苏科版2015-2016学年八年级第二学期期中教学质量调研检测数学试题

合集下载

2015-2016第二学期期中质量检查八年级数学

2015-2016第二学期期中质量检查八年级数学

班级 座号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆2015-2016第二学期期中质量检查八年级数学一、选择题(每小题2分,共20分)1.要使式子3-x 有意义,则x 的取值范围是( ) A .x >0 B .3-≥x C .3≥x D .3≤x 2.下列计算正确是( ) A .1313=⨯ B .145=- C .4312=÷ D .416±=3.能与2合并的二次根式是( )A .8 B .12 C .32D .34 4.如图,EF 是△ABC 的中位线,且EF=6,则BC=( ) A .6 B .8 C .10 D .125.下列各组线段中,不能组成直角三角形.........的是( ) A. 3,4,5 B. 6,8,10 C. 5,12,13 D.3, 4, 56.在R t △ABC 中,∠C=900,AC=5,AB=13,则BC 的值为( ) A .6 B .8 C .10 D .127.不能判定一个四边形是平行四边形...............的条件是( ) A .两组对边分别平行 B .两组对边分别相等 C .一组对边平行且相等 D .两组对角互补8、下列给出的条件中,能判定四边形ABCD 是平行四边形的是( ) A 、AB ∥CD ,AD=BC B 、AB=AD ,CB=CD C 、AB=CD ,AD=BC D 、∠B=∠C ,∠A=∠D 9.如图字母B 所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 194 10.对角线互相平分且相等的四边形是( )A.四边形B.平行四边形C.菱形D.矩形 第4题FECBA B16925一、选择题(每小题2分,共20分)二、填空(每小题3分,共15分)11.计算:=⎪⎭⎫⎝⎛251-12.在□AB CD ,如果∠A=750,那么∠A 的对角∠C 的度数是 13.如图:等边三角形的边长是6,则它的高是14.如图,在□AB CD 中,AB=10,BC=8,A C ⊥BC ,OA 的长是 15.如图,在矩形ABCD 中,∠AOB=600,AB=2,AC 的长是 三、解答题(每小题5分,共25分) 16.计算:76-7217.计算:))((3-535-3127+⨯18.在数轴上作出表示及17的点. AODCB 第15题AO DCB第14题D3366300第13题CBA19.如图,在四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=900求四边形ABCD 的面积。

2015-2016学年八年级下学期期末质量检测数学试题带答案

2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。

江苏省徐州市丰县2015-2016学年八年级数学下学期期中试题(扫描版) 苏科版

江苏省徐州市丰县2015-2016学年八年级数学下学期期中试题(扫描版) 苏科版

污水生物处理原理一、概述污水生物处理是一种利用微生物降解有机物质的方法,通过生物反应器中的微生物群体,将污水中的有机物质转化为无机物质,从而达到净化水质的目的。

本文将详细介绍污水生物处理的原理、工艺和应用。

二、污水生物处理的原理1. 微生物降解有机物质污水中的有机物质可以被微生物利用为能量来源,微生物通过分解、氧化等反应将有机物质转化为无机物质,如二氧化碳、水和氨氮等。

这些反应主要由细菌、真菌和藻类等微生物参预完成。

2. 污水生物处理的基本过程污水生物处理的基本过程包括生物降解、沉淀和过滤等步骤。

首先,污水进入生物反应器,通过生物降解过程,有机物质被微生物分解为无机物质。

然后,经过沉淀过程,微生物和其他固体物质沉淀到底部形成污泥。

最后,经过过滤过程,将污泥分离出来,得到净化后的水。

3. 好氧和厌氧条件污水生物处理可以根据氧气的供给方式分为好氧和厌氧条件。

在好氧条件下,微生物利用氧气进行有机物质的降解,产生二氧化碳和水等无害物质。

在厌氧条件下,微生物在缺氧或者无氧的环境中进行有机物质的降解,产生甲烷等有害物质。

4. 生物反应器生物反应器是进行污水生物处理的核心设备,根据不同的处理要求和处理效果,可以选择不同类型的生物反应器。

常见的生物反应器包括活性污泥法、固定床生物反应器、浮床生物反应器等。

这些反应器通过提供合适的环境条件和微生物群体,实现对污水的有效处理。

三、污水生物处理的工艺1. 活性污泥法活性污泥法是一种常用的污水生物处理工艺,通过在生物反应器中加入活性污泥,利用微生物对有机物质进行降解。

污水进入反应器后,与活性污泥充分接触,微生物降解有机物质,然后通过沉淀和过滤等步骤将污泥分离出来,得到净化后的水。

2. 固定床生物反应器固定床生物反应器是一种将微生物附着在固定介质上进行污水处理的工艺。

固定介质可以是填料、滤材等,通过提供大量的附着面积,增加微生物的附着量,提高处理效果。

污水通过固定床时,微生物在固定介质上生长繁殖,降解有机物质。

2015-2016学年苏科版八年级数学第二学期期中试卷及答案

2015-2016学年苏科版八年级数学第二学期期中试卷及答案

2015-2016学年八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x25.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣17.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.148.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC 翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2 D.4二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠时,分式有意义.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.11.当x=时,分式的值为0.12.若,则=.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是.16.已知:a2﹣3a+1=0,则a+﹣2的值为.17.已知关于x的方程的解是正数,则m的取值范围是.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)20.解下列方程:(1)=(2)﹣=1.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是;②MB,BN的位置关系是.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目【考点】全面调查与抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【解答】解:A、调查过程带有破坏性,只能采取抽样调查,选项错误;B、数量多,不适合全面调查,适合抽查;C、数量多,不适合全面调查,适合抽查;D、人数不多,容易调查,因而适合全面调查,选项正确.故选D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.5.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍【考点】分式的基本性质.【分析】根据分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变,可得答案.【解答】解:分式中的x,y都扩大到原来的3倍,那么分式的值缩小到原来的,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变.6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣1【考点】分式方程的增根.【专题】计算题.【分析】由分式方程有增根,得到最简公分母为0,求出x的值即为增根.【解答】解:由分式方程有增根,得到x﹣4=0,即x=4,则增根为4.故选C.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC 翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2 D.4【考点】菱形的判定;翻折变换(折叠问题).【专题】动点型.【分析】首先设Q点运动的时间t秒,则CQ=tcm,BP=xcm,根据菱形的性质可得QP=BP=tcm,∠P′BQ=∠QBP,再根据勾股定理可得(t)2+(t)2=(6﹣t)2,再解方程即可.【解答】解:设Q点运动的时间t秒,则CQ=tcm,BP=xcm,∵四边形QPBP′为菱形,∴QP=BP=tcm,∠P′BQ=∠QBP,∵∠C=90°,AC=BC,∴∠CBP=45°,∴∠P′BP=90°,∴∠QPB=90°,∴(t)2+(t)2=(6﹣t)2,解得:t1=2,t2=﹣6(不合题意舍去),故选:B.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形对角线平分每一组对角.二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.【考点】概率公式.【分析】让二等品数除以总产品数即为所求的概率.【解答】解:∵现有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,可能出现12种结果,是二等品的有3种可能,∴概率==.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若,则=.【考点】比例的性质.【分析】先用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=,∴=.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于3.【考点】矩形的性质.【分析】先由矩形的性质得出OA=OB=3,再由∠AOB=60°,证出△AOB是等边三角形,即可得出AB=OA=3.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD=6,∴OA=OB=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3;故答案为:3.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为5cm.【考点】平行四边形的性质;线段垂直平分线的性质.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=50cm.故答案为:5cm.【点评】此题考查了平行四边形的性质及线段的中垂线的性质,属于基础题,解答本题的关键是判断出EO是线段BD的中垂线,难度一般.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是5.【考点】平行线的性质;正方形的性质.【分析】过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=1,DF=2.根据勾股定理可求CD2得正方形的面积.【解答】解:作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,∴△ADE≌△DCF,∴CF=DE=1.∵DF=2,∴CD2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点评】题考查正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.16.已知:a2﹣3a+1=0,则a+﹣2的值为1.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a,求出a+的值,代入原式计算即可得到结果.【解答】解:∵a2﹣3a+1=0,∴a+=3,则原式=3﹣2=1,故答案为:1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x 的不等式是本题的一个难点.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)【考点】分式的混合运算.【分析】(1)先把被除式与分子因式分解,把除法改为乘法,进一步约分得出答案即可;(2)先通分算减法,再进一步把除法改为乘法,进一步约分得出答案即可.【解答】解:(1)原式=a(a+3)×=a;(2)原式=÷=•=.【点评】此题考查分式的混合运算,掌握运算顺序,正确通分约分,因式分解是解决问题的关键.20.解下列方程:(1)=(2)﹣=1.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程两边乘以x(x﹣2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x=x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是小于3的非负整数选取合适的x的值,代入进行计算即可.【解答】解:原式=•=•=•=x+4.∵x是小于3的非负整数,∴x=0,1,2,∵x=0,2,∴x=1,∴原式=1+4=5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【考点】菱形的性质;矩形的判定与性质.【专题】证明题.【分析】先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?【考点】分式方程的应用.【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【解答】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质.【分析】(1)证得DE=DF,得四边形BFDE是平行四边形,根据折叠的性质知:BF=DF,得四边形BFDE 是菱形;=EF•BD,(2)在Rt△DCF中,利用勾股定理可求得DF的长;连接BD,得BD=8cm,利用S菱形BFDE易得EF的长.【解答】解:(1)由折叠的性质可得∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴四边形BFDE是平行四边形,由折叠知,BF=DF.∴四边形BFDE是菱形;(3)在Rt△DCF中,设DF=x,则BF=x,CF=16﹣x,由勾股定理得:x2=(16﹣x)2+82,解得x=10,DF=10cm,连接BD.在Rt△BCD中,BD==8,∵S=EF•BD=BF•DC,菱形BFDE∴EF×8=10×8解得EF=4cm.【点评】本题主要考查了勾股定理、平行四边形的判定、菱形的判定和性质,解题的关键是作好辅助线找到相关的三角形.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用非负数的性质求出最小值即可.【解答】解:(1)设﹣x4﹣8x2+10=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=9,b=1.∴=x2+9+;(2)由=x2+9+知,当x=0时,x2+9和分别有最小值,因此当x=0时,的最小值为10.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?【考点】几何变换综合题.【分析】(1)延长AF交EC于G,交BC于H,利用正方形ABCD的性质和等腰△BEF的性质,证明△ABF≌△CBE,得到AF=CE,∠BAF=∠BCE,根据∠BAF+AHB=90°,∠AHB=∠CHG,所以∠BCE+∠CHG=90°,即可解答.(2)①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直;(3)MA=MN,MA⊥MN,理由:如图4,连接DE,利用正方形ABCD的性质和等腰△BEF的性质,证明△ADF≌△CDE,得到DF=DE,∠1=∠2,利用在Rt△ADF中,点M是DF的中点,得到MA=DF=MD=MF,再利用中位线的性质,得到得到MN=DE,MN∥DE,通过角之间的等量代换和三角形内角和,得到∠6=90°,从而得到∠7=∠6=90°,即可解答.【解答】解:(1)如图2,延长AF交EC于G,交BC于H,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABF+∠FBC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∴∠CBE+∠FBC=90°,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE,∴AF=CE,∠BAF=∠BCE,∵∠BAF+AHB=90°,∠AHB=∠CHG,∴∠BCE+∠CHG=90°,∴AF⊥CE.(2)①相等;②垂直.故答案为:相等,垂直.(3)MA=MN,MA⊥MN,理由:如图4,连接DE,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE,∵,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠3,∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE,∴MA=MN,∠2=∠3,∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°﹣(∠3+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.【点评】本题考查了图形的旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是证明三角形全等,得到相等的边与角,作辅助线也是解决本题的关键.。

