高中数学 2.2.1 双曲线及其标准方程试题 新人教A版选修11
新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析
选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。
2021_2022学年高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程练习(含解析)新人教A
2.2.1 双曲线及其标准方程[学生用书P105(单独成册)])[A 根底达标]1.平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,那么点M 的轨迹方程是( )A.x 216-y 29=1 B .x 216-y 29=1(x ≥4)C.x 29-y 216=1 D .x 29-y 216=1(x ≥3)解析:选D.由|MA |-|MB |=6,且6<|AB |=10,得a =3,c =5,b 2=c 2-a 2=16. 故其轨迹为以A ,B 为焦点的双曲线的右支. 所以方程为x 29-y 216=1(x ≥3).2.双曲线方程为x 2-2y 2=1,那么它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0 B .⎝⎛⎭⎪⎫52,0 C.⎝⎛⎭⎪⎫62,0 D .(3,0)解析:选C.将双曲线方程化成标准方程为x 21-y 212=1, 所以a 2=1,b 2=12,所以c =a 2+b 2=62,故右焦点坐标为⎝⎛⎭⎪⎫62,0. 3.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( )A.x 23-y 2=1 B .y 2-x 23=1C.x 23-y 24=1 D .y 23-x 24=1解析:选B.由题意知,双曲线的焦点在y 轴上,且a =1,c =2,所以b 2=3,所以双曲线的方程为y 2-x 23=1.4.(2021·绍兴高二检测)双曲线Γ:x 2λ-y 29=1上有一点M 到Γ的右焦点F 1(34,0)的距离为18,那么点M 到Γ的左焦点F 2的距离是( )A .8B .28C .12D .8或28解析:选D.因为双曲线Γ:x 2λ-y 29=1的右焦点F 1(34,0),所以λ=34-9=25,所以双曲线Γ:x 225-y 29,可知||MF 1|-|MF 2||=2a =10,又|MF 1|=18,那么|MF 2|D.5.(2021·邯郸高二检测)设F 1,F 2是双曲线x 24-y 2=1的左、右焦点,点P 在双曲线上,当△F 1PF 2的面积为1时,PF 1→·PF 2→的值为( )A .0B .1 C.12D .2解析:选A.易知F 1(-5,0),F 2(5,0). 不妨设P (x 0,y 0)(x 0,y 0>0), 由12×2c ×y 0=1,得y 0=55, 所以P ⎝ ⎛⎭⎪⎫2305,55,所以PF 1→=⎝ ⎛⎭⎪⎫-5-2305,-55,PF 2→=⎝⎛⎭⎪⎫5-2305,-55,所以PF 1→·PF 2→=0.6.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有一样的焦点,那么a 的值是________.解析:依题意得⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.答案:17.在平面直角坐标系xOy 中,双曲线x 24-y 212=1上一点M 的横坐标为3,那么点M 到此双曲线的右焦点的距离为________.解析:双曲线右焦点为(4,0), 将x =3代入x 24-y 212=1,得y =±15.所以点M 的坐标为(3,15)或(3,-15),所以点M 到双曲线右焦点的距离为〔4-3〕2+〔±15〕2=4.答案:48.双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,假设PF 1⊥PF 2,那么|PF 1|+|PF 2|的值为____________.解析:不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2, 所以|F 1F 2|2=|PF 1|2+|PF 2|2=(22)2, 又|PF 1|-|PF 2|=2, 所以(|PF 1|-|PF 2|)2=4, 可得2|PF 1|·|PF 2|=4,那么(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3. 答案:2 39.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.解:因为双曲线的焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0).因为双曲线过点P (42,-3),所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 解得c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1.10.如图,假设F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)假设双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)假设P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.解:(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,那么|16-x |=6,解得x =10或x =22. 由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22.(2)将||PF 2|-|PF 1||=2a =6两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, 所以|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2= |PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,所以∠F 1PF 2=90°,所以S △F 1PF 2=12×32=16.[B 能力提升]11.(2021·保定检测)双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,那么m 的值为( )A .8B .9C .16D .20解析:选B.由,|AB |+|AF 2|+|BF 2|=20.又|AB |=4,那么|AF 2|+|BF 2|,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.12.(2021·西安高二检测)如图,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为点A ,B ,线段MN 的中点Q 在双曲线的右支上,假设|AN |-|BN |=12,那么a =( )A .3B .4C .5D .6解析:选A.连接QF 1,QF 2.因为线段MN 的中点为Q ,点F 2为MB 的中点,所以|QF 2|=12|BN |,同理可得|QF 1|=12|AN |.因为点Q 在双曲线C 的右支上,所以|QF 1|-|QF 2|=2a ,所以12(|AN |-|BN |)=2a ,所以12×12=2a ,解得a A.13.求与椭圆x 2+4y 2=8有公共焦点的双曲线的方程,使得以此双曲线与椭圆的四个交点为顶点的四边形的面积最大.解:椭圆的方程可化为x 28+y 22=1,①所以c 2=8-2=6.因为椭圆与双曲线有公共焦点,所以在双曲线中,a 2+b 2=c 2=6,即b 2=6-a 2.设双曲线的方程为x 2a 2-y 26-a2=1(0<a 2<6).②由①②解得⎩⎪⎨⎪⎧x 2=4a 23,y 2=6-a 23.由椭圆与双曲线的对称性可知四个交点构成一个矩形, 其面积S =4|xy |=4·4a 23·6-a 23=83 a 2〔6-a 2〕≤83·a 2+〔6-a 2〕2=8, 当且仅当a 2=6-a 2,即a 2=3,b 2=6-3=3时,取等号. 所以双曲线的方程是x 23-y 23=1. 14.(选做题)双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有一样的焦点. (1)求双曲线的标准方程;(2)假设点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.解:(1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).依题意得⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2,所以双曲线的标准方程为x 23-y 22=1.(2)不妨设点M 在双曲线的右支上,那么有|MF 1|-|MF 2|=23,因为|MF 1|+|MF 2|=63,所以|MF 1|=43,|MF 2|=2 3.又|F 1F 2|=25,因此在△MF 1F 2中,边MF 1最长,而cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22|MF 2|·|F 1F 2|<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
新人教A版数学选修1-1《2.2.1双曲线及其标准方程》导学案
河北省唐山市开滦第二中学高中数学 2.2.1双曲线及其标准方程学案 新人教A 版选修1-1【学习目标】1.了解双曲线的定义、几何图形和标准方程的推导过程;2.掌握双曲线的标准方程;3.会利用双曲线的定义和标准方程解决简单的问题.【重点难点】双曲线定义及其标准方程【学习过程】一、问题情景导入:1.太空中飞过太阳系的彗星,其轨道就是双曲线,彗星从无穷处飞来,又飞到无穷远处,双曲线是不封闭的圆锥曲线,它不同于抛物线,也不是两个抛物线构成双曲线的两支,最明显的差别是双曲线有渐近线,而抛物线没有.初中学过的反比例函数图象是双曲线,它以坐标轴为渐近线.2.我们知道,与两个定点距离的和为非零常数(大于两个定点间的距离)的点的轨迹是椭圆,那么,与两个定点距离的差为非零常数的点的轨迹是什么?3.你能类比椭圆的标准方程的推导过程推导出双曲线的标准方程吗?二、自学探究:(阅读课本第45-47页,完成下面知识点的梳理)1.双曲线的定义:把平面内与两个定点21,F F 的距离的 等于常数(小于21F F )的点的轨迹叫做双曲线.这两个定点叫做双曲线 ,两焦点间的距离叫做双曲线的 . 双曲线的定义用集合语言表示为{}21212,2F F a a MF MF M P <=-=思考:双曲线定义中212F F a <,如果212F F a =轨迹是什么图形呢?能否有212F F a <的轨迹图形呢? 2.焦点在x 轴上 焦点在y 轴上 图象 标准方程焦点坐标c b a ,,的关系思考:⑴方程13222=-y x 与13222=-x y 分别表示焦点在哪个坐标轴上的双曲线?焦点坐标分别是什么?⑵方程122=+ny m x ,当参数n m ,的取值怎样时,方程分别表示焦点在x 轴上与焦点在y 轴上的双曲线?三、例题演练:例 1.若一个动点()y x P ,到两个定点()()0,1,0,1B A -的距离之差的绝对值为定值()0≥a a 时,讨论点P 的轨迹.例 2.已知双曲线两个焦点分别为()()0,5,0,521F F -,双曲线上一点P 到21,F F 距离差的绝对值等于6,求双曲线的标准方程.变式:求适合下列条件的双曲线的标准方程:⑴5,4==c a ,焦点在x 轴上;⑵4=a ,经过点⎪⎪⎭⎫ ⎝⎛3104,1A ; ⑶求与双曲线141622=-y x 有共同的焦点,且过点()2,23的双曲线的标准方程.例3.在ABC ∆中,已知4=BC ,且A B C sin 21sin sin =-,求动点A 的轨迹方程.变式:已知定圆02410:221=+++x y x C ,定圆:C 091022=+-+x y x ,动圆C 与定圆21,C C 都外切,求动圆圆心C 的轨迹方程.【课堂小结与反思】【课后作业与练习】1.判断下列方程是否表示双曲线,若是,求出三量c b a ,,的值. ①12422=-y x ②12222=-y x ③12422-=-y x ④369422=-x y2.求a =4,b =3,焦点在x 轴上的双曲线的标准方程3.求a =25,经过点(2,-5),焦点在y 轴上的双曲线的标准方程4.证明:椭圆22525922=+y x 与双曲线151522=-y x 的焦点相同5.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6.设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( ) A .7 B.23 C.5或23 D.7或237.椭圆134222=+n y x 和双曲线116222=-y nx 有相同的焦点,则实数n 的值是 ( ) A 5± B 3± C 5 D 98.已知21,F F 是双曲线191622=-y x 的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为600,那么PQ QF PF -+22的值为________9.设21,F F 是双曲线1422=-y x 的焦点,点P 在双曲线上,且02190=∠PF F ,则点P 到x 轴的距离为( )A 1 B55 C 2 D 510.P 为双曲线)0,0(12222>>=-b a by a x 上一点,若F 是一个焦点,以PF 为直径的圆与圆222a y x =+的位置关系是()A 内切B 外切C 外切或内切D 无公共点或相交。
