人教A版数学必修五同步作业:第3章 不等式 作业28

合集下载

2019-2020学年高中数学人教A版必修5同步作业与测评:第三章 不等式 单元质量测评 (有答案解析)

2019-2020学年高中数学人教A版必修5同步作业与测评:第三章 不等式 单元质量测评 (有答案解析)

第三章 单元质量测评=本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点P (x 0,y 0)和点A (1,2)在直线l :3x +2y -8=0的异侧,则( ) A .3x 0+2y 0>0 B .3x 0+2y 0<0 C .3x 0+2y 0<8 D .3x 0+2y 0>8 答案 D解析 ∵3×1+2×2-8=-1<0,P 与A 在直线l 异侧,∴3x 0+2y 0-8>0. 2.设M =2a (a -2)+7,N =(a -2)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 答案 A解析 M -N =(2a 2-4a +7)-(a 2-5a +6)=a 2+a +1=a +122+34>0,∴M >N .3.设a ,b ∈R ,且a ≠b ,a +b =2,则必有( ) A .1≤ab ≤a 2+b 22 B .ab <1<a 2+b 22 C .ab <a 2+b 22<1 D .a 2+b 22<ab <1 答案 B解析 ∵ab ≤a +b 22,a ≠b ,∴ab <1. 又∵a 2+b 22>a +b 2>0,∴a 2+b 22>1,∴ab <1<a 2+b 22.4.若a >b >0,全集U =R ,A ={x |ab <x <a },B ={ x | b <x <⎭⎪⎬⎪⎫a +b 2,则(∁U A )∩B 为( ) A .{}x | b <x ≤ab B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ ab <x <a +b 2 C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪b <x <a +b 2 D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a +b 2或x ≥a答案 A解析 ∁U A ={x |x ≤ab 或x ≥a }, 又B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫b <x <a +b 2且a >b >0, ∴ab >b ,a +b2<a .∴(∁U A )∩B ={x |b <x ≤ab }.故选A .5.不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32B .23C .43D .34 答案 C解析 作出平面区域如图所示为△ABC ,由⎩⎪⎨⎪⎧x +3y -4=0,3x +y -4=0, 可得A (1,1), 又B (0,4),C 0,43,∴S △ABC =12·|BC |·|x A |=12×4-43×1=43.故选C .6.若x ∈0,12时总有log a 2-1(1-2x )>0,则实数a 的取值范围是( )A .|a |<1B .|a |<2C .|a |> 2D .1<|a |<2 答案 D解析 ∵x ∈0,12,∴0<1-2x <1. 又∵此时总有log a 2-1(1-2x )>0, ∴0<a 2-1<1,∴1<|a |<2.7.已知正实数a ,b 满足4a +b =30,当1a +1b 取最小值时,实数对(a ,b )是( ) A .(5,10) B .(6,6) C .(10,5) D .(7,2) 答案 A解析 1a +1b =⎝ ⎛⎭⎪⎫1a +1b ·130·30=130⎝ ⎛⎭⎪⎫1a +1b (4a +b )=130⎝ ⎛⎭⎪⎫5+b a +4a b≥130⎝⎛⎭⎪⎫5+2b a ·4a b =310. 当且仅当⎩⎨⎧b a =4a b ,4a +b =30,即⎩⎪⎨⎪⎧a =5,b =10时取等号.故选A . 8.已知正数x ,y 满足⎩⎨⎧2x -y ≤0,x -3y +5≥0,则z =4-x ·12y的最小值为( )A .1B .1324C .116D .132 答案 C解析 由于z =4-x ·12y=2-2x -y ,又不等式组表示的平面区域如图所示.易知m =-2x -y 经过点A 时取得最小值,由⎩⎪⎨⎪⎧2x -y =0,x -3y +5=0,得A (1,2),所以z min =2-2×1-2=116.故选C .9.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC→)的最小值是( ) A .-2 B .-32 C .-43 D .-1 答案 B解析 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标系,则A (0,3),B (-1,0),C (1,0).设P (x ,y ),所以P A →=(-x ,3-y ),P A →·(PB →+PC →)=2P A →·P D →=2x 2-2y (3-y )=2x 2+2⎝⎛⎭⎪⎫y -322-32≥-32,当P ⎝⎛⎭⎪⎫0,32时,所求的最小值为-32.故选B .10.若ax 2+bx +c >0的解集为{x |-2<x <4},那么对于函数f (x )=ax 2+bx +c 应有( )A .f (5)<f (-1)<f (2)B .f (2)<f (-1)<f (5)C .f (-1)<f (2)<f (5)D .f (5)<f (2)<f (-1) 答案 A解析 由已知可得⎩⎪⎨⎪⎧b =-2a ,c =-8a ,且a <0.∴f (x )=ax 2-2ax -8a =a (x -1)2-9a , ∴其图象开口向下,对称轴为x =1, ∴f (-1)=f (3).∴f (5)<f (-1)<f (2).故选A .11.以原点为圆心的圆全部都在平面区域 ⎩⎨⎧x -3y +6≥0,x -y +2≥0内,则圆面积的最大值为( ) A .18π5 B .9π5 C .2π D .π 答案 C解析 作出不等式组表示的平面区域如图所示,由图可知,最大圆的半径为点(0,0)到直线x -y +2=0的距离,即|0-0+2|12+(-1)2=2,所以圆面积的最大值为π×(2)2=2π.故选C .12.设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z 答案 D解析 令2x =3y =5z =k (k >1),则x =log 2k ,y =log 3k ,z =log 5k , ∴2x 3y =2lg k lg 2·lg 33lg k =lg 9lg 8>1,则2x >3y , 2x 5z =2lg k lg 2·lg 55lg k =lg 25lg 32<1,则2x <5z .故选D .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是________. 答案 (-∞,2]∪[4,+∞)解析 x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.14.某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎨⎧2a -b ≥5,a -b ≤2,a <7.设这所学校今年计划招聘教师最多x 名,则x =________.答案 13解析 由题意得x =a +b ,如图所示,画出约束条件所表示的可行域,作直线l :b +a =0,平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x 取最大值,∴x =a +b =13.15.已知不等式xy ≤ax 2+2y 2,若对任意x ∈[1,2],且y ∈[2,3],该不等式恒成立,则实数a 的取值范围是________.答案 [-1,+∞)解析 依题意得,当x ∈[1,2],且y ∈[2,3]时, 不等式xy ≤ax 2+2y 2,即a ≥xy -2y 2x 2=y x -2⎝ ⎛⎭⎪⎫y x 2=-2⎝ ⎛⎭⎪⎫y x -142+18.在坐标平面内画出不等式组⎩⎪⎨⎪⎧1≤x ≤2,2≤y ≤3表示的平面区域,注意到yx 可视为该区域内的点(x ,y )与原点连线的斜率,结合图形可知,yx 的取值范围是[1,3],此时-2⎝ ⎛⎭⎪⎫y x -142+18的最大值是-1,因此满足题意的实数a 的取值范围是[-1,+∞).16.已知函数f (x )=x +1x +b (b 为常数).当x ∈[-1,2]时,f (x )>-1(x +b )2恒成立,则b 的取值范围为________.答案 b >1解析 ∵f (x )>-1(x +b )2, ∴x +1x +b >-1(x +b )2⇔(x +b )(x +1)>-1且x +b ≠0,(※) 易知当x =-1时,不等式(※)显然成立;当-1<x ≤2时, b >-1x +1-x =1-⎝ ⎛⎭⎪⎫1x +1+x +1, ∵x +1>0,∴1x +1+(x +1)≥21x +1·(x +1)=2,当且仅当x =0时,等号成立,故b >-1.而-b ∉[-1,2],故b <-2或b >1. 综上所述,b >1.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设函数f (x )=4x 2+ax +2,不等式f (x )<c 的解集为(-1,2).(1)求a 的值; (2)解不等式4x +mf (x )-4x 2>0.解 (1)∵函数f (x )=4x 2+ax +2, 不等式f (x )<c 的解集为(-1,2), ∴-1+2=-a4,∴a =-4.(2)不等式转化为(4x +m )(-4x +2)>0, 可得m =-2,不等式的解集为∅;m <-2,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <-m 4;m >-2,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-m4<x <12.18.(本小题满分12分)设x 1,x 2是关于x 的一元二次方程x 2-2kx +1-k 2=0的两个实根,求x 21+x 22的最小值.解 由题意,得x 1+x 2=2k ,x 1x 2=1-k 2. Δ=4k 2-4(1-k 2)≥0, ∴k 2≥12.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4k 2-2(1-k 2)=6k 2-2≥6×12-2=1.∴x 21+x 22的最小值为1.19.(本小题满分12分)在△ABC 中,A (3,-1),B (-1,1),C (1,3),写出△ABC 区域所表示的二元一次不等式组(包括边界).解 由两点式,得AB ,BC ,CA 的直线方程并化简为AB :x +2y -1=0,BC :x -y +2=0,CA :2x +y -5=0,如图所示,可得不等式组为 ⎩⎪⎨⎪⎧x +2y -1≥0,x -y +2≥0,2x +y -5≤0.20.(本小题满分12分)已知函数y =ax 2+2ax +1的定义域为R ,解关于x 的不等式x 2-x -a 2+a <0.解 ∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立. 当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0. ∵0≤a ≤1,∴(1)当1-a >a ,即0≤a <12时,a <x <1-a ; (2)当1-a =a ,即a =12时,x -122<0,不等式无解; (3)当1-a <a ,即12<a ≤1时,1-a <x <a .∴原不等式的解集为:当0≤a <12时,原不等式的解集为{x |a <x <1-a }; 当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为{x |1-a <x <a }.21.(本小题满分12分)某客运公司用A ,B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A ,B 两种车辆的载客量分别为36人和60人,从甲地去乙地的往返营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不少于900人运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设应配备A 型车、B 型车分别为x 辆,y 辆,营运成本为z 元;则由题意得,⎩⎪⎨⎪⎧x +y ≤21,y -x ≤7,36x +60y ≥900,x ∈N ,y ∈N ;z =1600x +2400y ;作平面区域如图,故联立⎩⎪⎨⎪⎧y =x +7,y =15-0.6x ,解得x =5,y =12; 此时,z =1600x +2400y 有最小值1600×5+2400×12=36800元.22.(本小题满分12分)已知函数f (x )=x 2+2x +a ,g (x )=f (x )x .(1)若不等式f (x )<0的解集是{x |a <x <1},求a 的值;(2)若x <0,a =4,求函数g (x )的最大值;(3)若对任意x ∈[1,+∞),不等式g (x )>0恒成立,求实数a 的取值范围. 解 (1)根据题意,方程x 2+2x +a =0的两根分别为a 和1,将1代入得a =-3.(2)由a =4,则g (x )=f (x )x =x 2+2x +4x =x +4x +2, 因为x <0,所以-x +4-x ≥2-x ·4-x =4, 所以g (x )≤-4+2=-2.当且仅当x =4x ,即x =-2(舍去正值)时,等号成立.所以g (x )的最大值为-2.(3)依题意当x ∈[1,+∞)时,x 2+2x +a >0恒成立,所以a >-(x 2+2x ),令t =-(x 2+2x ),x ∈[1,+∞),则t =-(x 2+2x )=1-(x +1)2,所以当x =1时,t max =1-(1+1)2=-3,所以a>-3.。

