1.5.1乘方(第二课时)

合集下载

【人教版】七年级数学上册 1.5.1 有理数的乘方(第二课时)教案及练习(含答案)

【人教版】七年级数学上册 1.5.1 有理数的乘方(第二课时)教案及练习(含答案)

1.5.2 有理数的乘方乘方(2)1.5.有理数的乘方(第二课时)学习目标:1、能确定有理数加、减、乘、除、乘方混合运算的顺序;2、会进行有理数的混合运算;3、培养并提高正确迅速的运算能力. 学习重点:运算顺序的确定和性质符号的处理 学习难点:有理数的混合运算 教学方法:合作交流、讨论、练习 教学过程 一、学前准备1、在2+23×(-6)这个式子中,存在着 种运算.2、请你们以4人一个小组讨论、交流,上面这个式子应该先算 、再算 、最后算 . 二、交流反馈1、由上可以知道,在有理数的混合运算中,运算顺序是: 1)、先算 ,再算 ,最后算 ; 2)、同级运算,从 进行;3)、如有括号,先做 内的运算,按小括号、中括号、大括号依次进行。

例1 计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2); (2)1-21×[3×(-32)2-(-1)4]+41÷(-21)3.例2 观察下面三行数:-2,4,-8,16,-32,64,…;① 0,6,-6,18,-30,66,…;② -1,2,-4, 8,-16,32,….③ (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系? (3)取每行数的第10个数,计算这三个数的和.三、巩固练习 1、P45练习2、计算()2253[]39⎛⎫-⨯-+- ⎪⎝⎭四、回顾、思考1、以后遇到有理数的混合运算,应该按怎样的顺序计算?2、对于你来说,学习中遇到的问题是什么?五、当堂清计算: 1、(—1)10×2+(—2)3÷42、( 32)÷323―(―3)―(―3)3、(-41)×(―4)×(―1)20144、(—1)4+[(—4)2—(3+32)×2]参考答案:1.0,2.91, 3. -414.-7六、学习反思。

七年级(人教版)集体备课教学设计:1.5.1《乘方(2)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(2)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(2)》一. 教材分析《乘方(2)》这一节内容位于人教版七年级数学第一章第五节,本节课主要让学生掌握有理数的乘方及其运算法则。

通过本节课的学习,学生能够理解乘方的概念,熟练运用乘方运算法则进行计算,为后续学习幂的运算、指数函数等知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但部分学生在理解和运用乘方概念及运算法则方面可能会遇到困难。

因此,在教学过程中,需要关注学生的学习差异,针对性地进行引导和辅导。

三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握有理数的乘方运算法则,能熟练运用乘方进行计算。

2.过程与方法:通过观察、讨论、探究等方法,培养学生发现问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:乘方的概念,有理数的乘方运算法则。

2.难点:乘方运算法则在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入乘方概念,激发学生学习兴趣。

2.合作学习法:学生进行小组讨论,共同探究乘方运算法则。

3.引导发现法:教师引导学生发现乘方运算法则,培养学生独立思考的能力。

六. 教学准备1.教学课件:制作乘方概念、运算法则的相关课件。

2.教学素材:准备一些有关乘方的例子和练习题。

3.教学工具:黑板、粉笔、多媒体设备等。

七. 教学过程1.导入(5分钟)利用生活实例,如计算墙壁上挂钟的指针相遇次数,引导学生思考如何用数学方法表示这个问题。

进而引入乘方概念。

2.呈现(10分钟)呈现乘方的定义和运算法则,引导学生观察和思考乘方的特点。

3.操练(10分钟)让学生进行一些有关乘方的计算练习,教师及时给予指导和反馈。

4.巩固(10分钟)学生分组讨论,共同探究乘方运算法则在实际问题中的应用。

教师参与讨论,给予解答和指导。

人教版数学七年级上册1.5.1乘方(第2课时)优秀教学案例

人教版数学七年级上册1.5.1乘方(第2课时)优秀教学案例
2.问题导向,培养学生探究能力
本案例通过设计具有启发性和挑战性的问题,引导学生进行自主探究和合作交流。这种问题导向的教学方式有助于培养学生的逻辑思维和探究能力,使他们在解决问题的过程中发现乘方的性质和规律,加深对乘方知识的理解。
3.小组合作,提升学生团队协作能力
案例中注重小组合作学习,让学生在小组内共同探讨乘方的性质和应用。这种学习方式有助于培养学生的团队协作能力和沟通能力,使他们在互相启发、互相学习中共同提高。
人教版数学七年级上册1.5.1乘方(第2课时)优秀教学案例
一、案例背景
在我国初中数学教育中,乘方概念的引入是学生认知发展的一次重要跨越,它不仅要求学生掌握数的乘法运算,还要理解数的高次幂表示方法。本教学案例以人教版数学七年级上册1.5.1乘方(第2课时)为背景,针对乘方的概念、性质及应用进行深入探讨。通过生动的实例,激发学生对乘方的兴趣,引导他们掌握乘方的计算方法,培养学生解决实际问题的能力。在教学过程中,注重数学思想的渗透,让学生在探索中发现规律,体验数学学习的乐趣,从而提高他们的数学素养。在此基础上,本案例将结合学生的生活实际,设计富有启发性和挑战性的教学活动,使学生在轻松愉快的氛围中掌握乘方知识,为后续数学学习打下坚实基础。
2.学生分享学习心得,教师适时给予鼓励和指导,强化学生对乘方知识的掌握。
3.教师强调乘方在数学学习中的重要性,激发学生继续学习的兴Байду номын сангаас和动力。
(五)作业小结
1.布置适量的作业,包括乘方的计算题、应用题和拓展题,巩固学生对乘方知识的掌握。
2.要求学生在作业中体现自己的思考过程,鼓励他们尝试不同的解题方法,培养创新思维。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,创设有趣、富有挑战性的教学情境。通过引导学生自主探究、合作交流,使他们在掌握乘方知识的同时,培养良好的学习习惯和情感态度,为学生的全面发展奠定基础。

