七年级数学第二学期期末考试试题
人教版数学七年级下册期末考试试卷及答案
人教版数学七年级下册期末考试试题一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.42.第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108 3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣36.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是.12.不等式组的解集为.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是.15.一个正数x的平方根是2a﹣3与5﹣a,则a=.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.19.求满足不等式:+2>的所有正整数解.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是.(填序号)①SSS ②SAS ③AAS ④ASA(2)请你证明:∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是人,m=,n =;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=,L(﹣2,m)=;(用含m 的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.参考答案一、单选题(共10小题,每题3分,共30分).1.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.4解:0.21,0.20202有限小数,属于有理数;是分数,属于有理数;无理数有﹣,,,共3个.故选:C.2.2021年5月11日,第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人.将数据7206万用科学记数法表示为()A.7206×104B.72.06×106C.7.206×107D.0.7206×108解:7206万=72060000=7.206×107,故选:C.3.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3的度数为()A.90°B.180°C.270°D.360°解:∵∠1与∠2是对顶角,∴∠1=∠2,∵∠1与∠3是邻补角,∴∠1+∠3=180°,∴∠2+∠3=180°.故选:B.4.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间解:∵16<21<25,∴4<<5,则的值在4和5之间,故选:C.5.已知点A(4,﹣3)到y轴的距离为()A.4 B.﹣4 C.3 D.﹣3解:点A(4,﹣3)到y轴的距离为|4|=4.故选:A.6.长沙市今年有8万名学生参加初中毕业会考,要想了解这8万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.8万名考生是总体D.每位学生的数学成绩是个体解:A.这1000名考生的数学成绩是总体的一个样本,故本选项不合题意;B.1000是样本容量,故本选项不合题意;C.8万名考生的数学成绩是总体,故本选项不合题意;D.每位学生的数学成绩是个体,故本选项符合题意.故选:D.7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性解:一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形的稳定性,故选:D.8.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.解:A、∵AB∥CD,∴∠1+∠2=180°,∠1与∠2不一定相等,故A错误,不符合题意;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确,符合题意;C、若梯形ABCD是等腰梯形,可得∠1=∠2,故C错误,不符合题意;D、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2,故D错误,不符合题意;故选:B.9.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需()A.20天B.21天C.22天D.23天解:设快马x天可以追上慢马,由题意,得240x﹣150x=150×12,解得:x=20.答:快马20天可以追上慢马.故选:A.10.如图,△ABC中,∠1=∠2,点G为AD中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中,①线段BG是△ABD边AD上的中线;②线段CH 是△ACH中AH边上的高;③△ABG与△BDG面积相等;④AB﹣AC=BF;⑤∠2+∠FBC+∠FCB=90°,其中正确的结论有()A.5个B.4个C.3个D.2个解:①因为G为AD中点,所以BG是△ABD边AD上的中线,故正确;②因为CF⊥AD于H,所以CH是△ACH中AH边上的高,故正确;③因为G为AD中点,根据等底等高的三角形面积相等,故正确;④因为∠1=∠2,CF⊥AD,可知∠AFC=∠ACF,根据等角对等边得AF=AC,故AB﹣AC=BF正确,⑤因为∠1=∠2,CF⊥AD于H,根据直角三角形的两锐角互余及三角形外角的性质得到,∠1+∠AFH=∠1+∠FBC+∠FCB=90°,所以∠2+∠FBC+∠FCB=90°,故正确.所以正确的个数是5个.故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系内,把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).解:把点P(﹣5,﹣2)向右平移2个单位长度得到的点的坐标是(﹣3,﹣2).故答案为:(﹣3,﹣2).12.不等式组的解集为x>3.解:根据同大取大,即可得到不等式组的解集为:x>3,故答案为:x>3.13.已知:如图,在△ABC中,∠BAC=50°,∠ABC=60°,则∠ACE=110°.解:∵∠ACE是△ABC的一个外角,∴∠ACE=∠BAC+∠ABC,∵∠BAC=50°,∠ABC=60°,∴∠ACE=50°+60°=110°.14.如果一个多边形的每个外角都等于60°,则这个多边形的边数是6.解:360°÷60°=6.故这个多边形是六边形.故答案为:6.15.一个正数x的平方根是2a﹣3与5﹣a,则a=﹣2.解:∵正数x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得a=﹣2.故答案为:﹣2.16.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.解:∵被调查的总户数为9÷15%=60(户),∴B类别户数为60﹣(9+21+12)=18(户),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每随9分,第24、25题每题10分,共72分)17.计算:+|﹣4|+(﹣1)2021﹣.解:原式=3+4﹣1﹣3=3.18.先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣1.解:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b)=﹣3a2b+4ab2﹣a2b﹣4ab2+2a2b=﹣2a2b,当a=1,b=﹣1时,原式=﹣2×1×(﹣1)=2.19.求满足不等式:+2>的所有正整数解.解:去分母得:2(x﹣4)+12>3x,去括号得:2x﹣8+12>3x,解得:x<4,则不等式的正整数解为1,2,3.20.人教版八年级上册第36﹣37页如何作一个角等于已知角的方法.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.请你根据以上材料完成下面问题.(1)这种作一个角等于已知角的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明:∠A′O′B′=∠AOB.解:(1)根据作图过程可知:这种作一个角等于已知角的方法的依据是①;①SSS②SAS③AAS④ASA故答案为:①;(2)证明:在△C′O′D′和△COD中,,∴△C′O′D′≌△COD(SSS),∴∠A′O′B′=∠AOB.21.湖南广益实验中学在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务,开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是200人,m=20,n=25;(2)补全数分布直方图;(3)如果该校共有学生4000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?解:(1)在本次随机抽取的样本中,调查的学生人数是:60÷30%=200(人),m%=(200﹣60﹣40﹣50﹣10)÷200×100%=20%,n%=50÷200×100%=25%,即m=20,n=25,故答案为:200,20,25;(2)20~30分钟的频数为:200﹣60﹣40﹣50﹣10=40,补全的频数分布直方图如图所示;(3)4000×=1200(人),答:估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有1200人.22.在国家精准扶贫政策下,某乡村大力发展乡村旅游,为了满足游客的需求,某商户决定购进A,B两种特产来进行销售.(1)若购进A种特产8件,B种特产3件,需要950元;购进A种特产5件,B种特产6件,需要800元.求购进A,B两种特产每件分别需要多少元?(2)若该商户决定购进A,B两种特产共100件,虑市场需求和资金周转,A种特产至少需购进50件,用于购买这100件特产的总资金不能超过7650元,请问该商户最多可购进A种特产多少件?解:(1)设购进A种特产每件需要x元,购进B种特产每件需要y元,依题意得:,解得:.答:购进A种特产每件需要100元,购进B种特产每件需要50元.(2)设该商户购进A种特产m件,则购进B种特产(100﹣m)件,依题意得:,解得:50≤m≤53.答:该商户最多可购进A种特产53件.23.已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.解:(1)作CD⊥x轴于点D,∴∠CDA=90°.∵∠AOB=90°,∴∠AOB=∠CDA.∴∠DAC+∠DCA=90°.∵AC⊥AB,∴∠BAC=∠BAD+∠CAD=90°,∴∠BAD=∠ACD.在△AOB和△CDA中,∴△AOB≌△CDA(AAS),∴AO=CD,OB=DA.∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∴CD=2,DA=4,∴OD=2,∴OD=CD.∵点C在第四象限,∴C(2,﹣2).∵∠CDO=90°,∴∠COD=45°.∴∠COA=180°﹣45°=135°.(2)∵PC∥x轴,∴点P到x轴的距离相等,∴S△POM=S△COM.∴S△POM+S△BOM=S△COM+S△BOM=S△BOC.∴S△POM+S△BOM=S△BOC==4.24.对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),由这种运算得到的数我们称之为广益数,记为L(x,y),其中(x,y)叫做广益数对.若实数x,y都取正整数,此时的(x,y)叫做广益正格数对.(1)若L(x,y)=x+3y,则L(,)=3,L(﹣2,m)=﹣2+3m;(用含m的式子表示)(2)已知L(x,y)=ax+by(其中a,b互为相反数)L(2,3)=n﹣3,L(1,﹣2)=2n+1,求n的值.(3)已知L(x,y)=3x+cy,其中L(,)=2.若L(x,kx)=18(其中k为整数),问是否存在满足这样条件的广益正格数对?若存在,请求出这样的广益正格数对;若不存在,请说明理由.解:(1)根据题中的新定义得:L(,)=+3×=3;L(﹣2,m)=﹣2+3m,故答案为:3,﹣2+3m;(2)根据题中的新定义得:L(2,3)=2a+3b=n﹣3;L(1,﹣2)=a﹣2b=2n+1;∵a,b互为相反数,∴a=﹣b,∴,解得:n=;(3)存在,(2,6),理由如下:根据题中的新定义化简L(,)=2,得:3×+c=2,解得:c=2,化简L(x,kx)=18,得:3x+2kx=18,依题意,x,y都为正整数,k是整数,∴3+2k是奇数,∴3+2k=1,3,9,解得:k=−1,0,3,当k=−1时,x=18,kx=−18,舍去;当k=0时,x=6,kx=0,舍去;当k=3时,x=2,kx=6,综上,k=3时,存在正格数对x=2,y=6满足条件.25.如图①,AB=9,AC⊥AB,BD⊥AB,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t秒.(1)若点Q运动的速度与点P运动的速度相等,当t=1时,求证:△ACP≌△BPQ;(2)在(1)的条件下,求∠PCQ的度数;(3)如图②,若∠CAB=∠DBA=70°,AB=9,AC=BD=7,点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上以每秒x个单位的速度由点B向点D运动,若存在△ACP与△BPQ全等,请求出相应的x和t的值.【解答】(1)证明:当t=1时,AP=BQ=2,则BP=9﹣2=7,∴BP=AC,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)解:如图①中,连接CQ.∵△ACP≌△BPQ,∴∠ACP=∠BPQ,PC=PQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,∴∠PCQ=45°.(3)解:①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴9﹣2t=7,解得,t=1(s),则x=2(cm/s);②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×9,解得,t=(s),则x=7÷=(cm/s),故当t=1s,x=2cm/s或t=s,x=cm/s时,△ACP与△BPQ全等.。
人教版数学七年级第二学期期末考试试卷及答案二
人教版数学七年级第二学期期末考试试卷及答案一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×1083.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.54.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是20005.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a46.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.010.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣611.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=1012.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.2513.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x215.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.816.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=.18.计算:199×201=.19.已知10x=2,10y=5,则10x+y=.20.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为.三.解答题(共8小题)21.(1);(2);22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为人;(2)被调查的学生人数为人,A组人数为人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=2﹣1 ⑦×=2﹣1(2)写出你猜想的第n个等式(用含n的式子表示);(3)请你验证猜想的正确性.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①图②;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为.参考答案与试题解析一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A.要了解一批节能灯的使用寿命适合抽样调查,原调查方式不合适;B.为保证“神舟9号”的成功发射,对其零部件进行检查采用全面调查,原调查方式不合适;C.对乘坐某班次客车的乘客进行安检,采用普查的方式,原调查方式不合适;D.调查本班同学的视力,采用普查的方式,原调查方式合适;故选:D.2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23 000 000=2.3×107.故选:B.3.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.5【分析】直接利用二元一次方程的解法得出答案.【解答】解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.4.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是2000【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A.这4万名考生的数学成绩是总体,此选项错误;B.每个考生的数学成绩是个体,此选项错误;C.2000名考生的数学成绩是总体的一个样本,此选项错误;D.样本容量是2000,此选项正确;故选:D.5.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a4【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、x2•x3=x5,原题计算正确,不合题意;B、(x3)2=x6,原题计算正确,不合题意;C、a+2a=3a,原题计算正确,不合题意;D、a8÷a2=a6,原题计算错误,符合题意.