人教A版数学必修五同步导练作业:第3章 不等式 课时作业(二十)

人教A版数学必修五同步导练作业:第3章 不等式 课时作业(二十)

课时作业(二十)不等关系与不等式(二)基础要求1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x),g(x)的大小关系是()A.f(x)<g(x)B.f(x)=g(x)C.f(x)>g(x) D.随x值的变化而变化解析:由f(x)-g(x)=x2-2x+2=(x-1)2+1>0知f(x)>g(x).∴选C.答案:C2.设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则() A.ad=bc B.ad<bcC.ad>bc D.ad≤bc解析:由|a-d|<|b-c|,有(a+d)2-4ad<(b+c)2-4bc∵a+d=b+c,∴-4ad<-4bc.∴ad>bc.答案:C3.设A=1+12+13+…+1n(n∈N*,且n≥2),则A与n中较小的一个是________.答案:n4.设a =2-5,b =5-2,c =5-25,则a 、b 、c 之间的大小关系是________.解析:∵a <0,b >0,c >0,∴a 最小.又∵c =5(5-2)>5-2=b ,∴c >b >a .答案:c >b >a5.设n >1,n ∈N ,A =n -n -1,B =n +1-n .则A 与B 中较大的一个是________.解析:∵A B =n -n -1n +1-n =n +1+n n +n -1>1, 又∵B >0,∴A >B .答案:A能力要求1. 已知a =log 23.6,b =log 43.2,c =log 43.6,则( )A .a >b >cB .a >c >bC .b >a >cD .c >a >b解析:a =log 23.6=log 43.62=log 412.96.∵y =log 4x 是(0,+∞)上的增函数,且12.96>3.6>3.2,∴a >c >b ,故选B.答案:B2.给出下列命题:①若a <b ,c <0,则c a <c b ;②若ac -3>bc -3,则a >b ;③若a >b ,且k ∈N *,则a k >b k ;④若c >a >b >0,则a c -a >b c -b. 其中正确命题的序号是__________.解析:①当ab <0时,c a <c b 不成立,故①不正确;②当c <0时,a <b ,故②不正确;③当a =1,b =-2,k =2时,命题不成立,故③不正确; ④a >b >0⇒-a <-b <0⇒0<c -a <c -b ,两边同乘1(c -a )(c -b ),得0<1c -b <1c -a, 又a >b >0,∴a c -a >a c -b >b c -b,故④正确. 答案:④3.(2019年厦门一中月考)已知a >b >0,c <d <0,e <0,求证:e (a -c )2>e (b -d )2. 证明:∵c <d <0,∴-c >-d >0.又a >b >0,∴a -c >b -d >0.∴(a -c )2>(b -d )2>0,∴0<1(a -c )2<1(b -d )2. 又e <0,∴e (a -c )2>e (b -d )2. 4.商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该店推出两种优惠方法:(1)买一个茶壶赠送一个茶杯;(2)按总价的92%付款.某顾客需购茶壶4个,茶杯若干个(不少于4个),若购买茶杯数为x 个,付款数为y (元),试分别建立两种优惠办法的y 与x 之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更省钱.解:由优惠办法(1)得y 1=20×4+5(x -4)=5x +60(x ≥4),由优惠办法(2)得y 2=(5x +20×4)×92%=4.6x +73.6(x ≥4),y 1-y 2=0.4x -13.6(x ≥4),令y 1-y 2=0,得x =34.当购买34只茶杯时,两法付款相同;当4≤x <34时,y 1<y 2,优惠办法(1)省钱;当x >34时,y 1>y 2,优惠办法(2)省钱.5.已知函数f (x )=x 2+a (x ∈R ).(1)对任意的x 1,x 2∈R ,比较12[f (x 1)+f (x 2)]与f (x 1+x 22)的大小;(2)若-1≤a ≤0,-1≤x ≤1,求证:-1≤f (x )≤1.解:(1)对任意的x 1,x 2∈R ,有12[f (x 1)+f (x 2)]-f (x 1+x 22)=x 12+x 22+2a 2-(x 1+x 22)2-a =x 12+x 22-2x 1x 24=14(x 1-x 2)2≥0, 所以12[f (x 1)+f (x 2)]≥f (x 1+x 22).(2)由于f (x )=x 2+a ,-1≤x ≤1,-1≤a ≤0,所以当x =0时,f (x )min =a ≥-1;当x =±1时,f (x )max =1+a ≤1.综上可知,-1≤f (x )≤1.6.老丁同时收到甲、乙两家公司的聘用通知,甲公司给出的年薪为24 000元,且以后每年都比上一年增加年薪800元,乙公司给出的年薪为18 000元,且以后每年都比上一年增加年薪1 550元.如果老丁对甲、乙两公司的满意度相同,请你给老丁出出主意,他该去哪家公司应聘?解:设第n 年甲、乙两家公司给出的年薪分别为a n ,b n , 则a n =24 000+800(n -1)=800n +23 200,b n =18 000+1 550(n -1)=1 550n +16 450,b n ≥a n ⇔b n -a n ≥0⇔750n -6 750≥0⇔n ≥9,老丁若应聘9年以下,则应去甲公司;若应聘9年以上,则应去乙公司;若应聘9年,则甲、乙公司均可.7.已知a >0且a ≠1,比较log a (a 3+1)和log a (a 2+1)的大小.解:当a>1时,a3>a2,a3+1>a2+1,又y=log a x在(0,+∞)内为增函数,所以log a(a3+1)>log a(a2+1);当0<a<1时,a3<a2,a3+1<a2+1,又y=log a x在(0,+∞)内为减函数,所以log a(a3+1)>log a(a2+1).综上,对于a>0且a≠1,总有log a(a3+1)>log a(a2+1).8.甲、乙两车从A地沿同一路线到达B地,甲车一半时间的速度为a,另一半时间的速度为b;乙车用速度a行走了一半路程,用速度b行走了另一半路程.若a≠b,试判断哪辆车先到达B地.解:设A、B两地间的路程为s,甲、乙两辆车所用的时间分别为t1,t2,则t1=2sa+b,t2=s2a+s2b.所以t1-t2=2sa+b-(s2a+s2b)=s[4ab-(a+b)2]2ab(a+b)=-s(a-b)22ab(a+b)<0.所以t1<t2,所以甲车先到达B地.拓展要求设函数f(x)=|lg x|,若0<a<b,且f(a)>f(b),证明:ab<1. 证明:由f(a)>f(b),有|lg a|>|lg b|.∴lg2a>lg2b,∴lg 2a -lg 2b =(lg a +lg b )(lg a -lg b )=lg(ab )·lg a b >0.∵0<a <b ,∴0<a b <1,∴lg a b <0,∴lg(ab )<0,∴ab <1.由Ruize收集整理。

