21.2二次根式乘除教案2
数学:人教版九年级上 21.2 二次根式的乘除(教案)
课题:21.2二次根式的乘除一、教学目标1.经历二次根式乘法法则的形成过程,会进行简单的二次根式的乘法运算.2.会利用积的算术平方根的性质化简二次根式.二、教学重点和难点1.重点:二次根式的乘法法则.2.难点:二次根式的化简.三、教学过程(一)创设情境,导入新课师:前面我们学习了二次根式的概念和性质,从本节课开始我们要学习二次根式的乘除(板书课题:21.2二次根式的乘除),这节课我们先学习二次根式的乘法.(二)尝试指导,讲授新课师:,并指准)这是一个二次根式,这也是一个二次根式,这两个二次根式怎么相乘呢?(稍停)还是让我们先来看几个具体的例子.师:⨯⨯2等于3(边讲边板书:=2×3)⨯等于6(边讲边板书:=6).师:,等于什么?讲边板书:6(边讲边板书:=6).师:⨯66,⨯⨯.师:我们再来看一个例子.师:⨯⨯.(生计算)师:你算出的结果是什么?生:20.(多让几名同学回答)师:⨯等于45(边讲边板书:=4×5),20(边讲边板书:=20).师:等于什么?大家算一算.(生计算)师:你算出的结果是什么?生:20.(多让几名同学回答)师:)等于20(边讲边板书:=20).师:(指准等式)⨯等于20,也等于20,所以⨯⨯.师:⨯⨯,从这两个等式,你能发现什么规律?(让生思考一会儿)师:⨯=⨯等于什么?生:……(多让几名同学回答)师:(⨯⨯,也就是等于.师:⨯=⨯.)师:师:乘法法则).师:a是被开方数,所以a必须大于等于0;因为b也是被开方数,所以b也必须大于等于0(边讲边板书:(a≥0,b ≥0)).师:下面我们利用二次根式的乘法法则来做几个题目.(师出示例1)例1 计算:⨯;⨯(以下师边讲解边板书,解题过程如课本第7页所示)(三)试探练习,回授调节1.计算:⨯=⨯(四)尝试指导,讲授新课师:)刚才我们做的这个题目的结果是什么?简.怎么化简?师:),(边讲边板书:.师:再叫学生)生:……(让一两名学生发表看法)师:(指准式子),所以反过来,,所以化结果是.师:化简的目的是把被开方数中的因数开方后移到根号外,化简时要用到一个等式,这个等式.师:这个等式反过来得到的.师:下面我们来化简几个二次根式.(师出示例2)例2 化简:;(师边讲解板书,(1)(2)小题解题过程如课本第8页所示,(3)小题解题过程如下)((2)小题教学时,暂时不要说明本章字母都表示正数这个约定,以免使问题复杂化)(五)试探练习,回授调节2.化简:= == == == == =====(六)归纳小结,布置作业那个题)这就是二次根式乘法法则;运用法则后,如果得到的二次根式还可以化简,就要化简二次根式.化简的目的是把像4这样的因数或因式开方后移到根号外.(作业:P8练习1.2.)四、板书设计课题:21.2二次根式的乘除(第2课时)一、教学目标1.会进行二次根式的乘法运算.2.培养学生的运算能力.二、教学重点和难点1.重点:二次根式的乘法运算.2.难点:正确地进行乘法运算.三、教学过程(一)基本训练,巩固旧知1.(a≥0,b≥0)2.计算:⨯⨯3.化简:= == == == == == =(二)创设情境,导入新课(师出示下面的板书)≥0,b≥0)(a≥0,b≥0)师:上节课我们学习了二次根式的乘法法则和二次根式的化简.(指准板书),利用用这个等式可以化简二次根式.师:(指准板书)会运用乘法法则,会化简二次根式,就会做二次根式乘法了.为什么这么说?(稍停)因为做二次根式的乘法实际上就是做这两件事,一件事是运用乘法法则,一件事是化简二次根式.师:下面我们来做几个二次根式乘法的题目.(三)尝试指导,讲授新课(师出示例题)例计算:⨯(2)⨯;⨯((1)(2)小题第一步运用法则,第二步化简;(3)小题第一步化简,第二步运用法则,第三步化简.教学时,师边讲解边板书,(1)(2)小题的解题过程如课本第11页所示,(3)小题的解题过程如下)⨯⨯=⨯=师:(指例题)我们做了三道二次根式的乘法,从这三道题目,哪位同学会归纳做二次根式乘法的步骤?生:……(让一两名好生归纳)师:(指准(3)小题)做二次根式的乘法,第一步:先看二次根式能不能化简,如果能化简先要化简;第二步:运用二次根式的乘法法则;第三步:再看所得的二次根式能不能化简,如果能化简还要化简.简单地说,就是化简——运用法则——再化简.(四)试探练习,回授调节4.计算:⨯= = = = = = = =(3)⨯⨯⨯= == == == =5.cm和,则这个矩形的面积为cm2.(五)归纳小结,布置作业师:本节课我们做了几道二次根式的乘法,请大家在脑子里想一想,做二次根式乘法的步骤是什么?(让生想一会儿)(作业:P12习题1.4.5.)四、板书设计课题:21.2二次根式的乘除(第3课时)一、教学目标1.知道二次根式的除法法则,会运用法则进行简单的二次根式的除法运算.2.会利用商的算术平方根的性质化简二次根式.二、教学重点和难点1.重点:二次根式的除法法则.2.难点:二次根式的化简.三、教学过程(一)基本训练,巩固旧知1.计算:= == ======(二)创设情境,导入新课师:前面我们学习了二次根式的乘法,这节课我们要学习二次根式的除法(板书课题:21.2二次根式的乘除)(三)尝试指导,讲授新课师:谁来说说二次根式的乘法法则?