故选:D.6.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b【分析】由大正方形面积=两个小正方形面积+2个长方形面积,可得(a+b)2=a2+2ab+b2【解答】解:∵大正方形面积=两个小正方形面积+2个长方形面积∴(a+b)2=a2+2ab+b2故选:A.7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个【分析】将x看做已知数求出y,找出正整数解即可.【解答】解:∵x+2y=11,∴y=,则:当x=1时,y=5;当x=3时,y=4;当x=5时,y=3;当x=7时,y=2;当x=9时,y=1;故选:C.9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.0【分析】直接利用负整数指数幂的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:∵﹣12=﹣1,(x﹣3.14)0=1,2﹣1=,0,∴最小的数是:﹣12.故选:A.10.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣6【分析】直接利用乘法公式结合整式的混合运算法则分别计算得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故原题计算错误;B、(﹣x﹣y)2=x2+2xy+y2,故原题计算正确;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(a﹣2)(a+3)=a2+a﹣6,故原题计算错误;故选:B.11.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=10【分析】先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加即可得出答案.【解答】解:∵(x+5)(2x﹣3)=2x2﹣3x+10x﹣15=2x2+7x﹣15,又∵(x+5)(2x﹣3)=2x2+mx﹣15,∴m=7;故选:A.12.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x2【分析】表示出阴影部分的长与宽,计算即可得到面积.【解答】解:根据题意得:(a﹣x)(b﹣x)=ab﹣ax﹣bx+x2,故选:A.15.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.8【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x﹣y)中即可求出结论.【解答】解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.16.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4【分析】表示出长方形的面积,利用多项式乘以多项式法则计算,即可确定出需要C类卡片的张数.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3.故选:C.二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,移项得:﹣y=1﹣2x,解得:y=2x﹣1.故答案为:2x﹣1.18.计算:199×201=39999.【分析】先变形为原式=(200﹣1)×(200+1),然后利用平方差公式计算.【解答】解:原式=(200﹣1)×(200+1)=2002﹣12=40000﹣1=39999.故答案为39999.19.已知10x=2,10y=5,则10x+y=10.【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1020.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为5.【分析】设小矩形的长为x,宽为y,根据矩形的对边相等已经大矩形的长为5,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(5×4﹣5xy)中即可求出结论.【解答】解:设小矩形的长为x,宽为y,依题意,得:,解得:,∴5×4﹣5xy=5×4﹣5×3×1=5.故答案为:5.三.解答题(共8小题)21.(1);(2);【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:2(2y﹣3)+3y=8,解得:y=2,把y=2代入①得:x=1,则方程组的解为;(2),①×2+②得:5x=15,解得:x=3,把x=3代入①得:y=﹣4,则方程组的解为.22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);【分析】(1)根据同底数幂的乘法和同底数幂的除法求出即可;(2)先算乘方,再合并即可;(3)根据单项式乘以单项式法则求出即可.【解答】解:(1)a5•a3÷a2=a5+3﹣2=a6;(2)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(3)(﹣2a2b)•(abc)=﹣a3b2c.23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;【分析】(1)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、积的乘方运算法则分别计算得出答案.【解答】解:(1)5x(2x+1)﹣(x+3)(5x﹣1)=10x2+5x﹣(5x2+14x﹣3)=10x2+5x﹣5x2﹣14x+3=5x2﹣9x+3;(2)(π﹣2020)0+()﹣2﹣2101×()100=1+9﹣(2×)100×2=1+9﹣2=8.24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.【分析】(1)根据完全平方公式可知:(a+2)2=a2+2a+1,可作判断;(2)先根据整式的混合运算顺序和法则化简原式,再代入求值可得.【解答】解:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;故答案为:②;(2)(a+2)2+3(a+1)(a﹣1)=a2+2a+1+3(a2﹣1)=a2+2a+1+3a2﹣3=4a2+2a﹣2,当x=﹣1时,原式=4×1+2×(﹣1)﹣2=4﹣2﹣2=0.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为4人;(2)被调查的学生人数为50人,A组人数为3人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.【分析】(1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出E组的人数;(2)用(1)求出的样本容量乘以A组人数所占的百分比,求出A组的人数,用总人数乘以C组人数所占的百分比得出C组的人数,从而补全统计图;(3)用360°乘以“B”所占的百分比即可;(4)用总人数乘以发言次数不少于12次的人数所占的百分比即可.【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,∴B组所占的百分比是20%,∵B组的人数是10,∴样本容量为:10÷20%=50,∴E组人数为:50×8%=4(人);故答案为:4;(2)被调查的学生人数为50,A组人数为:50×6%=3(人),C组的人数是50×30%=15(人),补全频数分布直方图如下:故答案为:50,3;(3)“B”所对应的圆心角的度数是:360°×20%=72°;(4)F 组所占的百分比是×100%=10%,则全年级在这天里发言次数不少于12次的人数有:1500×(10%+8%)=270(人).26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?【分析】(1)设需要购买的消毒液x瓶,酒精y瓶,根据从北国超市购买消毒液和酒精共40瓶需花费900元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用,用900减去该值即可得出结论.【解答】解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=72﹣1 ⑦7×9=82﹣1(2)写出你猜想的第n个等式(用含n的式子表示)n(n+2)=(n+1)2+1;(3)请你验证猜想的正确性.【分析】(1)由规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,进行解答;(2)把规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,用n的等式表示出来;(3)运用整数的混合运算顺序和运算法则对等式左右两边进行计算便可.【解答】解:(1)由题中前面6个算式可知,两个相差2的两个整数的积等于两个数的平均数的平方与1的差,所以,⑥6×8=72﹣1,⑦7×9=82﹣1,故答案为:7;7;9;8;(2)由规律可知:n(n+2)=(n+1)2﹣1,故答案为:n(n+2)=(n+1)2﹣1;(3)∵左边=n(n+2)=n2+2n,右边=n2+2n+1﹣1=n2+2n,∴左边=右边,∴n(n+2)=(n+1)2﹣1.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①a2﹣b2图②(a+b)(a﹣b);(2)比较两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为12;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为264﹣1.【分析】(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2,而图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,可表示出面积为(a+b)(a﹣b).(2)由由图①与图②的面积相等,可以得到乘法公式;①利用公式将4m2﹣n2写成(2m﹣n)(2m+n)进而求出答案,②连续两次利用平方差公式进行计算即可,将原式转化为(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),再连续使用平方差公式,得出最后的结果.【解答】解:(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2;图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,其面积为(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图①与图②的面积相等,可以得到乘法公式,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;①4m2﹣n2=(2m﹣n)(2m+n)=3×4=12,故答案为:12;②(x﹣3)(x+3)(x2+9)=(x2﹣9)(x2+9)=x4﹣81;(2+1)(22+1)(24+1)(28+1)…(232+1),=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),=(22﹣1)(22+1)(24+1)(28+1)…(232+1),=(24﹣1)(24+1)(28+1)…(232+1),=(28﹣1)(28+1)…(232+1),=264﹣1.。
2022年七年级第二学期数学期末考试试题(含答案)(山东地区)
七年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。
(共10小题,每小题4分,共40分)3、下列运算正确的是()A、a5+a5=a10B、(a3)3=a9C、(ab4)4=ab8D、a6÷a3=a24.如图,将一个含有30°的直角三角板的顶点放在直尺的一边,若∠1=46°,则∠2的度数是()A.46°B.76°C.94°D.104°(第4题图)(第5题图)(第6题图)(第7题图)6.如图,y=2x+10表示了自变量与因变量y的关系,当x每增加1时,y增加()A.1B.2C.6D.127.如图,2019年6月12日京张铁路轨道全线贯通,当高铁匀速通过隧道(隧道长大于火车长)时,高铁在隧道内的长度y与高铁进入隧道的时间x之间的关系用图象描述大致是()A.AASB.SASC.SSSD.ASA(第8题图)(第9题图)(第10题图)9.如图,在△ABC中,AB,AC的垂直平分线分别交BC于点E,F,若∠BAC=114°,则∠EAF 的度数为()A.40°B.44°C.48°D.52°二.填空题。
(共6小题,每小题4分,共24分)11、计算:a(a+3)= 。
12、一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上,如果每块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是。
(第12题图)(第15题图)(第16题图)13、若(x-6)2=x2+kx+36,则k的值是。
14、在弹性限度内,弹簧挂上物体后会伸长,已知一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表:写出y与x的关系式。
15、如图,直线a∥b,将一含30°角的直角三角板ABC按如图方式放置,其中一条直角边的两顶点C 和A 分别落在直线a ,b 上,若∠1=25°,则∠2= 。
七年级下册数学期末复习试题
七年级下册数学期末复习试题【篇一】第一部分选择题(共30分)一、选择题:(本大题满分30分,每小题3分)1、下列语句错误的是()A、数字0也是单项式B、单项式—的系数与次数都是1C、是二次单项式D、与是同类项2、如果线段AB=5cm,BC=4cm,那么A,C两点的距离是()A、1cmB、9cmC、1cm或9cmD、以上答案都不对3、如图1所示,AE//BD,∠1=120°,∠2=40°,则∠C的度数是()A、10°B、20°C、30°D、40°4、有两根长度分别为4cm和9cm的木棒,若想钉一个三角形木架,现有五根长度分别为3cm、6cm、11cm、12.9cm、13cm的木棒供选择,则选择的方法有()A、1种B、2种C、3种D、4种5、下列说法中正确的是()A、有且只有一条直线垂直于已知直线B、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
C、互相垂直的两条线段一定相交D、直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线l的距离是3cm.6、在下列轴对称图形中,对称轴的条数最少的图形是()A、圆B、等边三角形C、正方形D、正六边形7、在平面直角坐标系中,一只电子青蛙每次只能向上或向下或向左或向右跳动一个单位,现已知这只电子青蛙位于点(2,—3)处,则经过两次跳动后,它不可能跳到的位置是()A、(3,—2)B、(4,—3)C、(4,—2)D、(1,—2)8、已知方程与同解,则等于()A、3B、—3C、1D、—19、如果不等式组的解集是,那么的值是()A、3B、1C、—1D、—310、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①②按照以上变换有:,那么等于()A、(3,2)B、(3,-2)C、(-3,2)D、(-3,-2)第二部分非选择题(共90分)二、填空题(本大题满分24分,每小题3分)11、如图,BC∠AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC的距离是,点A到BC 的距离是,A、B两点间的距离是。
广东省深圳市光明区2023-2024学年七年级下学期期末数学试题(含答案)