人教版数学七年级上册1.5.1《乘方(2)》教学设计

人教版数学七年级上册1.5.1《乘方(2)》教学设计

人教版数学七年级上册1.5.1《乘方(2)》教学设计一. 教材分析人教版数学七年级上册1.5.1《乘方(2)》是学生在掌握了有理数乘法、平方根等知识的基础上,进一步学习乘方的知识。

本节内容主要让学生理解乘方的概念,掌握有理数的乘方运算法则,并能运用乘方解决实际问题。

教材通过例题和练习题的形式,帮助学生巩固乘方的运算方法,培养学生的运算能力。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘法、平方根等知识,具备一定的数学基础。

但部分学生对乘方的概念和运算法则可能理解不够深入,需要在教学中加以引导和讲解。

此外,学生对于运用乘方解决实际问题的能力还需加强。

三. 教学目标1.理解乘方的概念,掌握有理数的乘方运算法则。

2.能够运用乘方解决实际问题。

3.培养学生的运算能力,提高学生的数学思维能力。

四. 教学重难点1.乘方的概念和运算法则。

2.运用乘方解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究乘方的概念和运算法则。

2.用实例讲解法,让学生通过具体例子理解乘方的意义。

3.运用练习法,加强学生对乘方运算法则的掌握。

4.采用小组合作学习法,培养学生的团队协作能力。

六. 教学准备1.准备相关课件,展示乘方的概念和运算法则。

2.准备实例和练习题,用于讲解和巩固乘方知识。

3.准备小组合作学习的任务,激发学生的学习兴趣。

七. 教学过程1.导入(5分钟)利用实例引入乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。

引导学生思考乘方的意义。

2.呈现(15分钟)讲解乘方的运算法则,如:a的m次方乘以a的n次方等于a的m+n次方;a的m次方除以a的n次方等于a的m-n次方等。

通过PPT展示相关知识点,让学生理解和掌握。

3.操练(15分钟)让学生进行乘方运算练习,选取一些简单的题目,如:计算2的3次方、3的4次方等。

同时,让学生尝试运用乘方解决实际问题,如:计算长方形的面积,已知长和宽的关系等。

人教版七年级数学上册教案《1.5.1乘方》第二课时(人教)

人教版七年级数学上册教案《1.5.1乘方》第二课时(人教)

《1.5.1乘方》第二课时有理数的乘方是初一年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第二课时,是在学生学习了有理数的加、减、乘、除以及乘方运算的基础上来学习的,。

在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。

【知识与能力目标】掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。

【过程与方法目标】通过例题学习,发展学生观察、归纳、猜想、推理等能力。

【情感态度价值观目标】体验获得成功的感受、增加学习自信心。

【教学重点】能正确地进行有理数的加、减、乘、除、乘方的混合运算。

【教学难点】灵活应用运算律,使计算简单、准确,明确题目中各个符号的意义,正确运用运算法则。

收集相关文本资料,相关图片,相关动画等碎片化资源。

一、复习引入1、我们已经学习了哪几种有理数的运算?2、有理数的乘方法则是什么?(朗读)3、练习:(1)23中底数是 ,指数是 ,幂是 。

(2) 中底数是 ,指数是 ,幂是 。

(3)(-5)4中底数是 ,指数是 ,幂是___。

2、计算:(-5)4 -54 43 -(-2)3 2)54( 二、探索新知在2 +32×6这个式子中,包含 种运算,它可以读作2加上这个算式里,按怎样的顺序进行运算?有理数的混合运算,应按以下运算顺序进行:1、先乘方,再乘除,最后加减;2、同级运算,从左往右进行;3、如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

例如式子: 3+50÷22×(-15)-1 =3+50÷4×(-15)-1 =3+50×14×(-15)-1 =3-52-1 =-12 例3:计算:(1)2×(-3)3-4×(-3)+15; 243((2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2)。

第1章 1.5.1 第2课时 有理数的混合运算

第1章 1.5.1 第2课时 有理数的混合运算
数学 七年级 上册•R
第一章 有理数
1.5 有理数的乘方 1.5.1 乘方
第2课时 有理数的混合运算
有理数的混合运算顺序 有理数加、减、乘、除、乘方的混合运算:(1)先算 乘方 ,后算 乘除 , 最后算加减;(2)同级运算,从 左 到 右 依次进行;(3)如有括号,先算 括号 里面的,按 小 括号, 中 括号, 大 括号依次进行. 自我诊断 1. 计算:2×(-3)3-4÷(-2)+15 时,先算 乘方,再算 乘 法和
(3)2018 不是这列数中的数,因为这列数中,所有的偶数都是负数.
15.(1)计算①11+12-1=
1 2