(板书:乘法法则)生:……(让一两名学生回答)≥0,b≥0)),这就是二次根式的乘法法则.师:二次根式的除法法则也是类似的(板书:除法法则).师:叫学生)生:……(让几名学生发表看法)=.师:(指等式)在这个等式中,a必须大于等于0,b必须大于0(边讲边板书:(a ≥0,b>0)).师:(指准板书)这是二次根式的乘法法则,这是二次根式的除法法则,两个法则是类似的,大家仔细看一看,对比对比(生观察对比).师:下面我们就利用除法法则来做几个题目.(师出示例1)例1 计算:÷(四)试探练习,回授调节2.计算:(2= == == =÷÷= == == == =(五)尝试指导,讲授新课师:÷)刚才我们做的这个题目的结果是什么?简.怎么化简?).师:生:……(让一两名学生发表看法)师:(指准式子)我们知道,.,所以化简结果是2(板书:=2).师:化简的目的是把被开方数的分母开方后移到根号外,化简时要用到一个等式,这个等式就.师:来得到的.师:下面我们利用这个等式来化简二次根式. (师出示例2) 例2 化简:; (师边讲解边板书,解题过程如课本第10页所示) (六)试探练习,回授调节 3.化简:= = = = = = (五)归纳小结,布置作业师:本节课我们学习了二次根式的除法法则,这个等式就是二次根式的除法法则,把这个等式反过来,(指等式),利用它可以化简二次根式.(作业:P12习题2.3.)四、板书设计课题:21.2二次根式的乘除(第4课时)一、教学目标1.会利用第二种方法(分母有理化)进行二次根式的除法运算.2.培养运算能力,渗透转化思想.二、教学重点和难点1.重点:利用第二种方法进行二次根式的除法运算.2.难点:两种方法的选择.三、教学过程(一)基本训练,巩固旧知1.填空:(1) (a≥0,b≥0);= (a≥0,b>0).(2)2.计算:= == == == =÷= == == == =(二)创设情境,导入新课师:≥0,b>0))这是二次根式的除法法则,上节课我们用这个法则做二次根式的除法.实际上,利用法则只是做二次根式除法的第一种方法(板书:第一种方法),做二次根式的除法还有第二种方法(板书:第二种方法).师:那么,怎么用第二种方法做二次根式的除法呢?(三)尝试指导,讲授新课师:还可以怎么除?(稍停),分母成了2(边讲边板书:),讲边板书:=b).师:(指准板书)第二种方法是怎么做的呢?(稍停)第二种方法是通过分子分母同乘分母中的那个二次根式,来去掉分母中的根号,从而把二次根式的除法转化为二次根式的乘法.(如有必要可再讲一遍)师:下面我们就用第二种方法来做几个题目.(师出示例题)例计算:.(师边讲解边板书,解题过程如课本第10页所示)师:(指例题)做了几道题目,哪位同学能归纳用第二种方法做二次根式除法的步骤?生:……(让一两名好生归纳)师:(指准(2)小题)用第二种方法做二次根式的除法,一般有这么三步,第一步:个二次根式,去掉分母中的根号;第三步:做二次根式的乘法.师:按这样的步骤,下面请同学们自己来做几个题目.(四)试探练习,回授调节3.计算:(五)尝试指导,讲授新课师:(指准板书)做二次根式的除法有这么两种方法,一种是利用法则来做,一种是去掉分母中的根号,把二次根式的除法转化为乘法来做.可能有同学会问:做题的时候,用哪一种方法做会更简单呢?这要看具体的题目.师:(指准式子)被开方数24除以3,商是一个整数,用第一种方法比较简单.师:÷÷(指准式子)被开方数3 2除以118,商等于27,商也是一个整数,也是用第一种方法比较简单.师:我们再来看这个例题,3除以5,商不是整数,用第二种方法比较简单.同样,(指(2)(3)题)这两个小题也是用第二种方法比较简单.师:总之,两个二次根式相除,如果它们的被开方数的商是整数,一般用第一种方法比较简单;如果商不是整数,一般用第二种方法比较简单.÷一种方法比较简单.之所以这样说,只是为了教学上的方便)(以下师出示写有下面式子的卡片,让生判断用哪种方法比较简单)÷(六)归纳小结,布置作业师:好了,最后我们把这节课的内容来小结一下.师:(指准板书)做二次根式的除法有两种方法,一种方法是利用法则来做,一种方法是去掉分母中的根号,把二次根式的除法转化为乘法来做.对任何一个二次根式的除法题,两种方法都可以做,但有的题目用第一种方法比较简单,有的题目用第二种方法比较简单.所以,同学们要学会根据题目的特点来选择合适的方法.(作业:P12习题6)课外补充作业4.选择合适的方法计算:÷四、板书设计课题:21.2二次根式的乘除(第5课时)一、教学目标1.知道什么是最简二次根式,能把所给的二次根式化成最简二次根式.2.培养运算能力,发展数感. 二、教学重点和难点1.重点:最简二次根式. 2.难点:最简二次根式的概念. 三、教学过程(一)基本训练,巩固旧知1.计算:÷=(二)尝试指导,讲授新课师:刚才我们做了两道二次根式的除法,有同学是这样做的,大家看一看他做的对不对.师:(板书:÷÷(边讲边板书:.师:(板书:)第(2)讲边板书:. 师:这位同学做的如何,你有什么评论?(让生思考一会儿,再叫学生) 生:……(多让几名同学发表看法)师:这位同学利用法则计算,这有没有错?没错.问题出在什么地方?(稍停)问题出在他没有把结果化简..),等于(边讲边板书:=.