江苏省徐州市铜山区2015-2016学年八年级数学下学期期中试题(扫描版) 苏科版

江苏省徐州市铜山区2015-2016学年八年级数学下学期期中试题(扫描版) 苏科版

江苏省徐州市铜山区2015-2016学年八年级数学下学期期中试题2015~2016学年度第二学期期中考试八年级数学试题参考答案及评分意见 2016.4.12说明:1.本意见对每题给出了一种或几种解法供参考,如果考生的解法与本意见不同,可根据试题的主要考查内容比照本意见制定相应的评分细则.2.对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端括号内所注分数,表示考生正确做到这一步应得的分段分数. 4.只给整数分数.二、填空题(每题3分,共30分)9.①③ 10. 167.5---170.5 11.226a b12.④③②① 13. 5 14.16 15.12 16. ③ 17. 5 18.2三、解答题(第19-25题每题8分,第26题每题10分,共66分) 19. (本题8分)(1)解:原式=()()22a b a b b a ba b -++++ (2)解:原式=()()()12122a a a a a a +--+- =22a b a b++ ---------4分 =112a a +-+=12a + --------8分20. (本题8分)(1)解:去分母得:2x=3(x-2) (2)解:去分母得:()()222216x x --+= 去括号得:2x=3x-6 去括号得:2x -4x+4-(2x +4x+4)=16移项得:2x-3x=-6 移项合并得:-8x=16 合并同类项得:x=6 系数化为1得:x=-2检验:当x=6时,x(x-2)=24≠0, 检验:当x=-2时,(x+2)(x-2)=0,x=-2是增根 x =6是原方程的解.---------------4分 原方程无解. ----------------------8分 21. (本题8分)证明:连接BD ,BD 交AC 于点O. ∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD (平行四边形的对角线互相平分). ------------3分 ∵AE=CF ,∴OA-AE=OC-CF ,即OE=OF. ------------6分 ∴四边形EBFD 是平行四边形。

2015-2016学年度第二学期期中联考测试卷八年级数学参考答案

2015-2016学年度第二学期期中联考测试卷八年级数学参考答案

.405256三、解答题三、解答题 17.(1) 213x x -+£ …………………………………………………………1分231x x -£-………………………………………………………2分 2x -£ ………………………………………………………3分 2x ³-………………………………………………………4分(2)解不等式①得:3-³x …………………………………………………………1分解不等式②得:x < 2…………………………………………………………………………………………………………………………2分 在同一数轴上分别表示出它们的解集为在同一数轴上分别表示出它们的解集为 …………………………3分∴原不等式组的解集是23<£-x …………………………………………4分(3)原式)原式 =()24129x a a --+………………………………………………………2分=()223x a -- …………………………………………………………4分18.原式.原式 =[](1)43(1)x m m --- …………………………………………2分= (1)(73)x m m -- ………………………………………………3分∴当3, 32x m ==时,原式时,原式 =()()3317332´-´-´………………………………………… 4分 =6- ………………………………………5分19.①点B 的坐标是(-4,-3);………1分②画出△O 1A 1B 1, ………1分 点B 1的坐标是(-4,2);………1分 ③画出旋转后的△OA 2B 2,………2分 点B 2的坐标是(3,-4)。

………1分(注:每一个坐标1分,第一个画图1分,第二个画图2分,共6分,能画准确图形,坐标要准确。

)0 1 2 3 4 –1 –2 –3 –4 图7 2015-2016学年度第二学期期中联考测试卷八年级数学 参考答案一、选择题一、选择题DABCA DCCDC BB 二、填空题二、填空题13.()241x -14.6º15.2x <16DECBA20.(1)证明:∵)证明:∵ DE 垂直平分AB ,∠A=30º,∠ABC=60º∴ EA=EB ……………………1分 ∴∠ABE=∠A=30º∴∠EBC=60º —30º30º=30º=30º…………………2分 在△EBC 中,∠C=90º ,∠EBC=30º∴EB=2CE …………………3分 ∵ EA=EB ∴AE=2CE …………………4分 (2)证明:∵∠ABE=∠EBC ∴EB 平分∠ABC ………………………5分 又∵AC ⊥BC ,ED ⊥AB ∴ED=EC ………………………6分 (注:其他正确证法可类似按点给分。

八年级数学第二学期期中教学质量调研试卷苏科版

八年级数学第二学期期中教学质量调研试卷苏科版

八年级数学第二学期期中教学质量调研试卷苏科版江苏省太仓市2012~2013学年第二学期期中教学质量调研八年级数学试卷注意事项:1、本试卷共三大题28小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题纸范围内,答在本试卷上无效。