(完整版)必修五第三章不等式练习题(含答案),推荐文档

(完整版)必修五第三章不等式练习题(含答案),推荐文档

等式练习题 第一部分1.下列不等式中成立的是(7.在R 上定义运算 :xy x(1 y),若不等式(x a)(x a) 1对任意实数x 成立,贝U 实数a 的取值范围是().A. {a| 1 a 1}B .{a| 0 a 2}1 3 C {a| 1 a £} D.{a| 3 11-a -}2 28已知正实数x,y 满足x 2y4,则丄 4x 丄的最小值为y•9 .设x, y 为正实数,aJ x 22xy y ,bpjxy,c xy .试比较a 、c 的大小.A. b a C. D. a cB. b c a b ca c bA.若a 则ac 2 bc 2 .若 a b ,贝U a 2b 2 C.若aab b 21.若 a b 0,贝U -a2.已知a 1 3,b14,(A). c a3.已知a,b,c 满足c (B)3 5a b3 4,则a,b,c 的大小关系是()(C) b a c a 且ac 0,下列选项中不一定(D) c成立的是((A ) ab ac(B )(C) cb 2 ab 2(D) ac(a c) 04 .规定记号“O”表示一种运算,定义若1O k 2<3,则k 的取值范围为A . 1 k 1B aO b^/ab a (a , b 为正实数),5 .若a,b,c 为实数, 则下列命题正确的是(A.若a 则ac 2bc 2B.若a ab b 2C.若aD.若a 1bab6.设a0.5. I,b log 3,c log 4 2,则(6.226函数y = 3x + x^+1的最小值是()A.10 .已知不等式ax 2 5x 2 0的解集是M .(1)若2 M ,求a 的取值范围;(2)若 M x2x2,求不等式ax 2 5x a 2 10的解集.第二部分1.给出以下四个命题:1 12 2①若a>b ,则-<匚; ②若ac >bc ,则a>b ;a b ③若 a>|b|,则 a>b ; ④若 a>b ,则 a 2>b 2.其中正确的是(A.②④ B .②③ C .①② D ①③2.设 a , b € R, A. b -a>0 B若a -1 b|>0,贝U 下列不等式中正确的是( .a 3+ b 2<0)C . b + a>0D . a — b <0 3.在下列函数中,最小值是 2的是() A.x + 2 .y =尸(x >0)C. y = sin x + cscx , x € (0 ,ny )4. 已知log a (a 2+ 1)vlog a 2a<0,则a 的取值范围是( A. (0,1) B ・(扌,1)C. (0, 2)5. f (x) = ax 2+ ax - 1 在 R 上满足 f (x)<0, 则a 的取值范围是( )A. (-X, 0]B. (-X,- 4)C. (-4,0)D. (-4,0]B.C.6.41 17.设a>0, b>0.若{3是3与3的等比中项,则o +b 的最小值为( )A. 8D-4&已知当x>0时,不等式x 2— m)+ 4>0恒成立,则实数m 的取值范围是 9.已知 A = {x|x 2— 3x + 2<0},{x|x 2— (a + 1)x + a <0}.⑴若A B,求a 的取值范围; ⑵若B? A 求a 的取值范围1 910.已知x>0, y>0,且x + y = 1,求X + y 的最小值.11.已知a , b , c 都是正数,且a +b + c = 1.求证:(1 — a)(1 — b)(1 — c) >8abc. 证明•/ a 、b 、c 都是正数,且a +b + c = 1,•-1 — a = b + c 寸 bc>0, 1—b=a+c >2ac>0, 1 — c = a + b 寸 ab>0.••• (1 — a)(1 — b)(1 — C) •^Oc •2ab= 8abc.212.不等式 kx — 2x + 6kv0(k 工0).(1) 若不等式的解集为{x|x< — 3或x> — 2},求k 的值; (2) 若不等式的解集为R,求k 的取值范围.B. 4C. 11. D. 【解析】对于A ,若c 不成立;对于C,若a2. D 【解析】 参考答案 第一部分,显然ac 2b 0,则 a 2;故选Dbc 2不成立;对于B ,若b a 0,则a 2ab b 2b 2,所以C 错;对于D,若a b33 4 2 3. C 【解析】 1所以c 综上,所以答案为:D.Qa c, ac 0, 0,a (1) Qb c,a 0,ab ac;⑵ Q b a,0,0, c b 0 ;(3) Q c a,,Q ac 0, ac a0 ■⑷b a 且c 0, a 0, 0或b 0或b 0, cb 2和ab 2的大小不能确定,即C 选项不一定成立■故选C.4. A 【解析】根据题意1e k 2 1 k 2 3化简为k 2绝对值如下: 原不等式为 k 2k 2 0解得2 0时, 原不等式为 0成立,所以k k 2 0 ,对k 分情况去 k 1,所以0 k 原不等式为 k 2k 2 0,解得 1 k 2,所以1 综上, 5. B 【解析】对于 所以选择 A. 当c 0时, 0,所以1a 所以a b,故D 错,所以选b a两边同时除以 A, ab 故A 错;对于C, 不等式不成立, 11,故C 错;对于D,因为a b 0 , b因为a 1bB .6. A【解析】••• a 20.5, b log 3 , c log42 , 1>2 0.51log 3 >1, Iog 42= -b >a >c .故选: 27. C8. 1 【解析】【解析】根据题意化简不等式为(X a )(1 (X a)) 1,即 X 2 X(a 2 a 1) 0 对任意实数X 成立,所以根据二次恒成立 0,解得(当且仅当“X y 4”时,取“ ”),故最小值为1.39.a 2 X 22 2 2 22 2xy y 2, c 2X 22xy y 2c 2 a 2xy ;X 0, y0, xy 0,即 c a ;10. (1) a12 (2) X3 X 1【解析】(1)由2 M ,说明元素2满足不等式ax 2 5x 2 0,代入即可求出a的取值范围; (2)由M x2 X 2,2,2是方程ax 25x 20的两个根,由韦达定理即可求出a 2,代入原不等式解一元二次不等式即可;(1)v 2 M 2,二 a 2 5 2 20,••• a 2(2)v Mx1 X 2 ,••• 1,2是方程ax 2 5x 20的两个根,11 y X 8 yX y 1 4 5 25 21 / y X 4点 1 -1 8尸y4x A.由X 2y 4化为4x4 X 2 4x1 2x1 2xX 2y 4,因为o,y所以1 8所以 X + y = (x+ y)( 1+ 9) = y+ — + 10>2 ' 八 X y X y y 9x 1 9当且仅当x =—时,等号成立,又因为X +y = 1.所以当 x = 4, y = 12 时,(X + y) min = 16.•••由韦达定理得2 1/•不等式ax 2 5x a0即为:2x 2 5x 3 0其解集为X第二部分2.解析 由 a —|b|>0? |b|va? — a<b<a? a + b>0,故选 C.3.解析X 2y=- + -的值域为(一X,— 2] U [2,+X);X + 2 --- 1y〒=也〒 + k >2(X >0);1y = SinX + CSCX = SinX + 茹>2(0<Sin X <1);y = 7x + 7—x>2(当且仅当x = 0时取等号).7.解析 V s 是 3a 与 3b 的等比中项? 3a •3b= 3a + b= 3? a + b = 1, v a>0,b>0, /^ab1 1 a + b 1 1 「a +萨石=Ob ^ 1=4.411.解析因为 x>0, y>0, X + 9= 1,9X-—+ 10= 16. y。