②31+14-12=
1 12

③51+16-13=
1 30

④71+18-14=
1 56

(2)第 8 个式子为 115+116-18=2410

(3)根据规律填空20117+
1 2018
A.0
B.-54
C.-72
D.-18
4.计算-32+5-8×(-2)时,应该先算 乘方 ,再算 乘法 ,最后算
加减 ,正确的结果为 12 .
5.观察下列按规律排列的等式:0+1=12,2×1+2=22,3×2+3=32,4×3+4 =42,…请你猜想,第 10 个等式应为 10×9+10=102 .
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/52021/9/5Sunday, September 05, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/52021/9/52021/9/59/5/2021 9:29:47 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/52021/9/52021/9/5Sep-215-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/52021/9/52021/9/5Sunday, September 05, 2021

人教版数学七年级上册1.5.1《乘方》教学设计2

人教版数学七年级上册1.5.1《乘方》教学设计2

人教版数学七年级上册1.5.1《乘方》教学设计2一. 教材分析《乘方》是人教版数学七年级上册的教学内容,主要让学生理解乘方的概念,掌握有理数的乘方运算方法。

通过学习乘方,为学生进一步学习代数和函数打下基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,但对乘方的概念和运算方法可能存在理解上的困难。

因此,在教学过程中,要注重引导学生从实际问题中抽象出乘方的概念,通过实例让学生感受乘方的意义。

三. 教学目标1.理解乘方的概念,掌握有理数的乘方运算方法。

2.能够运用乘方解决实际问题,提高解决问题的能力。

3.培养学生的抽象思维能力,提高学生的数学素养。

四. 教学重难点1.乘方的概念。

2.有理数的乘方运算方法。

3.乘方在实际问题中的应用。

五. 教学方法1.情境教学法:通过实例引入乘方的概念,让学生在实际问题中感受乘方的意义。

2.讲授法:讲解乘方的定义、运算方法和应用。

3.互动教学法:引导学生参与课堂讨论,解答学生的疑问。

4.练习法:布置适量的练习题,让学生巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示乘方的概念、运算方法和应用。

2.练习题:准备适量的练习题,包括基础题和拓展题。

3.教学素材:收集与乘方相关的实际问题,用于课堂讨论。

七. 教学过程1.导入(5分钟)利用生活实例引入乘方的概念,如:“有两只兔子,每只兔子生两只小兔子,问一年后,一共有多少只兔子?”引导学生思考,引出乘方的定义。

2.呈现(10分钟)讲解乘方的定义、运算方法和应用。

通过PPT展示乘方的例子,让学生理解乘方的意义。

3.操练(10分钟)让学生进行乘方运算练习,巩固所学知识。

布置基础题和拓展题,让学生独立完成,并及时给予解答和反馈。

4.巩固(5分钟)通过课堂讨论,让学生解答彼此的疑问,加深对乘方的理解。

可以采用小组合作的形式,让学生相互讲解、讨论。

5.拓展(5分钟)引导学生运用乘方解决实际问题,如:“一个细菌分裂成两个,每分裂一次的时间为1小时,问10小时后,细菌的数量是多少?”让学生体会乘方在实际问题中的应用。

1.5.1 乘方 第2课时 有理数的混合运算

1.5.1 乘方  第2课时 有理数的混合运算

【归纳总结】探索数的变化规律的方法: (1)从简单、特殊情形着手,然后猜想一般情形; (2)观察符号的变化规律; (3)观察数的绝对值的变化规律,当数的绝对值变大时,可考虑加 法、乘法或乘方(底数大于1)等运算,反之,可考虑减法、除法或 乘方(底数是小于1的正数)等运算.
总结反思
知识点 有理数的混合运算 有理数的混合运算顺序: 1.先___乘_方____,再__乘_除_____,最后_加_减______; 2.同级运算,从____左____到___右_____进行; 3.如有括号,先做__括_号__内___的运算,按小括号、中括号、大括 号
[点拨] 运算时优先确定每步结果的符号;除遵守以上原则外, 还需注意灵活运用运算律,使运算简便.
计算:232+(-32+5)+(-32)×(23)2. 解:232+(-32+5)+(-32)×(23)2 =49+(9+5)+9×49① =49+14+4②=1849.③
以上解答从第____①____步开始出现错.1 乘方
第一章 有理数
第2课时 有理数的混合运算
目标突破 总结反思
目标突破
目标一 会进行含乘方的有理数的混合运算
例 1 教材例 3 针对训练 计算: (1)2×(-3)2-5÷(-21)×(-2); (2)-12019-[2-(-1)2018]÷(-52)×52.
[解析] (1)先算乘方,再算乘除,最后算加减即可得到结果. (2)先算乘方,再算括号内的,然后将除法转化为乘法,计算乘法,最后 计算加减即可得到结果.
目标二 探索有理数的变化规律
例2 教材例4针对训练 观察下面三行数: 2,-4,8,-16,…;① -1,2,-4,8,…;② 3,-3,9,-15,….③ (1)第①行数有什么规律? (2)第②③行数与第①行数分别有什么关系? (3)取每行数的第9个数,计算这三个数的和.