2023—2024学年下学期学业水平调研测试七年级数学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.全卷共6页.考试时间90分钟,满分100分.3.作答选择题1-10,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,请将答题卡交回.第一部分 选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.下列图形不是轴对称图形的是()A .B .C .D .2.如图,已知直线,,则( )A .40°B .50°C .60°D .130°3.下列各组边长能组成三角形的是( )A .7,8,15B .5,5,11C .3,4,5D .2,9,124.下列各式计算正确的是( )A .B .C .D .5.对某品种的麦粒在相同条件下进行发芽试验,结果如下表所示:试验的麦粒数n 200500100020005000发芽的粒数m 19147395419064748发芽的频率0.9550.9460.9540.9530.9496根据上表,在这批麦粒中任取一粒,估计它能发芽的概率为( )A .0.92B .0.95C .0.97D .0.986.如图,已知,,添加下列哪个条件不一定能使得的是()a b 150∠=︒2∠=23a a a -⋅=-()2236b b =824y y y ÷=()326x x -=m nAB AD =BAD CAE ∠=∠ABC ADE ≌△△A .B .C .D .7.如图,可以近似地刻画下列哪种实际情境中的变化关系()A .一杯越晾越凉的水(水温与时间的关系)B .一面冉冉上升的旗子(高度与时间的关系)C .足球守门员大脚开出去的球(高度与时间的关系)D .匀速行驶的汽车(速度与时间的关系)8.下列说法正确的是( )A .相等的角是对顶角B .三角分别相等的两个三角形全等C .角是轴对称图形,角的平分线是它的对称轴D .若满足,则是锐角三角形9.如图,在中,点D 是BC 边上的中点,若和的周长分别为16和11,则的值为()A .5B .11C .16D .2710.如图,在等腰三角形ABC 中,,,点D 为垂足,E 、F 分别是AD 、AB 上的动点.若,的面积为12,则的最小值是()A .2B .4C .6D .8第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11.数据0.000012可用科学记数法表示为________.B D ∠=∠C E ∠=∠AC AE =BC DE=ABC △::3:4:5A B C ∠∠∠=ABC △ABC △ABD △ACD △AB AC -AB AC =AD BC ⊥6AB =ABC △BE EF +12.已知,,则.13.如图,当时要保持弯形管道所在直线AB 和CD 平行,________°.14.如图,在中,,利用尺规作图,得到直线DE 和射线AF .若,则________°.15.如图,在中,,过点B 作,且使得,连接AD .若,则的面积为________.三、解答题(本大题共7小题,共55分)16.(8分)计算:(1);(2).17.(6分)先化简再求值:,其中,.18.(6分)某路口南北方向红绿灯的设置时间为:红灯30秒,绿灯若干秒,黄灯3秒.小明的爸爸随机地由南往北开车到达该路口.(1)如果绿灯时长为70秒,那么他遇到绿灯的概率________遇到红灯的概率(填“>”“<”或“=”);(2)若他遇到红灯的概率为,求每次绿灯时长为多少秒?19.(7分)如图,在中,BC 边上的高是定值.当三角形的顶点C 沿底边所在直线由点B 向右运动时,三角形的面积随之发生变化.设底边长,三角形面积为,变化情况如下表所示:102m =103n =10________m n+=60BCD ∠=︒ABC ∠=ABC △56C ∠=︒22EAF ∠=︒B ∠=Rt ABC △90BAC ∠=︒BD BC ⊥BD BC =4AB =ABD △()()220240113π2-⎛⎫+--- ⎪⎝⎭()()2x y x y +-()()()22x y y x y x y ⎡⎤-+-+÷⎣⎦1x =-1y =1031ABC △cm BC x =2cm y底边长x (cm )12三角形面积36(1)在这个变化过程中,自变量是________,因变量是________;(2)由上表可知,BC 边上的高为________cm ;(3)y 与x 的关系式可以表示为________;(4)当底边长由3cm 变化到12cm 时,三角形的面积从________变化到________.20.(9分)如图,点B ,D ,C ,F 在同一直线上,,,,求证:.请将下面的证明过程补充完整:证明:因为(已知),所以(①).因为(已知),所以,即.在与中,因为所以( ⑥ ),所以( ⑧),所以( ⑨ ).21.(9分)阅读理解:整体思想是一种重要的数学思想,它是通过观察和分析问题的整体结构,发现其整体结构特征并把握它们之间的联系,然后把某些式子或图形看成一个整体,从而达到简化问题,解决问题的目的.在《整式的乘除》一章中,我们学习了完全平方公式:,它可以恒等变换()2cmy 2cm 2cm ABEF AB EF =BD FC =AC ED ABEF B F ∠=∠BD FC =BD FC +=+②③BC FD =ABC △EFD △,B FBC FD =⎧⎪∠=∠⎨⎪=⎩④⑤ABC EFD ≌△△ACB ∠=⑦ACED ()2222a b a ab b ±=±+为:,等.我们可以利用它解决一些问题,例如:已知,求的值.解:令,,则,.所以,即.所以.问题1:已知,请你仿照上例,求的值;问题2:已知,求的值;问题3:如图,已知长方形ABCD 的面积为3,延长BC 到点P ,使得,以CP 为边向上作正方形CPMN ,再分别以BC 、CD 为边作正方形BCGH 、正方形CDEF .若,则阴影部分的面积是多少?22.(10分)在学习《生活中的轴对称》时,我们探究了两个重要结论:结论1:线段垂直平分线上的点到这条线段两个端点的距离相等.如图,当,时,则有:.结论2:角平分线上的点到这个角的两边的距离相等.如图,当OC 平分∠AOB ,,时,则有:.请利用上述结论,解决下列问题:如图1,在中,,,BD 是∠ABC 的平分线,,垂足为点E ,点P 为线段BD 上一动点.(1)若,则PC =________;(2)①若点P 为线段BC 的垂直平分线与BD 的交点,求∠CPE 的度数;②如图2,连接CE ,若点P 为∠BCE 的平分线与BD 的交点,则________°;(3)若为等腰三角形,则________.()2222a b a b ab +=+-()2222a b a b ab +=-+()()321x x +-=()()2232x x ++-3a x =+2b x =-1ab =5a b -=()225a b -=22225a b ab +-=()()22223225227x x a b ab ++-=+=+=()()213x x +-=()()2221x x ++-()()9202420172m m --+=()()2220242017m m -+-+5BP =1DN =AO BO =CO AB ⊥CA CB =CD OA ⊥CE OB ⊥CD CE =Rt ABC △90ACB ∠=︒50A ∠=︒DE AB ⊥5PE =CPE ∠=PED △BEP ∠=2023-2024学年下学期期末学业水平调研测试七年级数学 参考答案与评分标准一、选择题(本大题共10小题,每小题3分,共30分。
七年级数学第二学期期末考试试卷
2023—2024学年第二学期期末考试试卷七年级数学一、选择题(每小题3分,共30分)1.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A .1个 B.2个 C.3个D.4个2.如图,下列条件中,不能判断直线a b ∥的是()A.13∠=∠B.23∠∠=C.45∠=∠D.24180∠+∠=︒3.如图,在ABC 中,30A ∠=︒,点D 是AB 延长线上一点,过点D 作EF BC ∥.若70ADE ∠=︒,则C ∠的度数为()A.20° B.30° C.40° D.50°4.在实数3.1415926,1.010010001……,2π2,223,2.15 中,无理数的个数是()个A.1B.2C.3D.45.下列计算正确的是()A.5=±B.5=-C.5=±D.5=6.在平面直角坐标系中,若点()3,1P m m +-在第四象限,则m 的取值范围是()A.31m -<< B.1m > C.3m <- D.3m >-7.若a >b ,则下列不等式变形错误的是()A.a +2>b +2B.-3a <-3bC.3-a >3-bD.4a -1>4b -18.已知关于x,y 的方程组2529x y m x y m +=⎧⎨-=⎩的解满足方程3x+2y=19,则m 的值是()A.1 B.-1 C.19 D.-199.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为()A.1k > B.1k < C.1k ≥ D.1k ≤10.如图,在平面直角坐标系中,动点P 从原点O 出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点1(1,1)P --;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点2P ;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点3P ;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点4P ,…,按此作法进行下去,则点2023P 的坐标为()A.(1012,1012)--B.(2011,2011)--C.(2012,2012)--D.(1011,1011)--二、填空题(每小题3分,共30分)11.________.12.已知a 、b为两个连续的整数,且a b <<,则a b +=_____13.若x ,y 满足()220x ++=的值是______.14.已知 1.902==____________15.在一次课外知识竞赛中,共有22道题,答对一题得4分,不答或答错一题扣2分,如果得分要超过81分,那么至少要答对_______道题.16.关于x 的方程234x a x -=-的解是正数,则a 的取值范围是_______.17.有一个数值转换器,计算流程如图所示,当输入x 的值为8时,输出的值是______.18.如图①,将长方形纸带沿EF 折叠,70AEF ∠=︒,再沿GH 折叠成图②,则图②中EHB '∠=_______.19.为了了解5000件商品的质量问题,从中任意抽取100件商品进行试验在这个问题中,样本容量是__________.20.已知关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有4个整数解,则a 的取值范围是______.三、解答题(共60分)21.解方程组(1)257320x yx y-=⎧⎨-=⎩;(2)()()3416126x y x yx y x y⎧+--=⎪⎨+-+=⎪⎩.22.解不等式组311453x xx x->+⎧⎪⎨-≤⎪⎩①②,并写出它的最大正整数解.23.若关于x,y的方程组25342x y mx y m-=⎧⎨+=⎩的解,使不等式组52718x yx y+≤⎧⎨+<⎩成立,求m的取值范围.24.如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并进行证明.25.列方程组解应用题用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?26.某中学准备去采购A、B两种实验器材,下面是销售人员呈现的两次销售记录(每次销售这两种实验器材的单价都不变),如下表:(1)求A型实验器材与B型实验器材的单价分别为多少元?(2)若购买这两种实验器材共50件,其中A型实验器材的数量(单位:件)不多于B型实验器材的数量(单位:件)的2倍,总费用不超过2000元,请问共有几种采购方案?27.在平面直角坐标系中,O 为原点,点()0,2A ,()2,0B -,()4,0C .(1)如图①,则三角形ABC 的面积为______;(2)如图②,将点B 向右平移7个单位长度,再向上平移4个单位长度,得到对应点D 坐标为(______,______).①求ACD 的面积;②点(),3P m 是一动点,若PAO 的面积等于CAO △的面积,直接写出点P 坐标.。
最新2022学年第二学期(五四学制)七年级(下)期末考试数学试卷解析版
七年级(下)期末数学试卷(五四学制)一.选择题(共10小题)1.下列方程是二元一次方程的是()A.2x﹣y=1B.x2﹣2x+1=0C.2x﹣1=0D.x﹣3=2x 2.如果方程x=1与2x+a=ax的解相同,则a的值是()A.2B.﹣2C.3D.﹣33.甲、乙两台机床生产一种零件,在10天中两台机床每天生产的次品数的平均数是==2,方差是:S甲2=1.65,S乙2=0.76,出次品的波动较小的机床是()A.甲机床B.乙机床C.甲、乙机床一样D.不能确定4.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.为了预防新冠病毒,6名学生准备了口罩,口罩数量(单位:个)分别为:87、88、73、88、79、85,这组数据的众数是()A.79B.87C.88D.856.不等式组的解集是()A.x≤﹣1B.x≥3C.﹣3≤x≤1D.﹣3≤x<17.如图,△ABC中,∠C=90°,E是AC上一点,连接BE,过E作DE⊥AB,垂足为D,BD=BC,若AC=6cm,则AE+DE的值为()A.4cmB.5cmC.6cmD.7cm8.△ABC中,它的三条角平分线的交点为O,若∠B=80°,则∠AOC 的度数为()A.100°B.130°C.110°D.150°9.如图,△ADM中,AM=DM,∠AMD=90°,直线l经过点M,AB⊥l,DC⊥l,垂足分别为B,C,若AB=2,CD=5,则BC的长度为()A.1.5B.3C.4D.510.下列说法中,正确的个数为()①三角形的外角等于两个内角的和;②有两边和一角分别相等的两个三角形全等;③各边都相等的多边形是正多边形;④到角两边距离相等的点,在这个角的平分线上.A.1B.2C.3D.0二.填空题(共10小题)11.把方程7x﹣y=15改写成用含x的式子表示y的形式为y=.12.“x的2倍与3的和不大于5”用不等式表示是.13.五边形的内角和为度.14.已知a、b满足方程组,则a+b的值为.15.若关于x的不等式(m﹣l)x<m﹣1的解集为x>1,则m的取值范围是.16.如图,把两根钢条的中点连在一起,可以做到一个测量工件内槽宽的工具(长钳),在图中,要测量工件内槽宽AB,只要测就可以了.17.若一等腰三角形的两边长分别为3cm、7cm,则该三角形的周长为.18.如图,A,B分别是线段OC,OD上的点,OC=OD,OA=OB,若∠O=60°,∠C=25°,则∠BED的度数是度.19.在△ABC中,AD,AE分别是它的高线,角平分线,当∠B=40°,∠ACD=60°,则∠EAD的度数为度.20.如图,点A为∠MON的平分线上一点,过A任意作一条直线分别与∠MON的两边相交于B、C,P为BC中点,过P作BC的垂线交射线OA于点D,若∠MON=115°,则∠BDC的度数为度.三.解答题(共7小题)21.解下列方程组:(1);(2).22.解下列不等式:(1)2x+5<10;(2)≥﹣2.23.四边形ABCD中,AD=CD,AB=CB,连接AC、BD相交于点O.(1)如图1,求证:DB平分∠ADC;(2)如图2,若∠ADO=45°,∠OAB=60°,请直接写出四边形ABCD各内角的度数.24.某中学对全校七年级学生进行了一次数学考试,随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如图所示的不完整的统计图.请你根据统计图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算补全条形统计图;并直接写出这部分学生成绩的中位数落在哪组?(3)如果该学校七年级共有380人参加了这次数学考试,请你估计该校七年级共有多少名学生的数学成绩可以达到优秀.25.疫情爆发,物资紧缺,一医药集团主动担当作为,紧急投产口罩生产线,每天生产医用防护口罩或者医用外科口罩.已知2天生产医用防护口罩、1天生产医用外科口罩,可生产两种口罩共8万只;若1天生产医用防护口罩、3天生产医用外科口罩,可生产两种口罩共9万只.(1)求平均每天生产医用防护口罩和医用外科口罩各多少万只?(2)该集团现接到需要180万只口罩的订单,要求生产时间不能超过70天,则工厂至少能生产多少万只医用防护口罩?26.已知:Rt△ABC中,∠CAB=90°,CA=BA,Rt△ADE中,∠DAE =90°,DA=EA,连接CE、BD.(1)如图1,求证:CE=BD;(2)如图2,当D在AC上,E在BA的延长线上,直线BD、CE 相交于点F,求证:CE⊥BD;(3)如图3,在(2)的条件下,若D是AC中点,BF=6,求△BEF的面积.27.如图,在平面直角坐标系中,点O为原点,A(0,a),B(b,0),已知a、b满足方程组.(1)求A、B两点的坐标;(2)点C从O出发,以每秒2个单位长度的速度沿y轴正半轴的方向运动,设点C的运动时间为t秒,连接BC,△ABC的面积为S,用含t的式子S表示(并直接写出t的取值范围);(3)如图3,在(2)的条件下,当C点在OA上,S=30时,点E在CB的延长线上,连接AE,将线段AE绕点A逆时针旋转90°至线段AD,点D恰好在x轴的正半轴上,将线段BA绕点A逆时针旋转90°至线段FA,当点F在直线BC上时,求t值和点D的坐标.参考答案与试题解析一.选择题(共10小题)1.下列方程是二元一次方程的是()A.2x﹣y=1B.x2﹣2x+1=0C.2x﹣1=0D.x﹣3=2x 【分析】根据二元一次方程的定义逐个判断即可.【解答】解:A、是二元一次方程,故本选项符合题意;B、是一元二次方程,不是二元一次方程,故本选项不符合题意;C、是一元一次方程,不是二元一次方程,故本选项不符合题意;D、是一元一次方程,不是二元一次方程,故本选项不符合题意;故选:A.2.如果方程x=1与2x+a=ax的解相同,则a的值是()A.2B.﹣2C.3D.﹣3【分析】可以分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.【解答】解:解第一个方程得:x=3,解第二个方程得:x=∴=3解得:a=3故选:C.3.甲、乙两台机床生产一种零件,在10天中两台机床每天生产的次品数的平均数是==2,方差是:S甲2=1.65,S乙2=0.76,出次品的波动较小的机床是()A.甲机床B.乙机床C.甲、乙机床一样D.不能确定【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.65,S乙2=0.76,∴S甲2>S乙2,∴出次品的波动较小的机床是乙机床;故选:B.4.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形【分析】稳定性是三角形的特性.【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.5.为了预防新冠病毒,6名学生准备了口罩,口罩数量(单位:个)分别为:87、88、73、88、79、85,这组数据的众数是()A.79B.87C.88D.85【分析】根据众数的概念求解可得.【解答】解:这组数据的众数为88,故选:C.6.不等式组的解集是()A.x≤﹣1B.x≥3C.﹣3≤x≤1D.﹣3≤x<1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+3≥0,得:x≥﹣3,解不等式3x﹣1≤2,得:x≤1,则不等式组的解集为﹣3≤x≤1.故选:C.7.如图,△ABC中,∠C=90°,E是AC上一点,连接BE,过E作DE⊥AB,垂足为D,BD=BC,若AC=6cm,则AE+DE的值为()A.4cmB.5cmC.6cmD.7cm【分析】根据全等三角形的性质求出DE=EC,求出AE+DE=AC,即可求出答案.【解答】解:∵DE⊥AB于D,∴∠BDE=90°,在Rt△BDE和Rt△BCE中,,∴Rt△BDE≌Rt△BCE(HL),∴ED=CE,∴AE+ED=AE+CE=AC=6cm,故选:C.8.△ABC中,它的三条角平分线的交点为O,若∠B=80°,则∠AOC 的度数为()A.100°B.130°C.110°D.150°【分析】先根据三角形的内角和定理求出∠BAC+∠BCA的度数,再根据角平分线的定义求出(∠BAC+∠BCA),然后再利用三角形的内角和定理求解即可.【解答】解:∵AO,CO分别是∠BAC,∠BCA的平分线,∴∠OAC=∠BAC,∠OCA=∠BCA,∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣∠BAC﹣∠BCA,=180°﹣(∠BAC+∠BCA).又∵∠B=80°,∴∠BAC+∠BCA=180°﹣80°=100°.∴(∠BAC+∠BCA)=100°×=50°.∴∠AOC=180°﹣50°=130°,故选:B.9.如图,△ADM中,AM=DM,∠AMD=90°,直线l经过点M,AB⊥l,DC⊥l,垂足分别为B,C,若AB=2,CD=5,则BC的长度为()A.1.5B.3C.4D.5【分析】根据全等三角形的判定和性质得出AB=CM,CD=BM,进而解答即可.