师:(指准.讲边板书:,结果等于2讲边板书:=2.师:.师:所以它们不是最简二次根式,不能再化简了,所以它们是最简二次根式.从这两个例子,请大家想一想,什么样的二次根式是最简二次根式?(让生思考一会儿,再叫学生)生:……(多让几名同学发表看法)师:(指准被开方数28中含有能开得尽方的因数4.可见,最简二次根式首先要满足这样一个条件.(师出示下面的板书)(1)被开方数中不含能开得尽方的因数或因式;师:(指板书)被开方数不含能开得尽方的因数或因式.师:这是一个条件,下面我们来看第二个条件.师:32中含有分母.可见,最简二次根式要满足的第二个条件是:(师出示下面的板书)(2)被开方数不含分母.师:(指准板书)被开方数不含分母.师:(指准板书)我们把同时满足这样两个条件的二次根式叫做最简二次根式.师:6不含能开得尽方的因数,而且被开方数6.师:下面我们来看一道例题.(师出示例题)例下列二次根式中,哪些不是最简二次根式,并把它们化成最简二次根式:(生让生尝试,然后师边讲解边板书,解题过程如下)不是最简二次根式.=2==a=5(三)试探练习,回授调节2.下列二次根式中,哪些不是最简二次根式,并把它们化成最简二次根式:3.把下列各式化成最简二次根式:(1)(2)x=(四)归纳小结,布置作业师:本节课我们学习了最简二次根式,什么是最简二次根式?从字面上讲,最简二次根式就是化得最简的二次根式,换句话说,就是不能再化简的二次根式.这种二次根式有两个特点,(指准板书)第一个特点是,被开方数中不含能开得尽方的因数或因式;第二个特点是,被开方数不含分母.师:知道了什么是最简二次根式,对我们做二次根式的乘法和除法有很大的帮助.有什么帮助?(稍停)它可以帮助我们判断题目有没有做完,如果结果是最简二次根式,说明题目做完了;如果结果不是最简二次根式,说明题目还没有做完,还要继续化简,直到化成最简二次根式为止.(作业:P11练习2.P12习题7.)四、板书设计。
20.22二次根式的乘除法(第二课时)
21.2二次根式的乘除(第2课时)学习目标:1、会运用二次根式除法法则进行二次根式的除法运算。
2、会利用商的算术平方根性质化简二次根式。
3、理解最简二次根式概念,知道二次根式的运算中,一般要把最后结果化为最简二次根式。
4、认识到除法法则只是进行除法运算的第一步,之后如果需要化简,进行化简.也可运用概括二次根式除法公式,通过公式的双向性得到商的算术平方根性质。
学习重点:双向运用进行二次根式除法运算。
学习难点:能使用分母有理化方法进行二次根式的除法运算。
学习过程:一、复习引入导语设计:上节课学习了二次根式的乘法,这节课学习二次根式的除法运算.二、探究新知(一)二次根式除法法则活动1:1、填空,完成课本探究1=94 =94=2516 =2516 2、用1中所发现的规律比较大小94 94;2516 2516 结论1:一般地,对二次根式的除法规定:()0,0>≥=b a b a ba 思考下列问题:①公式中为什么要加0,0>≥b a 。
②两个二次根式相除其实就是 不变, 相除练一练: 324;18123÷;a a ÷34 归纳:运算的第一步是应用二次根式除法法则,最终结果尽量简化.(二)商的算术平方根性质把b a b a =反过来就得到()0,0>≥=b a ba b a 完成课本例51003 2925xy 归纳:化简被开方式含有分数线的二次根式,就是将分子的算术平方根做分子,分母的算术平方根做分母,再利用积的算术平方根分别化简.例6. 计算下列式子,使被开方数中不含分母:(1)53; (2)2723;(3)a28 (三)最简二次根式概念活动2:观察所做习题结果,总结归纳结果的特点(1) 被开方数 ;(2) 被开方数中不含能开得尽方的 和 ;我们把满足上述两个条件的二次根式,叫做最简二次根式。
概念剖析:1.被开方数不含分母的含义指-----因数是整数,因式是整式;2.被开方数中不能含开得尽方的因数是指----被开方数不能分解出完全平方数;被开方数中不含开得尽方的因式是指----被开方数的每一个因式的指数都小于根指数2,因此,每一个因式的指数都是1。
21.2二次根式的乘除(二)
12a , 18, x 9 , 5 x y , 27abc,
2 3
×
×
√
×
×
ab 3 xy 2 2 2 x y, , , 5(a b ) 2 5
2
√
× √
√
分母有理化
2 2 3 6 6 2 3 3 3 3 ( 3)
2 3 2 3 3 3 2 6 2 8 2 2 2 2 2
解:(1)
2 1 (2) 3 18
2 1 3 18
2 18 3
12 2 3
练习
计算:
32 (1) 2 50 (2) 10
1 1 (4)2 1 5 2 6
1 7 (3) 4 5 10
如果根号前有系数,就把系数相 除,仍旧作为二次根号前的系数。
探究2
a b
a b
2 2 23 6 6 6 2 2 3 3 3 3 3 3 3 为了去掉分母中的根号 解法二:
2 2 3 6 6 2 3 3 3 3 ( 3)
2 3 2 3 3 3 2 6 (2) 8 2 2 2 2 2 2 27 27 3x 9 x 3 x (3) 3x x 3x 3x 3x
在二次根式的运算中, 最后结果一般要求 (1)分母中不含有二次根式.
