中考专题汇编(7):实数

合集下载

2020年中考数学试题分类:实数的运算解答题解析

2020年中考数学试题分类:实数的运算解答题解析

2020年中考数学试题分类汇编:实数的运算解答题解析1.(2020北京)计算:11()|2|6sin 453-+--︒ 【解析】解:原式=5232233=-++2.(2020成都)(12分)(1)计算:212sin 60()|22-︒++;【解答】解:(1)原式2423=+- 423=++-- 3=;3.(2020河北)已知两个有理数:-9和5. (1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值. 【答案】(1)-2;(2)1m =-. 【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m-++<m解得m >-2∴负整数m=-1.4.(2020江西)(1)计算:21(1|2|2-⎛⎫--+ ⎪⎝⎭【解析】 原式=2)21(121+- =341=+- 19.(202020(2)(3)π+---. 【详解】解:原式341=+-6=.5.(2020乐山)计算:022cos 60(2020)π--︒+-.解:原式=12212-⨯+=2. 6.(2020四川绵阳)(1)计算:125-3+2cos 608()22︒-⨯--【解析】本题考查数式综合运算。

熟练掌握绝对值的化简、二次根式、0指数、三角函数是解题的关键。

解:原式=113-5+25-22-122⨯⨯=3-5+5-2-1=0.7.(2020贵州黔西南)(12分)(1)计算(﹣2)2﹣||﹣2cos45°+(2020﹣π)0;【解答】解:(1)原式=421=41=5﹣2;8.计算:(2020无锡)(1)()22516-+-- 【详解】解:(1)原式=4+5-4=5; 9.(2020长沙)计算:()1131012cos 454-︒⎛⎫---++ ⎪⎝⎭解:()1131012cos 454-︒⎛⎫---++ ⎪⎝⎭=3114-++=710.(2020齐齐哈尔)((10分)(1)计算:sin30°(3)0+||【解答】解:(1)sin30°(3)0+||4﹣1=4;11.(2020重庆A 卷)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”. 解:(1)∵49594÷=;493161÷=,∴49不是“差一数”, ∵745144÷=;743242÷=,∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4, ∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399, ∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.12.(2020上海)(10分)计算:(21)﹣2+|3|.【解答】解:原式=(33)2﹣4+3=32﹣4+3=0.13.(2020重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”. 例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除; 643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由. 解:(1)∵3,1,2都不为0,且3+1=4,4能被2整除,∴312是“好数”, ∵6,7,5都不为0,且6+7=12,12不能被5整除,∴675不是“好数”;(2)设十位数字为x ,个位数字为y ,则百位数字为(x+5).其中x ,y 都是正整数,且1≤x ≤4,1≤y ≤9.十位数字与个位数字的和为:2x+5. 当x=1时,2x+5=7,此时y=1或7,“好数”有:611,617 当x=2时,2x+5=9,此时y=1或3或9,“好数”有:721,723,729 当x=3时,2x+5=11,此时y=1,“好数”有:831 当x=4时,2x+5=13,此时y=1,“好数”有:941所以百位数字比十位数字大5的所有“好数”的个数是7.理由如上. 14.(2020新疆生产建设兵团)(6分)计算:(﹣1)2+||+(π﹣3)0.解:(﹣1)2+||+(π﹣3)011﹣2.15.(2020内蒙古呼和浩特)(10分)(1)计算:|1﹣3|﹣2×6+3-21﹣(32)﹣2;【解答】解:(1)原式=3-1-23+2+3-49=45; 16.(2020江苏连云港)(6分)计算2020131(1)()645--+-.【解答】解:原式1542=+-=.17.(2020江苏泰州)(3分)如图,点P 在反比例函数3y x=的图象上,且横坐标为1,过点P 作两条坐标轴的平行线,与反比例函数(0)ky k x=<的图象相交于点A 、B ,则直线AB 与x 轴所夹锐角的正切值为 3 .【解答】解:点P 在反比例函数3y x=的图象上,且横坐标为1,则点(1,3)P , 则点A 、B 的坐标分别为(1,)k ,1(3k ,3),设直线AB 的表达式为:y mx t =+,将点A 、B 的坐标代入上式得133k m t km t =+⎧⎪⎨=-+⎪⎩,解得3m =-,故直线AB 与x 轴所夹锐角的正切值为3,故答案为3.18.(2020四川遂宁)(7分)计算:2sin30°﹣|1|+(21)﹣2﹣(π﹣2020)0. 【解答】解:原式=22(1)+4﹣1=211+4﹣13.19.(2020湖南岳阳)(6分)(2020•岳阳)计算:(21)﹣1+2cos60°﹣(4﹣π)0+|﹣3 |. 【解答】解:原式=2+2×21- 1 +3 =2+1﹣1 +3 =2+3 .20.(2020广西南宁)(6分)计算:﹣(﹣1)+32÷(1﹣4)×2. 解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣6=﹣5. 21.(6分)(2020•玉林)计算:•(π﹣3.14)0﹣|1|+()2. 【解答】解:原式1﹣(1)+91+9=10.22.(5分)(2020•常德)计算:20+(31)﹣1•4tan45°.【解答】解:原式=1+3×2﹣4×1=1+6﹣4=3. 23.(10分)(2020•徐州)计算:(1)(﹣1)2020+|2|﹣()﹣1; 【解答】解:(1)原式=1+22=1;24.(2020贵州遵义)(1)sin30°﹣(π﹣3.14)0+()﹣2;解:(1)原式1+4=3;25.(2020山西)(10分)(1)计算:(﹣4)2×(﹣21)3﹣(﹣4+1). 解:(1)(﹣4)2×(﹣21)3﹣(﹣4+1)=16×(﹣81)+3=﹣2+3=1;26.(2020东莞)计算:03822cos 60(3.14)π---+--︒.解:原式122212=--+⨯-4=- 27.(2020四川自贡)(8分)计算:|﹣2|﹣(π)0+()﹣1.解:原式=2﹣1+(﹣6)=1+(﹣6)=﹣5.28.(2020四川自贡)(10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x ﹣2|的几何意义是数轴上x 所对应的点与2所对应的点之间的距离:因为|x +1|=|x ﹣(﹣1)|,所以|x +1|的几何意义就是数轴上x 所对应的点与﹣1所对应的点之间的距离. (1)发现问题:代数式|x +1|+|x ﹣2|的最小值是多少?(2)探究问题:如图,点A 、B 、P 分别表示数﹣1、2、x ,AB =3.∵|x +1|+|x ﹣2|的几何意义是线段P A 与PB 的长度之和,∴当点P 在线段AB 上时,P A +PB =3,当点P 在点A 的左侧或点B 的右侧时,P A +PB >3.∴|x +1|+|x ﹣2|的最小值是3. (3)解决问题:①|x ﹣4|+|x +2|的最小值是 6 ;②利用上述思想方法解不等式:|x +3|+|x ﹣1|>4;③当a 为何值时,代数式|x +a |+|x ﹣3|的最小值是2.【解答】解:(1)发现问题:代数式|x +1|+|x ﹣2|的最小值是多少? (2)探究问题:如图,点A 、B 、P 分别表示数﹣1、2、x ,AB =3.∵|x +1|+|x ﹣2|的几何意义是线段P A 与PB 的长度之和,∴当点P 在线段AB 上时,P A +PB =3,当点P 在点A 的左侧或点B 的右侧时,P A +PB >3.∴|x +1|+|x ﹣2|的最小值是3. (3)解决问题:①|x ﹣4|+|x +2|的最小值是6; 故答案为:6;②如图所示,满足|x +3|+|x ﹣1|>4的x 范围为x <﹣3或x >1;③当a 为﹣1或﹣5时,代数式|x +a |+|x ﹣3|的最小值是2. 29.(2020青海)(5分)计算:(31)﹣1+|1﹣3tan45°|+(π﹣3.14)0﹣327. 解:原式=3+|1﹣3|+1﹣3=3+3-1+1-3=3. 30.(2020四川眉山)(8分)计算:(2﹣2)0+(﹣21)﹣2+2sin45°﹣8. 解:原式=1+4+2×22﹣22=5+2﹣22=5﹣2. 31.(2020•怀化)计算:2﹣2﹣2cos45°+|2|.解:原式.32.(2020浙江温州)(10分)(1)计算:|﹣2|+()0﹣(﹣1).【解答】解:(1)原式=2﹣2+1+1 =2;33.(2020海南)(12分)计算:(1)|﹣8|×2﹣1﹣16+(﹣1)2020;(2)(a +2)(a ﹣2)﹣a (a +1).解:(1)|﹣8|×2﹣1﹣16+(﹣1)2020,=8×21﹣4+1, =4﹣4+1,=1;(2)(a +2)(a ﹣2)﹣a (a +1), =a 2﹣4﹣a 2﹣a , =﹣4﹣a .34.(2020•株洲)计算:(41)﹣1+|﹣1|tan60°.【解答】解:原式=4+1=4+1﹣3 =2.35.(2020甘肃定西)计算:0(23)(23)tan 60(23)π+--︒解:原式4331=-=3.。

全国中考数学真题《实数》分类汇编解析

全国中考数学真题《实数》分类汇编解析

实数考点一、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a +b =0,a =—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点二、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