【解答】解:∵AB⊥l,DC⊥l,∴∠DCM=∠MBA=90°,∠MDC+∠DMC=90°,∵∠AMD=90°,∴∠DMC+∠AMB=90°,∴∠MDC=∠AMB,在△DMC与△MAB中,∴△DMC≌△MAB(AAS),∴AB=CM=2,CD=BM=5,∴BC=BM﹣CM=5﹣2=3,故选:B.10.下列说法中,正确的个数为()①三角形的外角等于两个内角的和;②有两边和一角分别相等的两个三角形全等;③各边都相等的多边形是正多边形;④到角两边距离相等的点,在这个角的平分线上.A.1B.2C.3D.0【分析】根据三角形的外角的性质,全等三角形的判定,正多边形的定义,角平分线的判定定理一一判断即可.【解答】解:①三角形的外角等于两个内角的和,错误,应该是三角形的外角等于和它不相邻两个内角的和.②有两边和一角分别相等的两个三角形全等,错误,应该是有两边和夹角分别相等的两个三角形全等.③各边都相等的多边形是正多边形,错误.缺少各个角相等这个条件.④到角两边距离相等的点,在这个角的平分线上.错误,这个点必须在这个角的内部.故选:D.二.填空题(共10小题)11.把方程7x﹣y=15改写成用含x的式子表示y的形式为y=7x ﹣15 .【分析】将x看做已知数求出y即可.【解答】解:∵7x﹣y=15,∴y=7x﹣15,故答案为:7x﹣15.12.“x的2倍与3的和不大于5”用不等式表示是2x+3≤5 .【分析】首先表示“x的2倍”为2x,再表示“与3的和”为2x+3,最后表示“不大于5”可得2x+3≤5.【解答】解:由题意得:2x+3≤5,故答案为2x+3≤5.13.五边形的内角和为540 度.【分析】n边形内角和公式为(n﹣2)180°,把n=5代入可求五边形内角和.【解答】解:五边形的内角和为(5﹣2)×180°=540°.故答案为:540.14.已知a、b满足方程组,则a+b的值为 5 .【分析】求出方程组的解得到a与b的值,即可确定出a+b的值.【解答】解:,①+②得:4a+4b=20,即4(a+b)=20,解得a+b=5.故答案为:5.15.若关于x的不等式(m﹣l)x<m﹣1的解集为x>1,则m的取值范围是m<1 .【分析】根据不等式的基本性质3,两边都除以m﹣1后得到x>1,可知m﹣1<0,解之可得.【解答】解:∵将不等式(m﹣1)x<m﹣1两边都除以(m﹣1),得x>1,∴m﹣1<0,解得:m<1,故答案为m<1.16.如图,把两根钢条的中点连在一起,可以做到一个测量工件内槽宽的工具(长钳),在图中,要测量工件内槽宽AB,只要测A'B' 就可以了.【分析】让我们了解测量两点之间的距离,只要符合全等三角形全等的条件之一SAS,只需要测量易测量的边A'B'上.测量方案的操作性强.【解答】解:答:只要测量A'B'.理由:连接AB,A'B',如图,∵点O分别是AC、BB'的中点,∴OA=OA',OB=OB'.在△AOB和△A'OB'中,OA=OA',∠AOB=∠A'OB'(对顶角相等),OB=OB',∴△AOB≌△A'OB'(SAS).∴A'B'=AB.答:需要测量A'B'的长度,即为工件内槽宽AB,故答案为:A'B'17.若一等腰三角形的两边长分别为3cm、7cm,则该三角形的周长为17cm.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm是腰时,3+3<7,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17cm.故它的周长为17cm.故答案为:17cm.18.如图,A,B分别是线段OC,OD上的点,OC=OD,OA=OB,若∠O=60°,∠C=25°,则∠BED的度数是70 度.【分析】证△ODA≌△OCB,推出∠D=∠C=25°,根据三角形外角性质求出∠DBE,根据三角形内角和定理求出即可.【解答】解:在△ODA和△OCB中,∴△ODA≌△OCB(SAS),∴∠D=∠C=25°,∵∠O=60°,∠C=25°,∴∠DBE=60°+25°=85°,∴∠BED=180°﹣85°﹣25°=70°,故答案为:70.19.在△ABC中,AD,AE分别是它的高线,角平分线,当∠B=40°,∠ACD=60°,则∠EAD的度数为10或40 度.【分析】由三角形内角和可求得∠BAC,则由角平分线的定义可求得∠BAE,在Rt△BAD中,可求得∠BAD,则可求得∠EAD.【解答】解:当高AD在△ABC的内部时.∵∠B=40°,∠C=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°,∵AD⊥BC,∴∠BDA=90°,∴∠BAD=90°﹣∠B=50°,∴∠EAD=∠BAD﹣∠BAE=50°﹣40°=10°.当高AD在△ABC的外部时.同法可得∠EAD=10°+30°=40°故答案为10或40.20.如图,点A为∠MON的平分线上一点,过A任意作一条直线分别与∠MON的两边相交于B、C,P为BC中点,过P作BC的垂线交射线OA于点D,若∠MON=115°,则∠BDC的度数为65 度.【分析】过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.【解答】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=115°,∴∠EDF=360°﹣90°﹣90°﹣115°=65°,∵DE⊥OM,DF⊥ON,OD∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=65°.故答案为:65.三.解答题(共7小题)21.解下列方程组:(1);(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:6y﹣7﹣y=13,解得:y=4,把y=4代入①得:x=17,则方程组的解为;(2),①+②得:4n=12,解得:n=3,把n=3代入①得:m=3,则方程组的解为.22.解下列不等式:(1)2x+5<10;(2)≥﹣2.【分析】(1)移项、合并同类项,然后系数化成1即可求解;(2)去分母、去括号、移项、合并同类项,然后系数化成1即可求解.【解答】解:(1)移项,得:2x<10﹣5,合并同类项得:2x<5,系数化成1得:x<;(2)去分母,得:3(2+x)≥2(2x﹣1)﹣12,去括号,得:6+3x≥4x﹣2﹣12,移项,得:3x﹣4x≥﹣2﹣12﹣6,合并同类项,得:﹣x≥﹣20,系数化成1得:x≤20.23.四边形ABCD中,AD=CD,AB=CB,连接AC、BD相交于点O.(1)如图1,求证:DB平分∠ADC;(2)如图2,若∠ADO=45°,∠OAB=60°,请直接写出四边形ABCD各内角的度数.【分析】(1)根据SSS证明△ABD与△CBD全等,进而利用全等三角形的性质解答即可;(2)根据四边形的内角解答即可.【解答】证明:(1)在△ABD与△CBD中,∴△ABDD≌△CBD(SSS),∴∠ADB=∠CDB,∴BD平分∠ADC,(2)∵∠ADO=45°,∠OAB=60°,∴∠ADC=90°,∠DAB=∠ACB=105°,∠ABC=60°.24.某中学对全校七年级学生进行了一次数学考试,随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如图所示的不完整的统计图.请你根据统计图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算补全条形统计图;并直接写出这部分学生成绩的中位数落在哪组?(3)如果该学校七年级共有380人参加了这次数学考试,请你估计该校七年级共有多少名学生的数学成绩可以达到优秀.【分析】(1)“良”的有22人,占调查人数的44%,可求出调查人数,即全班的人数;(2)计算出“中”的人数,找出成绩的中位数;(3)样本估计总体,样本中成绩达到“优秀”的所占的百分比为(1﹣16%﹣20%﹣44%),进而求出相应的人数.【解答】解:(1)22÷44%=50(人),答:共调查50名学生;(2)50﹣10﹣22﹣8=10(人),成绩从小到大排列后处在第25、26位的都是“良”,因此中位数是良;(3)380×(1﹣16%﹣20%﹣44%)=76(人),答:该校七年级共有76名学生的数学成绩可以达到优秀.25.疫情爆发,物资紧缺,一医药集团主动担当作为,紧急投产口罩生产线,每天生产医用防护口罩或者医用外科口罩.已知2天生产医用防护口罩、1天生产医用外科口罩,可生产两种口罩共8万只;若1天生产医用防护口罩、3天生产医用外科口罩,可生产两种口罩共9万只.(1)求平均每天生产医用防护口罩和医用外科口罩各多少万只?(2)该集团现接到需要180万只口罩的订单,要求生产时间不能超过70天,则工厂至少能生产多少万只医用防护口罩?【分析】(1)设日平均生产医用防护口罩x万只,日平均生产医用外科口罩y万只,由题意可列出方程组,解方程组即可得出答案;(2)设工厂至少能生产n万只医用防护口罩,列出不等式可得出答案.【解答】解:(1)设日平均生产医用防护口罩x万只,日平均生产医用外科口罩y万只,由题意得,,解得.答:日平均生产医用防护口罩3万只,日平均生产医用外科口罩2万只.(2)工厂生产n万只医用防护口罩,∴.解得n≥120,∵n为正整数,∴n的最小值为120.答:工厂至少能生产120万只医用防护口罩.26.已知:Rt△ABC中,∠CAB=90°,CA=BA,Rt△ADE中,∠DAE =90°,DA=EA,连接CE、BD.(1)如图1,求证:CE=BD;(2)如图2,当D在AC上,E在BA的延长线上,直线BD、CE 相交于点F,求证:CE⊥BD;(3)如图3,在(2)的条件下,若D是AC中点,BF=6,求△BEF的面积.【分析】(1)由SAS证得△EAC≌△DAB,即可得出结论;(2)由SAS证得△EAC≌△DAB,得出∠ECA=∠DBA,由三角形外角的性质得出∠CFD=∠BAD=90°,即可得出结论;(3)连接AF,过点A作AP⊥CE于P、AQ⊥BF于Q,过点F 作FR⊥BE于R,则∠APC=∠AQB=90°,由AAS证得△APC≌△AQB,得出AP=AQ,由S△AEF=AE•FR=EF•AP,S△ABF=AB•FR=BF•AQ,得出==,由D是AC中点,得出=,则===,求出EF的长,由S△BEF=BF•EF 即可得出结果.【解答】(1)证明:∵∠EAC=∠DAE+∠DAC=90°+∠DAC,∠DAB =∠CAB+∠DAC=90°+∠DAC,∴∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴CE=BD;(2)证明:在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴∠ECA=∠DBA,∵∠CDB为△CFD、△ADB的外角,∴∠CDB=∠ECA+∠CFD=∠DBA+∠BAD,∴∠CFD=∠BAD=90°,∴CE⊥BD;(3)解:连接AF,过点A作AP⊥CE于P、AQ⊥BF于Q,过点F作FR⊥BE于R,如图3所示:则∠APC=∠AQB=90°,在△APC和△AQB中,,∴△APC≌△AQB(AAS),∴AP=AQ,∵S△AEF=AE•FR=EF•AP,S△ABF=AB•FR=BF•AQ,∴==,∵D是AC中点,∴=,∵AD=AE,AC=AB,∴===,∴EF=BF=×6=3,∵BF⊥EF,∴S△BEF=BF•EF=×6×3=9.27.如图,在平面直角坐标系中,点O为原点,A(0,a),B(b,0),已知a、b满足方程组.(1)求A、B两点的坐标;(2)点C从O出发,以每秒2个单位长度的速度沿y轴正半轴的方向运动,设点C的运动时间为t秒,连接BC,△ABC的面积为S,用含t的式子S表示(并直接写出t的取值范围);(3)如图3,在(2)的条件下,当C点在OA上,S=30时,点E在CB的延长线上,连接AE,将线段AE绕点A逆时针旋转90°至线段AD,点D恰好在x轴的正半轴上,将线段BA绕点A逆时针旋转90°至线段FA,当点F在直线BC上时,求t值和点D的坐标.【分析】(1)解方程组求出a,b的值,即可得出结论;(2)分点C在线段OA和OA延长线上,表示出AC,最后,利用三角形的面积公式即可得出结论;(3)先利用S=30,求出t的值,再判断出△ABO≌△FAG(AAS),得出FG=AO,AO=BO=6,进而判断出△AEH≌△DAO(AAS),得出EH=AO=12,AH=DO,∴EH=FG=AO=12,进而判断出△GCF≌△HCE(AAS),得出GC=CH,即可得出结论.【解答】解:(1)∵,∴,∴A(0,12),B(﹣6,0);(2)当点C在线段OA上时,即0≤t<6,CA=12﹣2t,∵BO⊥OA,∴S=CA•OB=(12﹣2t)×6=﹣6t+36;当点C在OA的延长线上时,t>6,CA=2t﹣6,∵BO⊥OA,∴S=CA•OB=(2t﹣12)×6=6t﹣36,即S=;(3)如图,∵点C在线段OA上,S=30,∴﹣6t+36=30,∴t=1,∴C(0,2),过点F作FG⊥y轴于G,过点E作EH⊥y轴于H,∴∠AGF=90°,∴∠AFG+∠FAG=90°,由旋转知,∠BAF=90°,∴∠FAG+∠OAB=90°,∴∠OAB=∠GFA,由旋转知,AB=AF,∠AOB=∠FGA,∴△ABO≌△FAG(AAS),∴FG=AO,AO=BO=6,∵∠AHE=90°,∴∠HEA+∠EAH=90°,由旋转知,AE=AD,∠EAD=90°,∴∠EAH+∠DAO=90°,∴∠HEA=∠DAO,∵∠AOD=∠EHA,∴△AEH≌△DAO(AAS),∴EH=AO=12,AH=DO,∴EH=FG=AO=12,∵∠FGC=∠EHC=90°,∠ECH=∠GCF,∴△GCF≌△HCE(AAS),∴GC=CH,∵GC=OA﹣OC﹣AG=12﹣2﹣6=4,∴CH=CG=4,∴OD=AH=10+4=14,∴D(14,0).。
2022-2023学年度第二学期七年级数学下学期期末数学试题
七年级数学试卷注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算(a2)3的结果是A.a5 B.a 6 C.a 8 D.3a22.若三角形的两边a、b的长分别为3和5,则其第三边c的取值范围是A.2<c<5B.3<c<8C.2<c<8D.2≤c≤83.分解因式a2-2a,结果正确的是1 / 142 / 14A .a (a -2)B .a (a +2)C .a (a2-2)D .a (2-a ) 4.若a <b ,则下列变形正确的是A .a -1>b -1B .a 4>b 4C .-3a >-3bD .1a >1b5.如图,不能判断l1∥l2的条件是A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠36.某铁路桥长1200m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共40s .则火车的长度为( ▲ )A .180mB .200mC .240mD .250m二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡的相应位置上)7.命题“对顶角相等”的逆命题是一个▲ 命题(填“真”或“假”). 8.某粒子的直径为0.000006米,用科学记数法表示0.000006是▲ . 9.如果 am =2,an =3,那么 am —n = ▲ .l 1l 225431(第5题)3 / 1410.计算(-2020)0×(13)-2= ▲ .11.若式子5x +3的值大于3x -5的值,则x 的取值范围是 ▲. 12.若代数式x2-ax +16是一个完全平方式,则常数a = ▲ . 13.若a -b =1,ab =-2,则(a -1)(b +1)= ▲ .14.已知关于x 、y 的二元一次方程组⎩⎨⎧x +y =4,x -2y =1,则4x2-4xy +y2的值为 ▲ .15.如图,在七边形ABCDEFG 中,AB 、ED 的延长线交于点O ,若∠1、∠2、∠3、∠4的外角和等于225°,则∠BOD = ▲ °.16.若关于x 的不等式组⎩⎨⎧x≤-0.5,x >m的整数解只有2个,则m 的取值范围为 ▲ .三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分=4分+4分)因式分解:(1)a3-2a2+a ;(2)4a2(2x -y)+b2(y -2x) .(第15题)4 / 1418.(6分)先化简,再求值:(a +b)(a -b)-(a -b)2+2b2,其中a =-3,b =12 .19.(5分)解方程组⎩⎨⎧x -y =-1,2x +3y =8.20.(6分)解不等式组⎩⎨⎧-3x≤9,①x >-2,② 2(x +1)<x +3.③请结合题意,完成本题的解答. (1)解不等式①,得 ▲ . (2)解不等式③,得 ▲ .(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集▲ .0 1 2 3 4-1 -2-30 1234-1 -2 -3 -4 -45 /1421.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中已标出了点B 的对应点B′.(1)在方格纸中画出平移后的△A′B′C′; (2)画出AB 边上的中线CD ; (3)画出BC 边上的高线AE ;(4)点F 为方格纸上的格点(异于点B ),若S △ACB =S △ACF ,则图中的格点F 共有 ▲ 个.22.(6分)如图,BD 为△ABC 的角平分线,若∠ABC =60°,∠ADB =70°.6 / 14(1)求∠C 的度数;(2)若点E 为线段BC 上任意一点,当△DEC 为直角三角形时,则∠EDC 的度数为▲.23.(8分)某学校为了庆祝国庆节,准备购买一批盆花布置校园.已知1盆A 种花和2盆B 种花共需13元;2盆A 种花和1盆B 种花共需11元. (1)求1盆A 种花和1盆B 种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A 种盆花的数量不超过B 种盆花数量的2倍,请求出A 种盆花的数量最多是多少?24.(8分)完成下面的证明过程.已知:如图,点E 、F 分别在AB 、CD 上,AD 分别交EC 、BF 于点H 、G ,∠1=∠2, ∠B =∠C . 求证∠A =∠D .(第24题)DCBA (第22题)证明:∵∠1=∠2(已知),∠2=∠AGB(▲),∴∠1=▲.∴EC∥BF(▲).∴∠B=∠AEC(▲).又∵∠B=∠C(已知),∴∠AEC=▲.∴▲(▲).∴∠A=∠D(▲).25.(6分)如图①是由边长为a的大正方形纸片剪去一个边长为b 的小正方形后余下的图形.我们把纸片剪开后,拼成一个长方形(如图②).(第25题)(1)探究:上述操作能验证的等式的序号是▲.①a2+ab=a(a+b)②a2-2ab+b2=(a-b)2③a2-b2=(a+b)(a-b)7 / 14(2)应用:利用你从(1)中选出的等式,完成下列各题:①已知4x2-9y2=12,2x+3y=4,求2x-3y的值;②计算(1-122)×(1-132)×(1-142)×(1-152)×…×(1-11002) .26.(8分)如图①,∠1、∠2是四边形ABCD的两个不相邻的外角.