(2)最后结果中的二次根式要求写成最简的二次 根式的形式.
最简二次根式
1、被开方数不含分数或小数; 2、被开方数中不含能开得尽方的因 数或因式。 我们把满足上述两个条件的二次根 式,叫做最简二次根式。
探究
下列根式中,哪些是最简二次根式?
-4 2 7 -4 14 -4 2 = () = ; 解: 1 3 7 7 21 3 7
二次根式的乘除教案
二次根式的乘除教案《二次根式的乘除教案》这是优秀的教案文章,希望可以对您的学习工作中带来帮助!学习目标:1、会进行简单的二次根式的乘法运算;2、会对二次根式进行适当化简;学习重点:理解二次根式的乘法法则;学习难点:灵活运用二次根式的乘法法则和性质进行计算和化简.学习过程一、引入新课:在前面的数学课里我们认识了什么是二次根式和二次根式的一些性质,那么该怎样进行二次根式的计算呢?本节课我们一起学习二次根式的乘法运算。
二、展示目标,自主学习:自学指导认真阅读课本第6页——7页内容,完成下列任务:1、先自主完成6页“探究”,再和同伴交流,你们得到的结论是:。
尝试用文字语言表述这个法则。
2、认真看例1、例2和例3的每一步计算和化简,有疑问随即和同伴交流或向老师请教;3、仿照例题格式完成7页练习并和同伴互相找毛病。
(10分钟)三、检测反馈1、师生共同解决“自学指导”中的问题。
2、找同学演板7页练习1、2、3四、课堂小结:本节课你有哪些收获?(1)二次根式的乘法法则是什么?请写在下面。
(2)在进行二次根式的乘法计算和化简时你有觉得应该注意些什么?请告诉大家。
五、布置作业:1、正式作业:课本第10页习题16.2第1题;第3题的(1)、(2)小题2、课外延伸计算和化简(1)(2)3(3)(4)(5)(6)(7)(8)(9)(四川省凉山州)阅读材料,解答下列问题.例:当时,如则,故此时的绝对值是它本身当时,,故此时的绝对值是零当时,如则,故此时的绝对值是它的相反数∴综合起来一个数的绝对值要分三种情况,即:这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.(2)猜想与的大小关系.二次根式的乘除教案这篇文章共2104字。
§21.2.2-二次根式的除法
1. 二次根式的除法有两种常用方法:
(1)利用公式:
a a (a 0,b 0) bb
(2)把除法先写成分式的形式,再进行分母有理化运算。
a= a
b
b
a 0,b 0
2.最简二次根式、分母有理化及有理化因式的概念;
注意: 在进行分母有理化之前,可以先观察把能化 简的二次根式先化简,再考虑分母有理化。
那么2 a - 3 b和2 a + 3 b互为有理化因式。
一般地,a x与 x互为有理化因式; a x + b y与a x - b y互为有理化因式。
练一练:
1、化简下列各式(分母有理化):
(1)-8 3 8
(2)3 2 27
(3) 5a 10a
(4)2y 2 4xy
说明;1、在进行分母有理化之前,可以先观察把 能化简的 二次根式先化简,再考虑如何化去分母 中的根号。
作业本: 第12页习题21.2 第2、 3、6题
练习本: 第11页练习 第1、2、3题 选作:第12页习题21.2 第7、8、9题
3、如图,在Rt△ABC中,∠C=900,∠A=300,
AC=2cm,求斜边AB的长
B
解:设BC x,因为在RtΔABC中,
C 900,A 300,所以,AB 2x A
解:原式 64 64 8 11 49 49 7 7
辨析训练
判断下列各等式是否成立。
× √ (1) 16 9 4 3( )(2) 3 3 ( ) 22
× × (3) 41 2 1 ( 22
)(4) 2
52 99
5(
)
(5) 4 4 4 4( √ )(6)5 5 5 5 ( √)
21.2 二次根式的乘除
2 2
有什么 规律?