考点三、科学记数法和近似数 (3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

考点四、实数大小的比较 (3分)1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

2022年全国中考数学试题真题汇编 实数专题

2022年全国中考数学试题真题汇编  实数专题

2022年全国中考数学试题真题汇编实数专题一、单选题1.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0a >B .a b <C .10b -<D .0ab >【来源】2022年吉林省长春市中考数学真题【答案】B【解析】【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意; ∴10b ->,故C 错误,不符合题意;∴0ab <,故D 错误,不符合题意;故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键.2)A .±3B .3C .±9D .9【来源】第15讲实数全章复习与测试-2022年新八年级数学暑假精品课(北师大版)【答案】A【解析】【分析】【详解】解:,9的平方根是±3,±3,【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.3.实数9的相反数等于( )A .﹣9B .+9C .19D .﹣19【来源】2022年湖北省鄂州市中考数学真题【答案】A【解析】【分析】根据相反数的定义:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,进行求解即可.【详解】解:实数9的相反数是-9,故选A .【点睛】本题主要考查了相反数的定义,熟知相反数的定义是解题的关键.4.秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下,下列估算正确的是( )A .205<<B .2152<<C .12<<1D 1> 【来源】2022年山东省潍坊市中考数学试题【答案】C【解析】【分析】用夹逼法估算无理数即可得出答案.解:4<5<9,∴23,∴11<2,∴1<1,2故选:C.【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.5.如图,数轴上点E对应的实数是()A.2-B.1-C.1D.2【来源】2022年湖南省永州市中考数学真题【答案】A【解析】【分析】根据数轴上点E所在位置,判断出点E所对应的值即可;【详解】解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.6.如图,数轴上的点A表示的数是1-,则点A关于原点对称的点表示的数是()A.2-B.0C.1D.2【来源】2022年广西北部湾经济区中考数学真题【答案】C【解析】【分析】根据数轴上表示一对相反数的点关于原点对称即可求得答案.【详解】∴数轴上的点A表示的数是−1,∴点A关于原点对称的点表示的数为1,故选:C.【点睛】本题考查了实数与数轴之间的对应关系,熟练掌握对称的性质是解题的关键.7,0,1-,2这四个实数中,最大的数是()A.0B.1-C.2D【来源】2022年辽宁省营口市中考数学真题【答案】C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∴2>0>-1,∴0,-1,2这四个实数中,最大的数是2.故选:C.【点睛】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.8)AB C D【来源】2022年贵州省铜仁市中考数学真题【答案】C【解析】根据有理数的定义进行求解即可.【详解】2=,其他都是无理数,故选C .【点睛】本题主要考查了实数的分类,熟知有理数和无理数的定义是解题的关键.91,12,3中,比0小的数是( ) AB .1C .12 D .3【来源】2022年四川省雅安市中考数学真题【答案】A【解析】【分析】根据实数的大小比较法则(正数大于0,0大于负数,正数大于一切负数)及无理数的估算进行分析求解.【详解】解:∴12<1<3∴1,12,3中,比0 故选:A .【点睛】此题考查了实数大小的比较,解题的关键是理解实数的概念.10.实数c ,d 在数轴上的对应点如图所示,则下列式子正确的是( )A .c d >B .||||c d >C .c d -<D .0c d +< 【来源】2022年黑龙江省大庆市中考数学真题【答案】C【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.解:由数轴上的点表示的数右边的总比左边的大,得c <0<d ,A 、c d <,原结论错误,故此选项不符合题意;B 、||||c d <,原结论错误,故此选项不符合题意;C 、∴c <0<d ,且||||c d <,∴c d -<,原结论正确,故此选项符合题意;D 、∴c <0<d ,且||||c d <,∴0c d +>,原结论错误,故此选项不符合题意; 故选:C .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.11.下列判断正确的是( )A .01<<B .12<<C .23<<D .34【来源】2022年江苏省泰州市中考数学真题【答案】B【解析】【分析】 根据1342即可求解. 【详解】 解:由题意可知:1342,故选:B .【点睛】本题考查了无理数的估值,属于基础题.12.在1,-2,0)A .1B .-2C .0 D【来源】2022年湖北省江汉油田、潜江、天门、仙桃中考数学真题【答案】D【解析】【分析】根据实数的大小比较法则“正数>0>负数;两个负数比大小,绝对值大的反而小”进行解:∴201-<<<∴故选:D .【点睛】本题考查实数的大小比较,理解“正数>0>负数;两个负数比大小,绝对值大的反而小”是解题关键.13.如图,数轴上的点P 表示下列四个无理数中的一个,这个无理数是( )A. B C D .π【来源】2022年福建中考数学真题【答案】B【解析】【分析】先根据数轴确定点P 对应的数的大小,再结合选项进行判断即可.【详解】解:由数轴可得,点P 对应的数在1与2之间, A.221,故本选项不符合题意;B. 12<<,故此选项符合题意;C. 23<<,故本选项不符合题意;D. 34π<<,故本选项不符合题意;故选:B【点睛】本题主要考查了实数与数轴,无理数的估算,正确确定点P 对应的数的大小是解答本题的关键.14.下列各数中为无理数的是( )AB .1.5C .0D .1-【来源】2022年广西玉林市中考数学真题【分析】根据无理数是无限不循环小数可直接进行排除选项.【详解】解:A选项是无理数,而B、C、D选项是有理数,故选A.【点睛】本题主要考查无理数,熟练掌握无理数的概念是解题的关键.15.实数a,b,c,d在数轴上对应点的位置如图,其中有一对互为相反数,它们是()A.a与d B.b与d C.c与d D.a与c【来源】2022年湖北省荆州市中考数学真题【答案】C【解析】【分析】互为相反数的两个数(除0在外)它们分居原点的两旁,且到原点的距离相等,根据相反数的含义可得答案.【详解】解:,c d分居原点的两旁,且到原点的距离相等,,c d互为相反数,故选C【点睛】本题考查的是相反数的含义,掌握“互为相反数的两个数在数轴上的分布”是解本题的关键.16.若实数a的相反数是-3,则a等于()A.-3B.0C.13D.3【来源】2022年四川省广元市中考数学真题【答案】D【解析】根据相反数的概念:只有符号不同的两个数叫做互为相反数.即可求出a 的值.【详解】解:∴3的相反数是-3,∴a =3.故选:D .【点睛】本题考查了实数的性质、相反数,解决本题的关键是掌握相反数的概念.17.在3317π,2022这五个数中无理数的个数为( ) A .2 B .3 C .4 D .5【来源】2022年湖南省常德市中考数学试题【答案】A【解析】【分析】根据无理数的概念,无限不循环小数是无理数即可判断.【详解】解:在3317π,2022π,共2个. 故选:A .【点睛】本题主要考查无理数的概念,掌握无理数的概念是解题的关键.18.下面四个数中,比0小的数是( )A .-2B .1 CD .π【来源】2022年四川省乐山市中考数学真题【答案】A【解析】【分析】根据负数比0小即可求解.【详解】解:201π-<<,故选:A .【点睛】本题考查了实数的大小比较,掌握负数小于0是解题的关键.19.在0、13、-1这四个数中,最小的数是( ) A.0 B .13 C .-1 D 【来源】2022年湖南省株洲市中考数学真题【答案】C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】1013>>>-,∴在0、13、-11. 故选C .【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.实数2-,02中,为负数的是( )A .2-B .0 CD .2【来源】2022年四川省眉山市中考数学真题【答案】A【解析】【分析】根据负数的定义,找出这四个数中的负数即可.【详解】解:∴2-<0∴负数是2-故选A .【点睛】此题主要考查实数的分类,区分正负,解题的关键是熟知实数的性质:负数小于零. 21.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是( )A .a b >B .a b =C .a b <D .a b =-【来源】2022年江西省中考数学真题【答案】C【解析】【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a 、b 的位置可知,0a <,0b >,∴a b <,故AB 错误,C 正确;根据数轴上点a 、b 的位置可知,a b -<,故D 错误.故选:C .【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.22.下列各数中,负数是( )A.1- B .0 C .2 D 【来源】2022年江西省中考数学真题【答案】A【解析】【分析】根据负数的定义即可得出答案.【详解】解:-1是负数,2是正数,0既不是正数也不是负数,故选:A .【点睛】本题考查了实数,掌握在正数前面添加“-”得到负数是解题的关键.23.对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:∴不存在任何“加算操作”,使其结果与原多项式之和为0;∴所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A .0B .1C .2D .3【来源】2022年重庆市中考数学真题(B 卷)【答案】D【解析】【分析】给x y -添加括号,即可判断∴说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断∴说法是否正确;列举出所有情况即可判断∴说法是否正确.【详解】解:∴()x y z m n x y z m n ----=----∴∴说法正确∴0x y z m n x y z m n -----++++=又∴无论如何添加括号,无法使得x 的符号为负号∴∴说法正确∴当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴∴说法正确∴正确的个数为3故选D .【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.24.下列四个数中,最小的数是( )【来源】2022年四川省达州市中考数学真题【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∴201-<<<∴最小的数是2-,故选B .【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.25 )A .4和5之间B .3和4之间C .2和3之间D .1和2之间【来源】2022年浙江省舟山市中考数学真题【答案】C【解析】【分析】根据无理数的估算方法估算即可.【详解】∴23<故选:C .【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.26.在12,2-中,是无理数的是( ) A .2- B .12 C D .2【来源】2022年浙江省金华市中考数学真题【答案】C根据无理数的定义判断即可;【详解】,2解:∴-2,1故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.27.下列为负数的是()A.2-BC.0D.5-【来源】2022年安徽省中考数学真题【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、2-=2是正数,故该选项不符合题意;BC、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.28)A.±2B.-2C.4D.2【来源】2022年四川省凉山州中考数学真题【答案】D【解析】【分析】22==,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.29.()A.2-B.12-C.12D.2【来源】2022年四川省泸州市中考数学真题【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:-2,故选A.【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.304的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【来源】2022年重庆市中考数学真题(B卷)【答案】D【解析】【分析】根据49<54<64,得到78<,进而得到344<<,即可得到答案.【详解】解:∴49<54<64,∴78<<,∴344<<4的值在3到4之间,此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.31.实数3的相反数是()A.3-B.3C.13-D.13【来源】2022年山西省太原师范学院附属中学九年级中考数学模拟试题【答案】A【解析】【分析】直接利用相反数的定义分析得出答案.【详解】解:实数3的相反数是:-3.故选:A.【点睛】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.32.下列各数为负分数的是()A.-1B.12-C.0D【来源】2022年山东省青岛市中考数学真题【答案】B【解析】【分析】根据负分数的定义,在正分数前面加负号的数叫做负分数,即可判断.【详解】解:A、-1是负整数,故本选项不符合题意;B、12-是负分数,故本选项符合题意;C、0是整数,故本选项不符合题意;D是无理数,故本选项不符合题意;故选:B.【点睛】本题主要考查了负分数的概念,解题的关键是要熟练掌握负分数的定义.A.-2B C.1D.02【来源】2022年山东省日照市中考真题数学试卷【答案】B【解析】【分析】根据实数的大小比较方法进行比较即可.【详解】解:正数大于0,负数小于0,正数大于负数,1>>>-,022故选:B.【点睛】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.34)A.3B.4C.5D.6【来源】2022年四川省绵阳市中考真题数学试卷【答案】C【解析】【分析】=,即可得=65出结果.【详解】=,<545∴<,又<6=,∴<,56456∴<<,故选:C.本题考查了估算无理数的大小,立方根,解决本题的关键是用有理数逼近无理数,求无理数的近似值.35.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .0a b +>B .a b ->C .0a b -<D .b a -<【来源】2022年山东省济南市中考数学试题【答案】B【解析】【分析】根据数轴可得12,2a b <<=-,由此可排除选项.【详解】解:由数轴可得12,2a b <<=-,∴0a b +<,故A 选项错误;a b ->,故B 选项正确;0a b ->,故C 选项错误;b a ->,故D 选项错误;故选B .【点睛】本题主要考查数轴及实数的运算,熟练掌握数轴上数的表示及实数的运算是解题的关键.36.下列实数最小的是( )A .-2B .-3.5C .0D .1【来源】辽宁省鞍山市2022年中考真题数学试卷【答案】B【解析】【分析】根据实数大小比较的方法进行求解即可.【详解】解:因为 3.5201-<-<<,所以最小的实数是-3.5.故选:B .【点睛】本题主要考查了实数的大小比较,熟练掌握应用实数大小的比较方法进行求解是解题的37.下列4个实数中,为无理数的是()A.-2B.0C D.3.14【来源】广西河池市2022年中考数学真题【答案】C【解析】【分析】根据无理数的定义,无限不循环小数是无理数,即可解答.【详解】解:-2,0是整数,属于有理数;3.14是有限小数,属于无理数,故C符合题意.故选:C.【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.38.在下列四个实数中,最小的实数是()A.B.0C.3.14D.2022【来源】贵州省遵义市2022年中考数学真题试卷【答案】A【解析】【分析】正数大于负数,负数小于零.【详解】故选:A【点睛】此题考查的是实数的大小的比较,掌握正数大于负数,负数小于零是解题的关键.39.下列四个选项中,为负整数的是()A-C.D.2-.0B.0.5【来源】广东省广州市2022年中考数学真题【答案】D【解析】根据整数的概念可以解答本题.【详解】解:A、0既不是正数,也不是负数,故选项A不符合题意;B、−0.5是负分数,故选项B不符合题意;C、不是负整数,故选项C不符合题意;D、-2是负整数,符合题意.故选:D.【点睛】本题主要考查了大于0的整数是正整数,小于0的整数是负整数,本题熟记负整数的概念是解题的关键.40.下列各数中,为无理数的是()A.πB.227C.0D.2-【来源】贵州省毕节市2022年中考数学真题【答案】A【解析】【分析】根据无理数的定义逐项判断即可.【详解】A、π是无理数,符合题意;B、223.1428577=小数点后的142857是无限循环的,则227是有理数,不符题意;C、0是整数,属于有理数,不符题意;D、2-是有理数,不符题意,故选:A.【点睛】本题考查了无理数的定义,熟记定义是解题关键.41.下列无理数,与3最接近的是()A B C D 【来源】江苏省徐州市2022年中考数学真题【答案】C先比较各个数平方后的结果,进而即可得到答案. 【详解】解:∴32=9,)2=6,2=7,2=10,2=11,∴与3, 故选C . 【点睛】本题主要考查无理数的估计,理解算术平方根与平方的关系,是解题的关键. 42.在实数0,,2,1π--中,最小的数是( ) A .2-B .0C .1-D .π【来源】内蒙古鄂尔多斯2022年中考数学试题 【答案】C 【解析】 【分析】先计算绝对值,再根据实数大小的比较法则得出答案; 【详解】 解:∴|-2|=2, ∴-1<0<|-2|<π ∴最小的数为:-1 故选:C 【点睛】本题考查了实数的大小比较和算术平方根,能根据实数的大小比较法则比较数的大小是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.43.实数a 、b 、c 在数轴上对应点的位置如图所示.如果0a b +=,那么下列结论正确的是( )A .a c >B .0a c +<C .0abc <D .1ab= 【来源】内蒙古赤峰市2022年中考数学真题 【答案】C【分析】根据a +b =0,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:∴a +b =0, ∴原点在a ,b 的中间, 如图,由图可得:|a |<|c |,a +c >0,abc <0,1ab=-, 故选:C . 【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置. 44.在1-,0,11的实数是( ) A.1-B .0C .1D 【来源】贵州省贵阳市2022年中考数学真题 【答案】D 【解析】 【分析】根据实数的大小关系,即可求解. 【详解】解:在1-,0,11 故选D . 【点睛】≈1.414,是解题的关键. 45.下列各数是有理数的是( )A .πBC D .0【来源】广西北部湾经济开发区2022年中考数学真题 【答案】D 【解析】 【分析】利用有理数和无理数的定义判断即可.【详解】解:四个选项的数中:π0是有理数,故选项D符合题意.故选:D.【点睛】此题考查了实数,熟练掌握有理数与无理数的定义是解本题的关键.46.在π,12,3-,47这四个数中,整数是()A.πB.12C.3-D.47【来源】黑龙江省大庆市2022年中考数学真题【答案】C【解析】【分析】根据整数分为正整数、0、负整数,由此即可求解.【详解】解:选项A:π是无理数,不符合题意;选项B:12是分数,不符合题意;选项C:3-是负整数,符合题意;选项D:47是分数,不符合题意;故选:C.【点睛】本题考查了有理数的定义,熟练掌握整数分为正整数、0、负整数是解决本题的关键.471在数轴上的对应点可能是()A.A点B.B点C.C点D.D点【来源】四川省达州市2022年中考数学真题【答案】D【解析】【分析】1的近似值,再判定它位于哪两个整数之间即可找出其对应点. 【详解】解: 1.414≈,1 2.414≈,∴它表示的点应位于2和3之间, 所以对应点是点D , 故选:D . 【点睛】1的整数部分,本题较基础,考查了学生的基本功. 48.下列实数中是无理数的是( )A .3.14BC D .17【来源】湖北省江汉油田(仙桃市、潜江市、天门市)2022年中考数学真题 【答案】C 【解析】 【分析】根据算术平方根、无理数的定义即可得. 【详解】A 、3.14是有限小数,属于有理数,此项不符题意;B 3=,是有理数,此项不符题意; CD 、17是分数,属于有理数,此项不符题意;故选:C . 【点睛】本题考查了算术平方根、无理数,熟记定义是解题关键. 49.在实数3,12,0,2-中,最大的数为( ) A .3B .12C .0D .2-【来源】广西柳州市2022年中考数学真题试卷 【答案】A 【解析】根据正数大于零,负数小于零,正数大于一切负数,两个负数比较大小,绝对值大的反而小,两个正数比较大小,绝对值大数就大,据此判断即可. 【详解】根据有理数的比较大小方法,可得:12032,因此最大的数是:3, 故选:A . 【点睛】本题考查了实数的比较大小,解答此题的关键在于明确:正数>0>负数. 50.实数2021的相反数是( ) A .2021B .2021-C .12021D .12021-【来源】黑龙江省齐齐哈尔市2022年中考数学真题 【答案】B 【解析】 【分析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案. 【详解】解:2021的相反数是:2021-. 故选:B . 【点睛】本题主要考查相反数的定义,正确掌握其概念是解题关键.51.若0a =,则ab =( )AB .92C .D .9【来源】广东省2022年中考真题数学试卷 【答案】B 【解析】 【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.∴0a ≥,且0a -+=∴0a =0=即0a ,且320a b -=∴a =b∴92ab == 故选:B . 【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.52.已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23-B .13C .12-D .23【来源】湖北省鄂州市2022年中考数学真题 【答案】D 【解析】 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+,2021223a a ∴==, 故选:D . 【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.53.实数6的相反数等于()A.6-B.6C.6±D.1 6【来源】湖北省鄂州市2022年中考数学真题【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】由相反数的定义可得6的相反数是-6.故选A.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.5412,0,1-中,最小的数是()A.1-B.0C.12D 【来源】福建省2022年中考数学试卷【答案】A【解析】【分析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小.【详解】12,0,1-中,12为正数大于0,1-为负数小于0,∴最小的数是:1-.故选:A.【点睛】本题考查了实数比较大小,解题的关键是:根据正数大于0,0大于负数,两个负数,绝对值大的反而小,可以直接判断出来.55.已知2222431849,441936,452025,462116====.若n为整数且1n n<+,则n 的值为( ) A .43B .44C .45D .46【来源】北京市2022年中考数学真题试题 【答案】B 【解析】 【分析】由题意可直接进行求解. 【详解】解:∴2222431849,441936,452025,462116====, ∴2244202145<<,∴4445<, ∴44n =; 故选B . 【点睛】本题主要考查算术平方根,熟练掌握算术平方根是解题的关键.56.实数,a b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .2a >-B .a b >C .0a b +>D .0b a -<【来源】北京市2022年中考数学真题试题 【答案】B 【解析】 【分析】由数轴及题意可得32,01a b -<<-<<,依此可排除选项. 【详解】解:由数轴及题意可得:32,01a b -<<-<<, ∴,0,0a b a b b a >+<->, ∴只有B 选项正确, 故选B . 【点睛】本题主要考查实数的运算及数轴,熟练掌握实数的运算及数轴是解题的关键.57.在实数1-,0,12 )A.1-B .0C .12D 【来源】湖北省荆州市2022年中考数学真题 【答案】D 【解析】 【分析】根据无理数的定义,即可求解. 【详解】解:在实数1-,0,12 故选D . 【点睛】本题主要考查无理数的定义,掌握“无限不循环小数是无理数”,是解题的关键. 58.根据图中数字的规律,若第n 个图中的143q =,则p 的值为( )A .100B .121C .144D .169【来源】湖北省随州市2022年中考数学真题 【答案】B 【解析】 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可. 【详解】解:根据图中数据可知: 1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∴第n 个图中的143q =, ∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去) ∴2=121p n =, 故选:B . 【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.59.一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( ) A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大【来源】江苏省南京市2022年中考数学试卷 【答案】C 【解析】 【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案. 【详解】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232=,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y == 则155153232,28,x y ==== 1515,x y ∴> 且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意. 故选C . 【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.60.下列实数是无理数的是( )A .2-B .1CD .2【来源】新疆维吾尔自治区、生产建设兵团2022年中考数学试题【答案】C【解析】【分析】无理数是指无限不循环小数,据此判断即可.【详解】2-,1,2均为有理数,故选:C .【点睛】本题考查无理数的辨别,理解无理数的定义以及常见形式是解题关键.61.下列四个实数中,最大的数是( )A .3-B .1-C .πD .4【来源】湖南省长沙市2022年中考试数学真题【答案】D【解析】【分析】根据实数的大小比较法则即可得.【详解】解: 3.14π≈,314π∴-<-<<,即这四个实数中,最大的数是4,故选:D .【点睛】本题考查了实数的大小比较法则,熟练掌握实数的大小比较法则是解题关键. 62-1,0,2中,为负数的是( )AB .-1C .0D .2。

实数的有关概念与计算(53题)2023年中考数学真题分项汇编(全国通用)(解析版)

实数的有关概念与计算(53题)2023年中考数学真题分项汇编(全国通用)(解析版)

实数的有关概念与计算(53题)一、单选题【答案】C【分析】根据相乘等于1的两个数互为倒数,即可求解.【详解】解:2023−的倒数是12023−, 故选:C .【点睛】本题考查了倒数,掌握倒数的定义是解题的关键.【答案】A【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8−,故选:A .【答案】C【分析】首先化简绝对值,然后把选项中的4个数按从小到大排列,即可得出最大的数.【详解】∵11−=, ∴3012−<<−<,∴最大的数是2.故选:C .【点睛】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.4.(2023·四川南充·统考中考真题)如果向东走10m 记作10m +,那么向西走8m 记作( )A .10m −B .10m +C .8m −D .8m + 【答案】C【分析】根据具有相反意义的量即可得.【详解】解:因为向东与向西是一对具有相反意义的量,所以如果向东走10m 记作10m +,那么向西走8m 记作8m −,故选:C .【点睛】本题考查了具有相反意义的量,熟练掌握具有相反意义的量是解题关键.【答案】B【详解】2的相反数是-2.故选:B.【答案】D 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选:D .【点睛】本题考查相反数,题目简单,熟记定义是关键.【答案】A【分析】根据相反数的定义即可求解.【详解】解:5−的相反数是5,故选:A .【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.8.(2023·浙江嘉兴·统考中考真题)﹣8的立方根是( )A .±2B .2C .﹣2D .不存在 【答案】C【分析】根据立方根的定义进行解答.【详解】∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故选:C .【点睛】本题主要考查了立方根,解决本题的关键是数积立方根的定义. 9.(2023·浙江金华·统考中考真题)某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是20−℃,10−℃,0℃,2℃,其中最低气温是( )A .20−℃B .10−℃C .0℃D .2℃ 【答案】A【分析】根据有理数的大小比较,即可作出判断.【详解】解:201002−<−<<, 故温度最低的城市是哈尔滨,故选:A .【点睛】本题考查了有理数的大小比较的知识,解答本题的关键是掌握有理数的大小比较法则.【答案】A【分析】根据相反数相加为0判断即可.【详解】解:∵5(5)0+−=,∴“□”内应填入的运算符号为+, 故选:A .【点睛】题目主要考查有理数的加法运算,熟练掌握运算法则是解题关键.【答案】D【分析】根据相反数的意义,相反数是只有符号不同的两个数,改变6−前面的符号,即可得6−的相反数.【详解】解:6−的相反数是6.故选:D.【点睛】本题考查了相反数.解题的关键是掌握相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.【答案】B【分析】根据倒数的概念,乘积为1的两个数互为倒数,由此即可求解.【详解】解:12−的倒数是2−,故选:B.【点睛】本题主要考查求一个数的倒数,掌握倒数的概念是解题的关键.13.(2023·浙江宁波·统考中考真题)在2,1,0,π−−这四个数中,最小的数是() A.2−B.1−C.0D.π【答案】A【分析】根据负数小于0小于正数,负数的绝对值大的反而小,进行判断即可.【详解】解:∵21−>−,∴210π−<−<<,∴最小的数是2−;故选:A.【点睛】本题考查比较实数的大小.熟练掌握负数小于0小于正数,负数的绝对值大的反而小,是解题的关键.14.(2023·江西·统考中考真题)下列各数中,正整数是()A.3B.2.1C.0D.2−【答案】A【分析】根据有理数的分类即可求解.【详解】解:3是正整数,2.1是小数,不是整数,0不是正数,2−不是正数,故选:A.【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选:A.16.(2023·甘肃武威·统考中考真题)9的算术平方根是()A.3±B.9±C.3D.3−【答案】C=,可得9的算术平方根.【分析】由239【详解】解:9的算术平方根是3,故选:C.【点睛】本题考查的是算术平方根的含义,熟练的求解一个数的算术平方根是解本题的关键.【答案】D【分析】根据数轴及有理数的加法可进行求解.−+=;【详解】解:由数轴可知点A表示的数是1−,所以比1−大3的数是132故选:D.【点睛】本题主要考查数轴及有理数的加法,熟练掌握数轴上有理数的表示及有理数的加法是解题的关键.−A.2023B.2023【答案】B【分析】根据数轴的定义求解即可.=,【详解】解;∵数轴上点A表示的数是2023,OA OBOB,∴=2023−,∴点B表示的数是2023故选:B.【点睛】本题考查数轴上点表示有理数,熟练掌握数轴上点的特征是解题的关键.−的结果是()19.(2023·浙江绍兴·统考中考真题)计算23A.1−B.3−C.1D.3【答案】A【分析】根据有理数的减法法则进行计算即可.−=−,【详解】解:231故选:A.【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.【答案】C【分析】由2=【详解】解:∵2>>,∴a b c故选:C.【点睛】本题考查了实数的大小比较,算术平方根.解题的关键在于对知识的熟练掌握.【答案】A【分析】根据绝对值的概念,可得3−的绝对值就是数轴上表示3−的点与原点的距离.进而得到答案.【详解】解:3−的绝对值是3,故选:A.【点睛】本题考查绝对值的定义,正确理解绝对值的定义是解题的关键.22.(2023·重庆·统考中考真题)4的相反数是()A.14B.14−C.4D.4−【答案】D【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【详解】解:4的相反数是4−,故选:D.【点睛】本题考查相反数的概念,关键是掌握相反数的定义.【答案】A【分析】根据立方根、无理数与有理数的概念即可得.【详解】解:A2=,是有理数,则此项符合题意;B、3.232232223⋅⋅⋅是无限不循环小数,是无理数,则此项不符合题意;C、π3是无理数,则此项不符合题意;D是无理数,则此项不符合题意;故选:A.【点睛】本题考查了立方根、无理数与有理数,熟记无理数与有理数的概念是解题关键.【答案】A【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得17039−<<<,∴最大的数是:3;故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【答案】A【分析】根据正数0>>负数,即可进行解答.【详解】解:∵469<<∴23<<∴1133π<<∴比1小的正无理数是.故选:A .【点睛】本题主要考查了比较实数是大小,无理数的估算,解题的关键是掌握正数0>>负数.【答案】B【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6.故选:B .【答案】A【分析】先根据实数的大小比较法则比较数的大小,再求出最小的数即可.【详解】1502−<<<∴最小的数是:5−故选:A .【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键.【答案】C【分析】根据无理数的估算可得答案.【详解】解:∵3=4==91316<<,∴大小在3与4故选:C.【点睛】本题考查了无理数的估算,熟练掌握基础知识是解题的关键.29.(2023·浙江台州·统考中考真题)下列各数中,最小的是().A.2B.1C.1−D.2−【答案】D【分析】根据正数大于零,零大于负数,两个负数,绝对值大的反而小判断即可.【详解】解:∵2,1是正数,1−,2−是负数,∴最小数的是在1−,2−里,又11−=,22−=,且12<,∴21−<−,∴最小数的是2−.故选:D.【点睛】本题主要考查了有理数大小比较,解答此题的关键是掌握有理数大小比较法则.二、填空题【答案】4(答案不唯一)【分析】根据算术平方根的意义求解.【详解】解:∴由1623<即4<故答案为:4(答案不唯一).【点睛】本题考查算术平方根和无理数的估算,熟练掌握基本知识是解题关键.31.(2023·四川泸州·统考中考真题)8的立方根为______.【答案】2【分析】根据立方根的意义即可完成.【详解】∵328=∴8的立方根为2故答案为:2.【点睛】本题考查了立方根的意义,掌握立方根的意义是关键.【答案】2023 【分析】负数的绝对值是它的相反数,由此可解.【详解】解:2023−的相反数是2023,故20232023−=,故答案为:2023.【点睛】本题考查求一个数的绝对值,解题的关键是掌握负数的绝对值是它的相反数.【答案】±2【详解】解:±2.故答案为:±2.34.(2023·重庆·统考中考真题)计算1023−+=_____.【答案】1.5 【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023−+=11=1.52+. 故答案为:1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.【答案】6【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516−+=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.【分析】根据零指数幂、二次根式的性质进行计算即可.【详解】()3.14π−11=【点睛】本题考查了实数的混合运算,二次根式的性质等知识,掌握任何一个不为零的数的零次幂都是1是解题的关键.【答案】31=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.38.(2023·江苏连云港·统考中考真题)如图,数轴上的点A B 、分别对应实数a b 、,则a b +__________0.(用“>”“<”或“=”填空)【答案】<【分析】根据数轴可得0,a b a b<<>,进而即可求解. 【详解】解:由数轴可得0,a b a b<<>∴a b +0<故答案为:<.【点睛】本题考查了实数与数轴,有理数加法的运算法则,数形结合是解题的关键.【答案】5【分析】根据二次根式的性质即可求解.【详解】解:2=5故答案为:5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.三、解答题【答案】7【分析】根据零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义,计算即可.【详解】解:原式112252=+−⨯+1215=+−+7=.【点睛】本题考查了零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义.本题的关键是【答案】2−【分析】先化简绝对值,零指数幂,有理数的乘方,再进行计算即可求解.【详解】解:02|3|1)2−−−314=−−2=−.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂,有理数的乘方是解题的关键.【答案】3【分析】根据负整数指数幂和零指数幂运算法则,特殊角的三角函数值,进行计算即可.【详解】解:)012312sin303−⎛⎫++︒−− ⎪⎝⎭11212323=++⨯+121133=+++3=.【点睛】本题主要考查了实数混合运算,解题的关键是熟练掌握负整数指数幂和零指数幂运算法则,特殊角的三角函数值,准确计算.【答案】2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的意义分别化简,再利用有理数的加减运算法则计算得出答案. 【详解】原式111222=++=.【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,绝对值的意义,掌握这些知识并正确计算是解题关键.【答案】2【分析】先计算有理数的乘方、零指数幂、特殊角的余弦值、化简绝对值,再计算乘法与加减法即可得.【详解】解:原式111232−+−⨯+=13=−+2= 【点睛】本题考查了零指数幂、特殊角的余弦值、实数的混合运算,熟练掌握各运算法则是解题关键.【答案】3【分析】根据化简绝对值,零指数幂以及负整数指数幂进行计算即可求解. 【详解】解:原式4123=+−=.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂以及负整数指数幂是解题的关键.【答案】6【分析】先计算零指数幂,负整数指数幂和特殊角三角函数值,再根据实数的混合计算法则求解即可.【详解】解:原式)1134=−++114=6=. 【点睛】本题主要考查了实数的混合计算,特殊角三角函数值,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键.【答案】6【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:121|1|(2)(1)tan 453π−⎛⎫−+−−−+− ⎪⎝⎭︒14131=+−+−6=. 【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.【答案】18−【分析】先计算负整数指数幂、算术平方根、零指数幂、减法运算,再进行加减混合运算即可.【详解】解:()101121sin 451(1)3−⎛⎫−+︒−−− ⎪⎝⎭1213311=−+−++18=− 【点睛】此题考查了实数混合运算,熟练掌握相关运算法则是解题的关键.【答案】【分析】利用二次根式的混合运算法则计算即可.===【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.【答案】2【分析】根据绝对值的性质和算术平方根分别进行化简,再按照有理数加减混合运算即可求出答案.【详解】解: 223+−435=+−2=.【点睛】本题考查了实数的运算,解题的关键在于熟练掌握绝对值的性质、算术平方根,乘方的相关运算.【答案】1【分析】先化简绝对值及算术平方根,计算零次幂的运算,然后进行加减法即可.【详解】解:|2|2023−+212=+− =1. 【点睛】题目注意考查实数的混合运算,熟练掌握运算法则是解题关键.【答案】6−【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=−+6=−.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.【答案】1−【分析】根据特殊角的三角函数值,零指数幂,幂的运算法则计算即可.【详解】()()20232sin 3021π︒−+−()122112=⨯−++−12=−1=−.是解题的关键.。