高中数学 2.2.1双曲线及其标准方程练习 新人教A版选修11
2.2.1双曲线及其标准方程一、选择题1.(2015·江西南昌四校联考)已知M (-2,0),N (2,0),|PM |-|PN |=4,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支[答案] C[解析] ∵|PM |-|PN |=|MN |=4, ∴动点P 的轨迹是一条射线.2.双曲线3x 2-4y 2=-12的焦点坐标为( ) A .(±5,0) B .(0,±5) C .(±7,0) D .(0,±7)[答案] D[解析] 双曲线3x 2-4y 2=-12化为标准方程为y 23-x 24=1,∴a 2=3,b 2=4,c 2=a 2+b 2=7,∴c =7,又∵焦点在y 轴上,故选D .3.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-1[答案] A[解析] 由题意得(1+k )(1-k )>0, ∴(k -1)(k +1)<0,∴-1<k <1.4.椭圆x 24+y 2m 2=1与双曲线x 2m 2-y 22=1有相同的焦点,则m 的值是( )A .±1B .1C .-1D .不存在[答案] A[解析] 验证法:当m =±1时,m 2=1, 对椭圆来说,a 2=4,b 2=1,c 2=3. 对双曲线来说,a 2=1,b 2=2,c 2=3, 故当m =±1时,它们有相同的焦点.直接法:显然双曲线焦点在x轴上,故4-m2=m2+2.∴m2=1,即m=±1.5.已知m,n为两个不相等的非零实数,则方程mx-y+n=0与nx2+my2=mn所表示的曲线可能是( )[答案] C[解析] 把直线方程和曲线方程分别化为y=mx+n,x2m+y2n=1.根据图形中直线的位置,判定斜率m和截距n的正负,从而断定曲线的形状.6.已知双曲线的左、右焦点分别为F1、F2,过F1的直线与双曲线的左支交于A、B两点,线段AB的长为5,若2a=8,那么△ABF2的周长是( )A.16 B.18C.21 D.26[答案] D[解析] |AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,∴|AF2|+|BF2|-(|AF1|+|BF1|)=16,∴|AF2|+|BF2|=16+5=21,∴△ABF2的周长为|AF2|+|BF2|+|AB|=21+5=26.二、填空题7.双曲线的焦点在x轴上,且经过点M(3,2)、N(-2,-1),则双曲线标准方程是________.[答案]x273-y275=1[解析] 解法一:设双曲线方程为:x2a2-y2b2=1(a>0,b>0)又点M(3,2)、N(-2,-1)在双曲线上,∴⎩⎪⎨⎪⎧9a2-4b2=14a2-1b2=1,∴⎩⎪⎨⎪⎧a2=73b2=75.解法二:设双曲线方程为mx 2+ny 2=1(m >0,n <0),则⎩⎪⎨⎪⎧9m +4n =14m +n =1,解得⎩⎪⎨⎪⎧m =37n =-57.故所求双曲线的标准方程为x 273-y 275=1.8.双曲线x 2m-y 2=1的一个焦点为F (3,0),则m =________.[答案] 8[解析] 由题意,得a 2=m ,b 2=1, ∴c 2=a 2+b 2=m +1,又c =3, ∴m +1=9,∴m =8.9.已知定点A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,则另一个焦点F 的轨迹是______________.[答案] 以A ,B 为焦点的双曲线的下半支 [解析] ∵A ,B 两点在以C ,F 为焦点的椭圆上, ∴|FA |+|CA |=2a ,|FB |+|CB |=2a , ∴|FA |+|CA |=|FB |+|CB |,∴|FA |-|FB |=|CB |-|CA |=122+92-122+52=2<|AB |=14, ∴点F 的轨迹是以A ,B 为焦点的双曲线的下半支. 三、解答题10.求满足下列条件的双曲线的标准方程. (1)焦点在x 轴上,c =6且经过点(-5,2); (2)过P (3,154)和Q (-163,5)两点.[解析] (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧25a 2-4b 2=1a 2+b 2=6,解之得a 2=5,b 2=1, 故所求双曲线方程为x 25-y 2=1.(2)设双曲线方程为Ax 2+By 2=1(AB <0),由题意得 ⎩⎪⎨⎪⎧9A +22516B =12569A +25B =1,解之得⎩⎪⎨⎪⎧A =-116B =19.∴所求双曲线方程为y 29-x 216=1.一、选择题1.已知双曲线中心在原点,一个焦点为F 1(-5,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程是( )A .x 24-y 2=1B .x 2-y 24=1C .x 22-y 23=1D .x 23-y 22=1[答案] B[解析] 由条件知P (5,4)在双曲线x 2a 2-y 2b 2=1上,∴5a 2-16b2=1,又a 2+b 2=5,∴⎩⎪⎨⎪⎧a 2=1b 2=4,故选B .2.(2015·广州市检测)设F 1、F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .4 2B .8 3C .24D .48[答案] C[解析] 由3|PF 1|=4|PF 2|知|PF 1|>|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=8,|PF 2|=6,又c 2=a 2+b 2=1+24=25,∴c =5,∴|F 1F 2|=10,∴△PF 1F 2为直角三角形,S △PF 1F 2=12|PF 1||PF 2|=24.3.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M ,N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x <-1)B .x 2-y 28=1(x >1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)[答案] B[解析] 定义法:如图,|PM |-|PN |=|BM |-|BN |=2,P 点的轨迹是以M ,N 为焦点,实轴长为2的双曲线的右支.4.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )A .2B .4C .6D .8[答案] B[解析] 在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 即(22)2=22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. 二、填空题 5.若方程x 2m -1+y 2m 2-4=3表示焦点在y 轴上的双曲线,则m 的取值范围是________.[答案] (-∞,-2) [解析] 由题意,方程可化为y 2m 2-4-x 21-m=3,∴⎩⎪⎨⎪⎧m 2-4>01-m >0,解得m <-2.6.已知双曲线x 2-y 22=1的焦点为F 1、F 2,点M 在双曲线上且MF 1→·MF 2→=0,则点M 到x轴的距离为________.[答案]233[解析] 由条件知c =3,∴|F 1F 2|=23, ∵MF 1→·MF 2→=0,∴|MO |=12|F 1F 2|=3,设M (x 0,y 0),则⎩⎪⎨⎪⎧x 20+y 20=3x 20-y 202=1,∴y 20=43,∴y 0=±233.故所求距离为233.三、解答题7.设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,在第一象限的交点A 的纵坐标为4,求此双曲线的方程.[解析] 椭圆x 227+y 236=1的焦点为(0,±3),由题意,设双曲线方程为:y 2a 2-x 2b2=1(a >0,b >0),又点A (x 0,4)在椭圆x 227+y 236=1上,∴x 20=15,又点A 在双曲线y 2a 2-x 2b 2=1上,∴16a 2-15b2=1,又a 2+b 2=c 2=9,∴a 2=4,b 2=5, 所求的双曲线方程为:y 24-x 25=1.8.当0°≤α≤180°时,方程x 2cos α+y 2sin α=1表示的曲线如何变化? [解析] (1)当α=0°时,方程为x 2=1,它表示两条平行直线x =±1. (2)当0°<α<90°时,方程为x 21cos α+y 21sin α=1. ①当0°<α<45°时,0<1cos α<1sin α,它表示焦点在y 轴上的椭圆.②当α=45°时,它表示圆x 2+y 2= 2.③当45<α<90°时,1cos α>1sin α>0,它表示焦点在x 轴上的椭圆.(3)当α=90°时,方程为y 2=1,它表示两条平行直线y =±1. (4)当90°<α<180°时,方程为y 21sin α-x 21-cos α=1,它表示焦点在y 轴上的双曲线. (5)当α=180°时,方程为x 2=-1,它不表示任何曲线.。
人教A版高中数学高二版选修1-1练习 双曲线及其标准方程