2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。

一、选择题(每小题3分,共30分)把下列各题中正确答案前面的字母填涂在答题纸上.1.把分式xy中的x和y都扩大为原数的2倍,分式的值x?3yB.扩大2倍C.缩小2倍D.扩大4倍A.不变2.已知反比例函数y=k的图象经过点P(-1,2),则这个函数的图象位于xB.第一、三象限D.第二、四象限A.第二、三象限C.第三、四象限x?33.若分式的值为零,则x的值是x?3A.3 B.-3 4.分式方程C.±3 D.031的解为?2xx?2B.x=6C.x=3D.x=4A.x=55.若正比例函数y=-2x与反比例函数y=A.(2,1) 6.若B.(-1,2)k的图象交于(1,-2),则另一个交点坐标为xC.(-2,-1) D.(-2,1)x3x?y?,则的值为y2y A.13 B.22C.5 2D.2 57.三角形三边的长度之比为4:5:7,与它相似的三角形的最短边是12cm,则另两边的长度之和为A.12cm B.18cm C.36 cm D.21cm8.如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于点F,连接BF,则图中与△ABE一定相似的三角形是A.△EFB B.△DEF C.△CFB D.△EFB和△DEF9.如图,一次函数y1=x-1与反比例函数y2=2的图像交于点A x (2,1),B( -1,-2),则使y1>y2的x的取值范围是A.x>2B.x>2或-12或x C.-110.在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3(x>0)上的一个动点,当点B的横坐标逐渐增大xB.不变D.先增大后减小时,△OAB的面积将会A.逐渐增大C.逐渐减小二、填空题(每小题3分,共24分)11.化简xy? ▲ ;2x?4x?4yx?的最大值是▲ ;xy12.若实数x、y满足xy≠0,则m=13.若反比例函数y=k?2的图象位于第一、三象限,正比例函数y=(2k-10)x的图象x经过第二、四象限,则k的整数值是▲ ;14.如图,面积为2的矩形OABC的一个顶点B在反比例函数y=坐标轴上,则k=▲ ;k的图象上,另外三点在x15.已知实数x满足x+112=3,则x+2=▲ ;xx16.如图,在□ABCD中,过焦B的直线与对角线AC,边AD分别交于点E和点F,过点E作EG//BC,交AB于G,则图中相似的三角形有▲ 对;ba?? ▲ ;abk18.如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE垂直于x轴,x17.已知ab=-1,a+b=2,则垂足为点E,若△AOE的面积为4,P是坐标平面内的点,且以点B,O,P,E为顶点的四边形是平行四边形,则满足条件的P点坐标为▲ .三、解答题(本大题共10小题,共76分)19.化简(每小题4分,共8分)a2?4?a?2 (1)a?2x?x?3x??(2)? ?2?x?2x?2?x?420.先化简,再求值(每小题4分,共8分)1?x??(1)?1?其中x=-4 ?2x?1x?4??(2)先化简:a?1?2a?1???a??,并任选一个a的值代入求值.aa??21.解下列分式方程(每小题4分,共8分)(1)x?33 ?1?x?22?x (2)x2 ?1?x?3x?122.(本题满分6分)已知,如图,正比列函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?23.(本题满分6分)已知在△ABC中,CF⊥AB于点F,ED⊥AB 于点D,∠1=∠2.(1) FG与BC有何位置关系?说明理由.(2)请你在图中找出一对相似的三角形,并说明相似的理由.24.(本题6分)如图,在梯形ABCD中,AB//DC,∠B=90°,E为BC上一点,且AE⊥ED,若BC=12,DC=7,BE:EC=1:2,求AB的长.25.(本题满分8分)在△ABC中,AB=4 cm.AC=2 cm.(1)在AB上取一点D,当AD=▲ 时,△ACD∽△ABC(2)在AC的延长线上取一点E,当CE=▲ 时,△AEB∽△ABC;此时,BE与DC有怎样的位置关系?为什么?26.(本题满分8分)病人按规定的剂量服用某种药物,测得服药后2h每毫升血液中该药物的含量达到最大值为4mg.已知服药后,前2h每毫升血液中药物的含量y (m,g)与时间x(h)成正比例.2h后y与x成反比例,如图所示,根据以上信息解答下列问题:(1)求当0≤x≤2时,y与x的函数关系式;(2)求当x>2时,y与x的函数关系式;(3)若每毫升血液中药物的含量不低于2mg时治疗有效,则服药一次,治疗疾病的有效时间是多长?27.(本题满分8分)我们已经学习了一次函数和反比例函数,在这过程中我们积累了丰富的探究函数图象及其性质的经验.请你自主探索函3数y=ax(a≠0,a为常数)性质.(1)在所给的平面直角坐标系中画出函数y=x的图象.k x183(2)观察(1)中图象,写出函数y=x的两条性质.(3)请你写出函数y=ax(a≠0,a为常数)的两条性质.28.(本题满分10分)如图,一次函数y=k1x+b与反比例函数y=3183k2的图象交于A(1,6);B(a,3)两点.(1)求k1、k2的值(2)直接写出k1x+b-k2x>0时,x的取值范围.(3)如图,等腰梯形OBCD中,BC//OD,OB=CD,OD在x轴上,过点C作CE⊥OD于点E,CE和反比例图象交于点P,当梯形OBCD 的面积为12时,请判断PC和PE的大小关系,并说明理由.x。

2015-2016学年八年级(下)期中数学试卷含答案解析

2015-2016学年八年级(下)期中数学试卷含答案解析

2015-2016学年八年级(下)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤52.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,157.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= cm.12.写出命题“对顶角相等”的逆命题.13.比较大小:.(填“>、<、或=”)14.如果+(b﹣7)2=0,则的值为.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为cm.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤5【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子有意义,∴x﹣5≥0,解得x≥5.故选C.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.2.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的条件进行判断即可.【解答】解: =,被开方数含分母,不是最简二次根式;=,被开方数含分母,不是最简二次根式;=2,被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=【考点】二次根式的混合运算.【分析】分别利用二次根式的性质以及结合二次根式混合运算法则化简求出答案.【解答】解:A、()2=4,正确;B、=4,故此选项错误;C、=×,故此选项错误;D、﹣无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的混合运算以及二次根式的化简,正确掌握二次根式的性质是解题关键.4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对【考点】勾股定理.【分析】由勾股定理即可得出结论,注意a是斜边长.【解答】解:∵∠A=90°,∴由勾股定理得:b2+c2=a2.故选:B.【点评】本题考查了勾股定理;熟记勾股定理是解决问题的关键.5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm【考点】勾股定理.【分析】题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5cm;(2)当4为斜边时,由勾股定理得,第三边为cm;故直角三角形的第三边应该为5cm或cm.故选:D.【点评】此题主要考查学生对勾股定理的运用,注意分情况进行分析.6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补【考点】矩形的性质;菱形的性质.【专题】证明题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选:B.【点评】考查菱形和矩形的基本性质.9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能【考点】多边形.【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AC⊥BD,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= 14 cm.【考点】三角形中位线定理.【分析】根据三角形中位线定理得出BC=2DE,代入求出即可.【解答】解:∵D、E分别是AB、AC边的中点,且DE=7cm,∴BC=2DE=14cm,故答案为:14.【点评】本题考查了三角形中位线定理的应用,能熟记三角形的中位线定理的内容是解此题的关键,注意:三角形的中位线平行于第三边,并且等于第三边的一半.12.写出命题“对顶角相等”的逆命题如果两个角相等,那么这两个角是对顶角.【考点】命题与定理.【分析】根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.【点评】本题考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.13.比较大小:<.(填“>、<、或=”)【考点】实数大小比较.【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.14.如果+(b﹣7)2=0,则的值为 3 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先利用偶次方的性质以及二次根式的性质进而得出a,b的值,进而求出答案.【解答】解:∵ +(b﹣7)2=0,∴a=2,b=7,则==3.故答案为:3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10 m.【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15 cm.【考点】平面展开﹣最短路径问题.【专题】推理填空题.【分析】根据题意,可以画出长方体的展开图,根据两点之间线段最短和勾股定理,可以解答本题.【解答】解:如右图所示,点A到B的最短路径是: cm,故答案为:15.【点评】本题考查平面展开﹣最短路径问题,解题的关键是明确两点之间线段最短,能画出图形的平面展开图.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【考点】矩形的性质.【专题】计算题.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为20 .【考点】菱形的性质;勾股定理.【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.【点评】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为2cm.【考点】正方形的性质;菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积,进一步开方求得正方形的边长即可.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4×6=12cm2,∵菱形的面积与正方形的面积相等,∴正方形的边长是=2cm.故答案为:2.【点评】本题考查了菱形的面积和正方形的面积计算的方法,本题中根据菱形对角线求得菱形的面积是解题的关键.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是 6 .【考点】矩形的性质.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.【点评】本题主要考查的是矩形的性质、三角形的面积公式,将阴影部分的面积转化为S矩形ABCD﹣S△﹣S△ADQ求解是解题的关键.BPC三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先化简二次根式,再合并同类项即可解答本题;(2)根据去括号的法则去掉括号,然后合并同类项即可解答本题.【解答】解:(1)(﹣)2﹣+=3﹣2+3=4;(2)(3﹣)﹣(+)==.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.【考点】二次根式的化简求值.【分析】(1)利用平方差公式分解因式后再代入计算;(2)利用完全平方差公式分解因式后再代入计算.【解答】解:当a=3+,b=3﹣时,(1)a2﹣b2,=(a+b)(a﹣b),=(3+3﹣)(3+﹣3+),=6×2,=12;(2)a2﹣2ab+b2,=(a﹣b)2,=(3﹣3+)2,=(2)2,=8.【点评】本题是运用简便方法进行二次根式的化简求值,熟练掌握平方差公式和完全平方公式是解题的关键.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理计算BD的长,再利用勾股定理的逆定理证明∠DBC=90°,所以:△BCD是直角三角形.【解答】解:△BCD是直角三角形,理由是:在△ABD中,∠A=90°,∴BD2=AD2+AB2=32+42=25,在△BCD中,BD2+BC2=52+122=169,CD2=132=169,∴BD2+BC2=CD2,∴∠DBC=90°∴△BCD是直角三角形.【点评】本题考查了勾股定理及其逆定理,熟练掌握定理的内容是关键,注意各自的条件和结论.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC 中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【专题】证明题;压轴题.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC 的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 2:1 时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。