全国初中数学联合竞赛试题分类汇编及详细解析 专题07 实数

全国初中数学联合竞赛试题分类汇编及详细解析 专题07 实数

实数一、选择题1、(2000一试1)设的平均数为M,的平均数为N,N,的平均数为P,若,则M与P的大小关系是()。

(A)M=P;(B)M>P;(C)M<P;(D)不确定。

2.(2000一试3)甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么()。

(A)甲比乙大5岁;(B)甲比乙大10岁;(C)乙比甲大10岁;(D)乙比甲大5岁。

3.(2000一试7)已知:,那么=________。

【答案】 14.(2002一试1)已知,,,那么a,b,c的大小关系是()A .a<b<c B.b<a<c C.c<b<a D.c<a<b5.(2002一试6)如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k 的最小值为()A.1 B.2 C.3D.46.(2003一试1)计算:232217122--( )(A)5-42 (B)42-1 (C)5 (D)17.(2005一试1)化简:11459+302366402++--的结果是__。

A 、无理数B 、真分数C 、奇数D 、偶数8.(2006一试4)设.,02,0222a bc c ab a b >=+->则实数c b a 、、的大小关系是【 】(A)a c b >> (B)b a c >>(C)c b a >>(D)c a b >>9.(2012一试1)已知21a =-,32b =-,62c =-,那么,,a b c 的大小关系是( )A. a b c <<B. a c b <<C. b a c <<D.b c a <<二、填空题1.(2003一试10)已知正整数a、b之差为120,它们的最小公倍数是其最大公约数的105倍,那么a、b中较大的数是__ __.2.(2004一试10)设m是不能表示为三个合数之和的最大整数,则m= .3.(2005一试7)不超过100的自然数中,将凡是3或5的倍数的数相加,其和为__。

2013年全国各地中考数学试卷分类汇编:实数

2013年全国各地中考数学试卷分类汇编:实数

实数一、选择题1.(2013贵州安顺,8,3分)下列各数中,3.14159,38-,0.131131113……,-π,25,71-,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个 【答案】:B .【解析】由定义可知无理数有:0.131131113…,﹣π,共两个.【方法指导】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 2.已知实数a,b ,若a>b ,则下列结论正确的是A . a -5<b -5B . 2+a <2+bC .33ba < D . 3a>3b 【答案】 D .【解析】不等式有性质有三条,分别是:(1)不等式两边同时加(或减去)一个数,不等号方向不变;由此确定选项A 、B 都是错的;(2)不等式两边同时乘(或除以)一个正数,不等号方向不变;由此确定选项C 是错的;(3)不等式两边同时乘(或除以)一个负数,不等号方向改变;由此确定选项D 是正确的.故答案选D .【方法指导】关于不等式性质的考查,通常都有两种形式,第一种形式就是本题这种形式,即对原不等式两边进行加、减、乘、除运算,让学生根据不等式基本性质作出正确判断,解决这类题,基本方法就是先弄清不等号两边进行了什么运算,然后再看这种运算是否符合不等式的基本性质;第二种形式是设计为填空题,先给定一个不等式,然后对这个不等式的不等号两边进行四则运算,要学生根据这个运算确定不等号方向是否发生改变,要求学生填不等号.3.(2013浙江湖州,1,3分)实数π,15,0,-1中,无理数是( ) A .π B .15C .0D .-1 【答案】A【解析】A 、是无理数;B 、是分数,是有理数,故选项错误;C 、是整数,是有理数,选项错误;D 、是整数,是有理数,选项错误.故选A .【方法指导】此题主要考查了无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(2013广东广州,7,4分)实数a 在数轴上的位置如图4所示,则|a -2.5|=( )A . a -2.5B . 2.5- aC . a +2.5D . -a -2.5【答案】 B . 【解析】(1)因为绝对值符号里面的a -2.5是负数,去掉绝对值之后,结果为它的相反数,所以答案为2.5- a ,故答案选B .(2)由题中的图可知,|a -2.5|表示的意义是数a 与数2.5所表示的两点之间的距离,而这两点之间的距离为2.5- a ,故答案选B .【方法指导】解决绝对值的问题通常有两种思路,一是根据绝对值的计算法则去掉绝对值;二是根据绝对值的几何意义直接计算.5.(2013广东广州,8,4分)若代数式1-x x有意义,则实数x 的取值范围是( ) A . 1≠x B . 0≥x C . 0>x D . 0≥x 且1≠x 【答案】 D .【解析】列不等式组⎩⎨⎧≠-≥010x x ,解这个不等式组,得0≥x 且1≠x ,∴答案选D .【方法指导】对于求代数式中或函数式中x 的取值范围的题,通常都是关于二次根式和分式的意义:6.(2013山东德州,1,3分)下列计算正确的是A 、231-⎪⎭⎫⎝⎛=9 B 、()22-=-2 C 、()02-=-1 D 、35--=2【答案】 A【解析】根据负指数、零指数幂,数的开方、乘方,有理数绝对值意义分别计算.∵93113122=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-,2422==-)(,∴()02-=-1 ,8835=-=--. 【方法指导】实数运算中、数的开方、乘方、正整数、0、负指数幂、绝对值运算等是中考考查的核心知识点.主要体现基本技能、基本运算.7.(2013湖南永州,6,3分)已知2(3)0x y -+=,x y +则的值为A . 0B . -1C . 1D . 5 【答案】C.【解析】∵30x y -+≥,20x y +≥,而2(3)20x y x y -+++=,所以30x y -+=,20x y +=,解得1x =-,2y =,所以x y +=1.【方法指导】初中阶段学习了三个非负数, 1.0a ≥;2.20a ≥;3.0a ≥题目一般是其中的两个的和(少数有三个的和)为零,让你得出一个方程组,解方程组,再代入求值,这是常见的题,再难一点的就要去配方,化成这个形式,然后一样的来解题。

2019年中考数学专题知识点分类汇编---实数(含二次根式 三角函数特殊值的运算)

2019年中考数学专题知识点分类汇编---实数(含二次根式 三角函数特殊值的运算)

③(2a2)3=8a6,故此选项错误;
④﹣a8÷a4=﹣a4,正确.
故选:D.
【知识点】幂的乘方与积的乘方;同底数幂的除法;零指数幂;负整数指数幂;二次根式的加减法
2. (2019 贵州省毕节市,题号 5,分值 3 分)下列四个运算中,只有一个是正确的.这个正确运算的序号是 ( ) ①30+3﹣1=﹣3;② 5 ﹣ 2 = 3 ;③(2a2)3=8a5;④﹣a8÷a4=﹣a4. A.① B.② C.③ D.④ 【答案】D. 【解析】解:①30+3﹣1=1 1 ,故此选项错误;
3 【解题过程】解:解:原式=1﹣2 × 2 + 3 ‒ 1+2=2. 【知识点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值
14. (2019 湖南湘西,19,6 分)计算: 25 + 2sin30°﹣(3.14﹣π)0
【思路分析】直接利用二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简得出答案 1
a(a-b) (a + b)2 = (a-b)(a + b) • a
a(a-b) (a + b)2
=1, a+ b
当 a=﹣1 时,取 b=2,
原式= 1 =1. - 1+ 2
【知识点】实数的运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值
16.(2019 年陕西省,15,5 分)(本题 5 分)计算: (3)2 3 5 20 (1 )2 . 2
【思路分析】对该代数式中的每一项进行化简,然后,进行代数式的化简、合并. 【解题过程】
(3)2 3 5 20 (1 )2 2
9 (3 5) 2 5 4 93 52 54 10 3 5

2013年全国各地中考模拟卷分类汇编:实数的有关概念(含答案)

2013年全国各地中考模拟卷分类汇编:实数的有关概念(含答案)

2013年全国各地中考模拟卷分类汇编--实数的有关概念一、选择题1、(2013年上海奉贤区二模)与无理数3最接近的整数是( )A .1;B .2 ;C .3;D .4; 答案:B2、(2013届宝鸡市金台区第一次检测)下列四个数中最小的一个数是( )A .-2B .-0.1C .0D .|-1|答案:A3、(2013年上海长宁区二模)下列各数中,无理数是( ). A.21B. 3.14C. 3D. 38 答案:C4.(2013浙江东阳吴宇模拟题)下列各数中,比-2小1的数是( ) A. -1 B. 1C. -4D. -3答案:D5.(2013浙江省宁波模拟题)下列各数中是负数的是 ( )A .0.5B . 2C . -1D . 2 答案:C6.(2013浙江省宁波模拟题)《泰囧》上映15天, 累计票房达802000000元,创国产片票房新纪录;预计28日即可超过《变形金刚3》创下的2595.39万观影人数纪录。

用科学记数法表示802000000元正确的是( )A .8 02×105元B .80.2×106元C .0.802×107元D .8.02×108元 答案:D7.(2013浙江省宁波模拟题)实数-8的立方根是______________. 答案:-28.(2013沈阳一模)在下列实数中无理数有( )个.,,,2843 2.020020002……,πº,tan 30°.A.2B.3C.4D.5 答案:B9.(2013沈阳一模)明天数学课要学―勾股定理‖,小敏在―百度‖搜索引擎中输入―勾股定理‖,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( ). A. 1.25×105 B.1.25×106 C.1.25×107 D.0.125×108 答案:C10.(2013浙江锦绣·育才教育集团一模)太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( ▲ )千瓦.(用科学计数法表示,保留2个有效数字) A .141.910⨯ B .142.010⨯C .157.610⨯D .151.910⨯答案:A11、(2013年江苏南京一模)如果a 与-3互为相反数,那么a 等于 A .3B .-3C .13D .-13答案:A12、(2013年江苏南京一模)2013年元宵节正值周末,观灯人数也创下历史新高.据统计,当天有520000游客在夫子庙地区观灯闹元宵,将520000用科学记数法表示为 A .0.52×105 B .5.2×104C .5.2×105D .5.2×106答案:C13、(2013年江苏南京一模)下面的数中,与2-的和为0的是 ( ▲ )A.2B.2-C.21D. 21- 答案:A14、(2013年江苏南京一模)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( ▲ ) A .56.510-⨯ B .66.510-⨯C .76.510-⨯D .66510-⨯答案:B15.(2013年江苏南京一模) 3的相反数为 ( )A .3B .-3C .31D . 31-答案:B16、(2013年江苏南京一模)在学雷锋活动中,我市青少年积极报名争当―助人为乐志愿者‖,仅一个月就有107000人报名,将107000用科学记数法表示为 ( ) A .4107.10⨯ B .51007.1⨯C .60.10710⨯D .61.0710⨯答案:B17、(2013年江苏南京一模)如果向北走3 km 记作+3 km ,那么向南走5 km 记作 A .-5 km B .-2 km C .+5 km D .+8 km 答案:A18、如果a 与1互为相反数,则|2|a +等于( C ) A .2B .2-C .1D .1-19.在下列实数中,最小的数是(D )A .0B .3C .2D .π- 20.股市有风险,投资需谨慎。

初中中考数学专题01 实数(原卷版)

初中中考数学专题01 实数(原卷版)

2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题01 实数一、选择题1. (2024湖北省)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( ) A. 10+元B. 10-元C. 20+元D. 20-元2. (2024广西)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( ) A.B.C.D.3. (2024河北省)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A.B. C.D.4. (2024四川达州)有理数2024的相反数是( ) A. 2024B. 2024-C.12024D. 12024-5. (2024黑龙江齐齐哈尔)实数-5相反数是( ) A. 5B. 5-C.15D. 15-6. (2024山东枣庄)下列实数中,平方最大的数是( ) A. 3B.12C. 1-D. 2-7. (2024贵州省)下列有理数中最小的数是( ) A. 2-B. 0C. 2D. 48. (2024甘肃威武)下列各数中,比-2小的数是( ) A. 1-B. 4-C. 4D. 19. (2024山东威海)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( ) A. 7+B. 5-C. 3-D. 1010. (2024福建省)下列实数中,无理数是( ) A. 3-B. 0C.23D.511. (2024天津市)计算3-(-3)的结果是( ) A. 6B. 3C. 0D. -612. (2024吉林省)若(﹣3)×口的运算结果为正数,则口内的数字可以为( ) A. 2B. 1C. 0D. 1-13. (2024四川内江)16的平方根是( ) A. 4-B. 4C. 2D. 4±14. (2024天津市)估算 10的值在( ) A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间15. (2024北京市)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( ) A.16810⨯B. 17210⨯C. 17510⨯D. 18210⨯16. (2024福建省)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( ) A. 696110⨯B. 2696.110⨯C. 46.96110⨯D. 50.696110⨯17. (2024山东威海)据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为( ) A. 5110-⨯B. 6110-⨯C. 7110-⨯D. 8110-⨯18. (2024河南省)如图,数轴上点P 表示的数是( )A. 1-B. 0C. 1D. 219. (2024四川南充)如图,数轴上表示2的点是( )A. 点AB. 点BC. 点CD. 点D20. (2024深圳)如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为( )A. aB. bC. cD. d21. (2024北京市)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 1b >-B. 2b >C. 0a b +>D. 0ab >22. (2024江苏扬州)实数2的倒数是( ) A. 2-B. 2C. 12-D.1223. (2024陕西省)-3的倒数是( ) A. 3 B.13C. 13-D. 3-二、填空题1. (2024武汉市)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃.2. (2024江苏连云港)如果公元前121年记作121-年,那么公元后2024年应记作__________年.3. (2024安徽省)10,祖冲之给出圆周率的一种分数形式的近似值为22710______227(填“>”或“<”). 4. (2024黑龙江齐齐哈尔)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为______. 5. (2024湖北省)写一个比1-大的数______. 6. (2024重庆市B )计算:023-+=______. 7. (2024四川广安)39=______. 8. (2024广西)3__.9. (2024内蒙古赤峰)请写出一个比5小的整数_____________10. (2024四川成都市)若m ,n 为实数,且()2450m n ++-=,则()2m n +的值为______. 11. (2024河北省)已知a ,b ,n 均为正整数. (1)若101n n <<+,则n =______; (2)若1,1n a n n b n -<<<<+,则满足条件的a 的个数总比b 的个数少______个.12. (2024北京市)联欢会有A ,B ,C ,D 四个节目需要彩排.所有演员到场后节目彩排开始。