第二章 圆锥曲线与方程2.2 双曲线 2.2.1 双曲线及其标准方程A 级 基础巩固一、选择题1.双曲线x 216-y 29=1的焦点坐标为( ) A .(-7,0),(7,0) B .(0,-7),(0,7)C .(-5,0),(5,0)D .(0,-5),(0,5)解析:由双曲线的标准方程,知a =4,b =3,所以c =5,又由于焦点在x 轴上.所以 焦点为(-5,0),(5,0).答案:C2.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值范围是( ) A .-1<m <3B .m >-1C .m >3D .m <-1答案:B3.已知双曲线C :x 2a 2-y 2b 2=1中c a =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( ) A.x 24-y 23=1 B.x 29-y 216=1 C.x 216-y 29=1 D.x 23-y 24=1 解析:由题意得c =5,c a =54,所以a =4,则b 2=c 2-a 2=25-16=9.所以双曲线的标准方程为x 216-y 29=1. 答案:C4.已知F 1(-5,0),F 2(5,0)为定点,动点P 满足|PF 1|-|PF 2|=2a ,当a =3和a =5时, P 点的轨迹分别为( )A .双曲线和一条直线B .双曲线的一支和一条直线C .双曲线和一条射线D .双曲线的一支和一条射线解析:由题意知|F 1F 2|=10,因为|PF 1|-|PF 2|=2a ,所以 当a =3时,2a =6<|F 1F 2|,为双曲线的一支,当a =5时,2a =10=|F 1F 2|,为一条射线.答案:D5.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( ) A.12B .1或-2C .1或12D .1解析:依题意得⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.答案:D二、填空题6.若双曲线与椭圆x 227+y 236=1有相同焦点,且经过点(15,4),则该双曲线的标准方程为___________________________________.解析:由椭圆方程,知c =3,且焦点在y 轴上.所以可设双曲线的方程为y 2a 2-x 29-a 2=1(0<a 2<9).将点的坐标(15,4)代入,得42a 2-(15)29-a2=1,解得a 2=4(a 2=36舍去).所以该双曲线的标准方程为y 24-x 25=1. 答案:y 24-x 25=1 7.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则|PF 1|=________. 解析:依题意有⎩⎪⎨⎪⎧3|PF 1|=4|PF 2|,|PF 1|-|PF 2|=2×1,解得|PF 2|=6,|PF 1|=8. 答案:88.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________.解析:由双曲线定义可知|AF 1|=2a +|AF 2|=4+|AF 2|;|BF 1|=2a +|BF 2|=4+|BF 2|, 所以 |AF 1|+|BF 1|=8+|AF 2|+|BF 2|=8+|AB |=13.△AF 1B 的周长为|AF 1|+|BF 1|+|AB |=18.答案:18三、解答题9.双曲线x 2m -y 2m -5=1的一个焦点到中心的距离为3,那么m 的取值范围. 解:(1)当焦点在x 轴上,有m >5,则c 2=m +m -5=9,所以 m =7;(2)当焦点在y 轴上,有m <0,则c 2=-m +5-m =9,所以 m =-2.综上所述,m =7或m =-2.10.已知k 为实常数,命题p :方程(k -1)x 2+(2k -1)y 2=(2k -1)(k -1)表示椭圆,命题q :方程(k -3)x 2+4y 2=4(k -3)表示双曲线.(1)若命题p 为真命题,求实数k 的取值范围;(2)若命题p ,q 中恰有一个为真命题,求实数k 的取值范围.解:(1)若命题p 为真命题,则⎩⎪⎨⎪⎧2k -1>0,k -1>0,2k -1≠k -1,解得k >1,即实数k 的取值范围是(1,+∞).(2)当p 真q 假时,⎩⎪⎨⎪⎧k >1,k ≥3,解得k ≥3, 当p 假q 真时,⎩⎪⎨⎪⎧k ≤1,k <3,解得k ≤1, 故实数k 的取值范围是(-∞,1]∪[3,+∞).B 级 能力提升1.k <2是方程x 24-k +y 2k -2=1表示双曲线的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:k <2⇒方程x 24-k +y 2k -2=1表示双曲线,而方程x 24-k +y 2k -2=1表示双曲线⇒(4-k )(k -2)<0⇒k <2或k >4,故k <2是方程x 24-k +y 2k -2=1表示双曲线的充分不必要条件. 答案:A2.过点P 1(2,1)和P 2(-3,2)的双曲线的方程是________.解析:设方程为ax 2+by 2=1(ab <0),则⎩⎪⎨⎪⎧4a +b =1,9a +4b =1,解方程组得⎩⎨⎧a =37,b =-57,所以双曲线的方程是3x 27-5y 27=1. 答案:3x 27-5y 27=1 3.已知双曲线16x 2-9y 2=144,F 1F 2是左右两焦点,点P 在双曲线上,且|PF 1|·|PF 2|=32,求∠F 1PF 2.解:由题意知||PF 1|-|PF 2||=6,所以 (|PF 1|-|PF 2|)2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36.所以 |PF 1|2+|PF 2|2=36+2×32=100.又由题意知|F 1F 2|=2c =10,所以 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|= 100-1002|PF 1|·|PF 2|=0. 所以 ∠F 1PF 2=90°.。
人教新课标版(A)高二选修1-1 2.2.2双曲线及其标准方程(二)同步练习题
人教新课标版(A )高二选修1-1 2.2.2 双曲线及其标准方程(二)同步练习题【基础演练】题型一:双曲线中的基本运算 因为双曲线中的基本量之间存在着内在联系,所以从方程的角度来讲,可已知一部分求另一部分,请根据以上知识解决以下1~4题。
1. 双曲线1k9y k 25x 22=-+-的焦距为A. 16B. 8C. 4D. 3422. 在双曲线中,25a c =且双曲线与椭圆36y 9x 422=+有公共焦点,则双曲线的方程是A. 1x 4y 22=-B. 1y 4x 22=-C. 14y x 22=-D. 14x y 22=-3. 双曲线8my mx 822=-的焦距为6,则m 的值是A. 1±B. –1C. 1D. 84. 设双曲线与椭圆136y 27x 22=+有共同的焦点,且与椭圆相交,在第一象限的交点A 的纵坐标为4,求此双曲线的方程。
题型二:求双曲线的方程 求双曲线的方程的常用方法有:待定系数法、直译法、定义法、相关点法、几何法等,请根据以上知识解决以下5~8题。
5. 以112y 4x 22-=-的焦点为顶点,顶点为焦点的椭圆方程是A. 14y 16x 22=+B. 116y 4x 22=+C. 112y 16x 22=+D. 116y 12x 22=+6. 双曲线的焦点在y 轴上,且它的一个焦点在直线020y 2x 5=+-上,两焦点关于原点对称,35a c =,则此双曲线的方程是A. 164y 36x 22=-B. 136y 64x 22=-C. 164y 36x 22=-D. 136y 64x 22-=-7. 动圆与两圆1y x 22=+和012x 8y x 22=+-+都外切,则动圆圆心的轨迹是A. 圆B. 椭圆C. 双曲线D. 双曲线的一支8. 在周长为48的Rt △MPN 中,∠MPN=90°,tan ∠PMN=43,求以M 、N 为焦点,且过点P 的双曲线方程。
人教A版数学选修2-1《2.3.1双曲线及其标准方程》练习及答案
双曲线(1)1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ).A.x 216-y 29=1(x ≤-4)B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4) D.x 29-y 216=1(x ≥3) 2.双曲线x 210-y 22=1的焦距为( ). A .3 2 B .4 2 C .3 3 D .4 33.已知双曲线的a =5,c =7,则该双曲线的标准方程为( ).A.x 225-y 224=1B.y 225-x 224=1C.x 225-y 224=1或y 225-x 224=1D.x 225-y 224=0或y 225-x 224=0 4.若双曲线8kx 2-ky 2=8的一个焦点坐标是(0,3),则实数k 的值为________.5.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________. 6.已知方程(1+k )x 2-(1-k )y 2=1表示焦点在x 轴上的双曲线,则k 的取值范围为( ).A .-1<k <1B .k >1C .k <-1D .k >1或k <-17.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为C 右支上的一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于( ). A .24 B .36 C .48 D .968.双曲线 x 2m -y 2m -5=1的一个焦点到中心的距离为3,那么m =________. 9.已知椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则实数a =________. 10.(创新拓展)已知双曲线的方程为x 2-y 24=1,如图,点A 的坐标为(-5,0),B 是圆x 2+(y -5)2=1上的点,点M 在双曲线的右支上,求|MA |+|MB |的最小值为 .双曲线(1)答案1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是 ( D ).A.x 216-y 29=1(x ≤-4)B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4) D.x 29-y 216=1(x ≥3) 2.双曲线x 210-y 22=1的焦距为( D ). A .3 2 B .4 2 C .3 3 D .4 33.已知双曲线的a =5,c =7,则该双曲线的标准方程为( C ).A.x 225-y 224=1B.y 225-x 224=1C.x 225-y 224=1或y 225-x 224=1D.x 225-y 224=0或y 225-x 224=0 4.若双曲线8kx 2-ky 2=8的一个焦点坐标是(0,3),则实数k 的值为________. -15.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________.336.已知方程(1+k )x 2-(1-k )y 2=1表示焦点在x 轴上的双曲线,则k 的取值范围为( A ).A .-1<k <1B .k >1C .k <-1D .k >1或k <-17.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为C 右支上的一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于( C ).A .24B .36C .48D .968.双曲线 x 2m -y 2m -5=1的一个焦点到中心的距离为3,那么m =________.7或-2 9.已知椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则实数a =________.1 10.(创新拓展)已知双曲线的方程为x 2-y 24=1,如图,点A 的坐标为(-5,0),B 是圆x 2+(y -5)2=1上的点,点M 在双曲线的右支上,求|MA |+|MB |的最小值为 .10+1.。
高中数学2.2.1双曲线及其标准方程(1)(含解析)新人教A版选修11