1.5.1有理数的乘方(2)课件(新人教版七上)

1.5.1有理数的乘方(2)课件(新人教版七上)

例题讲解
1 解原式 9 50 4 (先算乘方) 1 - 10 1 1 =-9 50 1 (化除为乘) 4 10
1 3 50 2 1 10
2 2
1 1 (确定积的符号) 9 50 1 - 4 10 (再做乘法) 5 =-9 - 1 4 5 3 (最后做加减法) =- 10 8 4 4
同步练习2
(1) 2 3 4 3 15
2
1 ( 2 ) 3 50 2 1 5
2
( 3 ) 1 ( 3) 5
4 2
同步练习2
1.根据规律填空; (1)1,4,9,16,25,36, (2)0,3,8,15,24, ,
, ,... ,...
请你参与
扑克牌(去掉大小王),根据牌面上 的数字进行混合运算(每张牌只能用一 次),使得运算结果为24或-24。其中 红色代表负数,黑色代表正数,J、Q、 K分别表示11、12、13。
A
1
8 -7
7 -8
3 3
[-7+3+1]×(-8)
例题讲解
7
3
-3
7
7
7
3
3
课堂小结
一级运算
二级运算
三级运算
想一想: 观察例1和左边各式的计 算结果,你能发现乘方 运算的符号有什么规律?
2 2 4 ( ) = 3 9
1 3 1 (- ) = - 2 8
乘方运算的符号规律
正数的任何次幂都是正数; 负数的奇次幂是负数, 负数的偶次幂是正数.
0 0的任何次幂等于___
1 1的任何次幂等于___
-1的任何次幂呢?

《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)

《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)

1.5.1 乘方《第2课时有理数的混合运算》教案【教学目标】:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【教学重点】:根据有理数的混合运算顺序,正确地进行有理数的混合运算.【教学难点】:有理数的混合运算.【教学过程】:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习 1.计算:(1)|-|2+(-1)101-×(0.5-)÷; (2)1÷(1)×(-)÷(-12); (3)(-2)3+3×(-1)2-(-1)4; (4)[2-(-)3]-(-)+(-)×(-1)2; (5)5÷[-(2-2)]×6. 2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a 2+a 3+…+a 2004,若a=1,则A 等于多少?若a=-1,则A 等于多少? 三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.2.在运算中要注意像-72与(-7)2等这类式子的区别.1.5.1 乘方《第2课时 有理数的混合运算》同步练习1.填空题(1)求几个相同因数的积的运算,叫做_______,即n n a a a a •⋅⋅⋅•=个=a n 在a n 中,a 叫做_______,n 叫做______,a n 叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________;(3)乘方(-2)5的意义是____________________,结果为________; (4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______.思路解析:按照乘方定义及幂的结构解题. 答案:(1)乘方 底数 指数 幂(2)正数负数正数(3)5个-2的积 -32(4)5个2的积的相反数 -32(5)底数指数负二的四次幂负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么?(1)(-113)(-113)(-113)(-113);(2)(-0.1)×(-0.1)×(-0.1). 思路解析:根据幂的意义写出.答案:(1)(-113)4,底数是-113,指数是4;(2)(-0.1)3,底数是-0.1,指数是3.1.把下列各式写成幂的形式,并指出底数、指数各是什么?(1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2);(2)12×12×12×12×12×12;(3)2nb b b b ••⋅⋅⋅个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案: (1) (-1.2)5,其中底数是-1.2,指数是5;(2) (12)6,其中底数是12,指数是6;(3)222nn nb b b b b b••⋅⋅⋅==个,底数是b,指数是2n.2.判断题:(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2 001+(-1)2 002=0;()(4)2×(-3)2=(-6)2=36; ()(5)223=49. ()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1 296; (2)-1 296; (3)1681; (4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1; (2)-1; (3)-0.008; (4)8125; (5)116; (6)0.000 4.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18; (2)-1.(巩固类训练)1.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x<0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2 002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________. 答案:(1)-7 (2)-2 -1 -8 (3)7 0 03.计算:(1)(-5)4; (2)-54; (3)-(-27)3;(4)[-(-27)]3; (5)-245; (6)(-45)2.思路解析:本题意在考查对(-a)n与-a n的意义的理解,要注意二者的区别与联系.解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:本题是乘、除、乘方混合运算运算时一要注意运算顺序:先乘方、后乘除,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b -4)2≥0.又因为(a+12)2+(2b -4)2=0,得a+12=0,a=-12,2b -4=0,b=2,把a=-12, b=2代入a 2+b 2,得334.6.若n 为自然数,求(-1)2n -(-1)2n+1+(-2)3的值.思路解析:因为n 为自然数,所以2n 为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知: (-1)2n =1,(-1)2n+1=-1.答案:-6.7.x 2=64,x 是几?x 3=64,x 是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x 2=64;x=4时,x 3=64. 8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值. 思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法.答案:1120. 9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:答案:128米.1.5.1 乘方《第2课时 有理数的混合运算》导学案【学习目标】:1、熟练进行有理数的混合运算2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度【重难点】:有理数的四则混合运算 【学习过程】 一、自主学习: (一)复习回顾:1、有理数的加、减、乘、除及乘方的运算法则2、加入乘方后,有理数的混合运算的顺序如何? (二)导学:有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。