实数的概念及运算(共50题)(解析版)-2023年中考数学真题分项汇编(全国通用)

实数的概念及运算(共50题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题01实数的概念及运算(50题)一、单选题1(2023·四川德阳·统考中考真题)下列各数中,是无理数的是()A.-2023B.2023C.0D.12023【答案】B【分析】根据无理数的定义判断即可.【详解】解:0,-2023,12023为有理数,2023为无理数.故选:B .【点睛】本题考查了无理数的概念即无限不循环小数为无理数,掌握其概念是解题的关键.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯⋯,等有这样规律的数.2(2023·山东·统考中考真题)实数π,0,-13,1.5中无理数是()A.πB.0C.-13D.1.5【答案】A【分析】根据无理数的概念求解.【详解】解:实数π,0,-13,1.5中,π是无理数,而0,-13,1.5是有理数;故选A .【点睛】本题主要考查无理数,熟练掌握无理数的概念是解题的关键.3(2023·贵州·统考中考真题)5的绝对值是()A.±5 B.5C.-5D.5【答案】B【分析】正数的绝对值是它本身,由此可解.【详解】解:5的绝对值是5,故选B .【点睛】本题考查绝对值,解题的关键是掌握正数的绝对值是它本身.4(2023·湖北荆州·统考中考真题)在实数-1,3,12,3.14中,无理数是()A.-1 B.3 C.12 D.3.14【答案】B【分析】根据无理数的特征,即可解答.【详解】解:在实数-1,3,12,3.14中,无理数是3,故选:B .【点睛】本题考查了无理数的特征,即为无限不循环小数,熟知该概念是解题的关键.5(2023·江苏无锡·统考中考真题)实数9的算术平方根是()A.3B.±3C.19D.-9【分析】根据算术平方根的定义即可求出结果.【详解】解:9=3,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6(2023·湖北恩施·统考中考真题)下列实数:-1,0,2,-12,其中最小的是()A.-1B.0C.2D.-12【答案】A【分析】根据实数大小比较的法则解答.【详解】解:∵-1<-12<0<2,∴最小的数是-1,故选:A.【点睛】此题考查了实数的大小比较:正数大于零,零大于负数,两个负数绝对值大的反而小,熟练掌握实数的大小比较法则是解题的关键.7(2023·江苏徐州·统考中考真题)2023的值介于()A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【分析】直接利用二次根式的性质得出2023的取值范围进而得出答案.【详解】解∶∵1600<2023<2025.∴1600<2023<2025即40<2023<45,∴2023的值介于40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.8(2023·湖南·统考中考真题)下列各数中,是无理数的是()A.17B.πC.-1D.0【答案】B【分析】根据无理数的定义解答即可.【详解】解:A.17是分数,属于有理数,故本选项不符合题意;B.π是无限不循环小数是无理数,故本选项符合题意;C.-1是整数,属于有理数,故本选项不符合题意;D.0是整数,属于有理数,故本选项不符合题意.故选:B.【点睛】本题考查的是无理数,熟知无限不循环小数叫做无理数是解题的关键.9(2023·湖南·统考中考真题)2023的倒数是()A.-2023B.2023C.12023D.-12023【分析】直接利用倒数的定义,即若两个不为零的数的积为1,则这两个数互为倒数,即可一一判定.【详解】解:2023的倒数为1 2023.故选C.【点睛】此题主要考查了倒数的定义,熟练掌握和运用倒数的求法是解决本题的关键.10(2023·浙江杭州·统考中考真题)(-2)2+22=()A.0B.2C.4D.8【答案】D【分析】先计算乘方,再计算加法即可求解.【详解】解:(-2)2+22=4+4=8,故选:D.【点睛】本题考查有理数度混合运算,熟练掌握有理数乘方运算法则是解题的关键.11(2023·湖南常德·统考中考真题)下面算法正确的是()A.-5+9=-9-5B.7--10=7-10C.-5+0=-5 D.-8+-4=8+4【答案】C【分析】根据有理数的加减法则计算即可.【详解】A、-5+9=9-5,故A不符合题意;B、7--10=7+10,故B不符合题意;C、-5+0=-5,故C符合题意;D、-8+-4=-8+4,故D不符合题意;故选:C.【点睛】本题主要考查有理数的加减法,解答的关键是对相应的运算法则的掌握.12(2023·山西·统考中考真题)计算-1×-3的结果为( ).A.3B.13C.-3D.-4【答案】A【分析】根据有理数乘法运算法则计算即可.【详解】解:-1×-3=3.故选A.【点睛】本题主要考查了有理数乘法,掌握“同号得正、异号得负”的规律是解答本题的关键.13(2023·山东临沂·统考中考真题)计算(-7)-(-5)的结果是()A.-12B.12C.-2D.2【答案】C【分析】直接利用有理数的减法法则进行计算即可.【详解】解:(-7)-(-5)=(-7)+5=-2;故选C.【点睛】本题考查有理数的减法,熟练掌握减一个负数等于加上它的相反数,是解题的关键.14(2023·湖北鄂州·统考中考真题)10的相反数是()1010【答案】A【分析】根据相反数的定义直接求解.【详解】解:10的相反数是-10.故选:A.【点睛】本题主要考查了相反数的定义,熟练掌握相反数的定义是解答本题的关键.15(2023·宁夏·统考中考真题) -23的绝对值是()A.-32B.32C.23D.-23【答案】C【分析】根据绝对值的性质解答即可.【详解】-2 3=23,故选:C.【点睛】本题考查了绝对值,掌握绝对值的性质是解答本题的关键.16(2023·山东东营·统考中考真题)-2的相反数是()A.2B.-2C.12D.-12【答案】A【分析】利用相反数的定义判断即可.【详解】解:-2的相反数是2故选:A.【点睛】此题考查了相反数的定义,熟练掌握相反数的定义是解本题的关键.17(2023·湖南常德·统考中考真题)实数3的相反数是()A.3B.13C.-13D.-3【答案】D【分析】根据相反数的定义进行判断即可.【详解】解:实数3的相反数-3,故D正确.故选:D.【点睛】本题考查了相反数的定义,熟练掌握知识点,只有符号不同的两个数互为相反数,是解题关键.18(2023·湖南张家界·统考中考真题)12023的相反数是()A.12023B.-12023C.2023D.-2023【答案】B【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:12023的相反数是-1 2023.故选:B.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.19(2023·辽宁·统考中考真题)2的绝对值是()22【答案】D【分析】根据绝对值的意义即可求解.【详解】解:2的绝对值是是2,故选:D.【点睛】本题考查了绝对值的计算,掌握正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数,是解题的关键.20(2023·江苏苏州·统考中考真题)有理数23的相反数是()A.-23B.32C.-32D.±23【答案】A【分析】根据互为相反数的定义进行解答即可.【详解】解:有理数23的相反数是-23,故选A【点睛】本题考查的是相反数,仅仅只有符号不同的两个数互为相反数,熟记定义是解本题的关键.21(2023·湖北·统考中考真题)-32的绝对值是()A.-23B.-32C.23D.32【答案】D【分析】根据绝对值的性质即可求出答案.【详解】解:∵-3 2=32.故选:D.【点睛】本题考查了绝对值,解题的关键在于熟练掌握绝对值的性质,负数的绝对值等于这个负数的相反数.22(2023·湖北恩施·统考中考真题)如图,数轴上点A所表示的数的相反数是()A.9B.-19C.19D.-9【答案】D【分析】先根据数轴得到A表示的数,再求其相反数即可.【详解】解:由数轴可知,点A表示的数是9,相反数为-9,故选:D.【点睛】本题考查数轴和相反数,掌握相反数的定义是解题的关键.23(2023·内蒙古通辽·统考中考真题)2023的相反数是()A.12023B.-2023 C.2023 D.-12023【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是-2023,【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.24(2023·四川雅安·统考中考真题)在0,12,-3,2四个数中,负数是()A.0 B.12 C.-3 D.2【答案】C【分析】根据负数的定义∶比0小的数叫做负数,即可得出答案.【详解】解:0既不是正数也不是负数,-3是负数,12和2是正数,故选:C .【点睛】本题考查了正数和负数,掌握在正数前面加负号是负数是解题的关键.25(2023·吉林长春·统考中考真题)实数a 、b 、c 、d 伍数轴上对应点位置如图所示,这四个数中绝对值最小的是()A.aB.bC.cD.d【答案】B【分析】根据绝对值的意义即可判断出绝对值最小的数.【详解】解:由图可知,a >3,0<b <1,0<c <1,2<d <3,比较四个数的绝对值排除a 和d ,根据绝对值的意义观察图形可知,c 离原点的距离大于b 离原点的距离,∴b <c ,∴这四个数中绝对值最小的是b .故选:B .【点睛】本题考查了绝对值的意义,解题的关键在于熟练掌握绝对值的意义,绝对值是指一个数在数轴上所对应点到原点的距离,离原点越近说明绝对值越小.26(2023·四川巴中·统考中考真题)下列各数为无理数的是()A.0.618B.227C.5D.3-27【答案】C【分析】根据无理数是无限不循环小数进行判断即可.【详解】解:由题意知,0.618,227,3-27=-3,均为有理数,5是无理数,故选:C .【点睛】本题考查了无理数,立方根.解题的关键在于熟练掌握无理数是无限不循环小数.27(2023·内蒙古赤峰·统考中考真题)如图,数轴上表示实数7的点可能是()A.点PB.点QC.点RD.点S【分析】根据先估算7的大小,看它介于哪两个整数之间,从而得解.【详解】解:∵4<7<9∴4<7<9,即2<7<3,∴数轴上表示实数7的点可能是Q,故选:B.【点睛】本题考查无理数的大小估算,推出7介于哪两个整数之间是解题的关键.28(2023·山东临沂·统考中考真题)在实数a,b,c中,若a+b=0,b-c>c-a>0,则下列结论:①|a| >|b|,②a>0,③b<0,④c<0,正确的个数有()A.1个B.2个C.3个D.4个【答案】A【分析】根据相反数的性质即可判断①,根据已知条件得出b>c>a,即可判断②③,根据b=-a,代入已知条件得出c<0,即可判断④,即可求解.【详解】解:∵a+b=0∴a =b ,故①错误,∵a+b=0,b-c>c-a>0∴b>c>a,又a+b=0∴a<0,b>0,故②③错误,∵a+b=0∴b=-a∵b-c>c-a>0∴-a-c>c-a∴-c>c∴c<0,故④正确或借助数轴,如图所示,故选:A.【点睛】本题考查了不等式的性质,实数的大小比较,借助数轴比较是解题的关键.29(2023·山东·统考中考真题)面积为9的正方形,其边长等于()A.9的平方根B.9的算术平方根C.9的立方根D.5的算术平方根【答案】B【分析】根据算术平方根的定义解答即可.【详解】解:∵面积等于边长的平方,∴面积为9的正方形,其边长等于9的算术平方根.故选B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.30(2023·湖南永州·统考中考真题)下列各式计算结果正确的是()A.3x+2x=5x2B.9=±3C.2x2=2x2 D.2-1=1 2【答案】D【分析】根据合并同类项的运算法则,二次根式的运算,积的乘方运算法则,以及负整数幂运算法则,逐个进行计算即可.【详解】解:A、3x+2x=5x,故A不正确,不符合题意;B、9=3,故B不正确,不符合题意;C、2x2=4x2,故C不正确,不符合题意;D、2-1=12,故D正确,符合题意;故选:D.【点睛】本题主要考查了合并同类项的运算法则,二次根式的运算,积的乘方运算法则,以及负整数幂运算法则,解题的关键是熟练掌握相关运算法则并熟练运用.31(2023·宁夏·统考中考真题)估计23的值应在()A.3.5和4之间B.4和4.5之间C.4.5和5之间D.5和5.5之间【答案】C【分析】先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.【详解】∵16<23<25,∴4<23<5,排除A和D,又∵23更接近25,∴23更接近5,∴23在4.5和5之间,故选:C.【点睛】此题主要考查了无理数的大小估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.32(2023·湖北宜昌·统考中考真题)下列运算正确的个数是( ).①|2023|=2023;②2023°=1;③2023-1=12023;④20232=2023.A.4B.3C.2D.1【答案】A【分析】根据a =a a>00a=0-a a<0,a0=1a≠0 ,a-p=1a pa≠0、a2=a ,进行逐一计算即可.【详解】解:①∵2023>0,∴2023=2023,故此项正确;②∵2023≠0,∴2023°=1,故此项正确;③2023-1=12023,此项正确;④20232=2023=2023,故此项正确;∴正确的个数是4个.故选:A.【点睛】本题考查了实数的运算,掌握相关的公式是解题的关键.33(2023·内蒙古赤峰·统考中考真题)化简--20的结果是()A.-120B.20C.120D.-20【答案】B【分析】--20 表示-20的相反数,据此解答即可.【详解】解:--20 =20,故选:B【点睛】此题考查了相反数,熟练掌握相反数的定义是解题的关键.34(2023·黑龙江绥化·统考中考真题)计算-5 +20的结果是()A.-3B.7C.-4D.6【答案】D【分析】根据求一个数的绝对值,零指数幂进行计算即可求解.【详解】解:-5 +20=5+1=6,故选:D .【点睛】本题考查了求一个数的绝对值,零指数幂,熟练掌握求一个数的绝对值,零指数幂是解题的关键.35(2023·江苏徐州·统考中考真题)如图,数轴上点A ,B ,C ,D 分别对应实数a ,b ,c ,d ,下列各式的值最小的是()A.aB.bC.cD.d【答案】C【分析】根据数轴可直接进行求解.【详解】解:由数轴可知点C 离原点最近,所以在a 、b 、c 、d 中最小的是c ;故选C .【点睛】本题主要考查数轴上实数的表示、有理数的大小比较及绝对值,熟练掌握数轴上有理数的表示、有理数的大小比较及绝对值是解题的关键.36(2023·山东·统考中考真题)△ABC 的三边长a ,b ,c 满足(a -b )2+2a -b -3+|c -32|=0,则△ABC 是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D【分析】由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由a 2+b 2=c 2的关系,可推导得到△ABC 为直角三角形.【详解】解∵(a -b )2+2a -b -3+|c -32|=0又∵a -b2≥02a -b -3≥0c -32 ≥0∴a -b2=02a -b -3=0c -32 =0,∴a -b =02a -b -3=0c -32=0解得a =3b =3c =32,∴a 2+b 2=c 2,且a =b ,∴△ABC 为等腰直角三角形,故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识,求解的关键是熟练掌握非负数的和为0,每一个非负数均为0,和勾股定理逆定理.37(2023·山东·统考中考真题)实数a ,b ,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c (b -a )<0B.b (c -a )<0C.a (b -c )>0D.a (c +b )>0【答案】C【分析】根据数轴可得,a <0<b <c ,再根据a <0<b <c 逐项判定即可.【详解】由数轴可知a <0<b <c ,∴c (b -a )>0,故A 选项错误;∴b (c -a )>0,故B 选项错误;∴a (b -c )>0,故C 选项正确;∴a (c +b )<0,故D 选项错误;故选:C .【点睛】本题考查实数与数轴,根据a <0<b <c 进行判断是解题关键.38(2023·浙江杭州·统考中考真题)已知数轴上的点A ,B 分别表示数a ,b ,其中-1<a <0,0<b <1.若a ×b =c ,数c 在数轴上用点C 表示,则点A ,B ,C在数轴上的位置可能是()A.B.C.D.【答案】B【分析】先由-1<a <0,0<b <1,a ×b =c ,根据不等式性质得出a <c <0,再分别判定即可.【详解】解:∵-1<a <0,0<b <1,∴a <ab <0∵a ×b =c ∴a <c <0A、0<b<c<1,故此选项不符合题意;B、a<c<0,故此选项符合题意;C、c>1,故此选项不符合题意;D、c<-1,故此选项不符合题意;故选:B.【点睛】本题考查用数轴上的点表示数,不等式性质,由-1<a<0,0<b<1,a×b=c得出a<c<0是解题的关键.二、填空题39(2023·湖北武汉·统考中考真题)写出一个小于4的正无理数是.【答案】2(答案不唯一)【分析】根据无理数估算的方法求解即可.【详解】解:∵2<16,∴2<4.故答案为:2(答案不唯一).【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.40(2023·山东滨州·统考中考真题)一块面积为5m2的正方形桌布,其边长为.【答案】5m/5米【分析】由正方形的边长是其面积的算术平方根可得答案.【详解】解:一块面积为5m2的正方形桌布,其边长为5m,故答案为:5m【点睛】本题考查的是算术平方根的含义,理解题意,利用算术平方根的含义表示正方形的边长是解本题的关键.41(2023·湖北黄冈·统考中考真题)计算;-12+130=.【答案】2【分析】-1的偶数次方为1,任何不等于0的数的零次幂都等于1,由此可解.【详解】解:-12+130=1+1=2,故答案为:2.【点睛】本题考查有理数的乘方、零次幂,解题的关键是掌握:-1的偶数次方为1,奇数次方为-1;任何不等于0的数的零次幂都等于1.42(2023·四川巴中·统考中考真题)在0,-1 32,-π,-2四个数中,最小的实数是.【答案】-π【分析】先计算出-1 32=19,再根据比较实数的大小法则即可.【详解】解:-1 32=19,-π≈-3.14,故-π<-2<0<-1 32,故答案为:-π.【点睛】本题考查了平方的定义及比较实数的大小法则,熟练运用比较实数的大小法则是解题的关键.43(2023·内蒙古·统考中考真题)若a,b为两个连续整数,且a<3<b,则a+b=.【答案】3【分析】根据夹逼法求解即可.【详解】解:∵1<3<22,即12<32<22,∴1<3<2,∴a=1,b=2,∴a+b=3.故答案为:3.【点睛】题目主要考查无理数的估算,熟练掌握估算方法是解题关键.44(2023·湖南·统考中考真题)数轴上到原点的距离小于5的点所表示的整数有.(写出一个即可)【答案】2(答案不唯一)【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于5,且为整数,再利用无理数的估算即可求解.【详解】解:设所求数为a,由于在数轴上到原点的距离小于5,则a <5,且为整数,则-5<a<5,∵4<5<9,即2<5<3,∴a可以是±2或±1或0.故答案为:2(答案不唯一).【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.45(2023·山东滨州·统考中考真题)计算2--3的结果为.【答案】-1【分析】化简绝对值,根据有理数的运算法则进行计算即可.【详解】2--3=2-3=-1,故答案为:-1.【点睛】本题考查有理数的加减法则,熟练掌握有理数的加减法则是解题的关键.46(2023·湖南永州·统考中考真题)-0.5,3,-2三个数中最小的数为.【答案】-2【分析】根据有理数比较大小的法则即可求出答案.【详解】解:∵-0.5,-2,3三个数中,只有3是正数,∴3最大.∵-0.5=2,=0.5,-2∴0.5<2,∴-0.5>-2.∴-2最小.故答案为:-2.【点睛】本题考查了有理数比较大小,解题的关键在于熟练掌握有理数比较大小的方法:正数始终大于负数;两个负数比较,绝对值大的反而小.47(2023·湖北荆州·统考中考真题)若a-1+(b-3)2=0,则a+b=.【答案】2【分析】根据绝对值的非负性,平方的非负性求得a,b的值进而求得a+b的算术平方根即可求解.【详解】解:∵a -1 +(b -3)2=0,∴a -1=0,b -3=0,解得:a =1,b =3,∴a +b =1+3=2,故答案为:2.【点睛】本题考查了求一个数的算术平方根,熟练掌握绝对值的非负性,平方的非负性求得a ,b 的值是解题的关键.48(2023·湖南·统考中考真题)已知实数a ,b 满足a -2 2+b +1 =0,则a b =.【答案】12【分析】由非负数的性质可得a -2=0且b +1=0,求解a ,b 的值,再代入计算即可.【详解】解:∵a -2 2+b +1 =0,∴a -2=0且b +1=0,解得:a =2,b =-1;∴a b =2-1=12;故答案为:12.【点睛】本题考查的是绝对值的非负性,偶次方的非负性的应用,负整数指数幂的含义,理解非负数的性质,熟记负整数指数幂的含义是解本题的关键.49(2023·四川内江·统考中考真题)若a 、b 互为相反数,c 为8的立方根,则2a +2b -c =.【答案】-2【分析】利用相反数,立方根的性质求出a +b 及c 的值,代入原式计算即可得到结果.【详解】解:根据题意得:a +b =0,c =2,∴2a +2b -c =0-2=-2,故答案为:-2【点睛】此题考查了代数式求值,相反数、立方根的性质,熟练掌握运算法则是解本题的关键.50(2023·山东烟台·统考中考真题)如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8;③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是.【答案】①③【分析】根据计算器按键,写出式子,进行计算即可.【详解】解:①按键的结果为364=4;故①正确,符合题意;②按键的结果为4+-23=-4;故②不正确,不符合题意;③按键的结果为sin45°-15°=sin30°=0.5;故③正确,符合题意;④按键的结果为3-1 2×22=10;故④不正确,不符合题意;综上:正确的有①③.故答案为:①③.【点睛】本题主要考查了科学计算器是使用,解题的关键是熟练掌握和了解科学计算器各个按键的含义.。

