('滤波器的幅频响应曲线');
6、 运行该程序,得到下面三幅图
n x (n )
(b)
n
y (n )
(c)
w/pi
20l o g 10|H (j w )|
(a)
图(a) 滤波器的幅频衰减曲线
(b) 心电图信号采样序列 (c) 三级滤波后的心电图信号
7、 实验总结:
(1) 双线性变换的特点:双线性变换采用的是非线性频率映射,消除了冲激响
应不变法中的频域混叠现象,并且幅频响应的衰减比较快,这正是我们所希望的。

(2) 心电图滤波前后比较:滤波前信号无规律,波动较大且变化突兀,有一个
波峰,另外还有几个小波峰,信号比较分散能量不集中,不利于我们观察主要感兴趣的信号;而滤波后信号有了一定的规律,波动较平缓,信号比较集中,有一个主峰,还有两个小波峰,特征明显,主要信号比较集中利于观察分析。

思考题:
答:变换公式中的T的取植对设计结果无影响,这是因为无论是在设计模拟滤波器还是由模拟滤波器转变为数字滤波器的过程,系数2/T均被约掉。

例如:。

相关文档
最新文档