1 1 ? 3 4
2
1 12
1 1 ? 9 16
1 = 144
1 骣 ÷ 1 ç ÷ = ç ÷ ç12 桫 12
探究
2´ 3 ___ 6
2. 填空:
2´
5 ___ 10
归纳
4´
25 =
4´ 25
算术平方根的积
= 各个被开方数积的算术平方根
a 求 2a b
4a b 11
b 1 的值。 a b
1 b 4a 3 0 3
解:要想原等式有意义,必须满足: 1 4a b 11 0 a 4
1 b 4a 3 0 3
b 12
将 a、b 代入
a b 2a ( b a
理解最简二次根式的概念,并运用它化简
【过程与方法】
利用具体数据探究,不完全归纳法得出二 次根式的乘(除)法规律。 使用逆向思维,得出二次根式乘(除)法 规律的逆向等式。 分析结果,抓住它们的共同点,给出最简 二次根式的概念。
【情感态度与价值观】
利用规定准确计算和化简的严谨的科学精神。
逆向等式:
ab =
a
b (a≥0,b≥0)
可以进行二次根式的化简。
例题
(1)
计算:
3´
12 =
1 = 72
3 12 =
1 288 = 72
化简:
36 = 6
(2) 288 ´
4= 2
例题
(1)
225 = 15 15 = 15
15= ( 15) = 15
2
16 , b2 , c2 ,
21.2二次根式的乘除(共4课时)
21.2二次根式的乘除(共四课时)第一课时:二次根式的乘法例1.计算(1)×(2)×(3)×(4)×分析:直接利用·=(a≥0,b≥0)计算即可.例2 化简(1)(2)(3)(4)分析:利用=·(a≥0,b≥0)直接化简即可.三、比一比谁最强(每组一个代表展示)1.化简:(1)612⨯;(2)15432⨯;(3)aba216⋅.2.化简:(1)12149⨯;(2)289;(3)28y;(4)4364zxy.(5)3.一个矩形的长和宽分别是10cm和cm22,求这个矩形的面积.四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正: (1)(2)×=4××=4×=4=8课堂小结(1) ·==(a ≥0,b ≥0),=·(a ≥0,b ≥0)及其运用.求这个等边三角形的面积六、课后练习 1.计算:(1)57⨯; (2)2731⨯;(3)155⨯; (4)8423⨯. 2.化简: (1)3227yx ;(2)aba 1832⋅.3.等边三角形的边长是3,第二课时:二次根式的除法例1.计算: (1)(2)(3)(4)练习1.例2 化简.例3 计算 .;1050(2) ; 232)1(()1075143÷6152112)4(÷()()2925210031;yx ()()()a283;27232;531练习把下列各式化简:课堂小结1.利用商的算术平方根的性质化简二次根式. 2.二次根式的除法常用方法. 3.化简二次根式的常见方法. 四、课堂知识反馈1.在横线上填写适当的数或式子使等式成立. ()()()()()()()()6234113105522481=-=⨯-=⨯=⨯a a2.把下列各式的分母有理化:()()()()xyyaa 42410532723283812-3.计算: ()()⎪⎪⎭⎫⎝⎛-÷÷-41223481929519173241-)(b a 22+)(a40323)(第三课时:最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标1、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.2、通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重点:最简二次根式的运用.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1,(2),(32.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1 km,•那么它们的传播半径的比是_________.h2二、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是..例1.(1) ;例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.三、巩固练习教材P11练习2、3四、应用拓展例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:==-1,==-,同理可得:=-,……从计算结果中找出规律,并利用这一规律计算(+++……)(+1)的值.五、归纳小结本节课应掌握:最简二次根式的概念及其运用.六、课后练习一、选择题A C1(y>0)是二次根式,那么,化为最简二次根式是( ).A (y>0)B y>0)C yy>0) D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A .. 3.在下列各式中,化简正确的是( )A =±12C 2D .4-的结果是( )A .-3B .2C .-3D . 二、填空题1.(x ≥0)2.化简二次根式号后的结果是_________.三、综合提高题1.已知a 是否正确?若不正确,•请写出正确的解答过程:·1a(a-12.若x 、y 为实数,且y=12x +第四课时:二次根式的乘除(复习)梳理基本知识1、=(a≥0,b≥0),=·(a≥0,b≥0),2、=(a≥0,b>0),反过来=(a≥0,b>03、计算(1)×(2)(4)二、应用拓展例1.已知,且x为偶数,求(1+x)的值.例2.探究过程:观察下列各式及其验证过程(1)2=验证:2=×====(2)3=验证:3=×====()1075143÷同理可得:4 5,……通过上述探究你能猜测出: a=_______(a>0),并验证你的结论.三、归纳小结本节课你学到了什么四、课堂练习一、选择题1.计算的结果是().A. B. C. D.2.阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是().A.2 B.6 C. D.二、填空题1.分母有理化:(1) =______;(2) =______;(3) =______.2.已知x=3,y=4,z=5,那么的最后结果是_______.三、综合提高题1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1)·(-)÷(m>0,n>0)(2)-3÷()×(a>0)3.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?。
21.2二次根式的乘除(第2课时)
3 (1) 64
2
25 x 2 9y
3 (3) 7
2 3 (4) 8
5
27 3a
当堂训练
1.完成第11页练习2、3题。
1.被开方数不含分母 2.被开方数不含能开得尽 方的因数或因式
把下列各式化简(分母有理化):
-4 2 (1) 3 7