高中数学2.2.1双曲线及其标准方程(1)(含解析)新人教A 版选修11知识点一 双曲线的定义1.已知F 1(-5,0),F 2(5,0),动点P 满足|PF 1|-|PF 2|=2a ,当a 为3和5时,点P 的轨迹分别是( )A.双曲线和一条直线 B .双曲线和一条射线 C.双曲线的一支和一条直线 D .双曲线的一支和一条射线 答案 D解析 依题意得|F 1F 2|=10,当a =3时,2a =6<|F 1F 2|,故点P 的轨迹为双曲线的右支;当a =5时,2a =10=|F 1F 2|,故点P 的轨迹为一条射线.选D.2.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的左、右焦点,且|PF 1|=17,则|PF 2|=________.答案 33解析 由双曲线方程x 264-y 236=1可得a =8,b =6,c =10,由双曲线的图形可得点P 到右焦点F 2的距离d ≥c -a =2.因为||PF 1|-|PF 2||=16,|PF 1|=17,所以|PF 2|=1(舍去)或|PF 2|=33. 知识点二 双曲线的标准方程3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A.x 2-y 23=1B.x 23-y 2=1 C.y 2-x 23=1D.x 22-y 22=1 答案 A解析 由双曲线定义知, 2a =2+22+32-2-22+32=5-3=2,∴a =1,又c =2,∴b 2=c 2-a 2=4-1=3, 因此所求双曲线的标准方程为x 2-y 23=1,故选A.4.若椭圆x 234+y 2n 2=1和双曲线x 2n 2-y 216=1有相同的焦点,则实数n 的值是( )A.±5B.±3C.5D.9答案 B解析 由题意得34-n 2=n 2+16,2n 2=18,解得n =±3.5.如图,在△ABC 中,已知|AB |=42,且三个内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.解 以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系如图所示,则A (-22,0),B (22,0).由正弦定理得sin A =|BC |2R ,sin B =|AC |2R ,sin C =|AB |2R (R 为△ABC 的外接圆半径).∵2sin A +sin C =2sin B , ∴2|BC |+|AB |=2|AC |,从而有|AC |-|BC |=12|AB |=22<|AB |.由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点). ∵a =2,c =22, ∴b 2=c 2-a 2=6,即所求轨迹方程为x 22-y 26=1(x >2).一、选择题1.若双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0 B.⎝⎛⎭⎪⎫52,0 C.⎝⎛⎭⎪⎫62,0 D.(3,0)答案 C解析 将方程化为标准方程为x 2-y 212=1,∴c 2=1+12=32,∴c =62,故选C.2.若双曲线8kx 2-ky 2=8的一个焦点坐标是(3,0),则k =( ) A.1 B.-1 C.12 D.-12答案 A解析 依题意,知双曲线的焦点在x 轴上,方程可化为x 21k-y 28k=1,则k >0,且a 2=1k,b 2=8k ,所以1k +8k=9,解得k =1.3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0),F 1,F 2为其两个焦点,若过焦点F 1的直线与双曲线的一支相交的弦长|AB |=m ,则△ABF 2的周长为( )A.4aB.4a -mC.4a +2mD.4a -2m答案 C解析 由双曲线的定义,知|AF 2|-|AF 1|=2a ,|BF 2|-|BF 1|=2a ,所以|AF 2|+|BF 2|=(|AF 1|+|BF 1|)+4a =m +4a ,于是△ABF 2的周长l =|AF 2|+|BF 2|+|AB |=4a +2m .故选C.4.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为( )A. 3B.2C.2 3D.4答案 C解析 设P 在双曲线的右支上,|PF 1|=2+x ,|PF 2|=x (x >0),因为PF 1⊥PF 2, 所以(x +2)2+x 2=(2c )2=8, 所以x =3-1,x +2=3+1,所以|PF 2|+|PF 1|=3-1+3+1=2 3.5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两焦点的距离差的绝对值等于8,则曲线C 2的标准方程为( )A.x 242-y 232=1B.x 2132-y 252=1 C.x 232-y 242=1 D.x 2132-y 2122=1 答案 A解析 在椭圆C 1中,由⎩⎪⎨⎪⎧2a =26,c a =513,得⎩⎪⎨⎪⎧a =13,c =5.椭圆C 1的焦点F 1(-5,0),F 2(5,0),曲线C 2是以F 1,F 2为焦点,实轴长为8的双曲线,故C 2的标准方程为x 242-y 232=1.二、填空题6.焦点在y 轴上,过点(1,1),且ba=2的双曲线的标准方程是________. 答案y 212-x 2=1解析 由于b a =2,∴b 2=2a 2.当焦点在y 轴上时,设双曲线方程为y 2a 2-x 22a2=1,代入(1,1)点,得a 2=12.此时双曲线方程为y 212-x 2=1.7.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则|PF 1|=____________________________.答案 8解析 依题意有⎩⎪⎨⎪⎧3|PF 1|=4|PF 2|,|PF 1|-|PF 2|=2×1,解得|PF 2|=6,|PF 1|=8.8.在△ABC 中,B (-6,0),C (6,0),直线AB ,AC 的斜率乘积为94,则顶点A 的轨迹方程为__________.答案x 236-y 281=1(x ≠±6) 解析 设顶点A 的坐标为(x ,y ),根据题意,得y x +6·yx -6=94,化简,得x 236-y281=1(x ≠±6).故填x 236-y 281=1(x ≠±6).三、解答题9.求适合下列条件的双曲线的标准方程: (1)a =5,c =7;(2)以椭圆x 225+y 29=1的长轴端点为焦点,且经过点P ⎝ ⎛⎭⎪⎫5,94.解 (1)因为b 2=c 2-a 2=49-25=24,且焦点位置不确定,所以所求双曲线的标准方程为x 225-y 224=1或y 225-x 224=1.(2)因为椭圆x 225+y 29=1的长轴端点为A 1(-5,0),A 2(5,0),所以所求双曲线的焦点为F 1(-5,0),F 2(5,0).由双曲线的定义知,||PF 1|-|PF 2|| =⎪⎪⎪⎪⎪⎪5+52+⎝ ⎛⎭⎪⎫94-02-5-52+⎝ ⎛⎭⎪⎫94-02 =⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫4142-⎝ ⎛⎭⎪⎫942=8,即2a =8,则a =4. 又c =5,所以b 2=c 2-a 2=9. 故所求双曲线的标准方程为x 216-y 29=1. 10.如图所示,已知定圆F 1:(x +5)2+y 2=1,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解 圆F 1:(x +5)2+y 2=1,圆心F 1(-5,0),半径r 1=1; 圆F 2:(x -5)2+y 2=42,圆心F 2(5,0),半径r 2=4. 设动圆M 的半径为R ,则有|MF 1|=R +1,|MF 2|=R +4, ∴|MF 2|-|MF 1|=3<10=|F 1F 2|.∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支,且a =32,c =5,于是b 2=c 2-a 2=914.∴动圆圆心M 的轨迹方程为x 294-y 2914=1⎝⎛⎭⎪⎫x ≤-32.。
人教新课标版(A)高二选修1-1 2.2.1双曲线及其标准方程(一)同步练习题
人教新课标版(A )高二选修1-1 2.2.1 双曲线及其标准方程(一)同步练习题【基础演练】题型一:双曲线的定义平面内到两定点1F 、2F 的距离的绝对值为定值(小于|F F |21)的点的轨迹叫双曲线,其中两定点为焦点,两焦点之间的距离为焦距,请根据以上知识解决以下1~4题。
1. 已知定点1F (-2,0)、2F (2,0),在满足下列条件的平面内动点P 的轨迹中为双曲线的是A. 3|PF ||PF |21±=-B. 4|PF |PF |21±=-C. 5|PF ||PF |21±=-D. 4|PF ||PF |2221±=-2. 若动点P 到1F (-5,0)与P 到2F (5,0)的距离的差为8±,则P 点的轨迹方程是A.116y 25x 22=+ B.116y 25x 22=- C.19y 16x 22=+ D.19y 16x 22=- 3. 已知双曲线的两个焦点坐标为()2,2F 1--、()2,2F 2,双曲线上一点P 到1F 、2F 的距离的差的绝对值等于22,求双曲线的方程。
4. 在△ABC 中,B (4,0)、C (-4,0),点A 运动时满足A sin 21C sin B sin =-,求A 点轨迹。
题型二:双曲线的标准方程(1)焦点在x 轴上,方程为1b y a x 2222=-,焦点为F (c ±,0);(2)焦点在y 轴上,方程为1bx a y 2222=-,焦点为F (0,c ±);(3)a 、b 、c 之间的关系:222c b a =+。
请根据以上知识解决5~7题。
5. 已知方程b ay ax 22=-,如果实数a 、b 异号,则它表示的曲线是A. 焦点在x 轴上的双曲线B. 焦点在y 轴上的双曲线C. 圆D. 椭圆6. 已知双曲线的焦距为26,1325c a 2=,则双曲线的标准方程是 A.1169y 25x 22=- B.1169x 25y 22=- C.25x 21144y 2=- D.1144y 25x 22=-或1144x 25y 22=- 7. 已知双曲线过M (1,1)、N (-2,5)两点,求双曲线的标准方程。
双曲线及其标准方程 课件(人教A版选修)
师生互动
二、双曲线的标准方程
如何求这条优美曲线的方程呢? y
P
(c,0)
(-c,0) F1
o
2C
F2
建系 以F1,F2所在的直线为X轴, 线段F1F2的中垂线为 y轴 建立直角坐标系,则F1(C,0),F2(C,0)
设点 列条件
P(x,y)
PF PF2 2a 1
化简 ( x c)2 y 2 ( x c)2 y 2 2a
x y 2 1 2 a b y2 x2 2 1 2 a b
2
2
(a>b>0) (a>b>0)
探究新知
思考:
平面内M与两定点F1、F2的距离的差等于非零常数 2a的点的轨迹是什么图形?
一、双曲线的定义
y
双曲线定义
x
平面内与两定点F1、F2 的距离的差的绝对值是 常数2a(0<2a<| F1F2|) 的点的轨迹叫做双曲 线.这两个定点F1、F2 叫做双曲线的焦点,两 个焦点之间的距离叫做 焦距2c.
x y 2 1 (a 0, b 0) 2 a b ∵ 2a = 6, 2c=10 ∴ a = 3, c = 5
∴ b2 = 52 - 32 =16
2
2
x2 y2 1 所以所求双曲线的标准方程为: 9 16
小结:求标准方程要做到先定型,后定量。
例2:求适合下列条件的双曲线的标准方程:
2
2
定义 图象
| PF1 PF2 | 2a 0 2a 2c
P
方程
x y 2 1 2 a b
F1 (c,0) F2 (c,0)
2 2 2
2
2
新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析
选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。
高中数学人教A版选修1-1第2章2-2-1双曲线及其标准方程课时测试及解析