(1)猜想并说明∠1+∠2与∠A、∠C的数量关系;8 / 149 / 14(2)如图②,在四边形ABCD 中,∠ABC 与∠ADC 的平分线交于点O .若∠A =50°,∠C =150°,求∠BOD 的度数;(3)如图③,BO 、DO 分别是四边形ABCD 外角∠CBE 、∠CDF 的角平分线.请直接写出∠A 、∠C 与∠O 的的数量关系▲.①DCBA1 2FEFEODCBA③(第26题)ODCBAFE10 / 14七年级数学答案一、选择题(每题2分,共12分)二、填空题(每小题2分,共20分)7.假 8. 6×10-6 9.23 10. 9 11. x >-412.±8 13.-2 14..25 15 . 45 16.-3≤m <-2 .. 三、解答题(共68分)17.(1)解:原式=a(a2-2a +1)………………2分 =a(a -1)2………………4分(2)解:原式=(2x -y)(4a2-b2)………………2分 =(2x -y) (2a +b)(2a -b)………………4分11 / 1418.解:原式=a2-b2-(a2-2ab +b2)+2b2………………2分 =2ab………………4分当a =-3,b =12时,原式=-3………………6分 19. ⎩⎨⎧ x -y =-1,① 2x +3y =8.②解:①×2 得:2x -2y =-2 ③②-③得:5y =10y =2……………2分将y =2代入①,解得x =1………………4分∴原方程组的解为⎩⎨⎧ x =1,y =2.…………5分 20. (1)x≥-3……………2分 (2)x <1……………4分(3)画图正确…………5分 (4)-2<x <1……………6分21. (1)~(3)画图正确各得2分,(4)7……………7分22. 解:(1)∵BD 为△ABC 的角平分线,∠ABC =60°∴∠DBC =12∠ABC =30°…………1分12 / 14又∵∠ADB 是△BDC 的外角,∠ADB =70°∴∠ADB =∠DBC +∠C……………3分∴∠C =∠ADB -∠DBC =40°…………4分(2)50°或90°…………6分23.解:(1)设一盆A 种花的售价为x 元,一盆B 种花的售价为y 元.根据题意得:⎩⎨⎧ x +2y =13 2x +y =11…………2分 解得:⎩⎨⎧ x =3y =5…………3分 答:一盆A 种花的售价为3元,一盆B 种花的售价为5元.…………4分(2)设A 种花购进a 盆,则B 种花购进(100-a)盆.根据题意得:a≤2(100-a)…………6分解得:a≤2003…………7分 又∵a 为整数,∴a 最大可取66.答:A 种花购进最多66盆………8分24.证明:∵∠1=∠2(已知),∠2=∠AGB(对顶角相等),∴∠1=∠AGB .∴EC ∥BF(同位角相等,两直线平行).∴∠B =∠AEC(两直线平行,同位角相等).13 / 14又∵∠B =∠C(已知),∴∠AEC =∠C .∴ AB ∥CD(内错角相等,两直线平行).∴∠A =∠D(两直线平行,内错角相等).每写对一个得1分25.解:(1)③…………2分(2)①∵4x2-9y2=12,∴(2x +3y)(2x -3y)=12,∴2x -3y =12÷4=3…………4分②101200…………6分26.解:(1)猜想:∠1+∠2=∠A +∠C…………1分 ∵∠1+∠ABC +∠2+∠ADC =360°又∵∠A +∠ABC +∠C +∠ADC =360°∴∠1+∠2=∠A +∠C…………3分(其他方法酌情给分) (2)∵∠A =50°,∠C =150°∴∠ABC +∠ADC =360°-200°=160°又∵BO 、DO 分别平分∠ABC 与∠ADC∴∠OBC =12∠ABC ,∠ODC =12∠ADC14 / 14 ∴∠OBC +∠ODC =12(∠ABC +∠ADC)=80° ∴∠BOD =360°-(∠OBC +∠ODC +∠C)=130°…………6分(其他方法酌情给分) (3)∠C -∠A =2∠O…………8分。
2022年七年级第二学期数学期末考试试题(含答案)(山东地区)
七年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。
(每小题4分,共48分)1.北京冬奥会圆满落下帷幕,中国交出满分答卷,得到世界高度赞扬,组成本次会徽的四个图案中是轴对称图形的是()A. B. C. D.2.某病毒直径大约长0.00000012米,数字0.00000012用科学记数法表示为()A.1.2×10﹣7B.12×10﹣8C.120×106D.0.12×10﹣93.下列计算正确的是()A.a6÷a2=a3B.a6•a2=a12C.(﹣2a2)2=4a4D.b3+b2=2b54.已知三角形的两边长分别是3和8,则此三角形第三边长可能是()A.4B.5C.10D.115.小明的钱包原有80元,他在新年一周里抢红包,钱包里的钱随着时间的变化而变化,在上述过程中,因变量是()A.时间B.小明C.80元D.钱包里的钱6.下列事件属于必然事件的是()A.掷一枚质地均匀的骰子,掷出的点数是奇数B.车辆随机经过一个路口,遇到红灯C.任意画一个三角形,其内角和是180°D、有三条线段,将这三条线段首尾顺次相接可以组成一个三角形7.如图,AB∥CD,∠A=30°,DA平分∠CDE,则∠DEB的度数为()A.45°B.60°C.75°D.80°(第7题图)(第8题图)(第9题图)8.如图,一根垂直于地面的旗杆在离地面5m的B处折断,旗杆顶部落在旗杆底部12m的A 处,则旗杆折断前的高度为()A.18mB.13mC.12mD.5m9.如图,直线DE是△ABC边AC的垂直平分线,且与AC相交于点E,与AB相交于点D,连接CD,已知BC=8cm,AB=12cm,则△BCD的周长为()A.16cmB.18cmC.22cmD.20cm10.如图,点B,E,C,F四点在同一条直线上,∠B=∠DEF,BE=CF,添加一个条件,不能判定△ABC≌△DEF的是()A.AC=DFB.AB=DEC.AC∥DFD.∠A=∠D(第10题图)(第11题图)(第12题图)11.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于1MN长为半径画弧,两弧交于点O,作射线AO,交BC于2点E,已知AB=10,S△ABE=20,则CE的长为( C )A.6B.5C.4D.312.已知动点H以每秒1厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A—B—C —D—E—F的路径匀速运动,相应的△HAF的面积S(cm2)关于时间t(s)的关系图象如图2,已知AF=8cm,下列说法错误的是()A.动点H的速度为2cm/sB.b的值为14C.BC的长度为6cmD.在运动过程中,当△HAF的面积为30cm2时,点H的运动时间是3.75s或9.25s二.填空题。
人教版七年级下册数学期末考试试题及答案
人教版七年级下册数学期末考试试题及答案七年级下册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下列各点中,位于第二象限的是()A、(2,3)B、(2,-3)C、(-2,3)D、(-2,-3)2、对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图可以互相转换3、下列方程组是二元一次方程组的是()A、x y5z x 5B、x y3xy 2C、x y32x y 4D、x y11x y 44、下列判断不正确的是()A、若a b,则4a4bB、若2a3b,则a bC、若a b,则ac bcD、若ac bc,则a b5、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)6、下列调查适合作抽样调查的是()A、了解XXX“天天向上”栏目的收视率B、了解初三年级全体学生的体育达标情况C、了解某班每个学生家庭电脑的数量D、“辽宁号”航母下海前对重要零部件的检查7、已知点A(m,n)在第三象限,则点B(m,-n)在()A、第一象限B、第二象限C、第三象限D、第四象限8、关于x,y的方程组y2x mx2y 5x2y5m的解满足x y6,则m的值为()A、1B、2C、3D、49、为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法正确的有()A、这6000名学生的数学会考成绩的全体是总体;B、每个考生的数学会考成绩是个体;C、抽取的200名考生的数学会考成绩是总体的一个样本;D、样本容量是200.10、已知:正方形ABCD的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则a,b的长分别是()A、a=5,b=3B、a=3,b=5C、a=6.5,b=1.5D、a=1.5,b=6.5一、改错题1.今天我们研究了一道非常有意思的数学题目,它是这样的:有一只猴子摘了若干个桃子,第一天它吃了其中的一半,然后再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃,请问这只猴子摘了多少个桃子?改为:今天我们研究了一道非常有趣的数学题目:一只猴子摘了一些桃子,第一天它吃了其中的一半,再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃。
【人教版】数学七年级下册《期末考试题》(带答案)
22.某校在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:
“A--国学诵读”、“B--演讲”、“C--书法”、“D---课本剧”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:
12 如果 ,则x-y=_______.
15.《孙子算经》是中国古代重要的数学著作之一,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有钱48文,甲、乙两人原来各有多少钱.设甲原有x文钱,乙原有y文钱,可列方程组是________.
16.如图,把一块含有30°角的直角三角板的直角顶点放在相互平行的两条直线的其中一条上,如果∠1=38°,那么∠2的度数是______________.
【答案】C
【解析】
分析:根据无理数是无限不循环小数,判断出 , ,0.123112233111222333…, ,- ,这些数中,无理数有多少个即可.
详解: , ,0.123112233111222333…, ,- ,其中无理数有3个: ,0.123112233111222333…,- .
故选C.
点睛:此题主要考查了无理数的含义和求法,要熟练掌握,解答此题的关键是要明确:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.
17.对于非负实数x “四舍五入”到个位的值记为 ,即当m为非负整数时,若 ,则 .如: , ,……根据以上材料,若 ,则x应满足的条件是_______________________.
三、解答题(18小题5分,19(1)小题6分,19(2)小题7分,20小题7分,满分25分)
2021-2022学年七年级第二学期期末数学考试试卷及参考答案
七年级数学试卷一、选择题(本大题共6题,每题2分,共12分) 1. 下列实数中,有理数是( )(A )0.2525525552……(相邻的两个“2”之间每次增加一个“5”); (B )π3-; (C )8; (D )722.2. 若三角形的两边长分别为3和6,则第三边的长不可能是( ) (A )3; (B ) 4; (C )5; (D )6.3. 如图1,能推断AD//BC 的是( ) (A )43∠=∠; (B ); (C )345∠=∠+∠ ; (D )213∠+∠=∠.4.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比( )(A )横坐标不变,纵坐标加3 (B ) 纵坐标不变,横坐标加3 (C )横坐标不变,纵坐标乘以3 (D )纵坐标不变,横坐标乘以324∠=∠5. 若点()b a P ,到y 轴的距离为2,则( )(A )2=a ; (B )2±=a ; (C )2=b ; (D ) 2±=b . 6.如图2,已知两个三角形全等,那么∠1的度数是( )(A )72°;(B )60°;(C )58°;(D )50°.二、填空题(本大题共12题,每题2分,共24分) 7. 827-的立方根等于. 8. 比较大小:3-2-. 9. 用幂的形式表示:37=.10.计算:51515÷⨯= .11. 位于浦东的“中国馆”总建筑面积约为1601000平方米,这个数字保留两个有效数字可写为平方米.12. 经过点P ()1,3-且垂直于y 轴的直线可表示为直线_________. 13.若三角形三个内角的比为2︰3︰4,则这个三角形是三角形(按角分类).EDCBA54321图1(图2)14. 如图3,已知△ABC,ACB∠的平分线CD交AB于点D,//DE BC,且8AC=,如果点E是边AC的中点,那么DE的长为.15. 如图4,在△ABC中,︒=∠70A,如果ABC∠与ACB∠的平分线交于点D,那么BDC∠=度.16. 如图5,如果AB∥CD,∠1 = 30º,∠2 = 130º,那么∠BEC=度.17.如图6,将Rt△ABC绕点O顺时针旋转90º,得到Rt△A´OB´,已知点A的坐标为(4,2),则点A´的坐标为____________.18.已知三角形ABC是一个等腰三角形,其中两个内角度数之比为1:4,则这个等腰三角形顶角的度数为.三、简答题(本大题共6小题,每小题6分,共36分)19. 计算:()4981331-++20. 计算:3ECBADCBAD图3图421DCBAE图5图621.计算:))2222- 22.利用幂的性质进行计算:633326⨯÷23. 如图,在直角坐标平面内,点A 的坐标是(0,3),点B 的坐标是(3,2)--(1)图中点C 关于x 轴对称的点D 的坐标是. (2)如果将点B 沿着与x 轴平行的方向向右平移3个单位得到点B ',那么A 、B '两点之间的距离是. (3)求四边形ABCD 的面积24. 说理填空:如图,点E 是DC 的中点,EC=EB ,∠CDA=120°,DF//BE ,且DF 平分∠CDA ,求证:△BEC 为等边三角形.yx·· ·解: 因为DF 平分∠CDA (已知)所以∠FDC=21∠________. ( ) 因为∠CDA=120°(已知) 所以∠FDC=______°.因为DF//BE (已知) 所以∠FDC=∠_________.(____________________________________) 所以∠BEC = 60°,又因为EC=EB,(已知)所以△BCE 为等边三角形.(_____________________________)三、解答题(25题8分、26题8分,27题12分,共28分) 25. 如图,在ABC △中,点D 、E 分别在边AB 、AC 上,CD 与BE 交FBCEDA于点O ,且满足CE B D =,21∠=∠.试说明ABC △是等腰三角形的理由.26.如图,已知AB=CD ,点E 是AD 的中点,EB=EC. 试说明AD//BC的理由.AB CDE27. 如果一个三角形能用一条直线将其分割出两个等腰三角形,那么我们称这个三角形为“活三角形”,这条直线称为该“活三角形”的“生命线”. (1)小明在研究“活三角形”问题时(如图),他发现,在△ABC中,若∠BAC = 3∠C时,这个△ABC一定是“活三角形”.点D在BC 边上一点,联结AD,他猜测:当∠DAC = ∠C时,AD就是这个三角形的“生命线”,请你帮他说明AD是△ABC的“生命线”的理由.(2)如小明研究结果可以总结为:有一个内角是另一个内角的3倍时,该三角形是一个“活三角形”。
最新人教版七年级数学下册期末考试试题
七年级数学下册期末考试试题一、选择题(每小题2分,共16分)1.点A(﹣2,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各数中的无理数是()A.B.C.3.D.3.下列事件中,调查方式选择合理的是()A.为了解某批智能手机操作系统的性能,选择全面调查B.为了解北京市某年龄段人群的网购意向,选择全面调查C.为审查某文章中的错别字,选择抽样调查D.为了解某班学生的身高情况,选择全面调查4.已知a<b,下列不等式变形不正确的是()A.a+2<b+2B.3a<3b C.﹣2a<﹣2b D.2a﹣1<2b﹣1 5.如图,AB∥CD,点E在直线CD上,若∠B=57°,∠AED=38°,则∠AEB的度数为()A.38°B.57°C.85°D.95°6.如图,将北京市地铁部分线路图置于正方形网格中,若崇文门站的坐标为(0,﹣1),西单站的坐标为(﹣5,0),则雍和宫站的坐标为()A.(4,0)B.(﹣4,0)C.(0,﹣4)D.(0,4)7.在平面直角坐标系xOy中,直线l经过点A(﹣1,0),点A1,A2,A3,A4,A5,……按如图所示的规律排列在直线l上.若直线l上任意相邻两个点的横坐标都相差1,纵坐标也都相差1,若点A n(为正整数)的纵坐标为﹣2022,则n的值为()A.4042B.4043C.4044D.40458.从A地到B地有驾车、公交、地铁三种出行方式,为了选择适合的出行方式,对6:00﹣10:00时段这三种出行方式不同出发时刻所用时长(从A地到B地)进行调查、记录与整理,数据如图所示.根据统计图提供的信息,下列推断合理的是()A.若8:00出发,驾车是最快的出行方式B.地铁出行所用时长受出发时刻影响较小C.若选择公交出行且需要30分钟以内到达,则7:30之前出发均可D.同一时刻出发,不同出行方式所用时长的差最长可达30分钟二、填空题(每题2分,共16分)9.81的平方根是.10.计算:=.11.下列四个命题:①同一平面内,过一点有且只有一条直线与已知直线垂直;②过一点有且只有一条直线与已知直线平行;③两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;④从直线外一点作这条直线的垂线段叫点到直线的距离.其中是真命题的是.12.如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,其余部分种上各种花草,则种植花草的面积是平方米.13.已知关于x,y的方程x2m﹣n﹣2+4y2n﹣m+2=0是二元一次方程,则m+n的值为.14.如图,在平面直角坐标系xOy中,A(﹣1,0),B(﹣3,﹣3),若BC∥OA,且BC=4OA,直接写出点C的坐标.15.某品牌触屏笔记本的成本为6800元,售价为9999元,6.18活动期间,该商家准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的触屏笔记本打x折销售,请列出不等式表示该商家的促销方式:.16.已知:如图,数轴上两点A、B对应的数分别是﹣1,1,点P是线段AB上一动点,给出如下定义:对于数轴上任意一点Q,如果在线段AB上存在点P,满足PQ=2,那么我们把这样的点Q表示的数称为线段AB的连动数,特别地,当点Q表示的数是整数时我们称为线段AB的连动整数.