人教版七年级数学 1.5有理数的乘方1.5.1乘方第2课时有理数的混合运算

人教版七年级数学 1.5有理数的乘方1.5.1乘方第2课时有理数的混合运算

9/12/2019
8
有理数的加,减,乘,除,乘方规律的探索 7 . (4 分 )( 南 阳 月 考 ) 给 出 依 次 排 列 的 一 列 数 : 2 , - 4 , 8 , - 16 , 32,…… (1)依次写出32后面的三个数:______-__6_4_,__1_2_8_,__-__2_5_6_____; (2)按照规律,第n个数为_______(-__1_)_n_+_1_×__2_n _________(n为正整数).
(2)请将其更正. 解:原式=-4÷(-265)×6=-4×(-265)×6=12454
9/12/2019
16
14.(10分)观察下列三行数:
第一行:0,3,8,15,24,……
第二行:2,5,10,17,26,……
第三行:0,6,16,30,48,……
(1)第一行数有什么规律?
(2)第二、三行数与第一行数分别对比有什么关系?
9/12/2019
6
6.(12 分)计算: (1)(2017·宜昌)23×(1-14)×0.5; 解:3
(2)(厦门中考)10+8×(-12)2-2÷15; 解:2Leabharlann 9/12/20197
(3)-14-16×[2-(-3)2]; 解:16
(4)2×[5+(-2)3]-(-|-4|÷12);
解:2 (5)-23-[-3+(-3)2÷(-15)]. 解:40
【综合应用】 15.(10 分)观察下列运算过程: S=1+3+32+33+…+32 017+32 018,① ①×3,得 3S=3+32+33+…+32 018+32 019,②
②-①,
2S=32
019-1,S=32
019-1 2.

1.5有理数的乘方(2)

1.5有理数的乘方(2)

1.5有理数的乘方(2)1.5.1乘方【课时】第二课时【课型】新授课【教师寄语】业精于勤而荒于嬉,行成于思而毁于随--韩愈【学习目标】1、能确定有理数加、减、乘、除、乘方混合运算的顺序;2、会进行有理数的混合运算;3、培养并提高正确迅速的运算能力.【重点难点】重点:有理数的混合运算。

难点:符号问题、顺序问题。

【学法指导】进行混合运算时:一审(审题意),二定(定顺序),三动笔。

【知识链接】有理数的加、减、乘、除、乘方的运算法则分别是什么?有理数的符号法则是什么?【学习过程】【问题探究】 1、在2+23×(-6)这个式子中,存在着种运算.应该先算、再算、最后算 .2、在(2)(-2)3+(-3)×[(-4)2+2]- (-3)2÷(-2).这个式子中,存在着种运算.应该先算、再算、最后算 . 【归纳总结】:做有理数的混合运算时,运算顺序是:1、______________________________________________,2、______________________________________________,3、______________________________________________.【精讲点拨】1、计算:(1) 2×(-3)3-4×(-3)+15(先独立思考,确定运算顺序,再动手尝试,然后与同学交流一下。

)(2)(-2)3+(-3)×[(-4)2+2]- (-3)2÷(-2).(有多重括号怎么办?)【能力提升】1、加入绝对值的稍复杂的混合运算:-1+2|-8|÷(3-5)-(-2)32、观察下面三行数:-2, 4, -8, 16, -32, 64, …; 0, 6, -6, 18, -30, 66, …; -1, 2, -4, 8, -16, 32, …;(1)第一行数按什么规律排列?(2)第二、三行数与第一行数分别有什么关系?(3)取每行的第10个数,计算这三个数的和。

1.5.1有理数的乘方(2)-PPT课件

1.5.1有理数的乘方(2)-PPT课件

3 8
64
1 16
64
3 4
64
5
1
7 8
24
4
48
5
1
7 8
(24
4
48)
5
1
7 8
20
5
29 8
总结
知1-讲
进行有理数的混合运算时,一定要按运算顺 序进行计算,并且能够正确运用运算律.
知1-讲
【例3】若a,b互为相反数,c,d互为倒数,m的绝
对值是2,求2a+3cd+2b+m2的值.
知1-讲
总结
知1-讲
在进行有理数混合运算时,应先算乘方,再算 乘除,最后算加减.在同一级运算中,一般按从左 向右的顺序计算,有带分数时,一般先把带分数化 成假分数,再进行计算.
知1-讲
【例2】计算:
1
7 8
3 8
1 16
3 443Fra bibliotek5.解:原式
1
7 8
3 8
1 16
3 4
64
5
1
7 8
1 计算:
(1)(-1)10×2+(-2)3÷4;
(2) (-5)3-3×
1 2
;4
(3)
11 5
1 3
1 2
3 11
5 4
;
(4) (-10)4+[(-4)2-(3+32)×2].
知1-练
已知:a,b互为相反数,c,d互为倒数,x 的绝对值为2,求 a b x3 cd 的值.
x
知1-练
导引:由已知可得a+b=0,cd=1,m2=4,整体 代入计算即可.
解:因为a,b互为相反数,c,d互为倒数,m的 绝对值是2, 所以a+b=0,cd=1,m2=4. 所以2a+3cd+2b+m2=2(a+b)+3cd+m2 =0+3+4=7.