(2) 2a a+b
(3) 3 40
2
-4 2 • 7 -4 2 -4 14 = 解: 1) ( = ; 21 3 7• 7 3 7
(1)- 19 ÷ 95
1 3 1 (2) 9 ÷ (- 2 ) 48 2 4
课堂小结:
1. 利用商的算术平方根的性质化简二次根式。 2. 二次根式的除法有两种常用方法: (1)利用公式: a
b = a (a ≥0,b > 0) b
(2)把除法先写成分式的形式,再进行分母有理 化运算。 3. 在进行分母有理化之前,可以先观察把能化简的 二次根式先化简,再考虑如何化去分母中的根号。
1.在横线上填写适当的数或式子使等式成立。 ( ( ) 8 • 2 )= 4 1
(2) 5 • 5 )= 10 2 (
3 2 (3) a-1 • ( a-1)= a-1 (4) = 6
2.把下列各式的分母有理化:
3
-8 3 (1) 8
3.化简:
3 2 (2) 27
(3)
5a 10a
(4)
2y 2 4xy
21.2 二次根式的乘除(第二课时)
学习目标
掌握二次根式的乘法法则,并能应用法 则进行二次根式的除法计算。
自学指导一 认真阅读教材第9页内容,并思考 以下内容: 1 .完成探究。 2.总结归纳二次根式的除法法则。
华师大版数学九年级上册 第21章21.2 二次根式的乘除(3)二次根式的乘法教案
华师大版数学九年级上册第21章21.2 二次根式的乘除(3)二次根式的乘法教案课题二次根式的乘法1.掌握二次根式的乘法法则和积的算术平方根的性质.2.熟练进行二次根式的乘法运算及化简.掌握和应用二次根式的乘法法则和积的算术平方根的性质.正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简.一、情景导入感受新知问题情境:你能解决下面的问题吗?如图,设长方形的面积为S,相邻两边长分别为a,b,已知a=2,b =,求S.二、自学互研生成新知【自主探究】自学课本P5-7的内容,完成下面问题:1.计算下列各式,观察计算结果,你发现什么规律?(1)×=__15__,=__15__.(2)×=__12__,=__12__.(3)×=__20__,=__20__.2.用计算器填空:(1)×__=__(2)×__=__(3)×__=__(4)×__=__【合作探究】探究1:二次根式乘法1.参考上面的结果,用“>”“<”或“=”填空.×__=__.×__=__.×__=__.2.总结归纳:你找出二次根式进行乘法运算的规律了吗?含字母的二次根式呢?结论:·=(a≥0,b≥0).探究2:积的算术平方根问题:把·=(a≥0,b≥0)反过来,仍然成立吗?积的算术平方根的性质:=·(a≥0,b≥0).思考:(1)a,b的取值范围有什么特点?(2)这个公式与二次根式乘法在用法上有什么区别和联系?【师生活动】①明了学情:关注学生对二次根式乘法和积的算术平方根的理解与掌握.②差异指导:巡视中发现个性问题及时点拨,共性问题及时引导.③生生互助:学生小组内交流讨论,相互释疑.三、典例剖析运用新知【合作探究】【例1】计算:(1)×;(2)×.分析:运用公式计算后,结果要进行化简.解:(1)×==;(2)×===4.【例2】化简,使被开方数不含完全平方的因数.分析:被开方数12=22×3,含有完全平方因数22,利用=a(a≥0)将这个因数开出来.解:==×=2.【变式迁移】计算:(1);(2)·.解:(1)原式=3;(2)原式=5.四、课堂小结回顾新知通过本节课的学习,你有哪些收获?还存在哪些疑惑?请谈谈你的想法和同学们分享。
21.2《二次根式的乘除》2课件
5
D.
50
2.计算: (1) 18
8
5 21 (2) 7 10
2
3a 12b (3) 5 21a
( 4)
1000 m 150 m
3
融会贯通
2.化简: (1)15
12 2 45
1 7 3 4 5 10
2 ( 2) 3 40
1 1 (4)2 1 5 2 6
融会贯通
B 能力训练
举一反三
例3:计算
解:
1
3 5
3 2 2 27
3
8 2a
1 解法1..
3 3 15 15 15 3 5 5 25 5 5 5 5 25
3 3 5 15 解法2.. 5 5 5 5
在二次根式的运算中, 最后结果要求:
(1)分母中不含有二次根式.
2 3
3 1 3 18 3 9 3 3 2 18 2
2
3 1 2 18
举一反三
3 例2 化简: 1) ( 100
36 a (2) 2 25b
3 解: 1) ( 100
3 100 10
6 a 2 5b 25b 36 a
3
36 a (2) 2 25b
找学生口述解题过程,教师将过程写在黑板上.
A C
解:∵AB2=AC2+BC2 AC 2 BC 2 ∴AB
2.52 6 2
B
5 2 2
36
169 4 13 2 6.5(cm)
答:AB的长为6.5cm.
趁热打铁
练习1: (1) 18 2
72 ( 2) 6
b b (3) 2a 6a (4) 2 5 20 a
21.2 二次根式的乘除 课件(人教版九年级上)
1 (1)当2x+1≥0,即x≥- 时, 2 2 x+1 在实数范围内有意义;
1 6x - 1 ∴ 当x≥ 且x≠1时, 在实数 6 1- x
范围内有意义.
2.在实数范围内分解因式: (1)x2-3;(2)x2- 2 2 x+2.
3.把(a-2)
1 根号外的因式 2-a
移到根号内后,其结果是2来自2 3解析:对于(2)题先把根号外面的 解析:直接利用 ab = a · b (a 有理数相乘, 再利用二次根式的乘法 ≥0,b≥0)进行化简. 法则进行计算.
答案:(1) 24 × 6 = 24 6 =
2 6 = 2 × 6 =2×6=12;
2 2
2
答案:(1) 121 49 = 121 × 49 =11×7=77; (2) 25x y z = 25 ×
.
利用二次根式的性质3=( 3 ) , 2=( 2 )2,结合平方差公式和 完全平方式进行因式分解. (1) x -3= (x+ 3 ) (x- 3 ) . (2)x2- 2 2 x+2=(x- 2 )2.
2
2
在运用a= a 中的字母a为非
2
负数,只有非负数才能转移到 根号内如果字母a为负数可化 为a=-|a|=- a .
2 2 3
2
x ×
2
(2) 2 3 × 3 15 × 4 5 =(2×3× 4) 3 15 5 =24
2
y × z × z =5|xyz|
2
2
z.
3 5 =24 3
2 2
2
× 5 =24×3×5=360.
例8.计算: 3 16 x 例7.化简: ( 1) ; ( 2) ; 1 2 64 49 y (1) 2 ÷ 3 28 ×(- 5 2 ); 2 7 64a c (3) . 1 b 5 2 225b (2) ab ×(- ab )÷ . a a 3 a b 5 解析:直接利用 = (a≥0,b 解析: 二次根式的乘除混合运算仍是 b b
212二次根式乘除法(第一课时)教案设计
如果两个电视塔的高分别是h1km, h2km,那么它们的传播半径的比是
最后教师给出最 简二次根式的概 念。
.