(1)﹣3,0是线段AB的连动数的是;(2)当不等式组的解集恰好有线段AB的3个连动整数时,a的取值范围是.三、解答题(第17题18分,第18题12分,第19~22题每题6分,第23、24每题7分,共68分)17.(18分)(1)计算:;(2)求等式中x的值:36x2=9;(3)解二元一次方程组:.18.(12分)(1)解不等式2x﹣5<4(x+1)﹣3,并写出它的负整数解;(2)解不等式组,并把它的解集在数轴上表示出来.19.(6分)如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD平分∠ACM.当∠DCM=60°时,求∠O的度数.解:∵CD平分∠ACM,∴∠ACM=.∵∠DCM=60°,∴∠ACM=°.∵直线AB与OM交于点C,∴∠OCB=∠ACM=°(),∵AB∥ON,∴∠O+∠OCB=180°(),∴∠O=°.20.(6分)如图,平行四边形ABCO四个顶点的坐标分别是A(1,2),B(4,2),C(3,0),O(0,0).将这个平行四边形向左平移4个单位长度,向上平移3个单位长度,得到平行四边形A'B'C'O',点A,B,C,O的对应点分别是点A',B',C',O'.(1)画出平移后的平行四边形A'B'C'O',并写出A'、B'的坐标;(2)直接写出平行四边形A'B'C'O'的面积;(3)若点N是x轴上的一个动点,直接写出线段O'N的最小值:,数学依据是:.21.(6分)如图,点A、C在∠MON的一边OM上,AB⊥ON于点B,CD⊥OM交射线ON 于点D.按要求画图并猜想证明:(1)过点C画ON的垂线段CE,垂足为点E;(2)过点E画EF∥OC,交CD于点F.请你猜想∠OAB与∠CEF的数量关系,并证明你的结论.22.(6分)镇政府想了解李家庄130户家庭的经济情况,从中随机抽取了部分家庭进行调查,获得了他们的年收入(单位:万元),并对数据(年收入)进行整理、描述和分析.下面给出了部分信息.a.被抽取的部分家庭年收入的频数分布直方图和扇形统计图如下(数据分组:0.9≤x<1.3,1.3≤x<1.7,1.7≤x<2.1,2.1≤x<2.5,2.5≤x<2.9,2.9≤x<3.3)b.家庭年收入在1.3≤x<1.7这一组的是:1.3 1.3 1.4 1.5 1.6 1.6根据以上信息,完成下列问题:(1)将两个统计图补充完整;(2)估计李家庄有多少户家庭年收入不低于1.5万元且不足2.1万元?23.(7分)某电器超市销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(7分)已知直线AB∥CD,点E,F分别在直线AB,CD上,∠EFD=α.点P是直线AB上的动点(不与E重合),连接PF,∠PEF和∠PFC的平分线所在直线交于点H.(1)如图1,若EF⊥CD,点P在射线EB上.则当∠EPF=40°时,∠EHF=°;(2)如图2,若α=120°,点P在射线EA上.①补全图形;②探究∠EPF与∠EHF的数量关系,并证明你的结论.(3)如图3,若0°<α<90°,直接写出∠EPF与∠EHF的数量关系(用含α的式子表示).四、选做题(共10分,每题5分)25.(5分)在用计算机程序求一元方程的解时,常用“二分法”的算法思路.借鉴这种思路,小明编写了一个程序来求一个正数a的算术平方根.以a=10为例,要求,相当于求方程x2﹣10=0的正数解,他设计的程序是这样的:第一步:输入一个比小的正数L1,一个比大的正数R1,则L12﹣10<0,R12﹣10>0.取M1=(L1+R1),计算M12﹣10,可能有以下三种结果:①如果M12﹣10=0,那么方程的解为M1,输出结果,程序运行结束;②如果M12﹣10<0,那么记L2=M1,R2=R1:③如果M12﹣10>0,那么记L2=L1,R2=M1.第二步:取M2=(L2+R2),计算M22﹣10,并根据M22﹣10与0的大小关系继续为L3、R3赋值或输出结果.第三步:取M3=(L3+R3),计算M32﹣10,…………第N步:取M n=(L n+R n),输出方程的(近似)解M n,程序运行结束.当程序求出方程的解,或者运行到指定的步数时(不能无限进行),均输出结果,结束运行.小明运行程序,当指定步数不超过4时,得到了下面的过程和结果:L i R i M i M i2﹣10i=1输入:3输入:4>0i=2赋值:3赋值: 3.250i=3赋值:赋值:3.25 3.125<0i=4赋值:赋值:输出:/(1)请补全如表中空缺的过程和结果;(2)如果要计算23的算术平方根,在输入L1=4,R1=5的情况下,请写出程序运行两步后的结果:M2=.26.(5分)在平面直角坐标系中,如果点P的坐标为(x,y),那么把点Q(kx,ky)(其中k≠0)称为点P的“[k]位置点”.已知,点A(﹣1,2),B(3,2).(1)若点A′,B′分别是点A,B的“[2]位置点”,则线段A′B′=;(2)点M是线段AB上一点,点N是点M的一个“[k]位置点“.①当M在线段AB上运动时,若点M,N之间的距离的最小值为5,求k的值;②如图,点E(﹣2,3),F(﹣2,6),G(﹣5,6),H(﹣5,3),如果在线段AB上能找到至少一个点M,使点N在正方形EFGH的内部或边上,直接写出k的取值范围.。
安徽合肥2024年七年级下学期6月期末考试数学试题
2023-2024学年度第二学期期末教学质量检测七年数学试题卷一、选择题(本题共10小题,每小题3分,共30分)题号12345678910答案1.下列四个实数中,是无理数的是(▲).A.3.14B.πC.227D.1212.下列各式中,计算正确的是(▲).A.2222-=B.3252a a a+=C.3a ÷2a a =D.2222()a b a b=3.关于x 的一元一次不等式1x m -≤的解集在数轴上的表示如图所示,则m 的值为(▲).A.-2B.-1C.1D.24.如图,给出了过直线AB 外一点P ,画已知直线AB 的平行线的方法,其依据是(▲).A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线品行D.过直线外一点有且只有一条直线与这条直线平行5.已知3m n +=,1mn =,则()()1212m n --的值为(▲).A.-1 B.-2C.1D.26.把公式U V VR S-=变形为用U ,S ,R 表示V .下列变形正确的是(▲) S R V += B.RUS V = C.U V R S =+ V R S =+7.若20.2a =-,2)21(--=b ,0)2(-=c ,则它们的大小关系是(▲).A.a b c <<B.cb a << C.bc a << D.ca b <<8.“抖空竹”是国家级非物质文化遗产之一,小明把它抽象成数学问题,如图所示:已知CD AB //,︒=∠87BAE ,︒=∠121DCE ,则E ∠的度数是(▲).A.28° B.34°C.46° D.56°9.分式方程22312111x x x x --=-+-的解为(▲).A.4=x B.5-=x C.6-=x D.4-=x 学校班级姓名考号密封线内不要答题10.对于实数x ,我们规定[x ]表示不大于x]=1,[ 1.5-]=2-.现对50进行如下操作:50]=2]=1,这样对50只需进行3次操作后变为1,类似地,对1000最少进行(▲)次操作后变为1.A.2B.3C.4D.5二、填空题(本题共6小题,每小题4分,共24分)11.我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为.12.分解因式:3123x x -=.13.若()()223x x m x x n -+=+-,则m n -=.14.如图,把一张长方形的纸条ABCD 沿EF 折叠,若'BFC ∠比1∠多9°,则AEF ∠的度数为.15.已知2210x x --=,则56103223--+-x x x x x 的值等于.16.已知关于x 的不等式组21519.22x x a x x +>+⎧⎪⎨+≥-⎪⎩,(1)若不等式组的最小整数解为=1x ,则整数a 的值为___________;(2)若不等式组所有整数解的和为14,则a 的取值范围为___________.三、解答题(本题共6小题,共46分)17.(5分)计算:102(3.14)π-+-.18.(7分)解不等式212133+<-+x x,并将其解集在数轴上表示出来.19.(8分)先化简,再求值21111a a a ⎛⎫+÷⎪--⎝⎭,其中2a =-.20.(8分)如图,CD AB //,1=2∠∠,3=4∠∠,试说明AD BE ∥.请你将下面解答过程填写完整.解:因为CD AB //,所以4=∠______()因为3=4∠∠所以3=∠______()因为1=2∠∠所以1=2CAE CAE ∠+∠∠+∠即=BAE ∠______所以3=∠______()所以AD BE∥()21.(8分)“端午节”是我国的传统佳节,历来有吃“粽子”的习俗.我市某食品加工厂,拥有A ,B 两条粽子加工生产线.原计划A 生产线每小时加工粽子个数是B 生产线每小时加工粽子个数的54.(1)若A 生产线加工4000个粽子所用时间与B 生产线加工4000个粽子所用时间之和恰好为18小时,则原计划A ,B 生产线每小时加工粽子各是多少个?(2)在(1)的条件下,原计划A ,B 生产线每天均加工a 小时,由于受其他原因影响,在实际加工过程中,A 生产线每小时比原计划少加工100个,B 生产线每小时比原计划少加工50个.为了尽快将粽子投放到市场,A 生产线每天比原计划多加工3小时,B 生产线每天比原计划多加工a 31小时.这样每天加工的粽子不少于6300个,求a 的最小值.22.(10分)阅读材料:若满足()()321x x --=-,求()()2232x x -+-的值.解:设3x a -=,2x b -=,则()()321ab x x =--=-,()()321a b x x +=-+-=,所以()()()2222232=23x x a b a b ab -+-+=+-=.请仿照上例解决下面的问题:(1)问题发现:若x 满足()()3510x x --=-,求()()2235x x -+-的值;(2)类比探究:若x 满足()()22202320242025x x -+-=.求()()20232024x x --的值;(3)拓展延伸:如图,正方形ABCD 和正方形MFNP 重叠,其重叠部分是一个长方形,分别延长AD ,CD ,交NP 和MP 于H 、Q 两点,构成的四边形NGDH 和MEDQ 都是正方形,四边形PQDH 是长方形.若10=AE ,20=CG ,长方形EFGD 的面积为200.求正方形MFNP 的面积.附加题(本题5分,计入总分,但总分不超过100分)23.有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,…,()()2112n n a n n n +=++.记123n n S a a a a =++++ ,则10S =.密封线内不要答题。
湖北省武汉市江汉区2023-2024学年七年级下学期期末考试数学试卷(含答案)
2023~2024学年度第二学期期末质量检测七年级数学试题(考试时间:120分钟试卷总分:150分)第Ⅰ卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.估计的值()A.在2与3之间B.在3与4之间C.在4与5之间D.在5与6之间.2.以下调查中,适合进行抽样调查的是()A.飞船发射前对重要零部件的检查B.调查全班同学每周体育锻炼时间C.了解某批次节能灯的使用寿命D.乘坐飞机前,对乘客进行安全检查3.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集是()A. B. C. D..4.如图,在中,为边上一点,为边上一点,为延长线上一点,,,下列条件中不能证明的是()A. B. C. D..5.若是关于,的二元一次方程的解,则的值是()A.1B.C.2D.6.若,则下列式子不正确的是()A. B. C. D..7.为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100根麦穗,量得它们长度(单位:cm),最大值为7.4,最小值为4.0,取组距为0.3,则可以分成()A.10组B.11组C.12组D.13组.8.我国古代数学名著《孙子算经》中有一道题,原文是“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长尺,绳长尺,可列方程组为()A. B. C. D.9.在平面直角坐标系中,点,,过点作直线轴,点是直线上的一个动点,当线段长度最小时,点的坐标是()A. B. C. D.10.若关于的不等式组的解集是,则的取值范围是()A. B. C. D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是______.12.已知在第四象限,则的取值范围是______.13.用一条长为20cm的细绳围成一个等腰三角形,使其一边的长度为5cm,则另两边的长度分别是______cm.14.一个多边形的内角和比外角和多720°,它的边数是______.15.将一把长方形直尺和一个正六边形按如图所示的位置摆放,若,则______°.16.若关于,的方程组满足,则的取值范围是______.三、解答题(共5小题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题10分)(1)计算:;(2)解方程组:.18.(本小题10分)求满足不等式组的整数解.19.(本小题10分)某校组织开展了“英雄城市,先锋有我”的系列活动,要求每名学生在规定时间内必须且只能参加其中一项活动:A参观学习,B团史宣讲,C经典诵读,D文学创作.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,得到如下不完整的统计图表.活动意向统计表活动类别意向人数AB12CD16(1)上表中的______;______;请补全条形统计图;(2)项活动所在扇形的圆心角的度数是______°;(3)若该校有2000名学生,请估计其中意向参加“参观学习”活动的人数20.(本小题10分)如图,在中,是上一点,于点,于点,是上一点,且满足.(1)求证:;(2)若平分,,求的度数.21.(本小题12分)在的正方形网格中,建立如图所示的平面直角坐标系,网格线的交点称为格点,请用无刻度的直尺画图,并回答相关问题.已知,,把线段先向左平移3个单位长度,再向下平移3个单位长度,得到线段(其中点与点对应).(1)画出平移后的线段;(2)直接写出线段在两次平移中一共扫过的面积;(3)连接,,,在轴上画点,使;(画出一种即可)(4)图中使面积为6的格点共有______个.第Ⅱ卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.22.如图,小明一笔画成了如图所示的图形,若,,,则______°.23.已知三角形的三边长分别为6,9,,且关于的不等式组至少有四个整数解,则整数的值是______.24.若,满足,,则的取值范围是______.25.如图,在中,,分别是的高和角平分线,点在的延长线上,于点,分别交,,于点,,.下列四个结论:①;②;③;④.其中正确的结论是______(填写序号).五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形,26.(本小题10分)苹果的进价是1.5元/千克,香梨的进价是2元/千克;李老板购进苹果的重量比香梨重量的3倍多20千克,一共花费420元;为方便销售,定价均为7元/千克.(销售量取整数)(1)李老板购进苹果和香梨各多少千克?(2)前4天,平均每天卖出苹果和香梨共50千克,若每天利润大于268元,且苹果的平均日销售量小于香梨平均日销售量的3倍.①这4天苹果和香梨的平均日销售量分别是多少千克?②由于天气炎热,苹果总量存在8%的损耗,为尽快清仓,李老板决定对剩下的苹果进行打折销售,为确保销售苹果的总利润不低于925元,最多可以打几折?(直接写出结果)27.(本小题12分)在中,,的角平分线,交于点.(1)【问题呈现】如图1,若,求的度数;(2)【问题推广】如图2,将沿折叠,使得点与点重合,若,求的度数;(3)【问题拓展】若,分别是线段,上的点,设,.射线与的平分线所在的直线相交于点(不与点重合),直接写出与之间的数量关系(用含,的式子表示).28.(本小题12分)定义:在平面直角坐标系中,已知点,,可以得到的中点的坐标为;当时,将点向上平移个单位,得到;当时,将点向下平移个单位,得到,我们称点为关于的中心平移点.例如:,,的中点的坐标为,关于的中心平移点的坐标为.(1)已知,,,直接写出关于的中心平移点及关于的中心平移点的坐标;(2)已知,位于轴的同侧,关于的中心平移点为,若的面积比的面积大6,求的值;(3)已知,,将点向下平移1个单位得到,将点向上平移6个单位得到,分别过点与作轴的平行线与.若点在线段上,且关于的中心平移点在与之间(不含,),直接写出的取值范围.2023~2024学年度第二学期期末检测七年级数学试题参考答案及评分标准武汉市江汉区教育局教育培训中心命制2024.6一、选择题(共10小题,每小题3分,共30分)题号12345678910答案C C D B B D C C B A 二、填空题(共6小题,每小题3分,共18分)11.三角形具有稳定性12.13.7.5cm,7.5cm 14.815.7816.三、解答题(共8小题,共72分)17.解:(1)原式……3分.……5分(2)①+②得:……7分将代入①得:……9分该方程组的解为……10分18.解:由①得:……3分由②得:……6分该不等式组的解集为……8分该不等式组的整数解为:1,2,3,4.……10分19.(1);;见下图……4分(2)54°.……7分(3)(人)……9分答:估计其中意向参加“参观学习”活动的有800人.……10分20.(1)解:,,,,……2分,……3分,,……4分.……5分(2)解:平分,……6分又,,……7分在中,,,……9分,,.……10分21.(1)如图所示……3分(2)15……6分(3)如图所示……9分(4)5……12分四、填空题(每小题4分,共16分)22.88° 23.13、14 24.25.①③④五、解答题(共3小题,共34分)26.解:(1)设李老板购进苹果千克,购进香梨千克解得:.答:李老板购进苹果200千克,购进香梨60千克.……3分(2)设前10天,每天卖出苹果千克,则卖出香梨千克.……5分解得:取整数答:这4天苹果日销售量为37千克,香梨的日销量为13千克.……7分(3)7.5折(七五折)……10分27.解:(1)平分,平分,,中,,又,,,在中,.……4分(2)由折叠可知,,,,,,,,,,在中,,在中,,,,在中,.……8分(3),……10分或.……12分28.解:(1)……4分(2)取的中点,连接,由题意可知,……5分为的中点,,解得或.……9分(另解:也可以用围补法表示出两个三角形的面积,列方程求解)由题意可知,……5分当点、位于轴上方时,,解得……7分当点、位于轴下方时,,解得.……59分(3)……512分。