【精品】苏州市吴中区2015-2016学年八年级下期中数学试卷含答案解析

【精品】苏州市吴中区2015-2016学年八年级下期中数学试卷含答案解析

苏州市吴中区2015-2016学年八年级下期中数学试卷含答案解析一、选择题:本大题共10小题,每小题3分,共30分.1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.2.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣13.为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,下列说法正确的是()A.8000名学生是总体B.500名学生是样本C.每个学生是个体D.样本容量是5004.对下列分式约分,正确的是()A.=a2B.=﹣1C.=D.=5.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.6.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.60°B.45°C.35°D.25°7.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小8.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.29.函数y=x+3与y=的图象的交点为(a,b),则的值是()A.B.C. D.10.我们学校教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:30)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:00 B.7:07 C.7:10 D.7:15二、填空题:本大题共8小题,每小题3分,共24分.11.若分式的值为0.则x=.12.已知反比例函数y=﹣的图象经过点P(a,2),则a的值是.13.下列事件:①两直线平行,内错角相等;②掷一枚硬币,国徽的一面朝上,其中,随机事件是.(填序号)的频率为.15.在▱ABCD中,如果AC=BD时,那么这个▱ABCD是形.16.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为.17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.18.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则=.三、解答题:本大题共10小题,共76分.19.计算:(1)(2).20.己知反比例函数y=(k常数,k≠1).(1)若点A(2,1)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;(3)若k=9,试判断点B(﹣,﹣16)是否在这个函数的图象上,并说明理由.21.先化简,再求值:,其中x=﹣.22.解方程:=﹣1.23.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取的调查方式是(选填“抽样调查”或“普查”),调查的人数是;(2)把图(1)中选项B的部分补充完整并计算图(2)中选项C的圆心角度数是;(3)若该校有2000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?24.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?25.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.26.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.27.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.28.如图,过原点的直线y=k1x和y=k2x与反比例函数y=的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,a=,b=,试判断a,b的大小关系,并说明理由.2015-2016学年江苏省苏州市吴中区八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.2.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零,可得出x的取值范围.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选A.3.为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,下列说法正确的是()A.8000名学生是总体B.500名学生是样本C.每个学生是个体D.样本容量是500【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、8000名学生的体重情况是总体,故选项错误;B、500名学生的体重情况是样本,故选项错误;C、每个学生的体重情况是个体,故选项错误;D、样本容量是500,正确.故选D.4.对下列分式约分,正确的是()A.=a2B.=﹣1C.=D.=【考点】约分.【分析】分别根据分式的基本性质进行化简即可得出答案.【解答】解:A、=a3,故本选项错误;B、不能约分,故本选项错误;C、=,故本选项错误;D、=,故本选项正确;故选D.5.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.【考点】几何概率.【分析】根据正方形的性质求出阴影部分占整个面积的,进而得出答案.【解答】解:由题意可得出:图中阴影部分占整个面积的,因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.故选:B.6.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.60°B.45°C.35°D.25°【考点】旋转的性质.【分析】根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=25°可以得到∠AOB′的度数.【解答】解:∵△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,∴∠BOB′=60°.∵∠AOB=25°,∴∠AOB′=∠BOB′﹣∠AOB=60°﹣25°=35°.故选C.7.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小【考点】反比例函数的性质.【分析】根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【解答】解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.8.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.2【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.9.函数y=x+3与y=的图象的交点为(a,b),则的值是()A.B.C. D.【考点】反比例函数的图象;一次函数的图象.【分析】把(a,b)分别代入函数y=x+3与y=,求出ab与b﹣a的值,代入代数式进行计算即可.【解答】解:∵函数y=x+3与y=的图象的交点为(a,b),∴b=a+3,b=﹣,∴b﹣a=3,ab=﹣2,∴===﹣.故选A.10.我们学校教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:30)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:00 B.7:07 C.7:10 D.7:15【考点】反比例函数的应用.【分析】第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.【解答】解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1x+b,则,解得:.故一次函数解析式为:y=10x+30(0≤x≤7),令y=50,解得x=2;设反比例函数关系式为:y=,将(7,100)代入,得k=700,∴y=,将y=30代入y=,解得x=;∴y=(7≤x≤),令y=50,解得x=14,即饮水机的一个循环周期为分钟.每一个循环周期内,在前两分钟或者最后的14到这两个时间段内,水温不超过50℃.∴选项A:7:00至8:30之间有90分钟.90﹣×3=20,14<20,故可行;选项B:7:07至8:30之间有83分钟.83﹣×3=13,14>13,13>2,故不可行;选项C:7:10至8:30之间有80分钟.80﹣×3=10,14>10,10>2,故不可行;选项D:7:15至8:30之间有75分钟.75﹣×3=5,14>5,5>2,故不可行.故选A.二、填空题:本大题共8小题,每小题3分,共24分.11.若分式的值为0.则x=1.【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零,可得,据此求出x的值是多少即可.【解答】解:∵分式的值为0,∴,解得x=1.故答案为:1.12.已知反比例函数y=﹣的图象经过点P(a,2),则a的值是﹣4.【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到a•2=﹣8,然后解方程即可.【解答】解:根据题意得a•2=﹣8,解得a=﹣4.故答案为﹣4.13.下列事件:①两直线平行,内错角相等;②掷一枚硬币,国徽的一面朝上,其中,随机事件是②.(填序号)【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:两直线平行,内错角相等是必然事件;掷一枚硬币,国徽的一面朝上是随机事件,故答案为:②.10<x≤15则通话时间超过的频率为0.1.【考点】频数(率)分布表.【分析】根据频率的计算公式:频率=计算即可.【解答】解:通话时间超过15min的频率为:=0.1,故答案为:0.1.15.在▱ABCD中,如果AC=BD时,那么这个▱ABCD是矩形.【考点】矩形的判定;平行四边形的性质.【分析】根据对角线相等的平行四边形是矩形进行填空即可.【解答】解:根据矩形的判定,对角线相等的平行四边形是矩形,知在▱ABCD中,如果AC=BD时,那么这个▱ABCD是矩形.故应填:矩.16.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为y=﹣.【考点】反比例函数系数k的几何意义.【分析】过A点向x轴作垂线,与坐标轴围成的四边形的面积是定值|k|,由此可得出答案.【解答】解:过A点向x轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,又∵函数图象在二、四象限,∴k=﹣3,即函数解析式为:y=﹣.故答案为:y=﹣.17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【考点】三角形中位线定理;勾股定理.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.18.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则=.【考点】翻折变换(折叠问题).【分析】根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt△EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.【解答】解:连接EG,∵点E是边CD的中点,∴DE=CE,∵将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°,∴CE=EF,在Rt△ECG和Rt△EFG中,,∴Rt△ECG≌Rt△EFG(HL),∴CG=FG,设CG=a,∵=,∴GB=8a,∴BC=CG+BG=a+8a=9a,在矩形ABCD中,AD=BC=9a,∴AF=9a,AG=AF+FG=9a+a=10a,在Rt△ABG中,AB===6a,∴==.故答案为:.三、解答题:本大题共10小题,共76分.19.计算:(1)(2).【考点】分式的混合运算.【分析】(1)先分解因式,然后根据分式的乘法法则进行计算;(2)化成同分母的分式,然后根据分式的加减法法则进行计算.【解答】解:(1)=•=;(2)=﹣==.20.己知反比例函数y=(k常数,k≠1).(1)若点A(2,1)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;(3)若k=9,试判断点B(﹣,﹣16)是否在这个函数的图象上,并说明理由.【考点】反比例函数图象上点的坐标特征.【分析】(1)根据反比例函数图象上点的坐标特征得到k﹣1=2×1,然后解方程即可;(2)根据反比例函数的性质得k﹣1<0,然后解不等式;(3)根据反比例好图象上点的坐标特征解析判断.【解答】解:(1)把A(2,1)代入y=得k﹣1=2×1,解得k=3;(2)根据题意得k﹣1<0,解得k<1;(3)在.理由如下:当k=9时,反比例函数解析式为y=,因为﹣×(﹣16)=8,所以点B在这个函数的图象上.21.先化简,再求值:,其中x=﹣.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=÷=•=,当x=﹣时,原式==.22.解方程:=﹣1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.23.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取的调查方式是抽样调查(选填“抽样调查”或“普查”),调查的人数是200;(2)把图(1)中选项B的部分补充完整并计算图(2)中选项C的圆心角度数是54°;(3)若该校有2000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可得这次调查是抽样调查;利用选A的人数÷选A的人数所占百分比即可算出总数;(2)用总数减去选A、C、D的人数即可得到选B的人数,再补全图形即可;再利用360°×选C的人数所占百分比即可得到圆心角度数;(3)根据样本估计总体的方法计算即可.【解答】解:(1)根据题意知,本次调查活动采取的调查方式是抽样调查,调查的人数为:=200(人);(2)选项B的人数为:200﹣(60+30+10)=100(人),选项C的圆心角度数为:×360°=54°,补全图形如下:(3)5%×2000=100(人).答:该校可能有100名学生平均每天参加体育活动的时间在0.5小时以下.24.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?【考点】分式方程的应用.【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.【解答】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:=,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.25.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.【考点】菱形的判定;平行四边形的判定;矩形的性质.【分析】(1)首先可根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积.【解答】解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)连接OE.由菱形OCED得:CD⊥OE,又∵BC⊥CD,∴OE∥BC(在同一平面内,垂直于同一条直线的两直线平行),又∵CE∥BD,∴四边形BCEO是平行四边形;∴OE=BC=8=OE•CD=×8×6=24.∴S四边形OCED26.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为3,k的值为12;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.【考点】反比例函数综合题.【分析】(1)把点A(4,n)代入一次函数y=x﹣3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比例函数的性质即可得到当y≥﹣2时,自变量x的取值范围.【解答】解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.(2)∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(3)当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.故答案为:3,12.27.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=8﹣2t,AP=2+t.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=8.【考点】四边形综合题.【分析】(1)由DM=2t,根据AM=AD﹣DM即可求出AM=8﹣2t;先证明四边形CNPD为矩形,得出DP=CN=6﹣t,则AP=AD﹣DP=2+t;(2)根据四边形ANCP为平行四边形时,可得6﹣t=8﹣(6﹣t),解方程即可;(3))①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6﹣t﹣2t=8﹣(6﹣t),求解即可,②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.【解答】解:(1)如图1.∵DM=2t,∴AM=AD﹣DM=8﹣2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC﹣BN=6﹣t,∴AP=AD﹣DP=8﹣(6﹣t)=2+t;故答案为:8﹣2t,2+t.(2)∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2,(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8.故答案为:8.28.如图,过原点的直线y=k1x和y=k2x与反比例函数y=的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是平行四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,a=,b=,试判断a,b的大小关系,并说明理由.【考点】反比例函数综合题.【分析】(1)由直线y=k1x和y=k2x与反比例函数y=的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出=,两边平分得+k1=+k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,得到y1=,y2=,求出a===,得到a﹣b=﹣==>0,即可得到结果.【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y=的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y=的图象在第一象限相交于A,∴k1x=,解得x=(因为交于第一象限,所以负根舍去,只保留正根)将x=带入y=k1x得y=,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴=,两边平方得: +k1=+k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)∵P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,∴y1=,y2=,∴a===,∴a﹣b=﹣==,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.2016年11月8日。