高中数学人教A版选修1-1 第二章圆锥曲线与方程2.2.1 双曲线及其标准方程课时测试(1)1.动点P到点M(1,0),N(-1,0)的距离之差的绝对值为2,则点P的轨迹是( )A.双曲线B.双曲线的一支C.两条射线D.一条射线【解析】选C.因为||PM|-|PN||=2,而|MN|=2,故P点轨迹是以M,N为端点向外的两条射线.2.椭圆+=1与双曲线-=1有相同的焦点,则a的值是( )A. B.1或-2 C.1或 D.1【解析】选D.由于a>0,0<a2<4,且4-a2=a+2,可解得a=1.3.已知双曲线的两个焦点分别为F1(-,0),F2(,0),P是双曲线上的一点,且PF1⊥PF2,|PF1|·|PF2|=2,则双曲线的标准方程是( )A. -=1B.-=1C.x2-=1D.-y2=1【解析】选D.设|PF1|=m,|PF2|=n(m>0,n>0),在Rt△PF1F2中, m2+n2=(2c)2=20,m·n=2.由双曲线的定义,知|m-n|2=m2+n2-2mn=16=4a2.所以a2=4,所以b2=c2-a2=1.所以双曲线的标准方程为-y2=1.4.双曲线-=1的焦距为.【解析】c2=m2+12+4-m2=16,所以c=4,2c=8.答案:85.根据下列条件,求双曲线的标准方程:(1)c=,经过点(-5,2),且焦点在x轴上.(2)已知双曲线两个焦点的坐标为F1(0,-5),F2(0,5),双曲线上一点P到F1,F2的距离之差的绝对值等于6.【解析】(1)因为c=,且焦点在x轴上,故可设标准方程为-=1(a2<6).因为双曲线经过点(-5,2),所以-=1,解得a2=5或a2=30(舍去).所以所求双曲线的标准方程为-y2=1.(2)因为双曲线的焦点在y轴上,所以设它的标准方程为-=1(a>0,b>0).因为2a=6, 2c=10,所以a=3,c=5.所以b2=52-32=16. 所以所求双曲线标准方程为-=1.课时测试(2)一、选择题(每小题5分,共25分)1.设θ∈,则关于x,y的方程-=1所表示的曲线是( )A.焦点在y轴上的双曲线B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在x轴上的椭圆【解析】选 C.方程即+=1,因为θ∈,所以sinθ>0,cosθ<0,且-cos θ>sinθ,故方程表示焦点在y轴上的椭圆.【补偿训练】在方程mx2-my2=n中,若mn<0,则方程的曲线是( )A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线【解析】选D.方程mx2-my2=n可化为:-=1,因为mn<0,所以->0,所以方程的曲线是焦点在y轴上的双曲线.2.(2016·枣庄高二检测)双曲线-=1上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A.22或2B.7C.22D.2【解析】选A.因为a2=25,所以a=5.由双曲线定义可得||PF1|-|PF2||=10,由题意知|PF1|=12,所以|PF1|-|PF2|=±10,所以|PF2|=22或2.3.设动点P到A(-5,0)的距离与它到B(5,0)距离的差等于6,则P点的轨迹方程是( )A.-=1B.-=1C.-=1(x≤-3)D.-=1(x≥3)【解析】选D.由题意知,动点P的轨迹应为以A(-5,0),点B(5,0)为焦点的双曲线的右支.由c=5,a=3,知b2=16,所以P点的轨迹方程为-=1(x≥3).【误区警示】容易忽视x的取值范围而导致错选A.4.(2016·泉州高二检测)已知定点A,B且|AB|=4,动点P满足|PA|-|PB|=3,则|PA|的最小值是( )A. B. C. D.5【解析】选C.由题意知,动点P的轨迹是以定点A,B为焦点的双曲线的一支(如图),从图上不难发现,|PA|的最小值是图中AP′的长度,即a+c=.5.(2016·潍坊高二检测)双曲线-y2=1(n>1)的两焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=2,则△PF1F2的面积为( )A. B.1 C.2 D.4【解析】选B.不妨设F1,F2是双曲线的左、右焦点,P为右支上一点,|PF1|-|PF2|=2,①|PF1|+|PF2|=2,②由①②解得:|PF1|=+,|PF2|=-,得:|PF1|2+|PF2|2=4n+4=|F1F2|2,所以PF1⊥PF2,又由①②分别平方后作差得:|PF1||PF2|=2,所以=|PF1|·|PF2|=1.二、填空题(每小题5分,共15分)6.(2016·唐山高二检测)已知P是双曲线-=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为.【解析】由条件知a2=64,即a=8,c2=b2+a2=100,c=10,所以双曲线右支上的点到左焦点F1的最短距离a+c=18>17,故点P在双曲线左支上.所以|PF2|-|PF1|=2a=16,即|PF2|=16+|PF1|=33.答案:33【误区警示】本题易直接利用定义求解,忽视右支上的点到左焦点的最短距离为a+c,而出现错误结论|PF2|=1或|PF2|=33.【补偿训练】在平面直角坐标系xOy中,已知△ABC的顶点A(-6,0)和C(6,0),若顶点B在双曲线-=1的左支上,则= .【解题指南】由正弦定理可将转化为边的比,而△ABC的顶点A,C已知,故边AC长可求,B在双曲线上,由定义可求|BC|-|BA|.【解析】由条件可知|BC|-|BA|=10,且|AC|=12,又在△ABC中,有===2R,从而==.答案:7.(2016·烟台高二检测)已知双曲线中心在坐标原点且一个焦点为F1(-,0),点P位于该双曲线上,线段PF1的中点坐标为(0,2),则该双曲线的方程是.【解析】设双曲线方程为-=1,因为c=,c2=a2+b2,所以b2=5-a2,所以-=1.由于线段PF1的中点坐标为(0,2),则P点的坐标为(,4).代入双曲线方程得-=1,解得a2=1或a2=25(舍去),所以双曲线方程为x2-=1.答案:x2-=18.已知双曲线-=1上一点M的横坐标为5,则点M到左焦点的距离是.【解题指南】利用双曲线的定义求解.【解析】由于双曲线-=1的右焦点为F(5,0),将x M=5代入双曲线方程可得|y M|=,即为点M到右焦点的距离,由双曲线的定义知M到左焦点的距离为+2×3=.答案:三、解答题(每小题10分,共20分)9.已知双曲线与椭圆+=1有相同的焦点,且与椭圆的一个交点的纵坐标为4,求双曲线的方程.【解析】椭圆的焦点为F1(0,-3),F2(0,3),故可设双曲线方程为-=1(a>0,b>0),且c=3,a2+b2=9.由条件知,双曲线与椭圆有一个交点的纵坐标为4,可得两交点的坐标为A(,4),B(-,4),由点A在双曲线上知,-=1.解方程组得所以所求双曲线的方程为-=1.10.如图,在△ABC中,已知|AB|=4,且三内角A,B,C满足2sinA+sinC=2sinB,建立适当的坐标系,求顶点C的轨迹方程.【解析】以AB边所在的直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系如图所示,则A(-2,0),B(2,0).由正弦定理,得sinA=,sinB=,sinC=(R为△ABC的外接圆半径).因为2sinA+sinC=2sinB,所以2a+c=2b,即b-a=,从而有|CA|-|CB|=|AB|=2<|AB|.由双曲线的定义知,点C的轨迹为双曲线的右支(除去与x轴的交点),因为a=,c=2,所以b2=c2-a2=6,即所求轨迹方程为-=1(x>)一、选择题(每小题5分,共10分)1.(2016·合肥高二检测)已知双曲线-=1的焦点为F1,F2,点M在双曲线上,且MF1⊥x轴,则F1到直线F2M的距离为( )A. B. C. D.【解析】选C.设F1到直线F2M的距离为d,不妨设点F1(-3,0),容易计算得出|MF1|=,|MF2|-|MF1|=2.解得|MF2|=.而|F1F2|=6,在直角三角形MF1F2中,由|MF1|·|F1F2|=|MF2|·d,求得F1到直线F2M的距离d为.2.(2016·沈阳高二检测)已知点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R 在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是( )A.6B.8C.10D.12【解析】选 C.由双曲线的知识可知:C1:-=1的两个焦点分别是F1(-5,0)与F2(5,0),且|PF1|-|PF2|=8,而这两点正好是两圆(x+5)2+y2=1和(x-5)2+y2=1的圆心,两圆(x+5)2+y2=1和(x-5)2+y2=1的半径分别是r1=1,r2=1,所以|PQ|max=|PF1|+1,|PR|min=|PF2|-1,所以|PQ|-|PR|的最大值为:(|PF1|+1)-(|PF2|-1)=|PF1|-|PF2|+2=8+2=10.【补偿训练】(2016·太原高二检测)设F1,F2分别是双曲线x2-=1的左、右焦点.若点P在双曲线上,有·=0,则|+|= ( )A. B.2 C. D.2【解析】选B.因为·=0,所以PF1⊥PF2,即△PF1F2为直角三角形,所以|PF1|2+|PF2|2=|F1F2|2=(2)2=40,|+|====2.二、填空题(每小题5分,共10分)3.(2016·黄冈高二检测)已知F是双曲线-=1的左焦点,A(1,4),点P是双曲线右支上的动点,则|PF|+|PA|的最小值是.【解析】由双曲线-=1,得c=4,所以左焦点F(-4,0),右焦点F′(4,0),由双曲线的定义得:|PF|-|PF′|=2a=4,所以|PF|+|PA|=4+|PF′|+|PA|≥4+|AF′|=4+=9,此时P为AF′与双曲线的交点,即|PF|+|PA|的最小值为9.答案:94.(2016·杭州高二检测)已知双曲线的两个焦点为F1(-,0),F2(,0),M是此双曲线上一点,若·=0,||·||=2,则该双曲线的方程是.【解析】设双曲线的方程为-=1(a>0,b>0),由题意得||MF1|-|MF2||=2a,|MF1|2+|MF2|2=(2)2=20,又因为||·||=2,所以|MF1|2+|MF2|2-2|MF1||MF2|=4a2,即20-2×2=4a2,所以a2=4,b2=c2-a2=5-4=1,所以双曲线的方程为-y2=1.答案:-y2=1三、解答题(每小题10分,共20分)5.当0°≤α≤180°时,方程x2cosα+y2sinα=1表示的曲线怎样变化?【解析】(1)当α=0°时,方程为x2=1,它表示两条平行直线x=1和x=-1.(2)当0°<α<90°时,方程为+=1.①当0°<α<45°时,0<<,它表示焦点在y轴上的椭圆.②当α=45°时,它表示圆x2+y2=.③当45°<α<90°时,>>0,它表示焦点在x轴上的椭圆.(3)当α=90°时,方程为y2=1,它表示两条平行直线y=1和y=-1.(4)当90°<α<180°时,方程为-=1,它表示焦点在y轴上的双曲线.(5)当α=180°时,方程为x2=-1,它不表示任何曲线.【误区警示】解答本题时容易忽略α=90°的情况.6.(2016·济南高二检测)已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,求P到x轴的距离.【解析】因为||PF1|-|PF2||=2,所以|PF1|2-2|PF1|·|PF2|+|PF2|2=4,所以|PF1|2+|PF2|2=4+2|PF1|·|PF2|,由余弦定理知|PF1|2+|PF2|2-|F1F2|2=2|PF1|·|PF2|cos60°,得|PF1|2+|PF2|2=|F1F2|2+|PF1|·|PF2|,又a=1,b=1,所以c==,所以|F1F2|=2c=2,所以4+2|PF1||PF2|=|PF1|·|PF2|+8,所以|PF1|·|PF2|=4.设P到x轴的距离为|y0|,=|PF1||PF2|sin60°=|F1F2|·|y0|,所以×4×=×2|y0|,所以|y0|==.即P点到x轴的距离为.课时测试(3)(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·福建高考)若双曲线E:-=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于( )A.11B.9C.5D.3【解析】选B.因为=2a,所以-=±6,所以=9或-3(舍去).【补偿训练】设点P是双曲线-=1上任意一点,F1,F2分别是左、右焦点,若|PF1|=10,则|PF2|=________.【解析】由双曲线方程,得a=3,b=4,c=5.当点P在双曲线的左支上时,由双曲线定义,得|PF2|-|PF1|=6,所以|PF2|=|PF1|+6=10+6=16;当点P在双曲线的右支上时,由双曲线定义,得|PF1|-|PF2|=6,所以|PF2|=|PF1|-6=10-6=4. 故|PF2|=4或|PF2|=16.答案:4或162.一动圆P过定点M(-4,0),且与已知圆N:(x-4)2+y2=16相切,则动圆圆心P的轨迹方程是( )A.-=1(x≥2)B.