2011年中考数学试题汇编---实数

2011年中考数学试题汇编---实数

选择题(每小题x 分,共y 分)〔2011•湖北省武汉市〕1.有理数-3的相反数是A A.3. B.-3. C.31 D.31-. (2011•益阳市)1.2-的相反数是AA . 2B .2-C .12D . 12-〔2011•浙江省义乌〕1. -3的绝对值是AA .3B .-3C .-D .〔2011•盐城市〕1.-2的绝对值是CA .-2B .- 12C .2D .12〔2011•芜湖市〕1.8-的相反数是( D )A .8- B.18- C. 18D. 8〔2011•芜湖市〕2.我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3 1 00微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为( C )A .63.110⨯西弗 8.33.110⨯西弗 C .33.110-⨯西弗 D .63.110-⨯西弗(2011•泰安市)1.54-的倒数是D (A )54 (B )45 (C )54- (D )45-(2011•宿迁市)1.下列各数中,比0小的数是(A ▲)A .-1B .1C .2D .π〔2011•日照市〕12. 观察图中正方形四个顶点所标的数字规律,可知数2011应标在C3131(A )第502个正方形的左下角 (B )第502个正方形的右下角 (C )第503个正方形的左上角 (D )第503个正方形的右下角〔2011•福建省泉州市〕3.“天上星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学计数法表示宇 宙空间星星颗数为( D ).A .2070010⨯ B .23710⨯ C .230.710⨯ D .22710⨯ 〔2011•福建省泉州市〕1.在实数032-,|-2|中,最小的是( B ). A .32-B .C .0D .|-2|〔2011•浙江省衢州〕1、数2-的相反数为( A ) A 、2 B 、21 C 、2- D 、21- (2011•金华市)4.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( A ▲ )A .+2B .-3C .+3D .+41. 〔2011•凉山州〕0.5-的倒数是( A )A .2-B .0.5C .2D .0.5-(2011•金华市)1.下列各组数中,互为相反数的是( A ▲ )A .2和-2B .-2和12 C .-2和12- D .12和21、(2011²济宁)计算-1-2的结果是CA.-1B.1C.-3D. 3〔2011•菏泽市〕6.定义一种运算☆,其规则为a ☆b=1a +1b ,根据这个规则、计算2☆3的值是 A A. 56 B. 15C.5D.6(2011•茂名市)1、计算:0)1(1---的结果正确..的是D A .0 B .1 C .2 D .2- 〔2011•广东省〕1.-3的相反数是( A ) A .3B .31C .-3D .31-16〔2011•广州市〕1.四个数-5,-0.1,21,3中为无理数的是( D ) A. -5 B. -0.1 C.21D. 3 〔2011•菏泽市〕1. -32的倒数是DA.32B.23C.32-D.23-〔2011•菏泽市〕2. 为了加快3G 网络建设,我市电信运营企业将根据各自发展规划,今年预计完成3G 投资2800万元左右,将2800万元用科学记数法表示为多少元时,下列记法正确的是CA.2.8³103B.2.8³106C.2.8³107D.2.8³108〔2011•大理〕1.北京2008年奥运会火炬接力活动的传递总路程约为137000000米,这个数据用科学记数法表示为【 A 】 A . 1.37×108米 B . 1.37×109米 C .13.7×108米 D . 137×106米 〔2011•福州市〕2.2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币. 将51 800 000 000用科学记数法表示正确的是( A )A. 5.18×1010B. 51.8×109C. 0.518×1011D. 518×108 〔2011•德州市〕1.下列计算正确的是B(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|=〔2011•福州市〕1.下列判断中,你认为正确的是( C ) A .0的倒数是0 B.2π是分数12二、填空题(每小题x 分,共y 分)(2011•重庆市潼南县)11.如图,数轴上A ,B 两点分别对应实数a 、b ,则a 、b 的大小关系为 a <b (b >a ) .bA B11题图(2011•宿迁市)9.实数21的倒数是 2▲ .〔2011•日照市〕13.计算sin30°﹣2-= 23-. 〔2011•南京市〕16.甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束; ②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为_____4 _______.〔2011•南京市〕7.-2的相反数是____2____. 〔2011•广州市〕11.9的相反数是___﹣9___〔2011•菏泽市〕14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律, m 的值是 158 .〔2011•大理〕9.-2008的相反数是___2008____________.〔2011•广东省〕6. 据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次。

(专题精选)初中数学实数分类汇编及答案

(专题精选)初中数学实数分类汇编及答案

(专题精选)初中数学实数分类汇编及答案一、选择题1.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.2.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示15﹣1的点是()A.点M B.点N C.点P D.点Q【答案】D【解析】【分析】15151的范围,即可得出答案.【详解】<<,解:∵3.5154<<,∴2.51513∴表示151-的点是Q点,故选D.【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.3.-2的绝对值是()A.B.C.D.1【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】-2的绝对值是2-.故选A.【点睛】本题考查了实数的性质,差的绝对值是大数减小数.4.估计624的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】624562636=54=,∵49<54<64,∴54,∴6247和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.5.对于实数a、b定义运算“※”:22()()a ab a ba bab b a b⎧-≥=⎨-<⎩※,例如2424428=-⨯=※,若x,y是方程组33814x yx y-=⎧⎨-=⎩的解,则y※x等于()A.3B.3-C.1-D.6-【答案】D【解析】【分析】先根据方程组解出x 和y 的值,代入新定义计算即可得出答案.【详解】解:∵33814x y x y -=⎧⎨-=⎩∴21x y =⎧⎨=-⎩所以()()2y x=-12=-12-2=-2-4=-6⨯※※. 故选:D .【点睛】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.6.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.7.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A ”.则数轴上点A 所表示的数是( )A.2-1 B.-2+1 C.2D.-2【答案】A【解析】【分析】先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】数轴上正方形的对角线长为:22+=,由图中可知-1和A之间的距离为2.112∴点A表示的数是2-1.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.8.如图,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为()A.3B.3C.3D.3【答案】A【解析】【分析】由于A,B两点表示的数分别为-13OC的长度,根据C在原点的左侧,进而可求出C的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB,33,∴3C点在原点左侧,∴C表示的数为:3故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.9的平方根是( )A.2 B C.±2 D.【答案】D【解析】【分析】,然后再根据平方根的定义求解即可.【详解】,2的平方根是,.故选D.【点睛】正确化简是解题的关键,本题比较容易出错.10.2在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.11.实数a、b+4a2+4ab+b2=0,则b a的值为()A.2 B.12C.﹣2 D.﹣12【答案】B【解析】【分析】【详解】+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=12.故选:B.【点睛】本题考查非负数的性质.12.1的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵34,∴41<5.故选C.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出34是解题的关键,又利用了不等式的性质.13.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.14.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.15.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.16.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.17.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( ) A .7 B .8 C .9 D .10【答案】C【解析】【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可.【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.18.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,8③段上.故选C考点:实数与数轴的关系19.下列说法正确的是( )A .无限小数都是无理数B .1125-没有立方根C .正数的两个平方根互为相反数D .(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A 、无限循环小数是有理数,故不符合题意;B 、1125-有立方根是15-,故不符合题意; C 、正数的两个平方根互为相反数,正确,故符合题意;D 、﹣(﹣13)=13有平方根,故不符合题意,故选:C .【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.20.下列式子中,计算正确的是( )A 0.6B 13C ±6D 3【答案】D【解析】A 选项中,因为2(0.6)0.36-=,所以0.6-=A 中计算错误;B 13==,所以B 中计算错误;C 6=,所以C 中计算错误;D 选项中,因为3=-,所以D 中计算正确;故选D.。

(专题精选)初中数学实数难题汇编及答案

(专题精选)初中数学实数难题汇编及答案

(专题精选)初中数学实数难题汇编及答案一、选择题1.若x2=16,则5-x的算术平方根是()A.±1 B.±3 C.1或9 D.1或3【答案】D【解析】【分析】根据平方根和算术平方根的定义求解即可.【详解】∵x2=16,∴x=±4,∴5-x=1或5-x=9,∴5-x的算术平方根是1或3,故答案为:D.【点睛】本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.2.下列各数中最小的数是( )A.1-B.0 C.D.2-【答案】D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得-2<-1<0,∴各数中,最小的数是-2.故选D.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3的平方根是( )A.2 B C.±2 D.【答案】D【解析】【分析】,然后再根据平方根的定义求解即可.【详解】,2的平方根是,.故选D.【点睛】正确化简是解题的关键,本题比较容易出错.4.若a、b分别是2a-b的值是()A.B.C D.【答案】C【解析】根据无理数的估算,可知34,因此可知-4<-3,即2<3,所以可得a为2,b为2a-b=4-(故选C.5.下列各数中比3大比4小的无理数是()A B C.3.1 D.10 3【答案】A【解析】【分析】由于带根号的且开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】>4,3<4∴选项中比3大比4.故选A.【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.6.如图,长方形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是1 ,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是()A .45-B .52-C .51-D .35-【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB ===∴22521AC =+=∴AE =5∵A 点表示的数是1-∴E 点表示的数是51-【点睛】掌握勾股定理;熟悉圆弧中半径不变性.7.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.8.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.9.1的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 【答案】C【解析】分析:根据平方根的意义,由16<17<25的近似值进行判断.详解:∵16<17<25∴4<5∴3-1<4-1在3到4之间.故选:C.点睛:此题主要考查了无理数的估算,根据平方根的被开方数的大小估算是解题关键.10.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.11.14的算术平方根为( ) A .116 B .12± C .12- D .12【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14,∴14的算术平方根是12,故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.12.若一个正数的平方根是2a ﹣1和﹣a+2,则这个正数是( )A .1B .3C .4D .9【答案】D【解析】∵一正数的两个平方根分别是2a −1与−a +2,∴(2a −1)+(−a +2)=0,解得a =−1.∴−a +2=1+2=3,∴这个正数为32=9.故选:D.13.下列说法:①36的平方根是6; ②±9的平方根是3; 164±;④ 0.01是0.1的平方根; ⑤24的平方根是4; ⑥ 81的算术平方根是±9.其中正确的说法是( )A .0B .1C .3D .5【答案】A【解析】【分析】依据平方根、算术平方根的定义解答即可.【详解】①36的平方根是±6;故此说法错误;②-9没有平方根,故此说法错误;③16=4,故16=4 说法错误;④ 0. 1是0. 01的平方根,故原说法错误;⑤24的平方根是±4,故原说法错误;⑥ 81的算术平方根是9,故原说法错误.故选A.14.计算|1+3|+|3﹣2|=()A.23﹣1 B.1﹣23C.﹣1 D.3【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=1+3+2﹣3=3,故选D.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.15.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,8③段上.故选C考点:实数与数轴的关系16.已知甲、乙、丙三个数,甲2=,乙3=,丙2=,则甲、乙、丙之间的大小关系,下列表示正确的是( ). A .甲<乙<丙B .丙<甲<乙C .乙<甲<丙D .甲<丙<乙 【答案】C【解析】【分析】由无理数的估算,得到324<<,132<<,425<<,然后进行判断,即可得到答案.【详解】解:∵12<,∴324<<,即3<甲<4,∵45<<,∴132<<,即1<乙<2,∵67<<,∴425<<,即4<丙<5,∴乙<甲<丙;故选:C.【点睛】本题考查了实数比较大小,以及无理数的估算,解题的关键是熟练掌握无理数的估算,以及比较大小的法则.17.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =(1<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.18.实数)A3<<B.3<C3<<D3<<【答案】D【解析】【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=><<,3故D为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.19.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<∴估计值应在3到4之间. 故选:A【点睛】 本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.362+在哪两个整数之间( ) A .4和5B .5和6C .6和7D .7和8 【答案】C【解析】【分析】36222+== 1.414≈,即可解答.【详解】36222+== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.。

中考数学模拟试题分类汇编实数的运算

中考数学模拟试题分类汇编实数的运算

实数的运算一、选择题 1、(2012年江西南昌十五校联考)计算3×(-2) 的结果是( )A .5B .-5C .6D .-6答案:D2、(2012年上海黄浦二模)计算()23-的结果是( )A .6;B .6-;C .9;D .9-; 答案:C3、下列运算结果正确的是( )A.6332a a a =⋅B.623)(a a -=-C.66a a a =÷D.632125)5(a a -=- 答案:D4、-2的绝对值等于 ( )A .2B . 1 2C .-2D .- 12答案:A7、对于非零的两个实数a 、b ,规定11a b b a⊕=-.若1(1)1x ⊕+=则x 的值为( ) A. 23 B. 1 C. 21- D. 21答案:C8、(2012山东省德州二模)估算224+的值( )A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间 答案:B 9、(2012山东省德州二模) 如图,是一个简单的数值运算程序.当输入x 的值为-4,则输出的数值为_________答案:10 10、(2012山东省德州一模)下列计算中,正确的是 ( )(A )145=- (B )a a =2 (C )4= (D )236=答案:C11、(2012的结果是( ) 12、(2012江西高安) 在 3.14,,0.101001中,无理数的个数是( )输出 第2题图A .2B .3C .4D .5答案:A13.(2012年宿迁模拟)估计58的立方根的大小在 ( )A. 2与3之间B.3与4之间C. 4与5之间D. 5与6之间 14.(西城区2012初三一模).计算:2=( )A .-1B .-3C .3D .5答案:A15、(2012年4月韶山市初三质量检测)下列运算正确的是( )A .326a a a ⋅=B .336()x x =C .5510x x x +=D .5233()()ab ab a b -÷-=-答案:D16、(2012年中考数学新编及改编题试卷)化简:322)3(x x -的结果是( ) (A )53x - (B )518x (C )56x - (D )518x - 答案:C17、(2012年北京市顺义区一诊考试)下列运算正确的是( )A .22423a a a +=B .2242a a a -=C .22422a a a =D .2222a a a ÷= 答案:C18、(2012年北京市延庆县一诊考试)下列运算中正确的是( ) A .a 3a 2=a 6 B .(a 3)4= a 719、[河南开封2012年中招第一次模拟]按下面程序计算:输入x =-3,则输出的答案是 。

2011年中考数学试题精选汇编《实数》

2011年中考数学试题精选汇编《实数》
A.-4 B.-1 C.- D.
【答案】B
7.(2011山东济宁,1,3分)计算―1―2的结果是
A.-1 B.1 C.-3 D.3
【答案】C
8.(2011四川广安,2,3分)下列运算正确的是()
A. B.
C. D. [来源:学科网]
【答案】C
9.(2011重庆江津,1,4分)2-3的值等于( )
A.1 B.-5 C.5 D.-1·
2011年中考数学试题精选汇编
《实数》
一、选择题
1.(2011福建泉州,1,3分)如在实数0,- , ,|-2|中,最小的是().
A. B.- C.0D.|-2|
【答案】B
2.(2011广东广州市,1,3分)四个数-5,-0.1, , 中为无理数的是().
A.-5B.-0.1C. D.
【答案】D
3.(2011山东滨州,1, 3分)在实数π、 、 、sin30°,无理数的个数为( )
16.(2011广东汕头,11,6分)计算:
【解】原式=1+ -4
=0
17.(2011浙江省嘉兴,17,8分)(1)计算: .
【答案】原式=4+1-3=2
18.(2011浙江丽水,17,6分)计算:|-1|- -(5-π)0+4cos45°.
【解】原式=1- ×2 -1+4× =1- -1+2 = .
A.3B.30C.1D.0
【答案】C
26.(2011湖南湘潭市,1,3分)下列等式成立是
A. B. C. ÷ D.
【答案】A
27.(2011台湾全区,2)计算 之值为何?
A.9 B.27 C.279 D.407
【答案】C
28.(2011台湾全区,12)12.判断312是96的几倍?