2015~2016学年苏科版第二学期期中考试初二年级数学试卷及答案

2015~2016学年苏科版第二学期期中考试初二年级数学试卷及答案

学校班级____________ 姓名____________考试号…………………………答…………题…………不…………要…………超…………出…………边…………框……… … …2015~2016学年第二学期期中考试初二年级数学试卷一、选择题(每题3分,共24分.)1. 下列图形中,既是轴对称图形又是中心对称图形的是 ( )2.使分式24xx -有意义的x 的取值范围是 ( )A .x =2B .x ≠2C .x =-2D .x ≠-23. 若323xyx y+中的x 和y 都扩大到原来的2倍,那么分式的值 ( )A.缩小为原来的一半B.不变C.扩大到原来的2倍D.扩大到原来的4倍 4. 顺次连接矩形四边中点所得的四边形一定是 ( ) A.平行四边形 B.矩形 C.菱形 D.正方形5、矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )6、等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A 、8 B 、10 C 、8或10 D 、无法确定7、如图,在一张矩形纸片ABCD 中,AB =4,BC =8,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH ;③线段BF 的取值范围为3≤BF ≤4;④当点H 与点A 重合时,EF =2.以上结论中,你认为正确的有( )个. A . 1 B . 2 C . 3 D . 4A .B .C .D .QDCP BA8. 如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =和y =的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论: ①=; ②阴影部分面积是(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称. 其中正确的结论是( )A .①②③B .②④C .①③④D . ①④二、填空题(每空2分,共20分)9、已知双曲线x k y 1+=经过点(-1,2),那么k 的值等于 .10、若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 。

苏科版2015-2016学年八年级第二学期期中考试数学试题及答案

苏科版2015-2016学年八年级第二学期期中考试数学试题及答案

苏科版2015-2016学年八年级第二学期期中考试数学试题时间:120分钟 总分:100分 2016.4.20一、选择题(本大题共8小题,每小题3分,共24分.每小题都有四个选项,将正确的一个答案的代号填在答题卷相应位置上)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个2、下列事件中,是随机事件的为 ( )A .水涨船高B .守株待兔C .水中捞月D .冬去春来3.在4y ,y x +6,x x x -2,πy +5,yx 1+中分式的个数有( )A.1个B.2个C.3个D.4个4. 下列约分正确的是 ( )A.632a a a = B.a x ab x b +=+ C.22a b a b a b +=++ D.1x y x y--=-+ 5.已知□ABCD 中,∠B=4∠A,则∠D=( )A .18°B .36°C .72°D .144°6.如图,P 是矩形ABCD 的边AD 上一个动点,矩形的两条边AB 、BC 的长分别为3和4, 那么点P 到矩形的两条对角线AC 和BD 的距离之和是 ( ) A .125 B .65 C .245D .不确定7.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE=3,则四边形AECF 的周长为( ) A . 22 B . 18 C . 14 D . 11第6题第7题第8题8.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B 到直线AE 的距离为;③EB⊥ED;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+. 其中正确结论的序号是( ) A.①③④ B .①②⑤ C .③④⑤ D .①③⑤二.填空题(本大题共10小题,每小题2分,共20分)9.当x= 时,分式112--x x 的值是0。