新华教育高中部数学同步人教A版必修五第三章不等式单元测试题范文

新华教育高中部数学同步人教A版必修五第三章不等式单元测试题范文

数学5(必修)第三章:不等式一、选择题1.若方程05)2(2=++++m x m x 只有正根,则m 的取值范围是( ).A .4-≤m 或4≥mB . 45-≤<-mC .45-≤≤-mD . 25-<<-m答案:B解析: 21212(2)4(5)0(2)0,5450m m x x m m x x m ⎧∆=+-+≥⎪+=-+>-<≤-⎨⎪=+>⎩2.若()a ax x x f ++-=12lg )(2在区间]1,(-∞上递减,则a 范围为()A .[1,2)B . [1,2]C .[)1,+∞D . [2,)+∞答案:A解析: 令(]221,,1u x ax a =-+--∞是的递减区间,得1a ≥而0u >须恒成立,∴min 20u a =->,即2a <,∴12a ≤<;3.不等式22lg lg x x <的解集是 ( )A .1(,1)100 B .(100,)+∞C .1(,1)100(100,)+∞ D .(0,1)(100,)+∞答案:.D解析: 22lg lg ,lg 2lg 0,100,01x x x x x x <><><<或或4.若不等式2log 0a x x -<在1(0,)2内恒成立,则a 的取值范围是 ( )A .1116a ≤< B .1116a << C .1016a <≤ D .1016a << 答案:A解析: 2log a x x <在1(0,)2x ∈恒成立,得01a <<, 则2max min 1111log ,(log )log 142416a a a x xx a ≥==≥⇒≤<。

(另可画图做)5.若不等式201x ax a ≤-+≤有唯一解,则a 的取值为( )A .0B .2C .4D .6答案:B解析: 当20x ax a -+=仅有一实数根,240,04a a a a ∆=-===或,代入检验,不成立或21x ax a -+=仅有一实数根,2440,2a a a ∆=-+==,代入检验,成立! 6.不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩的区域面积是( ) A .12 B .32C .52D .1 答案:.D解析: 画出可行域二、填空题1.不等式122log (21)log (22)2x x +-⋅-<的解集是_______________。

新人教必修五第三章不等式单元同步练习(附答案)【推荐下载】

新人教必修五第三章不等式单元同步练习(附答案)【推荐下载】

书山有路勤为径;学海无涯苦作舟
新人教必修五第三章不等式单元同步练习(附答案)
新人教必修五第三章不等式单元同步练习(附答案)
说明:
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.
考试时间120分钟.
第Ⅰ卷(选择题共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目、试卷
类型用铅笔涂写
在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,
如需改动,用橡
皮擦干净后,再选涂其他答案,不能答在试题卷上.
3.考试结束,监考人将本试卷和答题卡一并收回.
一、选择题:本大题共12步题,每小题5分,共60分.在每小题给出
的四个选项中,只有一项是符合题目要求的.
1.已知关于x的不等式的解集为[-1,0],则a+b的值为()
A.-2B.-1C.1D.3
2.设x、y满足约束条件的最大值为()
A.0B.2C.3D.
3.已知不等式对任意正实数x,y恒成立,则正实数a的最小值为()
A.2B.4C.6D.8
专注下一代成长,为了孩子。

人教版高中数学必修5第三章不等式单元测试题及答案

人教版高中数学必修5第三章不等式单元测试题及答案

疼痛三两三类方治疗冠心病.疼痛三两三组成:当归、川芎、鸡血藤、三七?主治:心脉瘀阻型心绞痛?主症:胸痛胸憋、固定不移、舌黯有瘀斑、脉弦涩?方解:当归养血活血,川芎行气活血,鸡血藤养血?通络,三七化瘀活血止痛,为活血止痛的经典组方。

冠心病心绞痛属中医胸痹心痛范畴,多为本虚标实之证,急性期重在活血化瘀治其标。

行气活血三两三组成:四逆散合疼痛三两三?主治:气滞血瘀型心绞痛?主症:生气后胸痛憋闷、固定不移、舌黯有瘀斑、脉弦?方解:四逆散主行气解郁,疼痛三两三活血?通脉。

多适用于自发性心绞痛。

.益气活血三两三组成:疼痛三两三加黄芪、党参、甘草?主治:气虚血瘀型心绞痛?主症:劳累后胸痛憋闷,休息缓解,伴心悸?气短、自汗、舌黯有瘀斑、脉弦细或细弱方解:劳则伤气,气虚不运,血脉不畅,而?致心脉瘀阻,诱发胸痛。

重用黄芪、党参、甘草益气扶正疼痛三两三活血通脉,通荣兼备而不伤正。

多用于初发劳力型心绞痛。

益气养阴三两三组成:疼痛三两三加黄芪、党参、丹参、玄?参、元胡;经年日久者加水蛭、土元、地龙主治:气阴两虚、心脉瘀阻型心绞痛?主症:劳累后胸痛憋闷,休息缓解,伴乏力?口干、心悸气短、自汗盗汗、舌黯红有瘀斑、脉弦细。

方解:诸药合用,益气养阴,活血通脉。

适?用于劳力型心绞痛恶化者。

化痰逐瘀三两三组成:疼痛三两三加瓜蒌、半夏、薤白、陈?皮、茯苓、水蛭、土元、地龙主治:痰瘀交阻型心绞痛?主症:胸中闷痛或窒闷,固定不移、体胖多?痰、舌黯有瘀、脉弦滑方解:理气化痰、行气活血、通络止痛。

?清化逐瘀三两三半夏、黄芩、黄?连、竹茹、水蛭、土元、地龙主治:痰热内阻、血瘀心脉型心绞痛?主症:胸中闷痛或窒闷,固定不移、体胖多?痰、舌红有瘀、脉弦滑数方解:本方以小陷胸汤合疼痛三两三为基本?方,清热化痰,活血通脉。

益气养阴化痰逐瘀三两三党参、丹参、玄?参、元胡、瓜蒌、半夏、薤白、日久者加水蛭、土元、地龙主治:气阴两虚、痰瘀交阻型心绞痛?主症:劳力后胸中闷痛或窒闷,休息后好转、?伴乏力口干、心悸气短、自汗盗汗、体胖多痰、舌黯红有瘀斑、舌苔厚腻,脉弦细滑方解:益气养阴,理气活血、化痰逐瘀?.当归、川芎、鸡血藤、三七血瘀日久:水蛭、土元、地龙黄芪党参甘草痰热气虚冠心病心绞痛半黄芩夏黄连薤竹茹白茯玄参阴丹参.。