1.5.1有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

1.5.1有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

有理数的乘方(第二课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第二课时),内容包括:有理数加、减、乘、除、乘方混合运算.2.内容解析有理数的混合运算是在学生学习并掌握了有理数的加、减、乘、除、乘方运算的基础上提出的,它涵盖了有理数一章的主要内容,是对前面所学的运算的小结.教材在前面学习有理数加、减、乘、除法运算时,就已经适时介绍过加减法混合、乘除法混合和加减乘除混合运算的内容在此加入乘方与前面四种运算的混合,构成了三级混合运算(加减法是第一级运算;乘除法是第二级运算;乘方以及以后将学习的开方是第三级运算)以期进一步培养学生的运算能力进行有理数的混合运算的关键是熟练地掌握有理数的加、减、乘、除、乘方的运算法则、运算律和运算顺序.基于以上分析,确定本节课的教学重点为:有理数的混合运算顺序、运算法则和运算律的应用.二、目标和目标解析1.目标(1)知道有理数加、减、乘、除、乘方混合运算的运算顺序.(2)会进行有理数的混合运算.(运算能力)2.目标解析在有理数的加、减、乘、除和乘方混合运算中,加减法叫做第一级运算;乘除法叫做第二级运算;乘方和开方(以后再学)叫做第三级运算.一个式子里如果含有几级运算,应先算高级运算,再算低一级运算,即先乘方,再乘除,后加减;同一级运算按从左到右的顺序进行;如果有括号,先算小括号,再算中括号,最后算大括号里的运算;如果有绝对值,就先算绝对值.进行有理数的混合运算,首先要看清算式的层次如括号、运算层级等,确定运算顺序,再根据各种运算法则,先确定每一种运算结果的符号,再计算其结果的绝对值.能够使用加法与乘法运算律的,应使用运算律来提高运算的速度与准确率.三、教学问题诊断分析在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识.由于七年级的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、纳等数学活动,总结发现理数的加、减、乘、除和乘方混合运算规律.基于以上学情分析,确定本节课的教学难点为:应用有理数的混合运算解决规律探究和实际应用问题.四、教学过程设计(一)复习回顾乘方的定义这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.乘方的符号法则:(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(二)自学导航问题:我们学习了有理数的哪些运算?加法,减法,乘法,除法,乘方.一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.思考:有理数的混合运算顺序是什么?思考下列问题:(1)2÷(2×3)与2÷2×3有什么不同?(2)2÷(12-2)与2÷12-2有什么不同? (3)6÷(-3)2与6÷(-32)有什么不同?思考:下面的算式含有哪几种运算?先算什么,后算什么?【运算顺序】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(三)考点解析例1.计算:(1)(-1)3-32÷(-4)×13; (2)(-3)2×(1-3)-(3-32); (3)(-4)×[(-3)2+2]-(-3)3÷(-2). 解:(1)原式=-1+32×14×13=-1+18=-78(2)原式=×(-2)-(3-9)=-18-(-6)=-18+6=-12;(3)原式=(-4)×(9+2)-(-27)÷(-2)=(-4)×11-13.5=-44-13.5=-57.5.【迁移应用】计算:(1)-14-(-12)÷3×|-2|; (2)-23÷49×(-23)2; (3)9+5×(-3)-(-2)2÷4; (4)(-4)3-22-|-12|×(-8)2; (5)-32+[1-(-1)3]×2÷12; (6)-53+[(-4)2-(1-62)×3]. 解:(1)原式=-1-(-12)×13×2=-1+13=-23;(2)原式=-8÷49×49=-8×94×49=-8;(3)原式=9+(-15)-4÷4=9-15-1=-7;(4)原式=-64-4-12×64=-64-4-32=-100; (5)原式=-9+(1+1)×2×2=-9+2×2×2=-9+8=-1 ;(6)原式=-125+[16-(1-36)×3]=-125+16+105=-4.例2.计算:(1)-43÷916×(-34)2-(1-32)×2; (2)-14-(2-112)×13×[5+(-2)3];(3)-24÷[1-(-3)2]+(23-35)×(-15); (4)-32-|(-5)3|×(-25)2-18+|-(-3)2|. 解:(1)原式=-64×169×+8×2=-64+16=-48; (2)原式=-1-12×13×(5-8)=-1-12×13×(-3)=-1+12=-12;(3)原式=-16+(1-9)+(-23×15+35×15) =-16÷(-8)+(-10+9)=2-1=1;(4)原式=-9-125×425-18÷9=-9-20-2=-31.【迁移应用】计算:(1)-(-2)2+22-(-1)9×(13-12)+16-8; (2)112×[3×(-23)2-1]-14÷(-4)2;(3)(58-23)×24+14÷(-12)3+|-22|; (4)|-57|×(45-13)÷(-23)2-(12)2; (5)-23÷[214×(-113)2]×(-0.25)2; (6)|-1+89|÷(59-34+112)-32×(-34)3.解:(1)原式=-4+4+1×(-16)-8=-8;(2)原式=32×(3×49-1)-14÷16=32×13-164=3164; (3)原式=58×24-23×24+14×(-8)+22=15-16-2+22=19; (4)原式=57×715÷49-14=13×94-14=12; (5)原式=-8÷(94×169)×116=-8×14×116=-18;(6)原式=19÷(−19)-32×(-2764)=-1+272=1212. 例3.观察下面三行数:-2, 4, -8, 16, -32, 64,…;①0, 6, -6, 18, -30, 66,…; ①-1, 2, -4, 8, -16, 32,…. ①(1)第①行数按什么规律排列?分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,…(2)第①①行数与第①行数分别有什么关系?(2)第①行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…第①行数是第①行相应的数除以2,即-2÷2,(-2)2÷2,(-2)3÷2,(-2)4÷2,…(3)取每行数的第10个数,计算这三个数的和.(3)每行数中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×0.5=1024+(1024+2)+1024×0.5=1024+024+512=2562.【迁移应用】(1)计算:①2-1=___;①22-2-1=___; ①23-22-2-1=___; ①24-23-22-2-1 =___; ①25-24-23-22-2-1=___.(2)根据上面的计算结果猜想:22020-22019-22018-…-22-2-1的值为____;2n-2n-l-2n-2-.….-22-2-1的值为____.(3)根据上面猜想的结论,求213-212-211-210-29-28-27-26的值.解:由猜想的结论得:213-212-211-210-29-28-27-26-25-24-23-22-2-1=1所以,213-212-211-210-29-28-27-26=1+1+2+22+23+24+25=1+2+4+8+16+32=64例4.小王在电脑上设计了一个有理数的运算程序:输入数a,按“*”键,再输入数b,得到运算:a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b).(1)求(-2)*12;解:(1)(-2)*12=(-2)2-(12)2-{2×[(-2)3-1]-1÷12}÷(-2-12)=-174.(2)小王在运算a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b)中出现无法操作的情况,可能是因为除数或分母中有0的存在.1÷b中如果b=0,那么无意义,无法操作;或者a-b作为除数,如果a-b=0,即a=b,那么无意义,也无法操作.所以有两种可能:输入了b=0或输入了b=a,才使得程序无法操作.【迁移应用】1.如图是计算机程序的计算流程图,若开始输入x=-2,则最后输出的结果是_______.2.如图是一个数值运算程序,当输出的值为-5时,输入的x的值为_______.五、教学反思。