这个式子是最简二次根式吗?如果
不是说出为什么?
学生分组讨论
并化为最简二次根式.
教师点评:不是
最后由3-4个
人到黑板板书化
简过程。
进一步理解 最简二次根 式的概念
例4:.如图,在Rt△ABC中, ∠C=90°,AC=2.5cm,BC=6cm,求AB 的长.
利用这个简单问题树 立学生知识运用的信 心,更激励了学困生 的学习兴趣。
这条性质用法: 对二次根式进行 化简。
找同学板演,其 他同学独立完 成。
对=· (a0,b0)进行熟练应用。
(5) 例题3 计算:
练习: 化简:
师生共同对板演 问题进行评价。 最后由学生总结 归纳化简二次根 式的要求(以小 组讨论的形 式)。 1、 被开方数进
2007-
二次根式乘除法(第一课时)教案设计绥棱县第六中学克音
=________;(4)
=______.
活动4: 小结:由学生总结收获.
在小结时教师关 注: 1、学生对知识 的归纳、总结整 理能力。 2、数学语言表 达能力。
运用知识使 问题化难为 简,培养学 生类比分析 能力
作业:教材P15 习题21.2 2. 7. 8. 9.
10-15 二次根式乘除法 第一课时 教案设计
行因数或因 式分解。 2、 分解后把能 开尽方的开 出来。
进一步巩固对二次根 式的化简方法。
教师巡视 学生完成后交 流 教师点评
问题与情境
活动4:
三、应用拓展:(大显身 手)
1:判断下列各式是否正确并说明 理由。 (1)=
21.2二次根式的乘除(2)
21.2 二次根式的乘除(2)
课型: 上课时间: 课时: 学习内容:
a ≥0,b>0)a ≥0b>0)及利用它们进行计算和化简. 学习目标:
a ≥0,b>0a ≥0,b>0)及利用它们进行运算. 教学过程
一、 自主学习
(一)复习引入
1.写出二次根式的乘法规定及逆向等式.
2.填空
(1
; 规律:
(2
=____;
(3
;
(4. (二)、探索新知
一般地,对二次根式的除法规定:
下面我们利用这个规定来计算和化简一些题目.
二、巩固练习
1、计算:(1
(2 (3 (4 == == == ==
2、化简:
(1 (2 (3 (4 == == == ==
3、巩固练习
教材P14 练习1.
三、学生小组交流解疑,教师点拨、拓展
1、 例3.=,且x 为偶数,求(1+x 的值.
2、归纳小结
(1a ≥0,b>0a ≥0,b>0)及其运用. 并利用它们进行计算和化简.
四、课堂检测
(一)、选择题
1 ).A .27 B .27 C D
2
3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”
).
A .2
B .6
C .
13 D (二)、填空题
1.分母有理化:(1)
=_____;(3) =______.
2.已知x=3,y=4,z=5的最后结果是_______.
三、综合提高题(1·(m>0,n>0)。
人教版九年级数学上册全册教案
22.3 实际问题与一元二次方程(4) 第二十三章旋转 23.1 图形的旋转(1) 23.1 图形的旋转(2) 23.1 图形的旋转(3) 23.2 中心对称(1) 23.2 中心对称(2) 23.2 中心对称(3) 23.2 中心对称(4) 23.3 课题学习图案设计 第二十四章圆 24.1 圆 24.1 圆(第 2 课时) 24.1 圆(第 3 课时) 直线和圆的位置关系 直线和圆的位置关系(2) 圆和圆的位置关系 弧长及扇形的面积 圆锥的侧面积 第二十五章概率 课题:25.1 随机事件 课题:25.1.2 概率的意义 课题:25.2 列举法求概率 25.3 利用频率估计概率
人教版九年级数学上册全册案
《人教版九年级上册全书教案》 第二十一章二次根式 21.1 二次根式 21.1 二次根式(2) 21.1 二次根式(3) 21.2 二次根式的乘除 21.2 二次根式的乘除 21.2 二次根式的乘除(3) 21.3 二次根式的加减(1) 21.3 二次根式的加减(2) 21.3 二次根式的加减(3) 二次根式复习课 第二十二章一元二次方程 22.1 一元二次方程 22.1 一元二次方程 22.2.1 直接开平方法 22.2.2 配方法 22.2.2 配方法 22.2.3 公式法 22.3 实际问题与一元二次方程(1) 22.3 实际问题与一元二次方程(2) 22.3 实际问题与一元二次方程(3)
21.2 二次根式的乘除 华师大版九年级数学上册教案
21.2 二次根式的乘除1.二次根式的乘法※教学目标※【知识与技能】1.掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算.2.培养学生的合情推理能力.【过程与方法】1.在学生原有知识的基础上,经历知识产生的过程,探索新知识.2.体会用类比思想研究二次根式的乘法,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.【情感态度】教学中为学生创造大量的操作、思考和交流的机会,关注学生思考问题的过程,鼓励学生在探索规律的过程中从多个角度进行考虑,品尝成功的喜悦,激发学生应用数学的热情,培养学生主动探索,敢于实践,善于发现的科学精神以及合作精神,树立创新意识.【教学重点】会进行简单的二次根式乘法运算.【教学难点】二次根式乘法的应用.※教学过程※一、复习引入计算下列各式,观察计算结果,你能发现什么规律?;.二、探索新知二次根式的乘法1.