江苏省泰兴市黄桥东区域2015_2016学年八年级数学下学期期中试题苏科版

江苏省泰兴市黄桥东区域2015_2016学年八年级数学下学期期中试题苏科版

(第5题图) (第6题图) 江苏省泰兴市黄桥东区域2015-2016学年八年级数学下学期期中试题一、选择题:(本大题共6小题,每题3分,共18分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是 B C A .b a b a +=+321 B .b a a b ab ab -=-2 C .b a b a +=+122 D .b a a b a a +-=+-3.下列有四种说法中,正确的说法是 ( ▲ ) ①了解某一天出入无锡市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是确定事件; ③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件. A .①②③ B .①②④ C .①③④ D .②③④4. 顺次连结菱形各边中点所得的四边形一定是 ( ▲ ) A .正方形 B .菱形 C .等腰梯形 D .矩形5. 如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A 、D 为圆心, 以大于AD 的一半长为半径在AD 两侧作弧,交于两点M 、N ;第二步,连接MN 分别交AB 、AC 于点E 、F ;第三步,连接DE 、DF ,则可以得到四边形AEDF 的形状 ( ▲ )A .仅仅只是平行四边形B .是矩形C .是菱形D .无法判断6.如图,已知直线a∥b,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=302.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB 的值为 ( ▲ )A .6B .8C .10D .12二、填空题(本大题共10小题,每空3分,共30分) 7.9的平方根是 ▲ .8.使二次根式1-x 的有意义的x 的取值范围是 ▲ . 9.若分式3x -1的值为正整数,则整数x 的值为 ▲ . 10.若分式242--x x 的值为0,则x 的值为 ▲ .11.若关于x 的分式方程111+-=+x x mx 有增根,则m 的值为 ▲ .(第13题图) (第16题图) (第15题图)A B C 第14题 12.事件A 发生的概率为120,大量重复做这种试验,事件A 平均每100次发生的次数 ▲ .13.如图,在平行四边形ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,平行四边形ABCD 的周长是14,则DM 等于 ▲ .14.如图,在Rt△ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=3cm ,则EF= ▲ cm . 15.如图,将两张长为9,宽为3的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的面积有最小值9,那么菱形面积的最大值是 ▲ .16.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论:①BE=CD ;②∠DGF =135°;③DCG BEG ∆∆≅;④∠ABG+∠ADG =180°;⑤若32=AD AB ,则3S △BDG =13S △DGF .其中正确的结论是 ▲ .(请填写所有正确结论的序号)三、解答题(本大题共10小题,共102分.解答时应写出文字说明、证明过程或演算步骤.) 17.(本题满分12分)计算: (1)32 +|2-3|-(3)2; (2)5(10-25)-2002.18.(本题满分12分)解方程:(1) 2x x -2-22-x =1 ; (2) x +1x -1-4x 2-1-1=0.19.(本题满分8分)设A =3a -3 a ÷a 2-2a +1 a 2- aa -1,先化简A ,再从0,1,2三个数中选择一个合适的数代入a ,并求出A 的值.20. (本题满分8分)如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10,∠BAC=90°,且四边形AECF 是菱形,求BE 的长.AB F DC21.(本题满分8分)在平面直角坐标系中,点A 的坐标是(0,3),点B 的坐标是(-4,0),将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O 、B 的对应点分别是点E 、F .(1)请在图中画出△AEF .(2)请在x 轴上找一个点P ,使PE PA 的值最小,并直接写出P 点的坐标为 .22.(本题满分8分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.我市区机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A 、B 两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题:(1)A 组的频数是 ,本次调查样本的容量是 ; (2)补全直方图(需标明各组频数.......); (3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?23.(本题满分10分)宜兴紧靠太湖,所产百合有“太湖人参”之美誉,今年百合上市后,甲、乙两超市分别用12000元以相同的进价购进质量相同的百合,甲超市销售方案是:将百合按分类包装销售,其中挑出优质的百合400千克,以进价的2倍价格销售,剩下的百合以高于进价10%销售.乙超市的销售方案是:不将百合分类,直接包装销售,价格按甲超市分类销售的两种百合单价和的一半定价.若两超市将百合全部售完,其中甲超市获利8400元(其它成本不计).问: (1)百合进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.24.(本题满分10分)已知:如图,□ABCD 中,对角线AC ,BD 相交于点O ,延长CD 至F ,使DF=CD ,连接BF 交AD 于点E .(1)求证:AE=ED ;(2)若AB=BC ,求∠CAF 的度数.25. (本题满分12分)已知四边形ABCD 是正方形,等腰直角△AEF 的直角顶点E 在直线...BC ..上.(不与点B ,C 重合),FM ⊥AD ,交射线AD 于点M .E F A D C BO(1)当点E 在边BC 上,点M 在边AD 的延长线上时,如图①,请直接写出线段AB ,BE ,AM 之间的数量关系: ;(2)当点E 在边CB 的延长线上,点M 在边AD 上时,如图②;请探索线段AB ,BE ,AM 之间的数量关系,并证明;(3)若BE=6,∠AFM=15°,则AM= .26.(本题满分14分)我们知道平行四边形有很多性质.现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论. 【发现与证明】平行四边形ABCD 中,AB≠BC,将△ABC 沿AC 翻折至△AB′C,连结B′D. 结论1:B′D∥AC ;结论2:△AB′C 与平行四边形ABCD 重叠部分的图形是等腰三角形…… 请利用图1证明结论1或结论2(只需证明一个结论).【应用与探究】在平行四边形ABCD 中,已知∠B =30°,将△ABC 沿A C 翻折至△AB′C,连结B′D. (1)如图1,若75=∠D 'AB °,则∠ACB= ° ;(2)如图2,若34=AB ,2=BC ,AB′与边CD 相交于点E ,求△AEC 的面积;(3)已知AB =,当BC 长为多少时,△AB′D 是直角三角形?(直接写出BC 的长)八年级数学试题答案一.选择题(本大题共小题,每题二.填空题(本大题共7.3±; 8.1≥x ; 9.2,4 ; 10.-2 ; 11.1; 12. 5 13. 3;. 14. 3 15.15 ; 16.①③④⑤.三、解答题(本大题共10小题,共102分.解答时应写出文字说明、证明过程或演算步骤.) 17.(1) 23 (2)-1018.(1)x= -4 (2)x=1 (验根) 19. 2a a -1 当a =2时,A =2a a -1=4.20. (1)证明:在□ABCD 中,AD ∥BC ,AD=BC . ∵BE =DF , ∴AF=CE . ∵AF ∥CE , ∴四边形AECF 是平行四边形. (2)解:在菱形AECF 中,AE=CE ∴∠EAC=∠ECA∵∠EAC+∠EAB=∠ECA+∠B=90°,∴∠EAB=∠B ∴AE=BE , ∴E 为BC 中点 ∴BE=21BC=5. 21.(1)图略(2)P(0,23) 22.(1)2;50 。