2020届中考数学试题分类汇编:无理数和实数(含精析)

2020届中考数学试题分类汇编:无理数和实数(含精析)

(2020•郴州)计算:|﹣|+(2020﹣)0﹣()﹣1﹣2sin60°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.3718684 专题:计算题. 分析:先分别根据0指数幂及负整数指数幂的计算法则,特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+1﹣3﹣2× =2+1﹣3﹣=﹣2.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则,特殊角的三角函数值是解答此题的关键.(2020,娄底)计算:(10124sin 603-⎛⎫--︒= ⎪⎝⎭_______________ (2020•湘西州)计算:()﹣1﹣﹣sin30°.考点:实数的运算;负整数指数幂;特殊角的三角函数值 专题:计算题. 分析:本题涉及负指数幂、平方根、特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣2﹣ =3﹣2﹣=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负指数幂、平方根、特殊角的三角函数值等考点的运算.(2020()12013112-⎛⎫+- ⎪⎝⎭ 2020•株洲)计算:.考点:实数的运算;特殊角的三角函数值.3718684专题:计算题.分析:分别根据算术平方根、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+3﹣2×=5﹣1=4.点评:本题考查的是实数的运算,熟知算术平方根、绝对值的性质及特殊角的三角函数值是解答此题的关键.(2020•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为5 .考点:勾股定理;非负数的性质:绝对值;非负数的性质:算术平方根.分析:根据非负数的性质求得a、b的值,然后利用勾股定理即可求得该直角三角形的斜边长.解答:解:∵,∴a2﹣6a+9=0,b﹣4=0,解得a=3,b=4,∵直角三角形的两直角边长为a、b,∴该直角三角形的斜边长===5.故答案是:5.(2020•巴中)计算:.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣1+1﹣=2﹣1+1﹣2=0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握及零指数幂、负指数幂、绝对值、二次根式等考点的运算.(2020•达州)计算:2 01tan603-⎛⎫+-︒+ ⎪⎝⎭解析:原式=1+9=10(2020•广安)计算:()﹣1+|1﹣|﹣﹣2sin60°.考点:实数的运算;负整数指数幂;特殊角的三角函数值.分析:分别进行负整数指数幂、绝对值、开立方、特殊角的三角函数值等运算,然后按照实数的运算法则计算即可.解答:解:原式=2+﹣1+2﹣2×=3.点评:本题考查了实数的运算,涉及了负整数指数幂、绝对值、开立方、特殊角的三角函数值等知识,属于基础题.(2020•乐山)计算:∣-2∣- 4sin45º + (-1)2020 + 8 .(2020凉山州)下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|﹣5|的算术平方根是5;④点P(1,﹣2)在第四象限,其中正确的个数是()A.0 B.1 C.2 D.3考点:算术平方根;点的坐标;对顶角、邻补角;中位数;众数.分析:根据邻补角、算术平方根、中位数及众数的定义、点的坐标的知识,分别进行各项的判断即可.解答:解:①邻补角是互补的角,说法正确;②数据7、1、3、5、6、3的中位数是5,众数是3,原说法错误;③|﹣5|的算术平方根是,原说法错误;④点P(1,﹣2)在第四象限,说法正确;综上可得①④正确,共2个.故选C .点评:本题考查了邻补角、中位数、众数及算术平方根的知识,掌握基础知识是解答此类(2020凉山州)计算:. 考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项表示2平方的相反数,第二项利用特殊角的三角函数值化简,第三项先计算绝对值里边的式子,再利用绝对值的代数意义化简,第四项利用零指数幂法则计算,即可得到结果.解答:解:原式=﹣4﹣+3+1+=0.点评:此题考查了实数的运算,涉及的知识有:零指数、负指数幂,平方根的定义,绝对值的代数意义,熟练掌握运算法则是解本题的关键.题目的关键.(2020•泸州)计算:11()216(3.14)sin 303π-O O -÷+-⨯(2020•眉山)计算:010)3.14()41(1645cos 2-+-+--π(2020•绵阳)计算:()212182sin 45-︒-+-⨯+; (2020•内江)下列四个实数中,绝对值最小的数是( )A . ﹣5B .C . 1D . 4考点:实数大小比较. 分析:计算出各选项的绝对值,然后再比较大小即可. 解答:解:|﹣5|=5;|﹣|=,|1|=1,|4|=4, 绝对值最小的是1.故选C .点评:本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.(2020•内江)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:分别进行绝对值、零指数幂、负整数指数幂的运算,然后代入特殊角的三角函数值,继而合并可得出答案.解答:解:原式=+5﹣﹣1+=.点评:本题考查了实数的运算,涉及了绝对值、零指数幂、负整数指数幂,掌握各部分的运算法则是关键.(2020•遂宁)下列计算错误的是()A.﹣|﹣2|=﹣2 B.(a2)3=a5 C.2x2+3x2=5x2D.考点:幂的乘方与积的乘方;绝对值;算术平方根;合并同类项.专题:计算题.分析:A、利用绝对值的代数意义计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、合并同类项得到结果,即可做出判断;D、化为最简二次根式得到结果,即可做出判断.解答:解:A、﹣|﹣2|=﹣2,本选项正确;B、(a2)3=a6,本选项错误;C、2x2+3x2=5x2,本选项正确;D、=2,本选项正确.故选B.点评:此题考查了幂的乘方及积的乘方,绝对值,算术平方根,以及合并同类项,熟练掌握运算法则是解本题的关键.(2020•遂宁)计算:|﹣3|+.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、绝对值、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+×﹣2﹣1=3+1﹣2﹣1=1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、绝对值、特殊角的三角函数值、立方根等考点的运算.(2020•雅安)(1)计算:8+|﹣2|﹣4sin45°﹣解:(1)原式=8+2﹣4×﹣=8+2﹣2﹣3=7﹣2;(2020宜宾)(1)计算:|﹣2|+﹣4sin45°﹣1﹣2原式=2+2﹣4×﹣1=2+2﹣2﹣1=1;将括号内的部分通分,将分子、分母因式分解,然后将除法转化为乘法解答即可.(2020•资阳)16的平方根是A.4 B.±4C.8 D.±8(2020•自贡)计算:= 1 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、负指数幂、特殊角的三角函数值、绝对值等四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+﹣2×﹣(2﹣)=1+2﹣﹣2+=1,故答案为1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.(2020鞍山)3﹣1等于( )A .3B .﹣C .﹣3D . 考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂:a ﹣p =(a≠0,p 为正整数),进行运算即可.解答:解:3﹣1=.故选D .点评:此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.(2020•大连)计算:(2020•沈阳)如果1m =,那么m 的取值范围是( )A .01m <<B .12m <<C .23m <<D .34m <<(2020•沈阳)计算:2016sin 3022-⎛⎫-︒++- ⎪⎝⎭(-2) (2020•铁岭)﹣的绝对值是( )A .B . ﹣C .D . ﹣考点:实数的性质. 分析:根据负数的绝对值等于它的相反数解答. 解答:解:|﹣|=. 故选A .点评:本题考查了实数的性质,主要利用了负数的绝对值是它的相反数. (2020•恩施州)25的平方根是 ±5 .考点:平方根. 分析:如果一个数x 的平方等于a ,那么x 是a 是平方根,根据此定义即可解题. 解答:解:∵(±5)2=25 ∴25的平方根±5.点评:本题主要考查了平方根定义的运用,比较简单. (2020•黄石)计算: 013133tan 308(2013)()3π--+---+o g 解析:原式3332133=+⨯--+ ··················· (5分) 4= ························· (2分) (2020•荆门)(1)计算:(1)分别根据0指数幂、有理数乘方的法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;:(1)原式=1+2﹣1﹣×=-1.(2020•潜江)若平行四边形的一边长为2,面积为64,则此边上的高介于A.3与4之间B. 4与5之间C. 5与6之间D. 6与7之间(2020•潜江)计算:9)1(42013+-+-(2020•十堰)计算:+(﹣1)﹣1+(﹣2)0= 2 .考点:实数的运算;零指数幂;负整数指数幂.3718684 分析: 分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案. 解答:解:原式=2﹣1+1 =2.故答案为:2.点评:本题考查了实数的运算,涉及了零指数幂、负整数指数幂的知识,解答本题的关键是掌握各部分的运算法则.(2020•襄阳)计算:|﹣3|+= 4 .考点:实数的运算;零指数幂. 分析:分别进行绝对值及零指数幂的运算,然后合并即可得出答案. 解答:解:原式=3+1 =4.点评:本题考查了实数的运算,涉及了零指数幂绝对值,掌握各部分的运算法则是关键. (2020•宜昌)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A. a +b =0B. b <aC. a b >0D. b <a(2020•宜昌)计算:()200092120++⎪⎪⎭⎫ ⎝⎛-⨯-.(2020•张家界)计算:|13|60sin 2)21()2013(20-++---οπ解:原式=1-4-3+3+1=-4(2020•龙岩)计算:0201338(3)(1)|23|π--+-+-;解:原式=21(1)23-+-+-= 23-(2020•莆田)计算:+|﹣3|﹣(π﹣2020)0.考点:实数的运算;零指数幂. 专题:计算题. 分析:本题涉及零指数幂、平方根、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2+3﹣1=4. 点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、平方根、绝对值等考点的运算.(2020•三明)计算:(﹣2)2+﹣2sin30°;解:(1)原式=4+3﹣2×=4+3﹣1=6;(2020•漳州)计算:|-2|+(-1)2020-(π-4)0.(2020•白银)计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,二次根式的化简,任何非0数的0次幂等于1进行计算即可得解.解答:解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2﹣1,=+4﹣2﹣1,=3﹣.点评:本题考查了实数的运算,主要利用了特殊角的三角函数值,负整数指数幂,二次根式的化简,零指数幂,是基础运算题,注意运算符号的处理.(2020•宁夏)计算:.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:分别进行负整数指数幂、二次根式的化简及绝对值的运算,代入特殊角的三角函数值合并即可.解答:解:原式===.点评:本题考查了实数的运算,涉及了绝对值、负整数指数幂及特殊角的三角函数值,属于基础题.(2020•宿迁)计算:1011)2cos602-⎛⎫-+⎪⎝⎭o.(2020•常州)在下列实数中,无理数是()A . 2B . 3.14C .D .考点: 无理数. 分析:根据无理数,有理数的定义对各选项分析判断后利用排除法求解. 解答:解:A 、2是有理数,故本选项错误; B 、3.14是有理数,故本选项错误;C 、﹣是有理数,故本选项错误;D 、是无理数,故本选项正确.故选D .点评:主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.(2020•常州)化简:0060cos 2)2013(4+-- . 原式=2﹣1+2×=2.(2020•淮安)如图,数轴上A 、B 两点表示的数分别为和5.1,则A 、B 两点之间表示整数的点共有( )A . 6个B . 5个C . 4个D . 3个考点:实数与数轴;估算无理数的大小. 分析: 根据比1大比2小,5.1比5大比6小,即可得出A 、B 两点之间表示整数的点的个数. 解答:解:∵1<2,5<5.1<6, ∴A 、B 两点之间表示整数的点有2,3,4,5,共有4个;故选C .点评:本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.(2020•淮安)计算:(1)(π﹣5)0+﹣|﹣3|解:(1)原式=1+2﹣3=0;(2020•南京)设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a 可以用数轴上的一个点来表示;③ 3<a <4; ④ a 是18的算术平方根。