-=1(x≤2)C.-=1D.-=1【解析】选C.由已知N(4,0),内切时,定圆N在动圆P的内部,有|PN|=|PM|-4,外切时,有|PN|=|PM|+4,故||PM|-|PN||=4,因此2a=4,2c=8,所以b2=12,点P的轨迹是双曲线-=1.【误区警示】本题易把“相切”理解为外切或内切,错选A或B.3.(2015·信阳高二检测)已知双曲线8kx2-ky2=8的一个焦点为(0,3),则k的值为( )A.1B.-1C.D.-【解析】选B.将双曲线方程化为kx2-y2=1,即-=1.因为一个焦点是(0,3),所以焦点在y轴上,所以c=3,a2=-,b2=-,所以a2+b2=--=-=c2=9.所以k=-1.【误区警示】本题有两处易错:一是a2,b2确定错误,应该是a2=-,b2=-;二是a,b,c 的关系式用错.在双曲线中应为c2=a2+b2.4.设过双曲线x2-y2=9左焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦点.若|PQ|=7,则△F2PQ的周长为( )A.19B.26C.43D.50【解析】选B.如图,由双曲线的定义可得将两式相加得|PF2|+|QF2|-|PQ|=4a,所以△F2PQ的周长为|PF2|+|QF2|+|PQ|=4a+|PQ|+|PQ|=4×3+2×7=26.5.(2015·开封高二检测)双曲线-=1上一点P到点(5,0)的距离为15,那么该点到(-5,0)的距离为( )A.7B.23C.5或25D.7或23【解析】选D.由题知a2=16,b2=9,所以c2=25.又焦点在x轴上,所以焦点为F1(-5,0),F2(5,0),||PF1|-|PF2||=2a=8,||PF1|-15|=8,所以|PF1|-15=8或|PF1|-15=-8,所以|PF1|=23或|PF1|=7.【拓展提升】求双曲线上的点到焦点的距离的注意点①若已知该点的横、纵坐标,则根据两点间距离公式可求结果;②若已知该点到另一焦点的距离,则根据||PF1|-|PF2||=2a求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c-a).二、填空题(每小题5分,共15分)6.已知△ABC的顶点B(-2,0),C(2,0),并且sinC-sinB=sinA,则顶点A的轨迹方程是________.【解析】设△ABC外接圆半径为R,则由:sinC-sinB=sinA,得:-=·,即|AB|-|AC|=2.所以点A的轨迹是以B,C为焦点的双曲线的右支,并去掉顶点.因为2a=2,c=2,所以a2=1,b2=c2-a2=3.故点A的轨迹方程为x2-=1(x>1).答案:x2-=1(x>1)7.(2015·山西师大附中高二检测)从双曲线-=1的左焦点F引圆x2+y2=9的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|=________. 【解析】设F2为椭圆右焦点,则|OM|=|PF2|,|PF|-|PF2|=6.因为FT是☉O的切线,所以|FT|=4,所以|MT|=|MF|-|FT|=|PF|-4,所以|MO|-|MT|=|PF2|-|PF|+4=4-(|PF|-|PF2|)=1.答案:1【补偿训练】若双曲线-=1(m>0,n>0)和椭圆+=1(a>b>0)有相同的焦点F1,F2,M 为两曲线的交点,则|MF1|·|MF2|等于________.【解析】由双曲线及椭圆定义分别可得|MF1|-|MF2|=±2,①|MF1|+|MF2|=2,②②2-①2得,4|MF1|·|MF2|=4a-4m,所以|MF1|·|MF2|=a-m.答案:a-m8.已知双曲线上两点P1,P2的坐标分别为(3,-4),,则双曲线的标准方程为________.【解析】若曲线的焦点在y轴上,设所求双曲线的标准方程为:-=1(a>0,b>0)依题意得令m=,n=,则方程组化为:解这个方程组得即a2=16,b2=9,所以所求双曲线的标准方程为-=1.若焦点在x轴上,设所求双曲线方程为-=1(a>0,b>0),依题意得此时无解.综上可得,所求双曲线的标准方程为-=1.答案:-=1【一题多解】设所求双曲线方程为Ax2-By2=1(AB>0),依题意得解得故所求双曲线方程为-+=1即-=1.答案:-=1三、解答题(每小题10分,共20分)9.(2015·洛阳高二检测)已知曲线C:+=1(t≠0,t≠±1).(1)求t为何值时,曲线C分别为椭圆、双曲线.(2)求证:不论t为何值,曲线C有相同的焦点.【解析】(1)当|t|>1时,t2>0,t2-1>0,曲线C为椭圆;当0<|t|<1时,t2-1<0,曲线C为双曲线.(2)当|t|>1时,t2-1>0,曲线C是椭圆,且t2>t2-1,因而c2=t2-(t2-1)=1.所以焦点为F1(-1,0),F2(1,0).当0<|t|<1时,双曲线C的方程为-=1.因为c2=t2+(1-t2)=1,所以焦点为F1(-1,0),F2(1,0).综上所述,无论t为何值,曲线C有相同的焦点.10.(2015·漳州高二检测)已知双曲线-=1的两焦点为F1,F2.(1)若点M在双曲线上,且·=0,求M点到x轴的距离.(2)若双曲线C与已知双曲线有相同焦点,且过点(3,2),求双曲线C的方程. 【解析】(1)如图所示,不妨设M在双曲线的右支上,M点到x轴的距离为h,·=0,则MF1⊥MF2,设|MF1|=m,|MF2|=n,由双曲线定义知,m-n=2a=8,①又m2+n2=(2c)2=80,②由①②得m·n=8,所以mn=4=|F1F2|·h,所以h=.(2)设所求双曲线C的方程为-=1(-4<λ<16),由于双曲线C过点(3,2),所以-=1,解得λ=4或λ=-14(舍去).所以所求双曲线C的方程为-=1.(20分钟40分)一、选择题(每小题5分,共10分)1.设P为双曲线x2-=1上的一点,F1,F2是该双曲线的两个焦点,若|PF1|∶|PF2|=3∶2,则△PF1F2的面积为( )A.6B.12C.12D.24【解析】选B.由已知得2a=2,不妨设P为双曲线右支上一点,又由双曲线的定义得,|PF1|-|PF2|=2,又|PF1|∶|PF2|=3∶2,所以|PF1|=6,|PF2|=4.又|F1F2|=2c=2.由余弦定理得cos∠F1PF2==0.所以三角形为直角三角形.=|PF1|·|PF2|=12.2.(2015·武威高二检测)已知向量a=(x+1,-ky),b=(y,x-1),且a∥b,则点P(x,y)的轨迹不可能是( )A.圆B.椭圆C.一条直线D.双曲线【解析】选C.依题意得(x+1)·(x-1)+ky·y=0,故x2+ky2=1,当k=1时,点P(x,y)的轨迹为圆;当k>0,且k≠1时,点P(x,y)的轨迹为椭圆;当k<0时,点P(x,y)的轨迹为双曲线.当k=0时,点P(x,y)的轨迹为两条直线x=±1,故选C.二、填空题(每小题5分,共10分)3.(2015·武汉高二检测)已知双曲线-=1的一个焦点是(0,2),椭圆-=1的焦距等于4,则n=________.【解析】因为双曲线的焦点为(0,2),所以焦点在y轴,所以双曲线的方程为-=1,即a2=-3m,b2=-m,所以c2=-3m-m=-4m=4,解得m=-1,所以椭圆方程为+x2=1,且n>0,椭圆的焦距为4,所以c2=n-1=4或1-n=4,解得n=5或-3(舍去).答案:54.(2015·盐城高二检测)已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.【解析】设双曲线的右焦点为F1,则由双曲线的定义可知|PF|=2a+|PF1|=4+|PF1|,所以|PF|+|PA|=4+|PF1|+|PA|.所以当|PF1|+|PA|最小时满足|PF|+|PA|最小.由双曲线的图象可知当点A,P,F1共线时,满足|PF1|+|PA|最小,易求得最小值为|AF1|=5,故所求最小值为9.答案:9三、解答题(每小题10分,共20分)5.焦点在x轴上的双曲线过点P(4,-3),且点Q(0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.【解析】因为双曲线焦点在x轴上,所以设双曲线的标准方程为-=1(a>0,b>0),F1(-c,0),F2(c,0).因为双曲线过点P(4,-3),所以-=1.①又因为点Q(0,5)与两焦点的连线互相垂直,所以·=0,即-c2+25=0.解得c2=25.②又c2=a2+b2,③所以由①②③可解得a2=16或a2=50(舍去).所以b2=9,所以所求的双曲线的标准方程是-=1.6.(2015·益阳高二检测)双曲线-y2=1的两个焦点为F1,F2,点P在双曲线上,且满足:∠F1PF2=90°,求△F1PF2的面积.【解题指南】利用双曲线的定义结合勾股定理表示三角形面积.【解析】如图,由双曲线方程-y2=1,可知:a2=4,b2=1,c2=a2+b2=5.即a=2,c=.由双曲线定义,有|PF2|-|PF1|=2a,所以|PF2|=4+|PF1|.由∠F1PF2=90°,在直角△F1PF2中,|PF1|2+|PF2|2=|F1F2|2,即|PF1|2+(4+|PF1|)2=(2)2,即|PF1|2+4|PF1|-2=0,由|PF1|>0,所以|PF1|=-2,可得|PF2|=+2,所以Rt△F1PF2的面积S=|PF1|·|PF2|=1.。
2019-2020学年高二数学人教A版选修1-1训练:2.2.1 双曲线及其标准方程 Word版含解析
2.2.1 双曲线及其标准方程课时过关·能力提升一、基础巩固1.若双曲线E :x 29‒y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) B.9C.5D.3a=3,b=4,c=5.由双曲线定义,可知||PF 1|-|PF 2||=|3-|PF 2||=2a=6,故|PF 2|=9.2.已知点F 1(-5,0),F 2(5,0),动点P 满足|PF 1|-|PF 2|=2a ,则当a=3和a=5时,点P 的轨迹分别为( )A.双曲线和一条直线B.双曲线的一支和一条直线C.双曲线和一条射线D.双曲线的一支和一条射线|F 1F 2|=10,|PF 1|-|PF 2|=2a ,∴当a=3时,2a=6<|F 1F 2|,此时轨迹为双曲线的一支;当a=5时,2a=10=|F 1F 2|,此时轨迹为一条射线.3.若双曲线方程为x 2-2y 2=2,则它的左焦点坐标为( )A .(-22,0)B.(-52,0)C.(-62,0)D.(‒3,0)双曲线标准方程为x 22‒y 2=1,∴c 2=2+1=3.∴左焦点坐标为(‒3,0).4.若椭圆x 24+y 2m 2=1与双曲线x 2m2‒y 22=1有相同的焦点,则m 的值是( )A.±1B.1C.-1D.不存在5.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A .14B.35C.34D.45为x 22‒y 22=1,所以a=b =2,c =2.因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上.所以|PF 1|-|PF 2|=2a=22,解得|PF 2|=22,|PF 1|=42.所以根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34.6.已知△ABP 的顶点A ,B 分别为双曲线C :x 216‒y 29=1的左、右焦点,顶点P 在双曲线C 上,则|sin A -sin B |sin P的值等于( )A .7B.74C.54D.45|PB|=m ,|PA|=n ,由正弦定理得|sin A -sin B |sin P =|m -n |2c=810=45.7.以椭圆x 28+y 25=1长轴的两个端点为焦点,且经过点(3,10)的双曲线的标准方程为____________.,得双曲线的焦点在x 轴上,且c=22.设双曲线的标准方程为x 2a 2‒y 2b2=1(a >0,b >0), 则{a 2+b 2=c 2=8,9a 2-10b 2=1,解得{a 2=3,b 2=5.故所求双曲线的标准方程为x 23‒y 25=1.‒y 25=18.设P 为双曲线x 2‒y 212=1上的一点,F 1,F 2是该双曲线的两个焦点.