【精品】苏州市相城区2015-2016学年八年级下期中数学试卷含答案解析

【精品】苏州市相城区2015-2016学年八年级下期中数学试卷含答案解析

苏州市相城区2015-2016学年八年级下期中数学试卷含答案解析’一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.已知反比例函数y=,则下列点中在这个反比例函数图象的上的是()A.(﹣2,1)B.(1,﹣2)C.(﹣2,﹣2) D.(1,2)2.为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2013年昆明市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是10003.化简的结果为()A.﹣1 B.1 C.D.4.在平面中,下列说法正确的是()A.四边相等的四边形是正方形B.四个角相等的四边形是矩形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形5.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个6.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=7.反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y18.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S29.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S中正确的有()四边形DEOFA.4个B.3个C.2个D.1个10.如图,以平行四边形ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C 的坐标分别是(2,4)、(3,0),过点A的反比例函数y=(x>0)的图象交BC于D,连接AD,则△ABD 的面积是()A.9 B.6 C.3 D.2二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上)11.化简,正确结果为.12.任意选择电视的某一频道,正在播放动画片,这个事件是事件.(填“必然”“不可能”或“不确定”)13.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C=.14.己知分式方程=1的解是x=1,则a=.15.从2名男生和3名女生中随机抽取2015年苏州世乒赛志愿者.若抽取1名,则恰好是1名男生的概率是.16.如图,正方形ABCD的边长为2,反比例函数的图象过点B,则k=.17.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.化简(﹣a+1)÷.20.解方程:.21.已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.22.2014年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?23.在平面直角坐标系中,△ABC的点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.24.为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:(1)药物燃烧后y与x的函数关系式为;(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?25.己知:如图,E、F分别是□ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.26.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.27.如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=(x<0)上,点A和点C分别在x轴,y轴的正半轴上,DM⊥x轴于M,BN⊥x轴于N,且点A、B、C、D构成的四边形为正方形.(1)k的值为;(2)求证:△ADM≌△BAN;(3)求点A的坐标.28.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.2015-2016学年江苏省苏州市相城区八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.已知反比例函数y=,则下列点中在这个反比例函数图象的上的是()A.(﹣2,1)B.(1,﹣2)C.(﹣2,﹣2) D.(1,2)【考点】反比例函数图象上点的坐标特征.【分析】根据y=得k=xy=2,所以只要点的横坐标与纵坐标的积等于2,就在函数图象上.【解答】解:A、﹣2×1=﹣2≠2,故不在函数图象上;B、1×(﹣2)=﹣2≠2,故不在函数图象上;C、(﹣2)×(﹣2)=4≠2,故不在函数图象上;D、1×2=2,故在函数图象上.故选D.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.2.为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2013年昆明市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是1000【考点】总体、个体、样本、样本容量.【分析】根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可.【解答】解:A、2013年昆明市九年级学生的数学成绩是总体,原说法错误,故A选项错误;B、每一名九年级学生的数学成绩是个体,原说法错误,故B选项错误;C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故C选项错误;D、样本容量是1000,该说法正确,故D选项正确.【点评】本题考查了总体、个体、样本、样本容量的知识,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.化简的结果为()A.﹣1 B.1 C.D.【考点】分式的加减法.【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【解答】解:=﹣==1;故选B.【点评】此题考查了分式的加减,根据在分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减即可.4.在平面中,下列说法正确的是()A.四边相等的四边形是正方形B.四个角相等的四边形是矩形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形【考点】多边形.【分析】此题根据平行四边形的判定与性质,矩形的判定,菱形的判定以及正方形的判定来分析,也可以举出反例来判断选项的正误.【解答】解:A、四边相等的四边形也可能是菱形,故错误;B、四个角相等的四边形是矩形,正确;C、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;D、对角线互相平分的四边形是平行四边形,故错误;【点评】本题考查了正方形、平行四边形、矩形以及菱形的判定.注意正方形是菱形的一种特殊情况,且正方形还是一种特殊的矩形.5.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个【考点】模拟实验.【分析】根据共摸球40次,其中10次摸到黑球,则摸到黑球与摸到白球的次数之比为1:3,由此可估计口袋中黑球和白球个数之比为1:3;即可计算出白球数.【解答】解:∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,4÷=12(个).故选:A.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路120m与乙队修路100m所用天数相同”可得方程=.【解答】解:设甲队每天修路x m,依题意得:=,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.7.反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数y=判断出函数图象所在的象限,再根据x1<x2<0<x3,判断出三点所在的象限,再根据点在各象限坐标的特点及函数在每一象限的增减性解答.【解答】解:∵反比例函数y=中,k=6>0,∴此反比例函数图象的两个分支在一、三象限;∵x3>0,∴点(x3,y3)在第一象限,y3>0;∵x1<x2<0,∴点(x1,y1),(x2,y2)在第三象限,y随x的增大而减小,故y2<y1,由于x1<0<x3,则(x3,y3)在第一象限,(x1,y1)在第三象限,所以y1<0,y2>0,y1<y2,于是y2<y1<y3.故选B.【点评】本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.8.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2【考点】矩形的性质.【分析】由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.,即S1=S2,【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=S矩形AEFC故选B.【点评】本题主要考查了矩形的性质及面积的计算,能够熟练运用矩形的性质进行一些面积的计算问题.9.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S中正确的有()四边形DEOFA.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF﹣S△AOF=S△DAE﹣S△AOF,即S△AOB=S.四边形DEOF【解答】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中,∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以(3)错误;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF﹣S△AOF=S△DAE﹣S△AOF,,所以(4)正确.∴S△AOB=S四边形DEOF故选:B.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.10.如图,以平行四边形ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C 的坐标分别是(2,4)、(3,0),过点A的反比例函数y=(x>0)的图象交BC于D,连接AD,则△ABD 的面积是()A.9 B.6 C.3 D.2【考点】反比例函数系数k的几何意义;平行四边形的性质.【分析】先求出反比例函数和直线BC的解析式,再求出由两个解析式组成方程组的解,得出点D的坐标,得出D为BC的中点,△ABD的面积=平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,A、C的坐标分别是(2,4)、(3,0),∴点B的坐标为:(5,4),把点A(2,4)代入反比例函数y=得:k=8,∴反比例函数的解析式为:y=;设直线BC的解析式为:y=kx+b,把点B(5,4),C(3,0)代入得:,解得:k=2,b=﹣6,∴直线BC的解析式为:y=2x﹣6,解方程组得:,或(不合题意,舍去),∴点D的坐标为:(4,2),即D为BC的中点,∴△ABD的面积=平行四边形ABCD的面积=×(5﹣2)×4=6.故选B.【点评】本题考查了平行四边形的性质、用待定系数法求一次函数的解析式、平行四边形和三角形面积的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上)11.化简,正确结果为a2.【考点】约分.【专题】推理填空题.【分析】根据约分的方法,找出分子、分母的最大公因式并约去即可.【解答】解:∵=a2,∴化简,正确结果为a2.故答案为:a2.【点评】此题主要考查了约分的定义和约分的方法,要熟练掌握.12.任意选择电视的某一频道,正在播放动画片,这个事件是不确定事件.(填“必然”“不可能”或“不确定”)【考点】随机事件.【分析】确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:任意选择电视的某一频道,正在播放动画片,这个事件可能发生,也可能不发生,是不确定事件.【点评】用到的知识点为:一定条件下,可能发生也可能不发生的事件叫不确定事件.13.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C=70°.【考点】三角形中位线定理;三角形内角和定理.【分析】首先,利用三角形内角和定理求得∠AED=70°;然后根据三角形中位线定理推知DE∥BC,∠C=∠AED.【解答】解:如图,∵在△AED中,∠A=50°,∠ADE=60°,∴∠AED=70°.又∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°.故答案是:70°.【点评】本题考查了三角形中位线定理和三角形内角和定理.解题时,要挖掘出隐含在题干中的已知条件:三角形内角和是180度.14.己知分式方程=1的解是x=1,则a=7.【考点】分式方程的解.【分析】根据方程的解满足方程,可得关于a的方程,根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:把x=1代入=1,得=1.两边都乘以(2a﹣1),得a+6=2a﹣1,解得a=7,经检验a=7时,x=1是方程的解,故答案为:7.【点评】本题考查了分式方程的解,利用方程的解满足方程得出关于a的方程是解题关键.15.从2名男生和3名女生中随机抽取2015年苏州世乒赛志愿者.若抽取1名,则恰好是1名男生的概率是.【考点】概率公式.【分析】先求出总人数,再根据概率公式求解即可.【解答】解:∵总人数=2+3=5人,其中男生有2名,∴抽取1名,则恰好是1名男生的概率=.故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.16.如图,正方形ABCD的边长为2,反比例函数的图象过点B,则k=4.【考点】反比例函数图象上点的坐标特征.【分析】首先根据正方形的边长为2确定B点坐标,然后再根据反比例函数图象上点的坐标特征可直接得到答案.【解答】解:∵正方形ABCD的边长为2,∴B(2,2)∵反比例函数的图象过点B,∴k=2×2=4.故答案为:4.【点评】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是①③④.【考点】反比例函数与一次函数的交点问题.【专题】计算题;压轴题;数形结合.【分析】①将两函数解析式组成方程组,即可求出A点坐标;②根据函数图象及A点坐标,即可判断x>2时,y2与y1的大小;③将x=1代入两函数解析式,求出y的值,y2﹣y1即为BC的长;④根据一次函数与反比例函数的图象和性质即可判断出函数的增减性.【解答】解:①将组成方程组得,,由于x>0,解得,故A点坐标为(2,2).②由图可知,x>2时,y1>y2;③当x=1时,y1=1;y2=4,则BC=4﹣1=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.可见,正确的结论为①③④.故答案为:①③④.【点评】本题考查了反比例函数与一次函数的交点问题,知道函数图象交点坐标与函数解析式组成的方程组的解之间的关系是解题的关键.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 4.8.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】压轴题.【分析】由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8;故答案为:4.8.【点评】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.化简(﹣a+1)÷.【考点】分式的混合运算.【专题】计算题.【分析】本题需先通分,然后再把除法变成乘法,约分后即可求出结果.【解答】(﹣a+1)÷==.【点评】本题主要考查了分式的混合运算,解题时要注意运算顺序和简便方法的应用.20.解方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+5x+4﹣5x2+5=2x2﹣2x,整理得:6x2﹣7x﹣9=0,这里a=6,b=﹣7,c=﹣9,∵△=49+216=265,∴x=,经检验x=都是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.21.已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时,y=1.求x=﹣时,y的值.【考点】待定系数法求反比例函数解析式;待定系数法求正比例函数解析式.【分析】依题意可设出y1、y2与x的函数关系式,进而可得到y、x的函数关系式;已知此函数图象经过(1,3)、(﹣1,1),即可用待定系数法求得y、x的函数解析式,进而可求出x=﹣时,y的值.【解答】解:依题意,设y1=mx2,y2=,(m、n≠0)∴y=mx2+,依题意有,∴,解得,∴y=2x2+,当x=﹣时,y=2×﹣2=﹣1.故y的值为﹣1.【点评】考查了待定系数法求二次函数解析式,能够正确的表示出y、x的函数关系式,进而用待定系数法求得其解析式是解答此题的关键.22.2014年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=40,n=100.扇形统计图中E组所占的百分比为15%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?【考点】频数(率)分布表;用样本估计总体;扇形统计图;概率公式.【分析】(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.【解答】解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),C组的频数n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比是:×100%=15%;(2)750×=225(万人);(3)随机抽查一人,则此人关注C组话题的概率是=.故答案为40,100,15,.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,以及列举法求概率.23.在平面直角坐标系中,△ABC的点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.【考点】作图-旋转变换.【专题】作图题.【分析】(1)利用网格特点和旋转的性质,画出点A、B、C的对应点A1、B1、C1,然后描点即可得到△A1B1C1,再写出A1、B1、C1的坐标;(2)利用(1)中对应点坐标之间的关系可判断点P1的坐标.【解答】解:(1)如图,△A1B1C1为所作,写出A1、B1、C1的坐标分别为(4,﹣2),(2,﹣1),(3,﹣5);(2)点P(m,n)的对应点P1的坐标为(n,﹣m).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24.为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:(1)药物燃烧后y与x的函数关系式为y=;(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【考点】反比例函数的应用.【分析】(1)由于在药物燃烧阶段后,y与x成反比例,因此设函数解析式为y=(k≠0),然后由(8,6)在函数图象上,利用待定系数法即可求得药物燃烧阶段后y与x的函数解析式;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,>等于10就有效.【解答】解:(1)∵药物燃烧完毕后,y与x成反比例∴设y=,∵(8,6)在y=上,∴k1=6×8=48;∴y=;故答案为:y=;(2)把y=1.6代入y=,得x=30故学生至少经过30分钟才可以进课室;(3)设药物燃烧时y关于x的函数关系式为y=k2x(k2>0)代入(8,6)为6=8k2∴k2=,∴药物燃烧时y关于x的函数关系式为y=x(0≤x≤8)把y=3代入y=x,得:x=4把y=3代入y=,得:x=16∵16﹣4=12所以这次消毒是有效的.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.25.己知:如图,E、F分别是□ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.【考点】全等三角形的判定;平行四边形的判定.【专题】几何综合题.【分析】(1)根据平行四边形的性质和全等三角形的判定,在△ABE和△CDF中,很容易确定SAS,即证结论;(2)在已知条件中求证全等三角形,即△ABE≌△CDF,△MBF≌△NDE,得两对边分别对应相等,根据平行四边形的判定,即证.【解答】证明:(1)∵▱ABCD中,AB=CD,∠A=∠C,又∵AE=CF,∴△ABE≌△CDF;(2)四边形MFNE平行四边形.由(1)知△ABE≌△CDF,∴BE=DF,∠ABE=∠CDF,又∵ME=BM=BE,NF=DN=DF∴ME=NF=BM=DN,又∵∠ABC=∠CDA,∴∠MBF=∠NDE,又∵AD=BC,AE=CF,∴DE=BF,∴△MBF≌△NDE,∴MF=NE,∴四边形MFNE是平行四边形.【点评】此题考查了平行四边形的判定和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.26.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】几何综合题.【分析】(1)先根据反比例函数图象上点的坐标特征得到6m=6,3n=6,解得m=1,n=2,这样得到A点坐标为(1,6),B点坐标为(3,2),然后利用待定系数求一次函数的解析式;(2)观察函数图象找出反比例函数图象都在一次函数图象上方时x的取值范围;(3)先确定一次函数图象与坐标轴的交点坐标,然后利用S△AOB=S△COD﹣S△COA﹣S△BOD进行计算.【解答】解:(1)分别把A(m,6),B(3,n)代入得6m=6,3n=6,解得m=1,n=2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版2015-2016学年八年级第二学期
期中教学质量调研测试数学试题
时间120分钟 满分130分 2016.4.22
一.选择题(每小题3分.共30分)
1.下面四张纸牌中,旋转180°后图案保持不变的是
B. C. D.
2.如果把分式x y
x y -+中的x 和y 都扩大原来的2倍,则分式的值
A.扩大4倍
B.扩大2倍
C.不变
D.缩小2倍
3.菱形具有矩形不一定具有的性质是
A.中心对称图形
B.对角相等
C. 对边平行
D.对角线互相垂直
4.下列各分式的化简正确的是 A. 633x x x = B. a x a b x b +=+ C.220x x = D.2111a a a -=--
5.在▱ABCD 中,:::A B C D ∠∠∠∠的值可以是
A. 1:2 : 3 : 4
B. 3 : 4:4:3
C. 3:3:4:4
D. 3:4:3:4
6.下列各个运算中,能合并成一个根式的是
-
-
+
+
7.已知▱ABCD 的两条对角线AC=18,BD=8,则BC 的长度可能为
A. 5
B. 10
C. 13
D. 26
8.客车与货车从A 、B 两地同时出发,若相向而行,则客车与货车a 小时后相遇;若同向而行,则客车b 小时后追上货车,那么客车与货车的速度之比为 A. a b a + B. b a b + C.b a a b -+ D.a b
a b +-
9.如图,四边形ABCD 中,AD//BC, E , F , G , H 分别是各边的中点,分别记四边形ABCD 和EFGH 的面积为1S 和2S ,则下列各个判断中正确的是
A. 122S S >
B. 122S S <
C. 122S S =
=10.如图,矩形ABCD 中,两条对角线相较于点O, AE 平分BAD ∠交于BC 边上的中点E ,连接OE.下列结论:①30ACB ∠=︒; ②OE BC ⊥; ③14OE BC =; ④18AOE ABCD S S = .
其中正确的个数是
1 B. 2
C. 3
D. 4
(第10题图)
二.填空题(本大题共8小题,每小题3分,共24分)
11.若分式1x
x +的值为0,则x 的值是________________.
12.
在函数
1y =
中,自变量x 的取值范围是
________.
13.分式2215,
36x xy 的最简公分母是____________. 14.在矩形ABCD 中,AB=1,BG 、DH 分别平分ABC ∠、ADC ∠,交AD 、BC 于点G 、H.要使四边形BHDG 为菱形,则AD 的长为_________.
15.
是整数的最小正整数a 为__________.
16.如图,在菱形ABCD 中,已知DE AB ⊥, AE : AD=3:
5,BE=2,则菱形ABCD 的面积是_________.
17.若关于x 的方程1
11m
x
x x -=--无解,则m 的值是
____________.
18.如图,正方形ABCD 中,AB=2,点E 为BC 边上的一个动点,连
接AE ,作45EAF ∠=︒,交CD 边于点F ,连接EF. 若设BE=x,则CEF
的周长为__________.
三.解答题(本大题共10小题,共76分,应写出必要的计算过程、
推理步骤或文字说明)
19.(本题共2小题,每小题4分,满分8分)
(1
-+(2
÷⨯
20.(本题共2小题,每小题5分,满分10分)
解下列分式方程:
22
2x
x x x -=-+ (2)410541362x x x x +--=--
21.(本题满分6分)先化简再求值:22214(1)12x x x x x x ⎛⎫--÷+⋅ ⎪--⎝