人教A版高中数学必修五本章练测:第三章不等式(含答案详解).docx

人教A版高中数学必修五本章练测:第三章不等式(含答案详解).docx

第三章不等式(数学人教实验A版必修5)7.已知函数f(x)=1,1,0,x xx x-+<0,⎧⎨-≥⎩则不等式x+(x+1)f(x+1)≤1的解集是()A.{x|-1≤x-1}B.{x|x≤1}C.{x|x-1}D.{x|1≤x-1}8. 设,且a b (a、b、),则M的取值范围是()A.,18B. [,1)C.[,)D.[8,+∞)9.对于满足等式x2+(y-1)2=1的一切实数x、y,不等式x+y+c≥0恒成立,则实数c的取值范围是()A.(-∞,0]B.+∞)C.-1,+∞)D.[1,+∞)10.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d 的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d 的取值不唯一11. 一个直角三角形的周长为2p,则其斜边长的最小值为()A.B.C.D.12.某市的一家报刊摊点,从报社买进一种晚报的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(按30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主应每天从报社买进( )份晚报. A.250 B.400C.300D.350二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.不等式2242x x+-≤12的解集为.14.函数y=1xa-(a>0,a≠1)的图像恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则1m+1n 的最小值为.15.若不等式x22a x a>0对x∈R恒成立,则关于t的不等式a2t1<a t22t3的解集为 .16.设x,y,z∈R,则最大值是 .三、解答题(解答应写出文字说明,证明过程或演算步骤,共74分)告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏目的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告版面的高与宽的尺寸(单位:cm )能使矩形广告的面积最小? 18.(12分)不等式(m 2-2m-3)x 2-(m-3)x-1<0对一切x ∈R 恒成立,求实数m 的取值范围.19.(12分)某人上午7时乘摩托艇以匀速 v km/h(4≤v ≤20)从A 港出发到距50 km 的B 港去,然后乘汽车以匀速w km/h(30≤w ≤100)从B 港向距 300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘摩托艇、汽车去所需要的时间分别是x h 、y h.若所需的经费p =100+3(5-y )+2(8-x )元,那么v ,w 分别为多少时,所需经费最少?并求出这时所花的经费.20.(12分)已知二次函数f(x)满足f(-2)=0,且2x≤f(x)≤242x+对一切实数x都成立.(1)求f(2)的值;(2)求f(x)的解析式;(3)设b n=1()f n,数列{b n}的前n项和为S n,求证:S n>43(3)nn+.21.(12分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元才能使可能的盈利最大?22.(14分)某村计划建造一个室内面积为72 m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为多少时蔬菜的种植面积最大?最大种植面积是多少?第三章不等式(数学人教实验A版必修5)答题纸得分:一、选择题二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第三章 不等式(数学人教实验A 版必修5)参考答案一、选择题1.D 解析:∵ y 2x 是增函数,而0<b <a <1,∴ 1<2b <2a <2.2.D 解析:∵ t-s =a+2b-a-b 2-1=-(b-1)2≤0,∴ t ≤s .3.C 解析:不等式组表示的平面区域如图所示, 由34,34x y x y +=⎧⎨+=⎩得交点A 的坐标为(1,1),又B ,C 两点的坐标分别为(0,4),(0,43), 故S △ABC =12 (4-43)×1=43. 第3题答图 4.B 解析:特殊值法.令a =7,b =3,c =1,满足a >b >c >0,∴2log (11)1+>2log (31)3+>2log (71)7+. 5. A 解析:不等式组可化为 xy >0,x y >0,或 xy <0,x y <0,在平面直角坐标系中作出符合上面两个不等式组的平面区域,如图中的阴影部分所示, ∴ 不等式组(x y )(x y )>0,0 x2表示的平面区域为三角形. 第5题答图6.B 解析:取测试点(0,1)可知C ,D 错,再取测试点(0,-1)可知A 错,故选B.7.C 解析:依题意得10,10,(1)()1(1)1x x x x x x x x +<+≥⎧⎧⎨⎨++-≤++≤⎩⎩或,所以1,1,11x x x x ≥-⎧<-⎧⎪⇒⎨⎨∈≤≤⎪⎩⎩R 或x <-1或-1≤x-1 x-1,故选C. 8. D 解析:M≥9.C 解析:令x = cos θ,y =1+ sin θ,则-(x+y )=- sinθ-cos θ-1=sin (θ+π4)-1.∴ -(x+y )max-1.∵ x+y+c ≥0恒成立,故c ≥-(x+y )max-1,故选C.10.A 解析:因为a+b =cd =4,由基本不等式得a+b ≥ab ≤4.又cd ≤2()4c d +,故c+d ≥4,所以ab ≤c+d ,当且仅当a =b =c =d =2时,等号成立.故选A.11.A 解析:设直角三角形的一个锐角为θ,斜边长为c , 则根据题意得c (sin θ+cos θ+1)=2p , ∴ c =2sin cos 1p θθ++∵ π,当θ=π时,等号成立,∴ c,当此三角形为等腰直角三角形时,等号成立. ∴ 斜边c.故选A. 12. B 解析:若设每天从报社买进x (250≤x ≤400,x ∈N )份晚报,则每月共可销售(20x +10×250)份,每份可获利润0.10元,退回报社10(x -250)份,每份亏损0.15元,建立月利润函数f (x ),再求f (x )的最大值,可得一个月的最大利润.设每天从报社买进x 份晚报,每月获得的总利润为y 元,则依题意,得 y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400].∵ 函数y =0.5x +625在[250,400]上单调递增,∴ 当x =400时,y =825. 即摊主每天从报社买进400份晚报时,每月所获得的利润最大,最大利润为825元.13.{x |-3≤x ≤1} 解析:依题意x 2+2x-4≤-1 (x+3)(x-1)≤0 x ∈[-3,1]. 14.4 解析:由题意知A (1,1),∴ m+n-1=0,∴ m+n =1,∴1m +1n =(1m +1n )(m+n )=2+n m +mn≥2+=4. 15.(-2,2) 解析:由x 2-2ax +a >0对x ∈R 恒成立得Δ 4a 24a <0,即0<a <1, ∴ 函数y ax是R 上的减函数,∴ 2t 1>t22t3,解得-2<t <2.16.222 解析: x22y 2z222221 22xy z 2x 22y 2z21122xy z 2.17.解:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000.①广告版面的高为a+20,宽为2b+25,其中a >0,b >0.广告的面积S =(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b ≥18 500+=18 500+当且仅当25a =40b 时等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500.故广告版面的高为140 cm ,宽为175 cm 时,可使广告的面积最小. 18.解:若m 2-2m-3=0,则m =-1或m =3.当m =-1时,不合题意;当m =3时,符合题意.若m 2-2m-3≠0,设f (x )=(m 2-2m-3)x 2-(m-3)x-1,则由题意,得22230,230,m m m m m ∆2⎧--<⎨=[-(-3)]+4(--)<⎩ 解得-15<m <3.综合以上讨论,得-15<m ≤3.19.解:依题意得 4 50x 20,30 300y 100, 9 x y 14,x >0,y >0,考察z =2x +3y 的最大值,作出可行域,平移直线2x +3y =0, 当直线经过点(4,10)时,z 取得最大值38.故当v =12.5,w =30时所需要经费最少,此时所花的经费为93元. 20.(1)解:∵ 242()2+≤≤x x f x 对一切实数都成立,∴ 4≤f (2)≤4,∴ f (2)=4.(2)解:设f (x )=ax 2+bx+c (a ≠0).∵ f (-2)=0,f (2)=4,∴424,1,42024.a b c b a b c c a ++==⎧⎧⇒⎨⎨-+==-⎩⎩ ∵ ax 2+bx+c ≥2x ,即ax 2-x+2-4a ≥0,∴ Δ=1-4a (2-4a )≤0⇒(4a-1)2≤0,∴ a =14,c =2-4a =1,故f (x )=24x +x+1. (3)证明:∵ b n =1()f n =24(2)n +>4(2)(3)n n ++=4(12n +-13n +), ∴ S n =b 1+b 2+…+b n >4[(13-14)+(14-15)+…+(12n +-13n +)] =4×13-13n +=43(3)n +. 21.解:设投资人分别用x ,y 万元投资甲,乙两个项目,由题意,得10,0.30.1 1.8,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数为z =x+0.5y . 上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.作直线l 0:x+0.5y =0,并作平行于直线l 0的一组直线x+0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的点M ,此时z 最大,这里点M 是直线x+y =10与直线0.3x+0.1y =1.8的交点. 第21题答图解方程组10,0.30.1 1.8,x y x y +=⎧⎨+=⎩得4,6,x y =⎧⎨=⎩此时,z =4+0.5×6=7(万元).∴ 当x =4,y =6时,z 取得最大值.答:投资人用4万元投资甲项目,6万元投资乙项目,才能使可能的盈利最大.22.解:设矩形温室的左侧边长为a m,后侧边长为b m,则ab=72,蔬菜的种植面积S=(a-4)(b-2)=ab-4b-2a+8=80-2(a+2b)≤80-(m2).当且仅当a=2b,即a=12,b=6时,S max=32.答:矩形温室的边长为6 m,12 m时,蔬菜的种植面积最大,最大种植面积是32 m2.。