若|PF 1|∶|PF 2|=3∶△PF 1F 2的面积为 .2,则|PF 1|-|PF 2|=2a=2,且|PF 1|∶|PF 2|=3∶2,∴|PF 1|=6,|PF 2|=4.又|F 1F 2|=2c=213,∴|PF 1|2+|PF 2|2=|F 1F 2|2,·|PF 2|∴S △PF 1F 2=12|PF 1|=12×6×4=12.9.根据下列条件,求双曲线的标准方程:(1)经过点P (3,154),Q (-163,5);(2)c =6,经过点(‒5,2),焦点在x 轴上.设双曲线方程为mx 2+ny 2=1(mn<0),∵,点P (3,154),Q (-163,5)在双曲线上∴{9m +22516n =1,2569m +25n =1,解得{m =-116,n =19.∴双曲线方程为y 29‒x 216=1.(2)∵c x 轴上,=6,焦点在∴设双曲线方程为x 2a 2‒y 26-a 2=1.∵点(-5,2)在双曲线上,∴25a 2‒46-a 2=1,∴a 2=5.∴双曲线方程为x 25‒y 2=1.10.已知动圆C 与定圆C 1:(x+3)2+y 2=9,C 2:(x-3)2+y 2=1都外切,求动圆圆心C 的轨迹方程.,由题意,得定圆圆心分别为C 1(-3,0),C 2(3,0),半径r 1=3,r 2=1.设动圆圆心为C (x ,y ),半径为r ,则|CC 1|=r+3,|CC 2|=r+1.两式相减,得|CC 1|-|CC 2|=2,∴点C 的轨迹是以C 1,C 2为焦点,实轴长为2的双曲线的右支.∵a=1,c=3,∴b 2=c 2-a 2=8.∴方程为x 2≥1).‒y 28=1(x 二、能力提升1.若方程x 2m -1+y 2m 2-4=3表示焦点在y 轴上的双曲线,则m的取值范围是( )A.(1,2) B.(2,+∞)2)D.(-2,2)2.已知双曲线的两个焦点分别为F 1(⊥‒5,0),F 2(5,0),P 是双曲线上的一点,且PF 1PF 2,|PF 1|·|PF 2|=2,则双曲线的标准方程是( )A .x 22‒y 23=1B.x 23‒y 22=1C.x 2‒y 24=1D.x 24‒y 2=1|PF 1|=m ,|PF 2|=n ,其中m>0,n>0,在Rt △PF 1F 2中,m 2+n 2=(2c )2=20,m ·n=2,由双曲线定义,知|m-n|2=m 2+n 2-2mn=16=4a 2.∴a 2=4,∴b 2=c 2-a 2=1.∴双曲线的标准方程为x 24‒y 2=1.3.已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A .3B.62C.3D.6|PF 1|=m ,|PF 2|=n.由方程知c =2.在△F 1PF 2中,由余弦定理得4c 2=m 2+n 2-mn.∵|m-n|=2,∴8=(m-n )2+mn=4+mn ,∴mn=4.设点P 到x 轴的距离为h ,·h 60°,∴h 则12×2c =12mn sin =62.4.已知点F 1,F 2分别是双曲线x 2a 2‒y 29=1(a >0)的左、右焦点,P 是该双曲线上的一点,且|△PF 1F 2的周长是 .PF 1|=2|PF 2|=16,则|PF 1|=2|PF 2|=16,∴|PF 1|-|PF 2|=16-8=8=2a.∴a=4.又b 2=9,∴c 2=25.∴2c=10.∴△PF 1F 2的周长为|PF 1|+|PF 2|+|F 1F 2|=16+8+10=34.5.已知动圆M 过定点B (-4,0),且和定圆(x-4)2+y 2=16相切,则动圆圆心M 的轨迹方程为 .M 的半径为r ,依题意有|MB|=r ,另设A (4,0),则有|MA|=r ±4,即|MA|-|MB|=±4.亦即动圆圆心M 到两定点A ,B 的距离之差的绝对值等于常数4,又4<|AB|,因此动点M 的轨迹为双曲线,且c=4,2a=4,所以a=2,a 2=4,b 2=c 2-a 2=12,故轨迹方程是x 24‒y 212‒y 212=1★6.已知F 是双曲线x 24‒y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|PA |值为__________.,已知F (-4,0),设F'为双曲线的右焦点,则F'(4,0),点A (1,4)在双曲线的两支之间.由双曲线的定义,得|PF|-|PF'|=2a=4,所以|PF|+|PA|=4+|PF'|+|PA|≥4+|AF'|=4+5=9,当且仅当A ,P ,F'三点共线时,取等号.7.已知双曲线x 216‒y 24=1的两个焦点分别为F 1,F 2.若点M 在双曲线上,且MF 1·MF 2=0,求点M 到x 轴的距离.M 在双曲线的右支上,点M 到x 轴的距离为h MF 1⊥MF 2.,MF 1·MF 2=0,则设|MF 1|=m ,|MF 2|=n ,由双曲线定义知,m-n=2a=8.①又m 2+n 2=(2c )2=80,②由①②得m ·n=8,·h ,得h 由12mn =4=12|F 1F 2|=255.★8. 已知双曲线的方程为x 2‒y 24=1,如图,点A 的坐标为(‒5,0),点B 是圆x 2+(y ‒5) 2=1上的点,点M 在双曲线的右支上,求|MA |+|MB |的最小值.D 的坐标A ,D 是双曲线的焦点.为(5,0),则点由双曲线的定义,得|MA|-|MD|=2a=2.所以|MA|+|MB|=2+|MB|+|MD|≥2+|BD|.又点B 是圆x 2+(y ,圆的圆心为C (01,‒5)2=1上的点,5),半径为所以|BD|≥|CD|-1=10‒1.从而|MA|+|MB|≥2+|BD|≥10+1.当点M ,B 在线段CD 上时取等号,即|MA|+|MB|的最小值为10+1.。
高中数学 第二章 2.2.1双曲线及其标准方程检测试题 新人教A版选修11
§2.2 双曲线2.2.1 双曲线及其标准方程课时目标1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念(1)双曲线的定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F1,F2的距离的差的绝对值等于|F1F2|时的点的轨迹为__________________________________________.平面内与两个定点F1,F2的距离的差的绝对值大于|F1F2|时的点的轨迹__________.(2)双曲线的焦点和焦距双曲线定义中的两个定点F1、F2叫做________________,两焦点间的距离叫做________________.2.双曲线的标准方程(1)焦点在x轴上的双曲线的标准方程是________________,焦点F1__________,F2__________.(2)焦点在y轴上的双曲线的标准方程是________________________,焦点F1________,F2__________.(3)双曲线中a、b、c的关系是____________.一、选择题1.已知平面上定点F1、F2及动点M,命题甲:||MF1|-|MF2||=2a(a为常数),命题乙:M点轨迹是以F1、F2为焦点的双曲线,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若ax 2+by 2=b (ab <0),则这个曲线是( ) A .双曲线,焦点在x 轴上 B .双曲线,焦点在y 轴上 C .椭圆,焦点在x 轴上 D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1 B.x 23-y 2=1C .y 2-x 23=1 D .x 22-y 22=1 4.双曲线x 2m -y 23+m=1的一个焦点为(2,0),则m 的值为( )A .12B .1或3C .1+22D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( ) A .抛物线 B .圆 C .双曲线的一支 D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )A .x 24-y 2=1 B .x 2-y 24=1C .x 22-y 23=1D .x 23-y 22=17.设F 1、F 2是双曲线 x 24-y 2=1的两个焦点,点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1|·|PF 2|=______.8.已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是________.9.F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32,则∠F 1PF 2=______.三、解答题 10.设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B (4,0)、C (-4,0),动点A 满足sin B -sin C =12sin A ,求动点A的轨迹方程.能力提升12.若点O 和点F(-2,0)分别为双曲线x2a2-y 2=1(a>0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)13.已知双曲线的一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得.2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合.3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.2 双曲线2.2.1 双曲线及其标准方程答案知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0)(2)y 2a 2-x 2b 2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙, 只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.]2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以ba <0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0).由题知c =2,∴a 2+b 2=4. ①又点(2,3)在双曲线上,∴22a 2-32b2=1. ②由①②解得a 2=1,b 2=3,∴所求双曲线的标准方程为x 2-y 23=1.]4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.]5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2-y25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.] 7.2解析 ∵||PF 1|-|PF 2||=4, 又PF 1⊥PF 2,|F 1F 2|=25,∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2=20-2|PF 1||PF 2|=16,∴|PF 1|·|PF 2|=2. 8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线,所以(1+k )(1-k )>0.所以(k +1)(k -1)<0. 所以-1<k <1. 9.90°解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2. 在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α=r 1-r 22+2r 1r 2-4c 22r 1r 2=36+64-10064=0.∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2-x 2b2=1 (a >0,b >0),由题意知c 2=36-27=9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有⎩⎪⎨⎪⎧42a2-±152b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.