人教版数学七年级上册 1.5.1乘方第二课时(共20张PPT)

人教版数学七年级上册 1.5.1乘方第二课时(共20张PPT)
解:( 2 ) ( 2 ) 3 ( 3 ) ( 4 ) 2 2 ( 3 ) 2 ( 2 )
8 ( 3 ) ( 1 6 2 ) 9 ( 2 )
8 ( 3 ) 1 8 ( 4 .5 ) 85 44 .5 57.5
违 法 犯 罪 活 动得到 了有效 打击。 公安机 关大力 开展“ 春雷” 、“风 雷”、 “亮剑 ” 为 代 号 的 一系列 专项斗 争,成效 显著。 全年共 立刑事 案件1547起 ,破 获561起 ,和去 年 同 期 相 比 ,发案下 降 %,破 案上升 %;共 受理治 安案件 1858起 ,查处1835起 ,查 结率 % 。 区 人 民 法 院立案 2555件 ,审结2332件 ,结 案率达 %;其 刑事案 件217件 ,审结199件 ,结
加法、减法、乘法、除法、乘方 和差积商幂
2( 3 )34( 3 ) 1 5
一个运算中,含有有理数的加、减、乘、除、乘 方等多种运算,称为有理数的混合运算.
合作探究一
想一想:
有理数混合运算应按怎样的运算顺序进行计算呢?
有理数混合运算的运算顺序: 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号、中括号 、大括号依次进行.
析 研 究 稳 定 工作形 势,对全 区XX年 政法综 治和稳 定工作 进行安 排部署 。 XX年 ,全 区 各 级 党政 组织、 政法综 治部门 和广大 政法干 警,努力 实践“ 三个代 表”, 紧 密 围 绕 创 建“安 全渭城 ”的奋 斗目标 ,深入开 展严打 整治斗 争,积极排查化解矛盾 纠 纷 ,集 整 治 治安混 乱地区 ,狠抓政 法队伍 和综治 组织自 身建设 ,促进 了社会 治安综 合 治 理 各 项 措施的 落实,确 保了全 区社会 大局稳 定。主 要表现 在以下 几个方面:各类

七年级数学上册(人教版)1

七年级数学上册(人教版)1
3.教学内容:介绍乘方的概念,将有理数乘方与之前学过的乘法进行对比,让学生初步感受乘方的意义。
(二)讲授新知
1.教学活动设计:通过PPT或黑板,呈现有理数乘方的定义、性质和运算法则,结合具体例子进行讲解。
2.教学方法:讲解与示范相结合,让学生通过观察、思考、总结,掌握有理数乘方的知识。
3.教学内容:
1.有理数乘方的概念和法则。
2.有理数乘方在实际问题中的应用。
3.有理数乘方与乘法的区别与联系。
(二)教学难点
1.理解有理数乘方的意义,尤其是负数的乘方。
2.掌握有理数乘方的运算法则,特别是符号的处理。
3.将有理数乘方应用于解决实际问题,培养学生的数学建模能力。
教学设想:
1.利用生活实例导入:通过生活中的实例,如面积、体积的计算,让学生直观地感受乘方的意义,从而引出有理数乘方的概念。
-有理数乘方的定义、性质和运算法则。
-有理数乘方在实际问题中的应用。
-本节课的重点、难点,以及学生容易出错的地方。
-对学生的学习情况进行评价,指导学生课后复习和巩固。
五、作业布置
为了巩固学生对有理数乘方知识的掌握,提高学生的运算能力和解决实际问题的能力,特布置以下作业:
1.基础练习题:完成课本第35页第1~4题,重点强化有理数乘方的运算法则。
2.提高练习题:完成课本第36页第5~8题,培养学生解决复杂有理数乘方问题的能力。
3.应用题:结合生活实际,自编一道应用题,要求运用有理数乘方的知识解决问题,并给出解题过程。
4.思考题:讨论以下问题,以小组为单位完成,并在课堂上分享讨论成果。
-乘方与乘法有什么联系和区别?
-如何计算负数的奇数次幂和偶数次幂?
七年级数学上册(人教版)1.5.1有理数的乘方(第二课时)教学设计

