七年级上册有理数单元练习(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)

1.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)

(1)求B地在数轴上表示的数;

(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;

(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?

【答案】(1)解:, .

答:地在数轴上表示的数是12或

(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:

第五次行进后相对A的位置为:,

第六次行进后相对A的位置为:,

因为点、与点的距离都是3米,

所以点、点到地的距离相等

(3)解:若地在原点的右侧,前进为“+”,后退为“-”,

则当为100时,它在数轴上表示的数为:

∵B点表示的为12.

∴AB的距离为(米 .

答:小乌龟到达的点与点之间的距离是70米

【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。

(2)根据题意分别列式求出第5次和第6次行进后相对A的位置,由此可得到第P和点Q到A的距离,即可作出判断。

(3)根据点B在原点的右侧,列式可求出n=100时,可得到点A在数轴上表示的数,再根据点B表示的数,就可求出AB的距离。

2.阅读下面的材料:

如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线

段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.

请用上面的知识解答下面的问题:

如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.

(1)请你在数轴上表示出A.B.C三点的位置:

(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;

(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,

试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.

【答案】(1)解:如图所示:

(2)5;﹣5或3

(3)﹣1+x

(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:

根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,

∴CA﹣AB=(5+3t)﹣(2+3t)=3,

∴CA﹣AB的值不会随着t的变化而变化

【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);

设D表示的数为a,

∵AD=4,

∴|﹣1﹣a|=4,

解得:a=﹣5或3,

∴点D表示的数为﹣5或3;

故答案为5,﹣5或3;

( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;

故答案为﹣1+x;

【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.

3.列方程解应用题

如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:

(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.

(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?

【答案】(1)3;2

(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有

解得.

答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙

【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有

解得.

答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.

【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.

4.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.

(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)

(2)若该数轴上另有一点M对应着数m.

①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;

②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.

老师点评:你的演算发现还不完整!

请通过演算解释:为什么“小安的演算发现”是不完整的?

【答案】(1)2

(2)解:①当m=2,b>2时,点M在点A,B之间,

∵AM=2BM,

∴m﹣a=2(b﹣m),

∴2﹣a=2(b﹣2),

∴a+2b=6,

相关文档
最新文档