初中七年级数学第二学期期末考试试卷含答案(标准)
B ′C ′D ′O ′A ′O DC BA (第8题图)初中七年级数学第二学期期末考试试卷(标准)班级 姓名 分数(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号 1 2 3 4 5 6 78 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生 3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等 7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同 8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AAS D .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的大小是 °. 12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率(第16题图)为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者试验次数n 正面朝上的次数m 正面朝上的频率nm 布丰4040 2048 0.5069德·摩根4092 2048 0.5005费勤10000 4979 0.4979那么估计抛硬币正面朝上的概率的估计值是 .16.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC全等且有一个公共顶点的格点△CBA''';在图②中画出与△ABC全等且有一条公共边的格点△CBA''''''.18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)xx-3(2)-2x+x2+120.解方程组:(每小题5分,本题共10分)OACPP′B(第16题图)能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④6.如果4(1)6x y x m y +=⎧⎨--=⎩中的解x 、y 相同,则m 的值是( )(A)1(B)-1(C)2(D)-27.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( ) (A)3场(B)4场(C)5场(D)6场8.若使代数式312m -的值在-1和2之间,m 可以取的整数有( )(A )1个 (B )2个 (C )3个 (D )4个9.把不等式组110x x +⎧⎨-≤⎩>0,的解集表示在数轴上,正确的是( ).(A ) (B ) (C ) (D ) 10.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想 方法叫做( ).(A )代入法(B )换元法(C )数形结合(D )分类讨论二、填空题(每题3分,共30分)1.若∠1与∠2互余,∠2与∠3互补,若∠1=630,则∠3=2.已知P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则2005()a b +的值为 3.根据指令[s,A](s≥0,0º<A<180º),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s .现机器人在直角坐标系的坐标原点,且面对x 轴正方向(1)若给机器人下了一个指令[4,60º],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(-5,5). 4.右图是用12个全等的等腰梯形镶嵌成的图形,这个图形中等腰梯形的上底长与下底长的比是 .5.一个多边形的每一个外角都等于360,则该多边形的内角和等于 6. 已知2(234)370x y x y +-++-=,则x= ,y=7.已知方程组11235mx ny mx ny ⎧+=⎪⎨⎪+=⎩的解是32x y =⎧⎨=-⎩,则m= ,n= 8.若点(m-4,1-2m )在第三象限内,则m 的取值范围是 .9.绝对值小于100的所有的整数的和为a ,积为b ,则20042005a b +的值为 .-1 0 1-1 0 1 -1 0 1 -1 0 1 第10题图第4题图对54D3E 21C B A人都版七年级数学下学期末模拟试题(三)1. 若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、()3,3B 、()3,3-C 、()3,3--D 、()3,3-2. △ABC 中,∠A=13∠B=14∠C,则△ABC 是( ) A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3. 商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有.( )(A )1种 (B )2种 (C )3种 (D )4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解 以上解法,造成错误的一步是( )A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是( )A.m =1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=3 7. 一个四边形,截一刀后得到的新多边形的内角和将( )A 、增加180ºB 、减少180ºC 、不变D 、以上三种情况都有可能 8. 如右图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ;(2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B . A.1 B.2 C.3 D.4 9. 下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。
2022学年第二学期七年级(下)期末考试数学试卷 解析版
一.选择题(共12小题)1.9的平方根是()A.±81B.±3C.﹣3D.32.若m<0,则点P(3,2m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知a>b,下列不等式中,不正确的是()A.a+4>b+4B.a﹣8>b﹣8C.5a>5bD.﹣6a>﹣6b 4.用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.5.下列调查中,适合用普查方法的是()A.了解某班学生对“北京精神”的知晓率B.了解某种奶制品中蛋白质的含量C.了解北京台《北京新闻》栏目的收视率D.了解一批科学计算器的使用寿命6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°7.已知和都是方程y=ax+b的解,则a和b的值是()A.B.C.D.8.如图,在平面直角坐标系xOy中,将线段AB平移得到线段MN,若点A(﹣1,3)的对应点为M(2,5),则点B(﹣3,﹣1)的对应点N的坐标是()A.(1,0)B.(0,1)C.(﹣6,0)D.(0,﹣6)9.(我国古代问题)有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.若设1一个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则列方程组为()A.B.C.D.10.小文同学统计了某小区部分居民每周使用共享单车的时间,并绘制了统计图,如图所示.下面有四个推断:①小文此次一共调查了100位小区居民②每周使用时间不足15分钟的人数多于45﹣60分钟的人数③每周使用时间超过30分钟的人数超过调查总人数的一半④每周使用时间在15﹣30分钟的人数最多根据图中信息,上述说法中正确的是()A.①④B.①③C.②③D.②④11.下表中的每一对x,y的值都是方程y=x+3的一个解:x …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 …y …﹣1 0 1 2 3 4 5 …①y的值随着x的增大越来越大;②当x>0时,y的值大于3;③当x<﹣3时,y的值小于0.上述结论中,所有正确结论的序号是()A.0个B.1个C.2个D.3个12.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(﹣2,4),原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是()A.A处B.B处C.C处D.D处二.填空题13.语句“x的2倍与5的和大于或等于4”用不等式表示为.14.比较大小:8(用“>”或“<”连接)15.已知:如图,∠1=72°,∠2=62°,∠3=62°,求∠4=.16.若2x2﹣8=0,则x=.17.已知:+(b+5)2=0,那么a+b的值为.18.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是.19.在一块边长为10米的正方形草坪上修了横竖各两条宽都为2米的长方形小路(图中阴影部分)将草坪分隔成如图所示的图案,则图中未被小路覆盖的草坪的总面积为平方米.20.在平面直角坐标系中,点A(x,y)的坐标满足方程3x﹣y=4,(1)当点A到两条坐标轴的距离相等时,点A的坐标为.(2)当点A在x轴上方时,点A的横坐标x满足条件.三.解答题21.计算:.22.解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.23.解方程组:24.解不等式组:并求整数解.25.如图,已知AB∥CD,∠1=∠2,求证:AE∥DF.26.已知△ABC的三个顶点的坐标分别是A(0,1),B(2,0),C(2,3).(1)在所给的平面直角坐标系xOy中画出△ABC,△ABC的面积为;(2)点P在x轴上,且△ABP的面积等于△ABC的面积,求点P 的坐标.27.某学校在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务.开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,以下是根据相关数据绘制的统计图的一部分:根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是人;(2)m=,n=;(3)补全频数分布直方图;(4)如果该校共有学生2000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?28.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1﹣y2|;(1)已知点A(﹣2,0),B为y轴上的动点,①若点A与B的“识别距离为3”,写出满足条件的B点的坐标②直接写出点A与点B的“识别距离”的最小值.(2)已知C点坐标为C(m,2m+2),D(0,1),写出点C与D的“识别距离”的最小值,及相应的C点坐标.参考答案与试题解析一.选择题(共12小题)1.9的平方根是()A.±81B.±3C.﹣3D.3【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:B.2.若m<0,则点P(3,2m)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:∵m<0,∴2m<0,∴点P(3,2m)在第四象限.故选:D.3.已知a>b,下列不等式中,不正确的是()A.a+4>b+4B.a﹣8>b﹣8C.5a>5bD.﹣6a>﹣6b 【分析】根据不等式的性质逐一判断,判断出不正确的不等式是哪个即可.【解答】解:∵a>b,∴a+4>b+4,∴选项A正确;∵a>b,∴a﹣8>b﹣8,∴选项B正确;∵a>b,∴5a>5b,∴选项C正确;∵a>b,∴﹣6a<﹣6b,∴选项D不正确.故选:D.4.用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:A、B、C均不是高线.故选:D.5.下列调查中,适合用普查方法的是()A.了解某班学生对“北京精神”的知晓率B.了解某种奶制品中蛋白质的含量C.了解北京台《北京新闻》栏目的收视率D.了解一批科学计算器的使用寿命【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某班学生对“北京精神”的知晓率是精确度要求高的调查,适于全面调查,故A选项正确;B、了解某种奶制品中蛋白质的含量,适合抽样调查,故B选项错误;C、了解北京台《北京新闻》栏目的收视率采用普查方法所费人力、物力和时间较多,适合抽样调查,故C选项错误;D、了解一批科学计算器的使用寿命,如果普查,所有计算器都报废,这样就失去了实际意义,故D选项错误,故选:A.6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【分析】本题主要利用两直线平行,内错角相等作答.【解答】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.7.已知和都是方程y=ax+b的解,则a和b的值是()A.B.C.D.【分析】将x与y的两对值代入方程得到关于a与b的方程组,求出方程组的解即可得到a与b的值.【解答】解:将和代入y=ax+b得:,②﹣①得:3a=3,即a=1,将a=1代入①得:﹣1+b=0,即b=1.故选:B.8.如图,在平面直角坐标系xOy中,将线段AB平移得到线段MN,若点A(﹣1,3)的对应点为M(2,5),则点B(﹣3,﹣1)的对应点N的坐标是()A.(1,0)B.(0,1)C.(﹣6,0)D.(0,﹣6)【分析】根据点A、M的坐标确定出平移规律,然后求出点N的坐标即可.【解答】解:∵点A(﹣1,3)的对应点为M(2,5),∴平移规律为向右3个单位,向上2个单位,∵点B(﹣3,﹣1),∴对应点N的横坐标为﹣3+3=0,纵坐标为﹣1+2=1,∴点N的坐标为(0,1).故选:B.9.(我国古代问题)有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.若设1一个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则列方程组为()A.B.C.D.【分析】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组.【解答】解:设一个大桶盛酒x斛,一个小桶盛酒y斛,根据题意得:,故选:B.10.小文同学统计了某小区部分居民每周使用共享单车的时间,并绘制了统计图,如图所示.下面有四个推断:①小文此次一共调查了100位小区居民②每周使用时间不足15分钟的人数多于45﹣60分钟的人数③每周使用时间超过30分钟的人数超过调查总人数的一半④每周使用时间在15﹣30分钟的人数最多根据图中信息,上述说法中正确的是()A.①④B.①③C.②③D.②④【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【解答】解:①小文此次调查的小区居民的人数为10+60+20+10=100(位),此结论正确;②由频数直方图知,每周使用时间不足15分钟的人数与45﹣60分钟的人数相同,均为10人,此结论错误;③每周使用时间超过30分钟的人数占调查总人数的比例为=,此结论错误;④每周使用时间在15﹣30分钟的人数最多,有60人,此结论正确;故选:A.11.下表中的每一对x,y的值都是方程y=x+3的一个解:x …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 …y …﹣1 0 1 2 3 4 5 …①y的值随着x的增大越来越大;②当x>0时,y的值大于3;③当x<﹣3时,y的值小于0.上述结论中,所有正确结论的序号是()A.0个B.1个C.2个D.3个【分析】观察表格利用一次函数与二元一次方程的关系判断即可.【解答】解:观察表格得:y的值随着x的增大越来越大;当x>0时,y>3;当x<﹣3时,y的值小于0,∴正确结论有3个.故选:D.12.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(﹣2,4),原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是()A.A处B.B处C.C处D.D处【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:敌军指挥部的位置大约是B处.故选:B.二.填空题(共7小题)13.语句“x的2倍与5的和大于或等于4”用不等式表示为2x+5≥4 .【分析】直接利用“x的2倍”,即2x,再加5,结合“大于或等于4”得出不等式即可.【解答】解:由题意可得:2x+5≥4.故答案为:2x+5≥4.14.比较大小:>8(用“>”或“<”连接)【分析】首先把8化成,然后进行大小比较即可.【解答】解:∵8=,<,∴>8,故答案为:>.15.已知:如图,∠1=72°,∠2=62°,∠3=62°,求∠4=108°.【分析】先根据题意得出a∥b,再由平行线的性质即可得出结论.【解答】解:∵∠2=∠3=62°,∴a∥b.∵∠1=72°,∴∠5=180°﹣72°=108°,∴∠4=∠5=108°.故答案为:108°.16.若2x2﹣8=0,则x=±2 .【分析】先将常数项移到等式的右边,然后化未知数的系数为1,通过直接开平方求得该方程的解即可.【解答】解:由原方程,得2x2=8,∴x2=4,直接开平方,得x=±2.故答案为:±2.17.已知:+(b+5)2=0,那么a+b的值为﹣3 .【分析】首先根据非负数的性质可求出a、b的值,进而可求出a、b的和.【解答】解:∵+(b+5)2=0,∴a﹣2=0,b+5=0,∴a=2,b=﹣5;因此a+b=2﹣5=﹣3.故结果为:﹣318.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.【分析】利用作图可得,画出两同位角相等,从而根据平行线的判定方法可判断所画直线与原直线平行.【解答】解:给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.故答案为同位角相等,两直线平行.19.在一块边长为10米的正方形草坪上修了横竖各两条宽都为2米的长方形小路(图中阴影部分)将草坪分隔成如图所示的图案,则图中未被小路覆盖的草坪的总面积为36 平方米.【分析】把四条线路平移到两侧,再表示出未被小路覆盖的草坪的边长即可算出面积.【解答】解:如图所示:(10﹣4)×(10﹣4)=36(平方米),故答案为:36.20.