全国各地数学中考试题分类汇编实数的运算含答案

全国各地数学中考试题分类汇编实数的运算含答案

实数的运算一、选择题1.2010江苏盐城20100的值是 A .2010 B .0 C .1 D .-1答案C2.2010山东威海计算()201020092211-⨯⎪⎭⎫⎝⎛-的结果是A .-2B .-1C .2D .3答案B3.2010台湾计算 | 135 || 61167 | 之值为何 A 37 B 31 C 34 D311; 答案A4.2010台湾计算1061023104之值为何A 108 B 109 C 1010 D 1012; 答案A5.2010台湾下列四个选项中的数列,A 5,5,5,5,5B 1,4,925C5,25,35,45,55 D 1,22,33,44,55 ;答案D6.2010台湾图五数在线的A 、B 、C 三点所表示的数分别为 a 、b 、c ;根据图中各点位置,判断下列各式何者 正确 A a 1b 1>0 B b 1c 1>0 C a 1b 1<0 D b 1c 1<0 ;答案D7.2010浙江杭州 计算 – 12 + – 13 =A.– 2B. – 1C. 0D. 2 答案C8.2010 浙江义乌28 cm 接近于 ▲ A .珠穆朗玛峰的高度 B .三层楼的高度 C .姚明的身高 D .一张纸的厚度答案C9.2010 福建德化2-的3倍是A 、 6-B 、1C 、6D 、5- 答案AA B C O a bc 0 1 1 图五10.2010 山东济南某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 A .-10℃ B .-6℃ C .6℃ D .10℃ 答案D11.2010 东济南下列各式中,运算正确的是A=B.+=C .632a a a ÷=D .325()a a =答案A12.2010山东临沂计算()21-的值等于 A -1 B1 C -2 D2 答案B13.2010 河北计算3×-2 的结果是A .5B .-5C .6D .-6答案D14.2010 河北下列计算中,正确的是A .020=B .2a a a =+C3=±D .623)(a a =答案D15.2010 山东省德州下列计算正确的是 A020= B331-=-3==答案C16.2010江苏宿迁3)2(-等于A .-6B .6C .-8D .8 答案C17.2010 山东莱芜如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a答案D1 0 -1 a b B A 第5题图18.2010江西 计算 -2- 6的结果是A .-8B . 8C . -4D . 4 答案A19.2010年贵州毕节有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为 A .8人 B .9人 C .10人 D .11人答案B.20.2010湖北荆门()()2012321-+-+⎪⎭⎫⎝⎛--π的值为A .-1B .-3C . 1D . 0答案C21.2010 四川成都3x 表示A 3xB x x x ++C x x x ⋅⋅D 3x + 答案C22.2010湖北荆州温度从-2°C 上升3°C 后是A .1°CB . -1°C C .3°CD .5°C 答案A23.2010湖北荆州下面计算中正确的是 A .532=+ B .()111=--C . ()2010201055=- D . x 32x •=x 6答案C24.2010湖北荆州在电子显微镜下测得一个圆球体细胞的直径是5×105-cm.,3102⨯个这样的细胞排成的细胞链的长是A .cm 210- B .cm 110- C .cm 310- D .cm 410- 答案B25.2010湖北省咸宁下列运算正确的是 A .263-=- B .24±=C .532a a a =⋅D .3252a a a +=答案C26.2010江苏淮安观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×1×2+2×3+3×4+…+99×100=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 答案C27.2010湖南怀化下列运算结果等于1的是 A .)3()3(-+- B .)3()3(--- C .)3(3-⨯-D .)3()3(-÷-答案D28.2010山东泰安如图,数轴上A 、B 两点对应的实数分别为,a b ,则下列结论不正确的是 A 、0a b +> B 、0ab < C 、0a b -< D 、0a b ->1-1答案D29.2010云南红河哈尼族彝族自治州下列计算正确的是A .-1-1=1 B.-32=-6 C.π0=1 D.-26÷-23=-22 答案C30.2010云南楚雄下列计算正确的是A .a 2·a 3=a 6B .6÷2=3C .21-2=-2 D . -a 32=-a 6 答案B31. 2010湖北随州下列运算正确的是A .1331-÷= B a = C .3.14 3.14ππ-=- D .326211()24a b a b =答案D32. 2010四川乐山计算-2×3的结果是A -6 B6 C -5 D5答案A33. 2010黑龙江哈尔滨某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高 A16℃ B20℃ C -16℃ D .-20℃ 答案B34. 2010 福建三明如果□,1)23(=-⨯则□内应填的实数是A .23-B .32-C .23 D .32 答案B35. 2010湖北襄樊某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高A .10℃B .-10℃C .6℃D .-6℃答案A36. 2010 湖北孝感2010)1(-的值是A .1B .—1C .2010D .—2010答案A37.2010 山东淄博下列结论中不能由0=+b a 得到的是A ab a -=2B b a =C 0=a ,0=bD 22b a = 答案C38.2010 山东淄博如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为A6 B3 C200623 D10033231003⨯+答案B39.2010云南玉溪 的结果是)(计算12010)21(1:.1--- A. 1 B. -1D. 2答案B40.2010 甘肃()=-21A .1B .-1C .2D .-2答案A41.2010 山东荷泽2010年元月19日,山东省气象局预报我市元月20日的最高气温是4℃,最低气温是-6℃,那么我市元月20日的最大温差是 A .10℃ B .6℃ C .4℃ D .2℃答案A42.2010青海西宁 计算)3(21-⨯--的结果等于A.5B.5-C.7D.7-第11题答案A43.2010广西梧州用0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数每个数字都只用一次,然后把所得的数相加,它们的和不可能是 A .36 B .117 C .115 D .153 答案44.2010广东深圳观察下列算式,用你所发现的规律得出20102的末位数字是 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…A .2B .4C .6D .8 答案B45.2010湖北宜昌冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高 ;A.26℃B.14℃C.-26℃D.-14℃ 答案A46.2010湖北宜昌如图,数轴上A,B 两点分别对应实数a,b,则下列结论正确的是 ; A. |a|>|b| B. a+b>0 C. ab<0 D. |b|=bAB10-1-2b a答案C47.2010吉林如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是答案C48.2010广东湛江观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是.9 C 答案B49.2010广东清远计算:0-12= A.12 B. -2 C.-12D. 2 答案C 二、填空题1.2010山东烟台计算-2sin60°+π-12=_____________________;答案+12.2010 福建晋江计算:.______32=-答案913.2010江苏无锡一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 ▲.注:销售利润率=售价—进价÷进价答案40%4.2010 山东莱已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…, 观察上面的计算过程,寻找规律并计算=610C .答案2105. 10.2010江西按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为 .答案76.2010湖北武汉计算:sin30︒= ,-3a 22= ,= .答案12,9a 4,5 7.2010四川 巴中符号“f ”表示一种运算,它对一些数的运算结果如下:1f 1=0,f 2 = 1,f 3=2,f 4= 3,…… 21111()()()()23452,3,4,5ff ff ====……利用以上规律计算:1(2010)()2010ff -=答案18.2010浙江湖州“五.一”期间,某服装商店举行促销活动,全部商品八折销售.一件标价为10°元的 运动服,打折后的售价应是 元. 答案80.9.2010江苏常州计算:12-+= ,2-= ,(2)--= ,34()a = ; 答案1,2,-2,a1210.2010湖南怀化计算102)7(-++π=_______.答案23 11.2010 山东滨州计算-22·-10-13-1= . 答案112.2010湖北荆门观察下列计算:211211-=⨯ 3121321-=⨯ 4131431-=⨯ 5141541-=⨯ … … 从计算结果中找规律,利用规律计算+⨯+⨯+⨯+⨯541431321211…=⨯+201020091 ; 答案2010200913.2010河南计算:21-+(-2)= . 答案514.2010黑龙江哈尔滨某种衬衫每件的标价为150元,如果每件以八折即按标价的80%出售,那么这种衬衫每件的实际售价应为元 ; 答案12015.2010 福建三明计算:2122|21|-+--= ; 答案-316.2010 江苏镇江计算:—3+2= ; —3×2= .答案—1,—617.2010 甘肃观察:1234111111113243546a a a a =-=-=-=-,,,,…,则n a = n=1,2,3,…. 答案211+-n n 18.2010 重庆江津先观察下列等式:111122=-⨯ 1112323=-⨯ 1113434=-⨯ …… 则计算111111223344556++++=⨯⨯⨯⨯⨯ .答案5619.2010 重庆江津我们定义a b c dad bc =-,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x y +的值是_________.答案3±20.2010 福建泉州南安计算:=-0)2010(.答案121.2010 山东荷泽刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对b ,a 进入其中时,会得到一个新的实数:a 2+b -1,例如把3,-2放入其中,就会得到32+-2-1=6.现将实数对-2,-3放入其中,得到实数是 . 答案022.2010 广西钦州市根据如图所示的计算程序,若输入的值x =-1,则输出的值 y = _ ▲_ .答案223.2010 广西钦州市计算 -2 +3的结果是_▲_; 答案124.2010青海西宁 2010的相反数是 ;4-1= . 答案-2010,125.2010鄂尔多斯“五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件为140元的运动服,打折后他比按原价购买节省了 元;答案28 26.2010广西南宁古希腊数学家把数 ,21,15,10,6,3,1叫做三角数,它有一定的规律性.若把一个三角形数记为1a ,第二个三角形数记为 ,2a ,第n 个三角形数记为n a ,计算12a a -,,,3423a a a a --,由此推算,=-99100a a ,=100a .答案100,505027.2010云南昭通计算:-30+1=_______________. 答案228.2010贵州遵义如图,在宽为30m,长为40m 的矩形地面上修建两条宽都是1m 的道路,余下部分种植花草,那么,种植花草的面积为 m 2.答案113129.2010贵州遵义小明玩一种挪动珠子的游戏,每次挪动珠子的颗数与对应所得的分数如下表:x 为负数第9题输入x输出yy=x -5 y=x 2 +1x 为正数当对应所得分数为132分时,则挪动的珠子数 颗; 答案1230.2010广东佛山在算式1-︱-2口3︱中的口里,填入运算符号 ,使得算式的值最小在符号+,-,×,÷中选择一个. 答案×31.2010辽宁沈阳计算:=-⨯0)3(218 ; 答案12-32.2010福建省南平计算:20=_______. 答案:133.2010贵州铜仁定义运算“”的运算法则为:xy =xy -1,则234=__ __. 答案1934.2010广东湛江计算:2010-π0 -1= . 答案:0 .35.2010湖南娄底计算:-20100 +|-1|=_________ 答案236.2010内蒙赤峰北京市从2010年7月1日起开始上调最低工资标准,由原来的每月800元上调至960元,则这次上 调的百分比是____________. 答案20%37.2010内蒙赤峰观察式子:),7151(21751),5131(21531),311(21311-=⨯-=⨯-=⨯……. 由此计算:+⨯+⨯+⨯751531311…=⨯+201120091_____________.答案20111005 三、解答题1.2010江苏苏州计算:01243⎛⎫-+- ⎪⎝⎭.答案2.2010江苏南通1203(4)(π3)2|5|-+---- 答案解:原式=16+1-8-5=4.3.2010江苏盐城1 30cos )31(31-+--答案1解:原式=3+3-错误! ……………………………………………………3分 =6-错误! ………………………………………………………………4分4.2010山东济宁计算:084sin 45(3)4-︒+-π+-答案解:原式2224142=-⨯++ ································································· 4分 5= ··························································································· 5分5.2010山东济宁观察下面的变形规律:211⨯=1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题: 1若n 为正整数,请你猜想)1(1+n n = ;2证明你猜想的结论; 3求和:211⨯+321⨯+431⨯+…+201020091⨯. 答案 1111n n -+ ···································································································· 1分 2证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ······················· 3分3原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ····································································· 5分 6.2010四川凉山计算:1201002(60)(1)|28|(301)21cos tan -÷-+--⨯--; 答案7.2010四川眉山计算:1021()(52)18(2)23---答案解:原式=313242-+ ……………………4分 =22 ………………………………6分8.2010浙江嘉兴1计算:0)2(2+-;答案10)2(2+-12+=3=. …4分9.2010浙江绍兴1计算: |2-|o 2o 12sin30(3)(tan 45)-+--+; 答案解:1 原式= 2+1-3+1=1.10.2010 浙江省温州本题l0分1计算:()121320108-⎪⎭⎫⎝⎛--+.答案11.2010 浙江台州市1计算:)1()2010(40---+; 答案1解:原式=2+1+1 =412.2010 浙江义乌1计算:14tan 45⎪-° 答案解:1原式=1+2-1=213.2010 重庆计算:102010)51()5(97)1(-+-⨯+---π. 答案解:原式51371+⨯+-= 2=.14.2010重庆市潼南县 6分计算:π-0-|-3|+121-⎪⎭⎫⎝⎛--12010.答案解:原式=1-3+2-1 = -115.2010 福建德化15分计算: |-2|-2-错误!0+2)21(-- ;答案解:原式=412+-=516.2010 福建晋江8分计算:()0220103134-÷---. 答案 解:原式13194-÷-=1394-⨯-=24-=17.2010湖南长沙计算1023tan 30(2010)π-+--答案解:102tan 30(2010)π---1123=+- 1112=+- 12= 18.2010江苏宿迁本题满分8分计算:01)2(3)31(5---+--π.答案解:原式=5-3+3-1 =4 19.2010浙江金华本题6分计算:4cos30°.答案解:原式﹦1+33-32﹦1+3.20.2010 四川南充计算:()228cos303-+︒--.答案解:原式=42832+⨯⨯-=43+ =1.21.2010 山东济南计算:12-4cos30°-3+210答案原式=23-4×23-3+1 = -122.2010 浙江衢州计算:012sin 302+--︒. 答案解:原式=111222++- =3 23.2010江苏泰州计算:112)21(30tan 3)21(01+-+︒---;答案原式=3231233--⨯++=23123--++=13-+. 24.2010福建福州 计算:|-3|+-10-错误! 答案原式=3+1-3=125.2010江苏无锡111|1|()2---+2(-3) 答案原式= 9—1+2=1026.2010湖南邵阳计算:113-⎛⎫⎪⎝⎭-5×15+38答案113-⎛⎫⎪⎝⎭-5×15+38=3-1+2=4.27.2010年上海计算:12131427(31)()231-+--++ .答案解:12131427(31)()231-+--++.=342322(31)+--+-. =3.28.2010安徽芜湖1计算:12010× 错误!-3+sin58°- 错误!0+|错误!-4cos600| 答案29.2010甘肃兰州本小题满分4分60tan 2-—0)14.3(-π+2)21(--1221+答案本题满分10分1本小题满分4分 解:原式=34132++-- ……………………………………………2分=3332++- ………………………………………………………3分 =5 …………………………………………………………………………4分 30.2010重庆綦江县计算:()()1312222π-⎛⎫---++- ⎪⎝⎭. 答案原式=2-1+2-8=-5 31. 2010四川宜宾1计算:错误!+10+– 错误!–1 – 错误!–2sin45°答案错误!+10+– 错误!–1 – 错误!–2sin45°=1+-3+2-2-2=-4. 32. 2010 江苏连云港本题满分8分计算:1-22+3×-2 - 错误! -2;答案33. 2010 广东珠海计算:92|21|)3(12-+---- 答案解:原式=6321219=-+-34. 2010四川 巴中计算:01118(21)2sin 454----︒-()答案原式=4222123-⨯-- 35.2010浙江湖州计算:201004(1)tan 45+--..答案原式=4+1-1=4.36. 2010江苏常州计算120433--- 答案37. 2010江苏淮安11913---; 答案1原式=3+1-3=1.38. 2010 湖南株洲1计算:()22tan 452010-+︒+答案原式=411++6=40. 2010 四川成都计算:()121126.330tan 6-⎪⎭⎫⎝⎛+--+︒π.答案1解:原式=3612323⨯+-=3 41. 2010广东中山计算:001)2(60cos 2)21(4π-+-+-.答案解:原式=121222+⨯-+ =442.2010广东中山阅读下列材料:)210321(3121⨯⨯-⨯⨯=⨯,)321432(3132⨯⨯-⨯⨯=⨯,)432543(3143⨯⨯-⨯⨯=⨯,由以上三个等式相加,可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯读完以上材料,请你计算下列各题:11110433221⨯++⨯+⨯+⨯ 写出过程; 2)1(433221+⨯++⨯+⨯+⨯n n = ; 3987543432321⨯⨯++⨯⨯+⨯⨯+⨯⨯ = . 答案解:11110433221⨯⨯+⨯+⨯=)210321(31⨯⨯-⨯⨯+)321432(31⨯⨯-⨯⨯+…+)11109121110(31⨯⨯-⨯⨯=12111031⨯⨯⨯ =440. 2)2)(1(31++n n n 3987543432321⨯⨯++⨯⨯+⨯⨯+⨯⨯ =)32104321(41⨯⨯⨯-⨯⨯⨯+)43215432(41⨯⨯⨯-⨯⨯⨯ +…+)987610987(41⨯⨯⨯-⨯⨯⨯=1098741⨯⨯⨯⨯ =126043. 2010湖南常德如图3,一个数表有7行7列,设ij a 表示第i 行第j 列上的数其中i=1,2,3,…,7,j=1,2,3,…,7. 例如:第5行第3列上的数537a =. 则123225253()()a a a a -+-= ; 2此数表中的四个数,,,np nk mp mk a a a a 满足()()np nk mk mp a a a a -+-= .答案10 2044. 2010湖南常德计算:03111()(2)()|2|23--+-++- 答案解:原式= 1-8+3+2= -245. 2010湖南郴州计算:118122sin 60tan 602.答案 解:原式=+12246. 2010湖北荆州计算:()21182010---+答案解:原式=()12122--+=12122+-+ =22+47. 2010江苏扬州1计算:-12+tan 60°-π+20100答案1原式=131-+ =348. 2010湖北恩施自治州计算:2+()()()121212010-++--313⨯-答案解:原式=2+1+1-1 =31 2 3 4 3 2 1 2 3 4 5 4 3 2 3 4 5 6 5 4 3 4 5 6 7 6 5 4 5 6 7 8 7 6 5 6 7 8 9 8 7 6 7 8 9 10 9 8 7 图349. 2010北京计算:+--012010)31|-43|-tan60° 答案解:原式=3-1+43-3=2+33 . 50. 2010江苏徐州192120101+--)(; 答案解原式=1-2+3=251. 2010云南昆明计算:1021()320104-----+ 答案解:原式 = 4312---+ = 6-52. 2010四川内江已知a =错误!-1,b =2cos45°+1,c =2010-π0,d =|1-错误!|.1请化简这四个数;2根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果. 答案解:1a =错误!-1=3,b =2cos45°+1=2×错误!+1=错误!+1,c =2010-π0=1,d =|1-错误!|=错误!-12∵a ,c 为有理数,b ,d 为无理数,∴a +c -bd =3+1-错误!+1 错误!-1 =4-2-1 =3.53.2010四川内江已知非负数a ,b ,c 满足条件a +b =7,c -a =5,设S =a +b +c 的最大值为m ,最小值为n ,则m -n = . 答案754.2010广东东莞计算:01)2(60cos 2)21(4π-++︒--.答案原式=2+2-2×21+1=4-1+1=455.2010广东东莞阅读下列材料:1×2=311×2×3-0×1×2, 2×3=312×3×4-1×2×3,3×4=313×4×5-2×3×4,由以上三个等式相加,可得 1×2+2×3+3×4=31×3×4×5=20.读完以上材料,请你计算下各题:⑴1×2+2×3+3×4+…+10×11写出过程; ⑵1×2+2×3+3×4+…+n ×n +1= ;⑶1×2×3+2×3×4+3×4×5+…+7×8×9= .答案⑴1×2+2×3+3×4+…+10×11=31×1×2×3-0×1×2+2×3×4-1×2×3…+10×11×12-9×10×11 =31×10×11×12 =440⑵1×2+2×3+3×4+…+n ×n +1 =31×1×2×3-0×1×2+2×3×4-1×2×3+… +)1()1()2()1(+⨯⨯--+⨯+⨯n n n n n n =)2()1((31+⨯+⨯n n n ⑶1×2×3+2×3×4+3×4×5+…+7×8×9=41×1×2×3×4-0×1×2×3×4+2×3×4×5-1×2×3×4+…+7×8×9×10-6×7×8×9=41×7×8×9×10 =126056.2010 四川绵阳1计算:π-20100 +sin60︒-1-︱tan30︒-3︱+38. 答案1原式= 1 +|333|)23(1---+ 2 = 3 +33232-= 3 +332332-= 3. 57.2010 江苏镇江1|;4|)60(cos )5(02-+-答案原式415+-==858.2010 广东汕头计算:()01260cos 2)21(4π-+︒--+-.答案原式1212)2(2+⨯--+= 110+-= 0=.59.2010 广东汕头阅读下列材料:1×2 =311×2×3-0×1×2,2×3 =312×3×4-1×2×3, 3×4 = 313×4×5-2×3×4,由以上三个等式相加,可得 1×2+2×3+3×4=31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11写出过程; (2) 1×2+2×3+3×4+···+n ×n +1 = _________;(3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = _________. 答案解:1∵1×2 =311×2×3-0×1×2, 2×3 = 312×3×4-1×2×3,3×4 = 313×4×5-2×3×4,… 10×11 =3110×11×12-9×10×11, ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440.2)2)(1(31++n n n . 31260.60.2010四川 泸州 计算:-12010+3--1答案-12010+3--1 =1+3-4+12-1=1+3-4+2=261.2010 湖南湘潭计算:2o(1)(3)2cos 60-+π-- 答案解:原式=21211⨯-+ =162.2010广西桂林计算:101()2)3---4cos30°+答案解:原式=314--=31--=26.2010湖北十堰计算:30(2)|5|2)2sin 30-+--+︒答案原式=-8 + 5-1+ 2×错误!=-3.63.2010 广西玉林、防城港计算:10122-⎛⎫⨯- ⎪⎝⎭答案原式=2=2 64.2010 重庆江津计算:120114520104-⎛⎫-+︒+ ⎪⎝⎭答案解:原式141=-++……………每个知识点1分4分 1411=-+++ 5=9.2010 福建泉州南安计算: 43)85(41)1(12+⨯--÷--. 答案解:原式=231)3(41+⨯--⨯………………5分 =214++…………… ……………7分=7……………………………… … 9分65.2010 四川自贡计算π-2°+31-1-27cos30° 答案-1266.2010 山东荷泽计算:12-4sin 60°+4-π0答案⑴原式=123432+⨯-=1 67.2010宁夏回族自治区计算:011( 3.14)()12π--+--. 答案解:原式=)12()2(231---++ =122231+--+=2268.2010 广西钦州市计算:42(1)3cos 45--+答案解:1原式 =1+19=1+19-1 =1969.2010青海西宁计算:4401425.0)14.3()21(⨯+---π 答案.解:原式=2-1+4)441(⨯ = 2-1+1 = 2 70.2010鄂尔多斯计算:0132)2()31(272-⨯--+--π 答案1计算:0132)2()31(272-⨯--+--π 解:原式=-4-3-3=-1071.2010广西南宁计算:1)2(60tan 3)2010()1(-+︒-︒-+--π 答案解:1)2(60tan 3)2010()1(-+︒-︒-+--π213311+⨯-+= 4分 2132+-= 5分 21-= 72.2010年山西计算:.)23(45sin 2)21(91 -+--+- 答案解:原式1222)2(3+⨯--+= .11123=+--= 73.2010广东茂名计算:1022)2010()2(4--+---.答案解:原式=21144-+-···················4分 =21.···························7分 ① ②74.2010贵州遵义计算:∣-22∣-8-2-1+3-20 答案解:原式=1222212--+………………………………………4分 =12…………………………………………………………6分 20.2010广东深圳计算:302)1(821)14.3(45sin 2)31(-++-+︒--π 答案原式=1922122192-++⨯-= 75.2010广西柳州计算:-23+2010-30-tan45答案解:原式=-8+1-1 =-876.2010辽宁本溪计算:20183()(2010)4sin 453π-+⨯----︒. 答案77.2010 福建莆田计算:23|32|23-+- 答案78.2010广西河池计算:(()2032212sin 60+--+ 答案解:原式=234123-++ =5 79.2010年福建省泉州计算:01|3|(3)8242π--+--+⨯.答案解:原式=2144813⨯+-+ ……………………………………………7分=224+- …………………………………………………………8分 =4 ……………………………………………………………… 9分80.2010贵州铜仁 -20100+│12sin60°答案解:原式=11-2=081.2010广东肇庆计算:10330tan ·3)8(--︒+- 答案解:原式=1+3133·3-=1+3131-=1 82.2010云南曲靖计算:10)31()1()2(9---+--答案解:原式=3+2+1-3 =383.2010四川广安计算:001||(4)sin 302π-+-+.答案001||(4)sin 302π-+-+ =12211321++-+- =12-84.2010四川达州计算:20100(1)1)--.答案解: 原式=1-1 =0.85.2010福建清远计算:∣-1∣-sin30°+12--10. 答案:原式=1-12+12-1=0.86.2010内蒙呼和浩特计算:101(2010)2cos6022π-⎛⎫--+︒ ⎪⎝⎭.答案解:原式=1-2+1-2 2 =287.2010内蒙赤峰计算:02)23(22)21(45sin 42--+----o答案解:原式=12242242-+-⨯- =-3 88.2010湖北黄石计算:2-32+3+()20101-()02π--121-⎪⎭⎫ ⎝⎛ 答案。