【人教A版】高中数学必修5第三章课后习题解答

【人教A版】高中数学必修5第三章课后习题解答

新课程标准数学必修5第三章课后习题解答第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>.3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>⎨⎪⎪⎩⎭或;使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<+⎨⎪⎪⎩⎭.(2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)52x ⎧+⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为3322x x x ⎧⎪<-<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=.所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y--台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为122025101512(70)208(110)60z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++. 所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.(第2题)3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m . 3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=123600312006800580048000012480058000z y x x x⨯=⨯+⨯+=+++=≥ 当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元. 习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-. 设PC a =,则DP x a =-所以 222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积 211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++ 由基本不等式与不等式的性质6[18]6(18108S ⨯-=⨯-=-≤ 当72x x=,即x =m 时,ADP ∆的面积最大,最大面积是(108-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+))c =当且仅当()()a cbc x x--=,即x =tan β取得最大,从而视角也最大.第三章 复习参考题A 组(P103)1<2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以 070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为 12S xy =扇形的周长为2Z x y =+≥ 当2x y =,即x =y =Z可以取得最小值,最小值为. 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P时扇形面积最大值为216P .8、设汽车的运输成本为y , 2()s say bv a sbv v v=+⨯=+当sasbv v=时,即v =c 时,y 有最小值.2sa y sbv v =+=≥2c 时,由函数sa y sbv v =+的单调性可知,v c =时y 有最小值,最小值为sa sbc c+. 第三章 复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或 (2)⎧⎨⎩3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为 10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥人教A 版高中数学课后习题解答答案11 5、因为22x y +是区域内的点到原点的距离的平方所以,当240330x y x y -+=⎧⎨--=⎩ 即2,3A A x y ==时,22x y +的最大值为13. 当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45. 6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济. 一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。

人教A版高中数学必修五本章练测:第3章不等式(含答案详解).docx

人教A版高中数学必修五本章练测:第3章不等式(含答案详解).docx

第3章不等式(苏教版必修5)1n这17.(14分)不等式22(23)(3)10m m x m x -----<对一切x ∈R 恒成立,求实数m 的取值范围.18.(16分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元才能使可能的盈利最大?19.(16分)已知二次函数()f x 满足(2)0f -=,且2422x x f x +≤≤()对一切实数x 都成立. (1)求(2)f 的值; (2)求()f x 的解析式;(3)设1()n b f n =,数列{}n b 的前n 项和为n S ,求证:43(3)n nS n >+.20.(16分)某村计划建造一个室内面积为72 m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时蔬菜的种植面积最大?最大种植面积是多少?第3章 不等式(苏教版必修5)答题纸得分:一、填空题1. 2.3. 4.5. 6.7. 8.9.10.11.12. 13. 14. 二、解答题 15. 16. 17.18.19.20.第3章 不等式(苏教版必修5)参考答案1.(-2,1)∪(2,+∞)解析:原不等式化为(2)(1)(2)0x x x +-->,解得21x -<<或2x >.2.④解析:∵2x y =是增函数,而01b a <<<,∴1222b a <<<.3.三角形 解析:原不等式组可化为0002x y x y x -⎧⎪+⎨⎪≤≤⎩>,>,或000 2.x y x y x -⎧⎪+⎨⎪≤≤⎩<,<,在平面直角坐标系中作出符合上面两个不等式组的平面区域,如图中的阴影部分所示,∴不等式组()()002x y x y x -+>⎧⎨≤≤⎩,表示的平面区域是一个三角形.第3题图第4题图4.43解析:不等式组表示的平面区域如图所示,由34,34x y x y +=⎧⎨+=⎩得交点A 的坐标为(1,1),又,B C 两点的坐标分别为(0,4),40,3⎛⎫ ⎪⎝⎭,故14441233ABC S ⎛⎫=⨯-⨯= ⎪⎝⎭△. 5.()()()f c f b f a c b a >>解析:特殊值法.令7a =,31b c ==,,满足0a b c >>>,∴ 2log (11)1+>2log (31)3+>2log (71)7+.故()()()f c f b f a c b a>>. 6.4 解析:不等式1()9a x y x y ⎛⎫++≥ ⎪⎝⎭对任意正实数,x y 恒成立,则1219y ax a a a x y +++≥+≥a ≥2或4a -(舍去),∴ 正实数a 的最小值为4.7.21x ≤解析:依题意得10,10,(1)()1(1)1x x x x x x x x +<+≥⎧⎧⎨⎨++-≤++≤⎩⎩或,所以1,1,2121R x x x x ≥-⎧<-⎧⎪⇒⎨⎨∈--≤≤-⎪⎩⎩或1x <-或12121x x -≤≤-⇒≤-. 8.8 解析:M =b c a +·a c b +·a bc+≥8ab bc ac ••=8.9.[21,)-+∞解析:令cos x θ= ,1sin y θ=+,则()sin cos 1x y θθ-+=---=π2sin 4θ⎛⎫-+ ⎪⎝⎭-1,∴ max ()2x y -+=-1.∵0x y c ++≥恒成立,∴ max ()2c x y ≥-+=-1. 10.≤ 唯一 解析:因为4a b cd +==,由基本不等式得2a b ab +≥,故4ab ≤.又2()4c d cd +≤,故4c d +≥,所以ab c d ≤+,当且仅当2a b c d ====时,等号成立.11.{|31}x x -≤≤解析:依题意得2241(3)(1)031x x x x x +-≤-⇒+-≤⇒∈-,[].12.4 解析:由题意知(11)A ,,∴10m n +-=,∴1m n +=, ∴1m +1n =11()2224n m n m m n m n m n m n ⎛⎫++=++≥+•= ⎪⎝⎭. 13.19解析:先在平面直角坐标系xOy 内画出不等式组所表示的平面区域,即可行域(如图中阴影部分).把25z x y =+变形为5152y x z =-+,得斜率为25-,在y 轴上的截距为15z ,随z 变化的一族平行直线.由图可以看出,当直线5152y x z =-+经过可行域上的点M 时,截距15z 最大,即z 最大. 解方程组283x y y +=⎧⎨=⎩,,得23.x y =⎧⎨=⎩,故23M (,).此时max z =2×2+5×3=19.第13题图14.40解析:设长为x 米,宽为y 米,则610100x y +≤,即3550x y +≤.∵0255335x y x y +≥•≥,当且仅当35x y =时等号成立,,x y 为正整数,∴只有当324525x y ==,时面积最大,此时面积40xy =平方米. 15.解:由22(2)(23)x a a a x ---+30a +>,得[(2)3]()0a x x a --->. ①当2a =时,20x -<,解得2x <. ②当2a >时,原不等式可以化为32()0a x x a ⎛⎫⎪⎭--⎝->. 因为2323(3)(1)222a a a a a a a a -++-+--==---, 所以当3a =时,2(03)x ->,则x ∈R 且3x ≠. 当23a <<时,32a a >-,解得32x a >-或x a <.当3a >时,32a a <-,解得32x a <-或x a >. ③当2a <时,原不等式可以化为3(2)0a x x a ⎛⎫⎪⎭--⎝-<. 因为2323(3)(1)222a a a a a a a a -++-+--==---,所以当12a -<<时,32a a <-,所以32a x a -<<;当1a =-时,2(01)x +<,不等式无解;当1a <-时,32a a >-,所以32a a x <<-. 所以原不等式的解集为: 当1a <-时,32a x a x ⎧⎫⎨⎬-⎩<<⎭; 当1a =-时,不等式无解; 当12a -<<时,32xa x a <<⎧⎫⎨⎬-⎩⎭;当2a =时,{|2}x x <; 当23a <<时,32a x x a x ⎧⎫<>⎨⎩⎭-⎬或; 当3a =时,{|3}x x x ∈≠且R ; 当3a >时,32x x x a a ⎧⎫<>⎨-⎬⎩⎭或. 16.解:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000.① 广告的高为a +20,宽为2b +25,其中a >0,b >0. 广告的面积(20)(225)2402550018 500254018 50018 500S a b ab b a a b =++=+++=++≥++24 500,当且仅当2540a b =时等号成立,此时58b a =,将其代入①式得120a =,从而75b =,即当12075a b ==,时,S 取得最小值24 500.故广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小. 17.解:若2230m m --=,则1m =-或3m =. 当1m =-时,不合题意;当3m =时,符合题意.若2230m m --≠,设22()(23)(3)1f x m m x m x =-----,则由题意,得22230,230,m m m m m ∆2⎧--<⎪⎨=[-(-3)]+4(--)<⎪⎩解得135m -<<. 综合以上讨论,得135m -<≤.18.解:设投资人分别用x y ,万元投资甲、乙两个项目,由题意,得10,0.30.1 1.8,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数为0.5z x y =+.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.作直线0:0.50l x y +=,并作平行于直线0l 的一组直线0.5x y z +=,z ∈R ,与可行域相交,其中有一条直线经过可行域上的点M ,此时z 最大,这里点M 是直线10x y +=与直线0.30.1 1.8x y +=的交点.解方程组10,0.30.1 1.8,x y x y +=⎧⎨+=⎩得4,6,x y =⎧⎨=⎩此时,40.567z =+⨯=(万元).∴ 当46x y ==,时,z 取得最大值.答:投资人用4万元投资甲项目,6万元投资乙项目,才能使可能的盈利最大. 第18题图19.(1)解:∵ 2422x x f x +≤≤()对一切实数都成立, ∴4(2)4f ≤≤,∴(2)4f =.(2)解:设2()(0)f x ax bx c a =++≠.∵(2)0(2)4f f -==,,∴424,1,42024.a b c b a b c c a ++==⎧⎧⇒⎨⎨-+==-⎩⎩∵22ax bx c x ++≥,即2240ax x a -+-≥,∴214240410aa a ∆=--≤⇒-≤()(), ∴ 14a =,241c a =-=,故2()14x f x x =++.(3)证明:∵ 2144114()(2)(2)(3)23n b f n n n n n n ⎛⎫==>=- ⎪+++++⎝⎭,∴ 1211111111444344523333(3)n n n S b b b n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++-+-++-=⨯-= ⎪ ⎪⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L >. 20.解:设矩形温室的左侧边长为a m ,后侧边长为b m ,则72ab =,蔬菜的种植面积(4)(2)428802(2)8042S a b ab b a a b ab =--=--+=-+≤-=32(m 2).当且仅当2a b =,即126a b ==,时,max 32S =.答:当矩形温室的边长为6 m ,12 m 时,蔬菜的种植面积最大,最大种植面积是32 m 2.。