所以双曲线的标准方程为y 24-x 25=1. 方法二 将点A 的纵坐标代入椭圆方程得 A (±15,4),又两焦点分别为F 1(0,3),F 2(0,-3). 所以2a =|±15-02+4+32-±15-02+4-32|=4,即a =2,b 2=c 2-a 2=9-4=5, 所以双曲线的标准方程为y 24-x 25=1.11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =csin C=2R ,代入sin B -sin C =12sin A ,得|AC |2R -|AB |2R =12·|BC |2R ,又|BC |=8, 所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以 a =2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2).12.B[由c =2得a 2+1=4, ∴a 2=3,∴双曲线方程为x 23-y 2=1.设P (x ,y )(x ≥3), ∴ OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2=x 2+2x +x 23-1=43x 2+2x -1(x ≥3). 令g (x )=43x 2+2x -1(x ≥3),则g (x )在[3,+∞)上单调递增.g (x )min =g (3)=3+2 3.OP →·FP →的取值范围为[3+23,+∞).]13.解 设双曲线的标准方程为x 2a 2-y 2b2=1,且c =7,则a 2+b 2=7.①由MN 中点的横坐标为-23知,中点坐标为⎝ ⎛⎭⎪⎫-23,-53.设M (x 1,y 1),N (x 2,y 2),则由⎩⎪⎨⎪⎧ x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎪⎨⎪⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1, ∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1双曲线及其标准方程一、选择题1.【题文】双曲线x y 222-=8的焦点坐标是( )A.()±B.(0,±C.()2,0±D.()0,2±2.【题文】若双曲线22:1916x y E -=的左、右焦点分别为12,F F ,点P 在双曲线E 上, 且13PF =,则2PF 等于 ( )A .11B .9C .5D .33.【题文】下列曲线中焦点坐标为()1,0-的是( )A .223312x y -= B .2214x y +=C .22143x y -=D .22123x y +=4.【题文】若双曲线22149x y -=上一点P 到左焦点的距离是3,则点P 到右焦点的距离为 ( )A .4B .5C .6D .75.【题文】过双曲线228x y -=的左焦点1F 有一条弦PQ 交左支于P 、Q 点,若7PQ =,2F 是双曲线的右焦点,则△2PF Q 的周长是( )A .28B .14-.14+ D .6.【题文】椭圆2214x y +=与双曲线2212x y -=有相同的焦点1F 、2F ,P 是这两条曲线的一个交点,则△12F PF 的面积是( )A .4B .2C .1D .127.【题文】过双曲线()222210,0x y a b a b-=>>的左焦点1F ,作圆222x y a +=的切线交双曲线右支于点P ,切点为T ,若1PF 的中点M 在第一象限,则以下结论正确的是( ) A .b a MO MT -=- B .b a MO MT ->- C .b a MO MT -<- D .b a MO MT -=+8.【题文】已知点P 为双曲线()222210,0x y a b a b -=>>右支上一点,12,F F 分别为双曲线的左,右焦点,且212b F F a=,I 为三角形12PF F 的内心,若1212IPF IPF IF F S S S λ=+V V V 成立,则λ的值为( )A 122+.231- C 21 D 21二、填空题9.【题文】设m 为常数,若点()5,0F 是双曲线2219x y m-=的一个焦点,则m = .10.【题文】已知双曲线221x y -=,点1F ,2F 为其两个焦点,点P 为双曲线上一点,若12PF PF ⊥,则12PF PF +=_______.11.【题文】若动圆M 与圆1C :()224+2x+y =外切,且与圆2C :()224+2x y -=内切,则动圆圆心M 的轨迹方程________.三、解答题12.【题文】求以椭圆22185x y +=的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.13.【题文】已知命题p :方程22122x y m m -=-表示焦点在x 轴上的双曲线.命题q :曲线()2231y x m x =+-+与x 轴交于不同的两点,若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围.14.【题文】已知()12,0F -,()22,0F ,点P 满足122PF PF -=,记点P 的轨迹为E . (1)求轨迹E 的方程;(2)若直线l 过点2F 且与轨迹E 交于P 、Q 两点,无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(),0M m ,使MP MQ ⊥恒成立,求实数m 的值.2.2.1双曲线及其标准方程 参考答案及解析1. 【答案】A【解析】双曲线方程整理为222221,4,8,12,48x y a b c c -=∴==∴=∴=,焦点为()±,故选A.考点:双曲线方程及性质. 【题型】选择题 【难度】较易 2. 【答案】B【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .考点:双曲线的标准方程和定义. 【题型】选择题 【难度】较易 3. 【答案】A 【解析】双曲线223312x y -=中,223a =,213b =,故2221c a b =+=,焦点为()1,0±,符合题意;椭圆2214x y +=中,焦点为(),不符合题意;双曲线22143x y -=中,焦点为(),不符合题意;椭圆22123x y +=中,焦点为()0,1±,不符合题意.故选A. 考点:椭圆与双曲线的焦点坐标. 【题型】选择题 【难度】较易 4. 【答案】D【解析】由双曲线方程可知2224,9,13,2,3,a b c a b c ==∴=∴===,P 到左焦点的距离是3,所以P 在左支上且11223,4,34,PF PF PF PF =∴-=∴-=27PF ∴=. 考点:双曲线定义及方程. 【题型】选择题 【难度】较易 5. 【答案】C【解析】由双曲线方程可知a b ==4c ==,根据双曲线的定义,得21PF PF -=21QF QF -=21PF PF =+21QF QF =+2211PF QF PF QF +=++∵117PF QF PQ +==,∴227PF QF +=+,因此△2PF Q 的周长227714PF QF PQ =++=+=+,故选C .考点:双曲线的定义.【题型】选择题【难度】一般6.【答案】C【解析】联立两方程得22221,41,2xyxy⎧+=⎪⎪⎨⎪-=⎪⎩解得y=,由题意可知12F F=所以121123F PFS=⨯=△.考点:焦点三角形的面积.【题型】选择题【难度】一般7.【答案】A【解析】连接OT,则1OT PF⊥,在1FTO△中,1TF b=.连接2PF,在12PF F△中,O、M分别是12F F、1PF的中点,所以212OM PF=,()()21121111122222MO MT PF PF TF PF PF b a b b a⎛⎫∴-=--=-+=-+=-⎪⎝⎭,故选A.考点:双曲线的定义,直线与圆相切.【题型】选择题【难度】较难8.【答案】C【解析】设△12PF F的内切圆半径为r,由双曲线的定义得12122,2PF PF a F F c-==,1112IPFS PF r=⋅V,2212IPFS PF r=⋅V,12122IF FS c r cr=⋅⋅=V.由题意得:121122PF r PF r crλ⋅=⋅+,∴122PF PF ac cλ-==,又2122bF F ca==,∴222c a ac-=,∴1acλ==,故选C.考点:双曲线定义的应用.【题型】选择题【难度】较难 9. 【答案】16【解析】由点()5,0F 是双曲线2219x y m-=的一个焦点及222c a b =+可得,259m =+,解得16m =.考点:双曲线的标准方程. 【题型】填空题 【难度】较易10. 【答案】【解析】设点P 在双曲线的右支上,因为12PF PF ⊥,所以(22212PF PF =+,又因为122PF PF -=,所以()2124PF PF -=,可得1224PF PF ⋅=,则()222121212212PF PF PF PF PF PF +=++⋅=,所以12PF PF +=考点:双曲线定义的应用. 【题型】填空题 【难度】一般11. 【答案】(221214x y x -=≥【解析】设动圆M 的半径为r ,则由已知1MC r =2MC r =,∴12MC MC -=()14,0C -,()24,0C ,∴128C C =.∴12C C <. 根据双曲线的定义知,点M 的轨迹是以()14,0C -、()24,0C 为焦点的双曲线的右支.∵a =4c =,∴22214b c a =-=,∴点M 的轨迹方程是(221214x y x -=≥. 考点:求轨迹方程. 【题型】填空题 【难度】一般12. 【答案】22135x y -=【解析】由椭圆的方程为22185x y +=可知a b ==,则c = 以椭圆22185x y +=的焦点为顶点,以椭圆的顶点为焦点,所以双曲线中a cb ===221.35x y -=考点:双曲线的标准方程. 【题型】解答题 【难度】较易 13. 【答案】522m <≤或12m < 【解析】若命题p 为真,则2m >;若命题q 为真,则52m >或12m <,∵p q ∧为假命题,p q ∨为真命题,∴,p q 一真一假,若p 真q 假,则522m <≤;若p 假q 真,则12m <.∴实数m 的取值范围为522m <≤或12m <.考点:双曲线的标准方程,二次函数的图像,简易逻辑关系. 【题型】解答题 【难度】一般14. 【答案】(1)()22113y x x -=≥ (2)1- 【解析】(1)由12122PF PF F F -=<知,点P 的轨迹E 是以1F 、2F 为焦点的双曲线右支,22,22,3c a b ==∴=Q ,故轨迹E 的方程为()22113y x x -=≥.(2)当直线l 的斜率存在时,设直线方程为()()()11222,,,,y k x P x y Q x y =-,与双曲线方程联立消去y 得()222234430k x k x k --++=,22122212230,0,40,3430,3k k x x k k x x k ⎧-≠⎪∆>⎪⎪∴⎨+=>-⎪⎪+⎪⋅=>-⎩解得23k >,()()()()()()21212121222MP MQ x m x m y y x m x m k x x ⋅=--+=--+--u u u r u u u u rQ()()()22221212124k x x k m x x m k =+-++++()()()()22222222222143423454.333k k k k m m k m k m k k k +++-+=-++=+--- ,0MP MQ MP MQ ⊥∴⋅=u u u r u u u u rQ ,()()22231450m k m m ∴-+--=对任意的23k >恒成立,2210,450,m m m ⎧-=⎪∴⎨--=⎪⎩解得 1.m =- ∴当1m =-时,MP MQ ⊥.当直线l 的斜率不存在时,由()()2,3,2,3P Q -及()1,0M -知结论也成立, 综上,当1m =-时,MP MQ ⊥.考点:圆锥曲线的轨迹问题及双曲线的标准方程. 【题型】解答题 【难度】较难。