在平面直角坐标系中,点A(x,y)的坐标满足方程3x﹣y=4,(1)当点A到两条坐标轴的距离相等时,点A的坐标为(2,2)或(1,﹣1).(2)当点A在x轴上方时,点A的横坐标x满足条件x>.【考点】92:二元一次方程的解;D1:点的坐标;KF:角平分线的性质.【专题】551:线段、角、相交线与平行线;66:运算能力.【分析】(1)根据题意列方程即可得到结论;(2)根据题意列不等式即可得到结论.【解答】解:(1)∵点A(x,y)的坐标满足方程3x﹣y=4,点A 到两条坐标轴的距离相等,∴x=±y,∴3y﹣y=4或﹣3y﹣y=4,解得:y=2或y=﹣1,∴点A的坐标为(2,2)或(1,﹣1),故答案为:(2,2)或(1,﹣1);(2)∵3x﹣y=4,∴y=3x﹣4,∵点A在x轴上方,∴y>0,即3x﹣4>0,∴x>,故答案为:x>.三.解答题21.计算:.【考点】2C:实数的运算.【专题】511:实数;66:运算能力.【分析】首先进行开平方运算,开立方运算,绝对值得化简,再进行加减运算.【解答】解:原式=4﹣4=.22.解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【专题】11:计算题;524:一元一次不等式(组)及应用.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x﹣3x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,解集在数轴上表示如下:23.解方程组:【考点】98:解二元一次方程组.【专题】11:计算题;521:一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,由②﹣①,得2x=4,解这个方程,得x=2,把x=2代入①,得2+y=1,解得:y=﹣1,所以这个方程组的解为.24.解不等式组:并求整数解.【考点】CB:解一元一次不等式组;CC:一元一次不等式组的整数解.【专题】524:一元一次不等式(组)及应用.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【解答】解:由①得x≤2,由②得x﹣2<3x,x>﹣1,∴不等式组的解集是﹣1<x≤2.∴不等式组的整数解是0,1,2.25.如图,已知AB∥CD,∠1=∠2,求证:AE∥DF.【考点】JB:平行线的判定与性质.【专题】14:证明题.【分析】首先根据直线平行得到∠CDA=∠DAB,结合题干条件得到∠FDA=∠DAE,进而得到结论.【解答】解:∵AB∥CD,∴∠CDA=∠DAB,∵∠1=∠2,∴∠CDA﹣∠1=∠DAB﹣∠2,∴∠FDA=∠DAE,∴AE∥DF.26.已知△ABC的三个顶点的坐标分别是A(0,1),B(2,0),C(2,3).(1)在所给的平面直角坐标系xOy中画出△ABC,△ABC的面积为 3 ;(2)点P在x轴上,且△ABP的面积等于△ABC的面积,求点P 的坐标.【考点】D5:坐标与图形性质;K3:三角形的面积.【专题】11:计算题.【分析】(1)根据点的坐标的意义描出三点,然后根据三角形面积公式计算;(2)设P点坐标为(x,0),利用三角形面积公式得到×|2﹣x|=3,然后去绝对值解方程即可得到x的值,从而可确定P点坐标.【解答】解:(1)如图,S△ABC=×3×2=3;故答案为3;(2)设P点坐标为(x,0),∵△ABP的面积等于△ABC的面积,∴×|2﹣x|=3,解得x=﹣4或x=8,∴点P的坐标为(﹣4,0)或(8,0).27.某学校在暑假期间开展“心怀感恩,孝敬父母”的实践活动,倡导学生在假期中帮助父母干家务.开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调查,以下是根据相关数据绘制的统计图的一部分:根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数是200 人;(2)m=20 ,n=25 ;(3)补全频数分布直方图;(4)如果该校共有学生2000人,请你估计“平均每天帮助父母干家务的时长不少于30分钟”的学生大约有多少人?【考点】V5:用样本估计总体;V8:频数(率)分布直方图;VB:扇形统计图.【专题】541:数据的收集与整理;542:统计的应用;65:数据分析观念;68:模型思想;69:应用意识.【分析】(1)0﹣10分钟的有60人,占调查人数的30%,可求出调查人数;(2)根据频数、总数、频率之间的关系可以计算出m、n的值;(3)根据各组频数可补全频数分布直方图;(4)样本估计总体,样本中“平均每天帮助父母干家务的时长不少于30分钟”占调查人数的25%+5%=30%,因此估计2000人的30%是“平均每天帮助父母干家务的时长不少于30分钟”的学生数.【解答】解:(1)60÷30%=200(人),故答案为:200;(2)200﹣60﹣50﹣40﹣10=40(人),40÷200=20%,即m =20,50÷200=25%,即n=25,故答案为:20,25;(3)求出第3组的频数即可补全频数分布直方图;(4)2000×(25%+5%)=600(人),答:该校2000名学生中“平均每天帮助父母干家务的时长不少于30分钟”的大约有600人.28.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1﹣y2|;(1)已知点A(﹣2,0),B为y轴上的动点,①若点A与B的“识别距离为3”,写出满足条件的B点的坐标(0,3)或(0,﹣3).②直接写出点A与点B的“识别距离”的最小值 2 .(2)已知C点坐标为C(m,2m+2),D(0,1),写出点C与D的“识别距离”的最小值,及相应的C点坐标(﹣,﹣).【考点】KY:三角形综合题.【专题】153:代数几何综合题;524:一元一次不等式(组)及应用;531:平面直角坐标系;66:运算能力;67:推理能力.【分析】(1)①设点B的坐标为(0,y).由|﹣2﹣0|=2,|y﹣0|=3,解得y=3或y=﹣3,即可得出答案;②设点B的坐标为(0,y),且A(﹣2,0),则|﹣2﹣0|=2,|y ﹣0|=y,若|﹣2﹣0|≥|y﹣0|,则点A、B两点的“识别距离”为|﹣2﹣0|=2;若|﹣2﹣0|<|y﹣0|,则点A、B两点的“识别距离”为|y|>2,即可得出结果;(2)①当|m﹣0|≥|m+3﹣1|时,点C与D的“识别距离”为|m|,求得|m|的最小值为,此时,m=﹣;②当|m﹣0|<|m+3﹣1|时,点C与D的“识别距离”为|m+2|,求得|m+2|的最小值为2,即可得出答案.【解答】解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵A、B两点的“识别距离为3”,A(﹣2,0),∵|﹣2﹣0|=2,|y﹣0|=3,解得:y=3或y=﹣3,∴点B的坐标是(0,3)或(0,﹣3),故答案为:(0,3)或(0,﹣3);②∵设点B的坐标为(0,y),且A(﹣2,0),∴|﹣2﹣0|=2,|y﹣0|=y,∴若|﹣2﹣0|≥|y﹣0|,则点A、B两点的“识别距离”为|﹣2﹣0|=2;若|﹣2﹣0|<|y﹣0|,则点A、B两点的“识别距离”为|y|>2,∴A、B两点的“识别距离”的最小值为2,故答案为:2;(2)C(m,2m+2),D(0,1),①当|m﹣0|≥|m+3﹣1|时,点C与D的“识别距离”为|m|,当m≥0时,m≥m+2,解得:m≥8,当﹣<m<0时,﹣m≥m+2,解得:m≤﹣,当m≤﹣时,﹣m≥﹣m+2,解得:m≤﹣8,∴|m|的最小值为,此时,m=﹣;②当|m﹣0|<|m+3﹣1|时,点C与D的“识别距离”为|m+2|,当m≥0时,m<m+2,解得:m<8,则2≤|m+2|<8,当﹣<m<0时,﹣m<m+2,解得:m>﹣,则|m+2|>2,当m≤﹣时,﹣m<﹣m+2,解得:m>﹣8,则|m+2|>2,∴|m+2|的最小值为2,综上所述,点C与D的“识别距离”的最小值为:,相应的C 点坐标为:(﹣,﹣),故答案为:,(﹣,﹣).。
【苏科版】七年级下册数学《期末考试试题》(附答案)
【解析】
【分析】
分P在AB上、P在BC上、P在CE上三种情况,根据三角形的面积公式计算即可.
【详解】解:当P在AB上时,
∵△APE的面积等于5,
∴ x•3=5,
x= ;
当P在BC上时,
∵△APE的面积等于5,
∴S矩形ABCD-S△CPE-S△ADE-S△ABP=5,
∴ ×(x-4)=5,
【点睛】考核知识点:科学记数法.理解法则是关键.
12.10m= 3,,10n= 5,则103m-n= ______
【答案】
【解析】
【分析】
先把103m-n化为(10m)3÷10n运用同底数幂的除法,幂的乘方法则计算.
【详解】∵10m=3,10n=5,
∴103m-n=(10m)3÷10n=33÷5=5.4= ,
【答案】A
【解析】
【分析】
①+②,得4x+4y=2+2a,根据x+y= 0可求出a.
【详解】
①+②,得
4x+4y=2+2a
因为x+y= 0
所以0=2+2a
所以a=-1
故选A
【点睛】考核知识点:加减法在二元一次方程组中的运用.灵活运用加减法是关键.
10.二元一次方程2x+3y=10的正整数解有( )
A.0个B.1个
【答案】
【解析】
【分析】
根据非负数性质,求得x、y的值,然后代入所求求值即可.
【详解】∵ ,
∴ ,
解得
∴yx=2-1= .
故答案为
【点睛】考核知识点:非负数性质,负指数幂.利用非负数性质求解是关键..
17.如图,长方形ABCD中,AB=4cm,BC=3cm,E为CD的中点.动点P从A点出发,以每秒1cm的速度沿A-B-C-E运动,最终到达点E.若点P运动的时间为x秒,则当x=_______时,△APE的面积等于5.
人教版七年级数学第二学期期末考试试卷及答案
七年级数学第二学期期末试卷(满分120分,考试时间120分钟) 一、选择题1.19的算术平方根是()A.±13B.13C.−13D.±1812.如果a<b,那么下列不等式成立的是()A.a﹣b>0B.a﹣3>b﹣3C.13a>13b D.﹣3a>﹣3b3.下列各数中,无理数是()A.√4B.3.14C.√−273D.5π4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.5.若{x=3y=2是方程kx+3y=1的解,则k等于()A.−53B.﹣4C.73D.146.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°7题9题8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL10.平面直角坐标系中,点A (﹣3,2),B (3,4),C (x ,y ),若AC//x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,4)B .2,(3,2)C .2,(3,0)D .1,(4,2)二、填空题:11.化简:√(−3)2= .12.如果2x ﹣7y =5,那么用含y 的代数式表示x ,则x = ..13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设: . .,结论: . ..14.点A (2m +1,m +2)在第二象限内,且点A 的横坐标、纵坐标均为整数,则点A 的坐标为 ..15.如图,已知AB∥CD,BC 平分∠ABE,∠C=35°,则∠CEF 的度数是 ..16.√−83的绝对值是 ..17.不等式组{2x +1>−12x +1<3的解集是 .. 18.已知点A 的坐标为(2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为 ..19.在一本书上写着方程组{x +py =2x +y =1的解是{x =0.5y =∎其中y 的值被墨渍盖住了,不过,我们可解出p = ..20.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排 .名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题21.计算:. 22.解方程组:.23.解不等式:.并把解集在数轴上表示出来.24.求不等式组:{5x<3x+23x−3≤2(2x−1)的整数解.25.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1,C1;(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是.26.已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.27.为了解某区2015年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以下统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量,“A等级”对应扇形的圆心角度数为;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.28.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.29.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?30.某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:运输单位运输速度(千米/时)运费单价元/(吨•千米)运输途中冷藏元/(吨•时)装卸总费用(元)汽车货运公司75 1.5 54000火车货运站 100 1.3 56600(1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?31.夏季来临,某饮品店老板大白计划下个月(2015年8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:2014年8月该冰淇淋日销售量频数分布表 2014年8月该冰淇淋日销售量频数分布直方图日销售量分组频数500≤x<600 3600≤x<700 6700≤x<800800≤x<900由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.答案一、选择题1.B.2.D.3.D.4.A.5.A.6.B.7.C.8.D.9.C.10B.二、填空题:11.3 12.x=5+7y213.在同一平面内两条直线垂直于同一条直线那么这两条直线平行14.A(−1,1) 15.75° 16.2 17.−1<x<1 18.(-2,3) 19.320.解:设x个人缝制衣袖,y个人缝制衣身,z个人缝制衣领.则有{x+y+z=21010x=2×15y10x=2×12z,(工人们每天缝制出的衣袖、衣身、衣领正好配套。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
4D 3E
21
C B A
一、选择题:(每题3分,共30分)
1、点P(-2,3)所在象限为( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
2、已知a<b,则下列式子正确的是( )
A.a+5>b+5
B.3a>3b;
C.-5a>-5b
D.
3a >3
b 3、在直角坐标系中,点P (6-2x ,x-5)在第二象限,•则x 的取值范围是( ).
A 、3<x<5
B 、x> 5
C 、x<3
D 、-3<x<5
5、点A (3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为( )
A 、(1,-8)
B 、(1, -2)
C 、(-7,-1 )
D 、( 0,-1) 6、如右图,下列不能判定AB ∥CD 的条件有( )个.
A 、︒=∠+∠180BCD
B B 、21∠=∠;
C 、43∠=∠;
D 、 5∠=∠B .
7、下列各组数中是方程组23,
3410
x y x y -=⎧⎨
+=⎩的解为( )
A. 21x y =⎧⎨=⎩
B. 27x y =-⎧⎨=-⎩
C. 11x y =⎧⎨=-⎩
D. 33x y =⎧⎨=⎩
8、为了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是:( ) A 、这批电视机的 B 、这批的电视机使用寿命 C 、抽取的100台电视机 D 、100 9、设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,
情况如图1所示,那么 ●、▲、■这三种物体按质量从大到小.... 的顺序排列为( )
A. ■●▲
B. ■▲●
C. ▲●■
D. ▲■●
二、填空题:(每题3分,共24分) 11、如图3,将三角板的直角顶点放在直尺的一边上,∠1=300,
∠2=500,则∠3等于 度.
12、将方程632=+y x 写成用含x 的代数式表示y ,则y
= ____.
图1
13、有两个数,其和为49,其差为17,则这两个数是____________ 14、若一个二元一次方程的一个解为⎭
⎬⎫
⎩⎨
⎧-==12y x ,则这个方程可能是 。
15、对某市某文明小区500户家庭拥有电话机、电脑情况抽样调查, 得到扇形图(如图),根据图中提供的信息,拥有电脑、电话机各
一台的家庭有 户.
16、若不等式2x <a 的解集为x <2,则a =______. 17、某次数学测验中共有16道题目,评分办法:答对 一道得6分,答错一道扣2分,不答得0分.某
学生有一道题未答,那么这个同学至少要答对______道 题,成绩才能在60分以上。
18、若1032=++z y x ,15234=++z y x ,则x +y +z 的值是 .
20、解不等式(组),并把解集表示在数轴上。
(1)2151
132513(1)
x x x x -+⎧-≤⎪⎨⎪-<+⎩ (2)243325()()x x +≤+
21、如图7,直线AB ∥CD ,直线EF 分别交直线AB 、CD 于点E 、F ,FH 平分∠EFD ,若∠FEH=110º,求∠EHF 的度数。
拥有电脑各一台的家庭无电话机家庭
2%
22、小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收
入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.
根据以上提供的信息,解答下列问题: (1)补全频数分布表.(5分) (2)补全频数分布直方图.(2分) (3)绘制相应的频数分布折线图.(2分)
(4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?
23、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。
2016
1800
12084元
户数
1400160012001000800600。