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。

人教版高中数学必修5不等式练习题及答案

人教版高中数学必修5不等式练习题及答案

第三章 不等式一、选择题1.假设a =2,b =log π3,c =log πsin 52π,则( ). A .a >b >cB .b >a >cC .c >a >bD .b >c >a2.设a ,b 是非零实数,且a <b ,则以下不等式成立的是( ). A .a 2<b 2B .ab 2<a 2bC .21ab<b a 21 D .a b <ba3.假设对任意实数x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ). A .a <-1B .|a |≤1C .|a |<1D .a ≥14.不等式x 3-x ≥0的解集为( ). A .(1,+∞)B .[1,+∞)C .[0,1)∪(1,+∞)D .[-1,0]∪[1,+∞)5.已知f (x )在R 上是减函数,则满足f (11-x )>f (1)的实数取值范围是( ). A .(-∞,1)B .(2,+∞)C .(-∞,1)∪(2,+∞)D .(1,2)6.已知不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中( ).A B C D7.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧yx y x y x 2++- 则目标函数z =5x +y 的最大值是( ). A .2 B .3 C .4 D .58.设变量x ,y 满足⎪⎩⎪⎨⎧5--31+-3-+y x y x y x 设y =kx ,则k 的取值范围是( ).A .[21,34] B .[34,2] C .[21,2] D .[21,+∞) ≥0 ≤1≥1 ≥0≥1 ≤1 (第6题)9.已知a ,b ∈R ,则使|a |+|b |≥1成立的一个充分不必要条件是( ). A .|a +b |<1 B .a ≤1,且b ≤1 C .a <1,且b <1D .a 2+b 2≥110.假设lg x +lg y =2,则x1+y 1的最小值为( ). A .201B .51 C .21 D .2二、填空题11.以下四个不等式:①a <0<b ,②b <a <0,③b <0<a ,④0<b <a ,其中使a 1<b1成立的充分条件是 .12.设函数f (x )=⎩⎨⎧-11 则不等式xf (x )+x ≤4的解集是____________.13.假设不等式(-1)na <2+nn 1)1(+-对任意正整数n 恒成立, 则a 的取值范围是 .14.关于x 的不等式x 2-(a +a 1+1)x +a +a1<0(a >0)的解集为__________________. 15.假设不等式x 2-2x +3≤a 2-2a -1在R 上的解集是空集,则a 的取值范围是 .三、解答题16.已知函数f (x )=x 2-2x +2194)(x -,x ∈(-∞,1)∪(1,+∞),求f (x )的最小值.(x >0),(x <0).17.甲乙两人同时同地沿同一路线走向同一地点,甲有一半时间以速度m行走,另一半时间以速度n行走;乙有一半路程以速度m行走,另一半路程以速度n行走,假设m≠n,问甲乙两人谁先到达指定地点?18*.已知关于x的不等式(ax-5)(x2-a)<0的解集为M.(1)当a=4时,求集合M;(2)当3∈M,且5∈M时,求实数a的取值范围.第三章不等式参考答案一、选择题 1.A解析:三个以上的实数比较大小,可以先估算,进行分类(与0比较或与1比较),再应用不等式性质或作差法.因为π>1,0<sin52π<1,所以c =log π sin 52π<0. 又因为3>1,所以b =log π3>0,而a =2>0,故c 最小,只需再比较a 与b 的大小. 由指数函数的性质知,2>1而且0<log π 3<log π π=1,所以a >b ,即a >b >c . 2.C解析:比较两个实数的大小,可采用作差法,也可用特殊值排除法,以下用作差法. ∵a 2-b 2=(a +b )(a -b ),当a <b ,且a ,b 均为负数时,(a +b )( a -b )>0,a 2 >b 2,排除A . ∵ab 2-a 2b =ab (b -a ),由于b -a >0,当a ,b 同号时(比方a =1,b =2),ab (b -a )>0,ab 2>a 2b ,排除B .∵21ab -b a 21=22-b a b a <0,即21ab <b a 21. 同样可以用作差法判断a b <ba是错误的. 3.B解析:由于不等号两边的函数比较熟悉,可以尝试数形结合法. 令f (x )=|x |,g (x )=ax ,画出图象如右图, 由图可以看出|a |≤1. 4.D解析:用数轴标根法求解. x 3-x ≥0可化为 x (x -1)(x +1)≥0,如图,原不等式的解集为{x |-1≤x ≤0,或x ≥1}. 5.C解析:关键是利用单调性去掉“f ”,转化为不含“f ”的不等式求解.(第3题)(第4题)∵f (x )在R 上是减函数, ∴f (11-x )>f (1)⇔11-x <1⇔12--x x >0⇔x <1或x >2. 6.B解析:首先根据方程ax 2-x -c =0的根确定a ,c ,再求出f (-x ). 由已知,方程ax 2-x -c =0的两个实根为-2和1,则(-2)+1=a 1,(-2)×1=ac -,解得a =-1,c =-2,则f (x )=-x 2-x +2,f (-x )=-x 2+x +2=-(x -21)2+49,由开口方向和对称轴位置判断为B .7.D解:先画可行域如图.作直线l 0:5x +y =0,平行移动直线l 0至直线l ,从图形中可以发现,当直线l 经过平面区域内的点A 时,直线在y 轴的截距最大,此时z 最大.由⎩⎨⎧1=+1=2+y x y x ,解得⎩⎨⎧0=1=y x ,即A (1,0), ∴z =5×1+0=5.(第7题)8.C解析:k 的几何意义是可行域内的点与原点连线的斜率.解: 先画出题中不等式组所表示的区域(如图),可以看出k OA 最小,k OB 最大.由⎩⎨⎧⇔⎩⎨⎧1=2=0=3-+0=5--3y x y x y x 得A (2,1), k OA =-20-1=21; 由⎩⎨⎧⇔⎩⎨⎧2=1=0=3-+0=1+-y x y x y x 得B (1,2), k OB =0-10-2=2.∴21≤k ≤2,即k ∈[21,2].9.D分析:如果①:某选项能推出|a |+|b |≥1,则充分性成立;还需要②:|a |+|b |≥1不能推出该选项,①和②满足,该选项就是充分不必要条件.