,其中1x =
+.
22.(本题满分6分)如图,在ABCD 中,直线EF//BD ,与CD 、CB 的延长线分别交于点E 、F ,交AB 、AD 于G 、H.
(1)求证:四边形FBDH 为平行四边形;
(2)求证:FG=EH.
23.(本题满分6分)如图,四边形ABCD 中,AB=AD ,CB=CD,则称该四边形为“筝形”.连接对角线AC 、BD ,交于点O.
(1)写出关于筝形对角线的一个性质___________,并说明理由;
(2)给出下列四个条件:
①OA=OC, ②AC BD ⊥, ③ABD CBD ∠=∠, ④AB//CD.从中选择一个条件_______(填序号),使该筝形为菱形,并证明之.
24.(本题满分6分)如图,在面积为248a 2cm (a>0)的正方形的四角处,分别
剪去四个面积均为32cm 的小正方形,制成一个无盖的长
方体盒子.
(1)用含a 的式子表示这个长方体盒子的底面边长;
(2)若该长方体盒子的容积为3cm ,求a 的值.
25.(本题满分6分)阅读理解与运用.
例 解分式不等式:3221x x +>-. 解:移项,得:32201x x +->-,即40
1x x +>-.
由同号得正、异号得负的原理得,两种情况:①4010x x ⎧+>⎨->⎩;②4010x x ⎧+<⎨-<⎩.
解不等式组①得:1x >;解不等式组②得:4x <-.∴原不等式的解集是:4x <-或1x >. 试运用上述方法解分式不等式:211
1x x x +<--.
26.(本题满分8分)如图,正方形ABCD 中,AB=1,点P 是BC 边上的任意一点(异于端点B 、C ),连接AP ,过B 、D 两点作BE AP ⊥于点E ,DF AP ⊥于点F.
(1)求证:EF=DF-BE
(2)若ADF 的周长为7
3,求EF 的长.
27.(本题满分10分)我市计划对10002
m 的区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;当两队分别各完成2002m 的绿化时,甲队比乙队少用2天.
(1)求甲、乙两工程队每天能完成的绿化的面积;
(2)两队合作完成此项工程,若甲队参与施工n 天,试用含n 的代数式表示乙队施工的天数;
(3) 若甲队每天施工费用是0.6万元,乙队每天为0.25万元,且要求两队施工的天数之和不超过15天,应如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低费用.
28.(本题满分10分)如图,在菱形ABCD 中,AB=4cm,60BAD ∠=︒.动点E 、F 分别从点B 、D 同时出发,以1cm/s 的速度向点A 、C 运动,连接AF 、CE ,取AF 、CE 的中点G 、H ,连接GE 、FH.设运动的时间为t s (04t <<).
(1)求证:AF//CE;
(2)当t 为何值时,四边形EHFG 为菱形;
(3)试探究:是否存在某个时刻t ,使四边形EHFG 为矩形,若存在,求出t 的值,若不存在,请说明理由.。

相关文档
最新文档