江苏13大市数学中考分类汇编:实数(有理数、无理数、绝对值、相反数、数轴科学计数法)

江苏13大市数学中考分类汇编:实数(有理数、无理数、绝对值、相反数、数轴科学计数法)

江苏13大市数学中考分类汇编实数(有理数、无理数、绝对值、相反数、数轴科学计数法) 1.(08泰州1t)化简(2)--的结果是( )D A .2-B .12-C .12D .22.(08泰州2)国家投资建设的泰州长江大桥已经开工,据《泰州日报》报道,大桥预算总造价是9 370 000 000元人民币,用科学计数法表示为( )B A .993.710⨯元B .99.3710⨯元C .109.3710⨯元D .100.93710⨯元3(2008江苏盐城1)3-的立方是( ) A .27- B .9-C .9D .27答案:A.4(2008江苏盐城3)2008年北京奥运会圣火在全球传递的里程约为137000km ,用科学记数法表示为( ) A .31.3710⨯km B .313710⨯kmC .51.3710⨯kmD .513710⨯km答案:C.5.(2008江苏盐城5)实数a 在数轴上对应的点如图所示,则a ,a -,1的大小 关系正确的是( ) A .1a a -<<B .1a a <-<C .1a a <-<D .1a a <<-答案:D.6.(2008江苏扬州9)如果□+2=0,那么“□”内应填的实数是________________.答案:-27.(2008江苏扬州10) 2008年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”声中胜利结束,全程11.8千米,11.8千米用科学记数法表示是____________米。

答案:10.41.1810⨯.8.(2008江苏扬州18)按如图所示的程序计算,若开始输入的x 的值为48,我们发现第一次得到的结果为24,第2次得到的结果为12,……,请你探索第2009次得到的结果为________________。

答案:89(2008江苏省宿迁)某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留a0 1 第5题图X 为奇数 X 为偶数两个有效数字)表示为A.81041⨯元 B.9101.4⨯元 C.9102.4⨯元 D.8107.41⨯元 答案:选C10.(08南京1)3-的绝对值是( B ) A .3-B .3C .13-D .1311.(08南京2)2008年5月27日,北京2008年奥运会火炬接力传递活动在南京境内举行,火炬传递路线全程约12 900m ,将12 900m 用科学记数法表示应为( B ) A .50.12910⨯B .41.2910⨯C .312.910⨯D .212910⨯12.(08南京4)2的平方根是( D ) A .4B .2C .2-D .2±13.(08连云港1)计算23-+的值是( C ) A .5- B .1- C .1 D .5 14.(08连云港3)据《连云港日报》报道,至2008年5月1日零时,田湾核电站1、2号两台机组今年共累计发电42.96亿千瓦时.“42.96亿”用科学记数法可表示为( C ) A .74.29610⨯B .84.29610⨯C .94.29610⨯D .104.29610⨯15.(08连云港5)实数a b ,在数轴上对应点的位置如图所示, 则必有( D ) A .0a b +> B .0a b -< C .0ab > D .0ab<16(2008苏州)下列运算正确的是( A ) A .33-=B .33-=-C .93=±D .93=-17(2008徐州)4的平方根是 A A.2± B.2 C. -2 D 1618(2008苏州)据苏州市《城市商报》2008年5月26日报道:汶州地震已经过去了两周,但社会各界为灾区捐款捐物的爱心仍然绵绵不绝,截至2008年5月25日,苏州市红十字会共收到价值超过15000000元的捐献物资,15000000用科学记数法可表示为( B ) A .61.510⨯B .71.510⨯C ,81.510⨯D .91.510⨯19.(2008徐州)一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为 BA. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元20.(08泰州19)让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ;0 a 1 1-0 b (第5题图)第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,计算231n +得3a ; ……依此类推,则2008a = .26 21.(2008苏州)5-的相反数是 5 . 22.(2008苏州)计算2008(1)-= 1 .23.(08连云港9)如果2180a -=,那么a 的算术平方根是 3 . 24.(2008江苏省宿迁)_______420=-答案:-125.(2008江苏省宿迁)对于任意的两个实数对),(b a 和),(d c ,规定:当d b c a ==,时,有),(b a =),(d c ;运算“⊗”为:),(),(),(bd ac d c b a =⊗;运算“⊕”为:),(),(),(d b c a d c b a ++=⊕.设p 、q 都是实数,若)4,2(),()2,1(-=⊗q p ,则_______),()2,1(=⊕q p .答案:(3,0)26(2008年江苏省无锡市,1T ,2分)6-的相反数是 ,16的算术平方根是 .答案:6,4 27.(2008年江苏省无锡市,4T ,2分)截至5月30日12时止,全国共接受国内外社会各界捐赠的抗震救灾款物合计约3990000万元,这个数据用科学记数法可表示为 万元.答案4.63.9910⨯28.(2008年江苏省南通市,1T ,3分)计算0-1=________.答案1.-7 29.(2008年江苏省南通市,2T ,3分)求值:144=________.答案2.1230.(2008年江苏省南通市,12T ,3分)苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克________元. 答案12.431.(2008年江苏省无锡市,19T (1),5分)计算:01232tan 60(12)+--+-+.19.(1)解:原式233231=+-+ ······················· (4分)4=. ··········································· (5分)(2008江苏省无锡)计算:01232tan 60(12)+--+-+答案:432.(2008苏州)计算:121(3)42-⎛⎫--+ ⎪⎝⎭.解:原式9229=-+=.33.(2008徐州)计算:20080131(1)()83π--+-+.解:原式=1+1-3+2=1. 34.(08泰州21)计算:1123tan 45(2 1.41)3-⎛⎫--++- ⎪⎝⎭.解:原式=1323++--………………………………………………6分=1)32(3+-- ………………………………………… 7分=32+………………………………………………………8分(第一步计算中,每算对一个给2分)35. (2008江苏常州1)-3的相反数是____3___,-12的绝对值是__12______,2-1=____12__36. (2008江苏常州9)下列实数中,无理数是【 B】A.4B.2πC.13D.1237. (2008江苏常州18) (本小题满分10分)化简: (1)611822⎛⎫-- ⎪⎝⎭解:原式=32-32-1=-1.。

2021年中考数学真题分类汇编--数与式:实数的运算及比较大小(学生版)

2021年中考数学真题分类汇编--数与式:实数的运算及比较大小(学生版)

中考真题分类汇编(数与式)----实数的运算及大小比较一、选择题1.(2021•湖南省常德市)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A. ②④B. ①②④C. ①②D. ①④2.(2021•湖南省邵阳市)如图,若数轴上两点M,N所对应的实数分别为m,n,则m+n的值可能是()A.2B.1C.﹣1D.﹣23.(2021•长沙市)下列四个实数中,最大的数是()A. 3-B. 1-C. πD. 44.(2021•江苏省南京市)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:005.(2021•山东省泰安市)下列各数:﹣4,﹣2.8,0,|﹣4|,其中比﹣3小的数是()A.﹣4B.|﹣4|C.0D.﹣2.86.(2021•陕西省)计算:3×(﹣2)=()A.1B.﹣1C.6D.﹣67.(2021•河北省)若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.014428.(2021•四川省南充市)数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣19.(2021•天津市)17值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间10. (2021•浙江省湖州市)已知a ,b 是两个连续整数,a <3﹣1<b ,则a ,b 分别是 A .﹣2,﹣1 B .﹣1,0 C .0,1 D .1,2 11. (2021•浙江省台州)大小在2和5之间的整数有( ) A. 0个B. 1个C. 2个D. 3个12. (2021•北京市)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a +b >0D .b ﹣a <013. (2021•北京市)已知432=1849,442=1936,452=2025,462=2116.若n 为整数且n <<n +1,则n 的值为( ) A .43B .44C .45D .4614. (2021•内蒙古包头市)下列运算结果中,绝对值最大的是( ) A. 1(4)+-B. 4(1)-C. 1(5)--D.415.(2021•四川省凉山州) 81的平方根是( )A. 3±B. 3C. 9±D. 916.(2021•贵州省贵阳市)如图,已知数轴上A ,B 两点表示的数分别是a ,b ,则计算|b |﹣|a |正确的是( )A .b ﹣aB .a ﹣bC .a +bD .﹣a ﹣b17.(2021•绥化市)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) 二.填空题1. (2021·安徽省)计算:04(1)+-=______.2. (2021•怀化市)比较大小:(填写“>”或“<”或“=”).3. (2021•湖南省邵阳市)16的算术平方根是 .4. (2021•江苏省扬州)计算:2220212020-=__________.5. (2021•山东省临沂市)比较大小:25(选填“>”、“=”、“<”).6.(2021•湖北省宜昌市)用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为﹣6℃,攀登2km 后,气温下降 ℃.7. (2021•湖北省荆州市)已知:a =()﹣1+(﹣)0,b =(+)(﹣),则= .8. (2021•湖北省荆门市)计算:|1﹣|+()﹣1+2cos45°+(﹣1)0= .9. (2021•重庆市A )计算:031_______.10. (2021•内蒙古包头市)一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 三、解答题1. (2021•甘肃省定西市)计算:(2021﹣π)0+()﹣1﹣2cos45°.2. (2021•湖北省黄冈市)计算:0.3. (2021•怀化市)计算:.4. (2021•江苏省连云港)计算:23862+--.5. (2021•江苏省扬州)计算:01|33|tan603⎛⎫-+-+︒ ⎪⎝⎭;6. (2021•江西省)计算:(﹣1)2﹣(π﹣2021)0+|﹣|;7. (2021•陕西省)计算:(﹣)0+|1﹣|﹣.8. (2021•山西省中考)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭9. (2021•山东省临沂市)计算|﹣|+(﹣)2﹣(+)2.10. (2021•四川省成都市)计算:+(1+π)0﹣2cos45°+|1﹣|.11. (2021•遂宁市)计算:()101tan 60233122-⎛⎫-+︒--+-- ⎪⎝⎭π12. 2021•浙江省金华市)计算:(﹣1)2021+﹣4sin45°+|﹣2|.13. (2021•浙江省台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量; (2)求小华从输液开始到结束所需的时间.14. (2021•浙江省温州市)计算:4×(﹣3)+|﹣8|﹣.15. (2021•江苏省盐城市)如图,点A 是数轴上表示实数a 的点. (1)用直尺和圆规在数轴上作出表示实数的的点P ;(保留作图痕迹,不写作法)(2)利用数轴比较和a 的大小,并说明理由.16. (2021•湖北省十堰市)11233-⎛⎫︒+-- ⎪⎝⎭.17. (2021•湖南省张家界市)计算:860cos 222)1(2021+--+-︒18. (2021•广西贺州市)()04123π-+-︒.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学试题分类解析专题汇编 ——专题7 :实数一、选择题的相反数是【 】A . C . D 【答案】A 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0A 。

2.用科学记数法表示数0.031,其结果是【 】 A .3.1×102B .3.1×10-2C .0.31×10-1D .31×103【答案】B 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

0.031第一个有效数字前有2个0(含小数点前的1个0),从而20.031 3.110=⨯-。

故选B 。

3.已知线段a ,b ,c ,其中c 是a 和b 的比例中项,a=4,b=9,则c 等于【 】 A .4 B .6 C .9 D .36 【答案】B 。

【考点】比例线段。

【分析】根据比例中项的概念,当两个比例内项相同时,就叫比例中项,再列出比例式即可得出c :根据比例中项的概念,得c 2=ab=36,c=±6。

又线段不能是负数,-6应舍去,取c=6。

故选B 。

4.计算(+2)+(-3)其结果是【 】 A .+1 B .-1 C .+6 D ,-6 【答案】B 。

【考点】有理数的加法。

【分析】根据有理数的加法法则绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值来计算:(+2)+(-3)=-1。

故选B。

5. 2001年温州市财政总收入为961088万元,用四舍五入法取近似值,保留三个有效数字,并用科学记数法表示其结果是【】A.9.61×103万元 B.9.61×104万元C.9.61×105万元 D.9.610×104万元【答案】C。

【考点】科学记数法,有效数字。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。

961088万一共6位,从而961088万=9.6188×105万。

有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。

因此961088万=9.6188×105≈9.61×105。

故选C。

6.北京故宫的占地面积约为721000m2,用科学记数法表示其结果是【】A.7.21×105m2 B.72.1×104m2 C.721×103 m2 D.0.721×106m2【答案】A。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。

721000一共6位,从而721000=7.21×105。

故选A。

7.神州五号飞船与送它上天的火箭共有零部件约120000个,用科学记数法表示为【】(A) 1.2×104 (B) 1.2×105 (C) 1.2×106(D) 12×104【答案】B。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。

120000一共6位,从而120000=1.2×105。

故选B。

8.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是【】(A) 20 (B) 119 (C) 120 (D) 319【答案】C。

【考点】数字的意义。

【分析】根据火车票上的车次号的意义,直快列车的车次号应是101~198,故在B、C中选择;又双数表示开往北京,故杭州开往北京的某一直快列车的车次号可能是120。

故选C。

9.甲、乙、丙三位同学进行立定跳远比赛,每人轮流跳一次称为一轮,每轮按名次从高到低分别得3分、2分、1分(没有并列名次),他们一共进行了五轮比赛,结果甲共得14分;乙第一轮得3分,第二轮得1分,且总分最低。

那么丙得到的分数是【】(A) 8分 (B) 9分 (C) 10分 (D)11分【答案】B。

【考点】推理与论证。

【分析】∵甲得了14分,14除以3等于4余2,∴说明甲得了4个3分,一个2分。

∵乙得了一个3分,第二轮是1分,∴可确定的甲、乙、丙的得分为:甲:①2分,②3分,③3分,④3分,⑤3分;(不妨设)乙:①3分,②1分;丙:①1分,②2分。

∴乙、丙的后三轮比赛得分待定,由于乙的得分最低,因此丙的得分情况必为:丙:①1分,②2分,③2分,④2分,⑤2分。

∴丙的总得分为1+2+2+2+2=9分。

故选B。

10.计算:-1+(+3)的结果是【】A、-1B、1C、2D、3【答案】C。

【考点】有理数的加法。

【分析】根据有理数的加法法则绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值来计算:-1+(+3)=2。

故选C。

11.计算:2+(-3)的结果是【】A.-l B.1 C.-5 D.5【答案】A。

【考点】有理数的加法。

【分析】根据有理数的加法法则绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值来计算:2+(-3)=-1。

故选A。

12. 2006年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是【】A.广州 B.哈尔滨 C.北京 D.上海【答案】B。

【考点】有理数大小比较。

【分析】∵-15<-9<0<6<15,∴当天平均气温最低的城市是哈尔滨。

故选B。

13.下列各数中,最小的数是【】(A)-1 (B)0 (C)1 (D) 2【答案】A。

【考点】实数的大小比较。

【分析】∵-1<0<1<2,∴最小的数是是-1。

故选A。

14.在0,l,一2,一3.5这四个数中,是负整数的是【】A.0 B.1 C.一2 D.一3.5【答案】C 。

【考点】有理数的分类。

【分析】根据负整数的意义,知在0,l ,一2,一3.5这四个数中,是负整数的是一2。

故选C 。

15.给出四个数0,2,一21,0.3其中最小的是【 】 A .0 B .2 C .一21D .0.3【答案】C 。

【考点】实数的大小比较。

【分析】∵-12<0<0.3<2,∴最小的数是是-12。

故选C 。

16.计算:(﹣1)+2的结果是【 】A 、﹣1B 、1C 、﹣3D 、3【答案】B 。

【考点】有理数的加法。

【分析】异号两数相加,取绝对值较大加数的符号,再用较大绝对值减去较小绝对值:(﹣1)+2=+(2﹣1)=1。

故选B 。

17.给出四个数-1,0, 0.5,其中为无理数的是【 】A. - 【答案】D 。

【考点】无理数。

【分析】根据初中无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π。

故选D 。

二、填空题1.写出一个大小在-1和1之间的有理数 ▲ . 【答案】0。

【考点】开放型,有理数的大小比较。

【分析】写出一个-1和1之间的有理数即可,如,-0.5,0,0.3等,答案不唯一。

2.观察下面一列数,按某种规律在横线上填入适当的数,并说明你的理由。

23,34,45, ▲ ,67,… 你的理由是 ▲ 。

【答案】56;后一个数是前一个数的分子、分母都加1所得的数。

【考点】探索规律题(数字的变化类)。

【分析】根据分析,得后一个数是前一个数的分子、分母都加1所得的数或第n 个数的分子是n+1,分母是n+2。

故答案为56;后一个数是前一个数的分子、分母都加1所得的数。

三、解答题1.1)【答案】解:原式=325+=。

【考点】二次根式的运算。

【分析】先做乘法、分母有理化,再合并同类二次根式。

4.计算: 45sin 281++-【答案】解:原式=1122+=。

【考点】实数的运算,二次根式化简,负整数指数幂,特殊角的三角函数值。

【分析】针对二次根式化简,负整数指数幂,特殊角的三角函数值3个考点分别进行计算,然后根据实数的运算法则求得计算结果。

5.2(2。

【答案】解:原式=((27=5+-+- 【考点】二次根式的混合运算。

【分析】首先要化简各部分,再合并同类二次根式。

6.)21+2sin30+;【答案】解:原式=11+2+3=113=52⨯++。

【考点】实数的运算,零指数幂,特殊角的三角函数值,二次根式化简。

【分析】针对零指数幂,特殊角的三角函数值,二次根式化简3个考点分别进行计算,然后根据实数的运算法则求得计算结果。

9.计算:()121240-++-;【答案】解:原式=415+--。

【考点】实数的运算,绝对值,零指数幂,二次根式化简。

【分析】针对绝对值,零指数幂,二次根式化简3个考点分别进行计算,然后根据实数的运算法则求得计算结果。

10.计算:()121320108-⎪⎭⎫⎝⎛--+.【答案】解:原式=11-。

【考点】实数的运算,二次根式化简,零指数幂,负整数指数幂。

【分析】针对二次根式化简,零指数幂,负整数指数幂3个考点分别进行计算,然后根据实数的运算法则求得计算结果。

11.计算:()()222011-+-【答案】解:()()222011415-+-++=+。

【考点】实数的运算,乘方,0次幂,二次根式化简。

【分析】本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果。

12.计算:(-3)²+(-3【答案】解:原式=9-6-3=- 【考点】实数的运算。

相关文档
最新文档