参考上面的结果,用“>”“<”或“=”填空.2.根据上面的探究,下列式子是否也存在类似关系,猜想你的结论并用计算器验证.以上式子从运算角度看是什么运算?结果是什么?你能说出二次根式的乘法法则吗?字母表达式是怎样的?3.二次根式的乘法法则这就是说,两个算术平方根的积,等于它们被开方数的积的算术平方根.注意:a、b必须都是非负数,上式才能成立.在本章中,如果没有特别说明,所有字母都表示正数.三、掌握新知【例1】计算:解:四、巩固练习1.下列各等式成立的是( )2.计算:答案:五、归纳小结本节课应掌握:及其运用.※课后作业※计算:2.积的算术平方根※教学目标※【知识与技能】1.掌握积的算术平方根的性质,会根据这一性质熟练地化简二次根式.2.培养学生的合情推理能力.【过程与方法】在学生原有知识的基础上,经历知识产生的过程,探索新知识.【情感态度】通过本节课的学习让学生认识到事物之间是相互联系,相互作用的.【教学重点】会利用积的算术平方根的性质化简二次根式.【教学难点】二次根式的乘法与积的算术平方根的关系及应用.※教学过程※一、复习引入上节课学习了二次根式的乘法:反过来,可以得到积的算术平方根的性质.二、探索新知这就是说,积的算术平方根,等于各因式算术平方根的积.【例1】化简,使被开方数不含完全平方的因数.分析:利用直接化简即可.解:注意:从上例可以看出,如果一个二次根式的被开方数中有的因数能开得尽方,可以利用积的算术平方根的性质,将这些因数开出来,从而将二次根式化简.三、巩固练习1.化简:2.计算:3.计算:答案:四、应用拓展1.化简:2.自由落体的公式为为重力加速度,它的值为,若物体下落的高度为720m,则下落的时间是.五、归纳小结本节课应掌握:及其应用.※课后作业※1.若的结果是.2.成立的条件是.3.已知a、b为实数,且满足的值.3.二次根式的除法※教学目标※【知识与技能】1.会进行简单二次根式的除法运算.2.能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并能把一个非最简二次根式化为最简二次根式.【过程与方法】1.在学习了二次根式的乘法的基础上进行总结类比,得出除法的运算法则.2.引导学生从特殊到一般的方法以及类比的方法,解决数学问题.【情感态度】通过本节课的学习让学生认识到事物之间是相互联系、相互作用的.【教学重点】简单的二次根式的除法运算,利用商的算术平方根的性质进行二次根式的化简.【教学难点】将一个非最简二次根式化为最简二次根式.※教学过程※一、复习引入问题1:上一节课,我们采取什么方法来研究二次根式的乘法法则?问题2:是否也有二次根式的除法法则呢?问题3:两个二次根式相除,应该怎样进行呢?二、探索新知1.二次根式的除法(1)计算下列各式,观察计算结果,你发现了什么规律?(2)总结二次根式除法法则注意:因为b在分母上,分母不能为零,所以b只能大于零.(3)和积的算术平方根类似,把这个式子反过来得到商的算术平方根:【例1】计算解:题(2)的另一解法:【例2】化使分母中不含二次根式,并且被开方数中不含分母.解:2.最简二次根式最简二次根式有如下两个特点:①被开方数不含分母;②被开方数中所有因式的幂的指数都小于2.【例3】化简:解:(2)分母有理化数学上将这种把分母的根号去掉的过程称作“分母有理化”.三、巩固练习1.化简:2.计算:答案:四、应用拓展1.化简:2.计算:3.阅读下列内容,并完成以下各题.数学上将这种把分母变成有理数(式)的过程称为“分母有理化”,其中分别称为有理化因式.的有理化因式是的有理化因式是.(2)进行分母有理化.五、归纳小结本节课要掌握:1.及其运用;2.最简二次根式的定义及应用.※课后作业※1.教材第9页练习第3题.2.教材习题21.2第3题.3.计算:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复习:
1. 二次根式的乘法法则 2. 能力提高题:计算:
二、新课讲授:
1. 探究实践,总结规律
计算下列各式,观察计算结果,你发现什么规律? (1)()=94
;(2)
()=94 (3)(
)=2516
,(4)()=2516. 2.例题:
例4 计算:
(1)324
(2)18
123÷ 分析:(1)按除法法则转换到同一根号下计算;
(2)转换到同一根号下化简再计算.
练习:
1. 计算:
(1)972;(2)22581x (x>0)(3)2
216a c b (a>0,b ≥0) 例5 化简:
(1)
1003(2)2925x y (19664.016909.0)4(⨯⨯
分析:逆用除法法则进行计算.
例6 计算:
(1)53
(2)272
3(3)a 28
分析:统一到一个根号下把分母扩大倍数,变成完全平方数或完全平方式。
特别注意问题(3)中的方法. 例7 在Rt △ABC 中,∠C =90°,AC =2.5cm,BC =6cm,求AB 的长.
练习:
1、如图,在Rt △ABC 中,∠C =900,∠A =300,AC =2cm,求斜边AB 的长 ?
思考题:
板书设计:
21.2二次根式的乘法(1)
基本概念: 例题: 练习:
教学反思:。
x x x x x ____________5858.2取值范围是的成立,则--=--。
成立的条件是--=--、等式____________5m 3m 5m 3m 1)的值。
(求,=--++-满足、、已知实数b 1a b b a a 203a 4b 3111b a 4b a 2÷•。