1.5.1 有理数的乘方 第二课时教学设计2022-2023学年人教版七年级数学上册

1.5.1 有理数的乘方 第二课时教学设计2022-2023学年人教版七年级数学上册

1.5.1 有理数的乘方第二课时教学设计教学内容在本节课中,我们将学习有理数的乘方及其性质。

教学目标•理解有理数的乘方的概念;•掌握有理数的乘方的计算方法;•掌握乘方的运算性质。

教学重点•有理数的乘方的概念;•有理数的乘方的计算方法。

教学难点•乘方的运算性质的理解和应用。

教学准备•教材:人教版七年级数学上册;•教辅资料:习题册、黑板、彩色粉笔。

教学过程导入1.复习上节课所学内容:有理数的整数次乘方的概念及计算方法。

新课讲解1.引入有理数的乘方的概念,并给出一个实际问题,引导学生思考有理数的乘方的意义和作用。

例如:小明的房间边长为3米,他想知道房间的面积是多少平方米。

导师提示:小明可以通过计算边长的平方来得到房间的面积。

这里,我们引入有理数的乘方的概念,并概括如下:有理数的乘方:若a是一个有理数,n是一个正整数,则a的n次方(记作aⁿ)是a的n个因数的乘积。

2.继续讲解有理数的乘方的计算方法。

导师提示:有理数的乘方计算方法如下:–正数的乘方:将这个数连乘n次。

–零的乘方:任何非零有理数的零次方都等于1。

–负数的乘方:使用正数乘方的结果的倒数,并加上负号。

示例:计算以下乘方的结果。

–2³ = ____–0⁰ = ____–(-3)² = ____–(-2)⁴ = ____解答:–2³ = 2 × 2 × 2 = 8–0⁰ = 1–(-3)² = 3 × 3 = 9–(-2)⁴ = 2 × 2 × 2 × 2 = 163.讲解乘方的运算性质。

导师提示:有理数的乘方具有如下运算性质:–乘方的运算律:•aⁿ × aᵐ = aⁿ⁺ᵐ,其中a是有理数,n和m是正整数。

•(aⁿ)ᵐ = aⁿᵐ,其中a是有理数,n和m是正整数。

–乘方的分配律:aⁿ × bⁿ = (a × b)ⁿ,其中a、b是有理数,n是正整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
2
2 ] ( 3)
2
(2)
=-8+(-3) ×(16+2) -9÷(-2) =-8+(-3) ×(18) -(-4.5) =-8-54+4算顺序:
(1) 2 3 4 3 15 =45
2
( 2 ) 3 50 2
4
4 =________。
-9
-24 13、 (-2)3×3=________。
例2 用计算器计算(-8)5和(-3)6
解:用带符号键(-)的计算器 ( (-) 8
显示:(-8)∧5 -32768 ( (-) 3 ) ∧ 6 = 显示:(-3)∧6 729 所以 (-8)5=-32768, (-3)6=729. ) ∧ 5 =
探索与研究
已知: 1+3=4=22 , 1+3+5=9=32 1+3+5+7=42 1+3+5+7+9=25=52 ……
根据各式前面的规律,猜测:
1+3+5+7+9+11 = 62 . 1+3+5+7…+(2n-1)= n2 .(其中n是自然 数)
32=9 33=27 34=81 35=243 ………… 0.22=0.04 0.23=0.008 0.24=0.0016
1、先乘方,再乘除,最后加减; 2、同级运算,从左到右进行; 3、如有括号,先做括号内的运算, 按小括号、中括号、大括号依次 进行。
例3、计算: 3 ① 2 ( 3)
4 ( 3 ) 15
=2×(-27) -(-12)+15 =-54+12+15 = -27

( 2 ) ( 3 ) [( 4 )
练习:P44计算第1、2、 3、4题(由4位同学演板)
作业:P47第3题
1、一个大于1的正数作底数,指 数越大,乘方的结果 越大 , 而一个小于1的正数作底数,指数越 大,乘方的结果就 越小 。 2、运用乘方定义进行运算时,要 准确地识别乘方运算中的底数,
例4、观察下面三行数: -2,4,-8,16,-32,64,…; 0,6,-6,18,-30,66,…; -1,2,-4, 8, -16,32,…; (1)第①行数按什么规律排列? (2)第②③行数与第①行数分别有什么关 系? (3)取每行数的第10次个数,计算这三个 数的和。
新人教七年级上数学课件
有理数的混合运算
口答完成下列各题,看谁答得又快又准?
-35 1、(-23)+(-12)=_________。 -9 2、(-21)+12=_________。 0 3、(-2009)+2009=__________。 -32 4、0+(-32)=_______。
5、-4-7= ________。 -11
17 6、8-(-9)=_________。
81 7、(-27)×(-3)=_________。 -120 8、(-4)×( -5)×(-6)=____。
9、12÷(-
3 4
-16 )=_______
-8 10、(-2)3=_______。 -9 11、-(-3)2=________。
12、
3
2
4 2
2

1 5
1 =4.5
( 3 ) 1 ( 3) 5 =3
由三位同学演板完成
例1
解:(1)
(-3) 2 = (-3)×(-3)=9
(2) -(-3) 2 = -〔 (-3)×(-3) 〕= -9
(3) - (-2) 3= -〔(-2) (-2) ×(-2) 〕 =-(- 8)=8 (4) - (-2/3) 3= -(-2/3) (-2/3) ×(-2/3) 〕 =-(-8/27) =8/27 (5) -32/4= - (3×3)/4=-9/4
相关文档
最新文档