解:假设a 2+b 2≥1,则(|a |+|b |)2=a 2+2|ab |+b 2≥a 2+b 2≥1,|a |+|b |≥1,充分性成立.但|a |+|b |≥1时,未必有a 2+b 2≥1,例如21+21=1,然而221⎪⎭⎫ ⎝⎛+221⎪⎭⎫⎝⎛<1.10.B解:∵lg x +lg y =2,∴xy =100,且x >0,y >0, ∴x 1+y 1≥2y x 11⋅=xy2,即x 1+y 1≥51, 当且仅当⎩⎨⎧100==xy yx x =10,y =10时取等号.二、填空题 11.①②④. 解:a <0<b ⇒a 1<0<b1,充分性成立; b <a <0⇒ab >0,b -a <0⇒aba b -<0,即a 1<b 1,充分性成立;b <0<a ⇒b 1<0,a1>0⇒a 1>b 1,充分性不成立; (第8题)0<b <a ⇒ab >0,b -a <0⇒a 1<b1,充分性成立. 12.{x |0<x ≤2,或x <0}.解析:由于f (x )是分段函数,所以要分别对每一段(分别在x >0,x <0条件下)解不等式.由⎩⎨⎧ ⇔⎩⎨⎧ ⇔0<x ≤2, 由⎩⎨⎧ ⇔⎩⎨⎧ ⇔x <0, ∴0<x ≤2或x <0. 13.[-2,23). 解析:首先处理(-1)n ,需要对n 的奇偶性进行讨论. 假设n 为奇数,原不等式⇔-a <2+n 1⇔ a >-(2+n 1),即a >-(2+n1)对任意正奇数n 恒成立,因为-(2+n 1)=-2-n1<-2,所以只需a ≥-2. 假设n 为偶数,原不等式⇔a <2-n 1,即a <2-n1对任意正偶数n 恒成立, 只需a <(2-n 1)最小值=2-21=23,即a <23. 所以假设对任意正整数n 不等式恒成立,以上应同时满足, 故-2≤a <23. 14.{x |1<x <a +a1}. 解析:首先判断方程x 2-(a +a 1+1)x +a +a1=0(a >0)是否有实数根,实数根大小是否确定.x 2-(a +a 1+1)x +a +a 1<0可化为(x -1)[x -(a +a1)]<0, ∵a >0,a +a 1≥2>1,∴1<x <a +a1. 15.{x |-1<a <3}.解析:把问题等价转化为“恒成立”问题. x 2-2x +3≤a 2-2a -1在R 上的解集是空集, ⇔ x 2-2x +3>a 2-2a -1在R 上恒成立,x >0 xf (x )+x ≤4 x >0x ·1+x ≤4 x <0 xf (x )+x ≤4 x <0x ·(-1)+x ≤4⇔ x 2-2x -a 2+2a +4>0在R 上恒成立.因为抛物线y =x 2-2x -a 2+2a +4开口向上,故只需△=4-4(-a 2+2a +4)<0, 即x 2-2x +3<0⇔-1<a <3. 三、解答题16.解析:f (x )=(x -1)2+2194)(x --1≥294-1=31. 当x -1=2194)(x -时,即x =1±36时,f (x )取到最小值31. 17.分析:行走时间短者先到达指定地点,问题的实质是比较两个实数(式子)的大小,用作差法.解:设从出发地到指定地点的路程是s ,甲乙两人走完这段路程所用的时间分别为t 1,t 2,则s n t m t =2+211,2=2+2t n s m s ,所以t 1=n m s +2,t 2=mnsn m 2+)(. t 1-t 2=mns n m n m s 2+-+2)(=)(])([n m mn s n m mn +2+-42)()(n m mn s n m +2-=-2, 因为s ,m ,n 均为正数且m ≠n ,所以t 1-t 2<0,即t 1<t 2, 所以甲比乙先到达指定地点.18*.解:(1)当a =4时,(ax -5)(x 2-a )<0⇔(x -45)(x -2)(x +2)<0,由数轴标根法得x <-2,或45<x <2. 故M ={x |x <-2,或45<x <2}. (2)3∈M ,且5∈M⎪⎩⎪⎨⎧⇔ ⎪⎩⎪⎨⎧⇔))(())((25-1-9-35-a a a a ⎪⎩⎪⎨⎧⇔ ⇔1≤a <35,或9<a ≤25.故实数a 的取值范围是{x |1≤a <35,或9<a ≤25}. (3a -5)(9-a )<0(5a -5)(25-a )≥0 ≤0 a <35,或a >9 1≤a ≤25>0 (第18题)。

人教A版高中数学必修五河北省张家口第三章不等关系与不等式课时作业

人教A版高中数学必修五河北省张家口第三章不等关系与不等式课时作业

3.1不等关系与不等式作业一一、选择题1、已知a,b 分别对应于数轴上的A,B 两点,且A 点在原点的右侧,B 点在原点的左侧,则下列不等式正确的是()A 、0a b -=B 、a ab b>- C 、a b > D 、222a b ab +≥- 2、若a>b ,则( )A. a 2>b 2B.a 2 ≥ b 2C. a 2≤b 2D. 以上都不对 3、下面说法正确的个数为() ①当5x =时,5x ≥一定成立。

②当x ≥x =③当x a x a ≥≤且,x a =一定成立。

A 、0 B 、1 C 、2 D 、34、一个盒中红白黑三种球分别有x y z 、、个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球个数之和至少为55,则下列表示正确的是()A 、5523y z y x z +>⎧⎪⎨<<⎪⎩B 、5523y z y x z +≥⎧⎪⎨≤≤⎪⎩C 、5523y z y x z +≤⎧⎪⎨≤≤⎪⎩D 、5523y z y x z +<⎧⎪⎨<<⎪⎩5、下面的选项中正确的是( ) A.a 4+1>a 3+a B.a 4+1<a 3+a C.a 4+1≥a 3+a D. a 4+1≤a 3+a6、之间的关系为与x x x x 1122++( )A.x x x x 1122+≥+B. x x xx 1122+>+C. x x x x 1122+<+D. x x xx 1122+≤+二、填空题7、(2a+1)(a-3)与(a-6)(2a+7)+45的大小关系为_____________________________8、若f(x)=3x 2-x+1, g(x)=2x 2+x-1,则f(x)与g(x)的大小关系是_________________9.若x ≠2或y ≠-1, M = x 2+y 2-4x+2y , N = -5,则M 与N 的大小关系是___________ 10.(x+1)(122++x x )与(x+21)(x 2+x+1)的大小关系为_______________________ 11.对于下列结论,其中正确命题的序号是___________ ①若a>b ,则a 2>b 2②若a >b ,则1<ab③若a 2>b 2且a <0,b <0,则a <b ④a 2+b 2+ab ≥0三、解答题10、某化工厂制定明年某产品的生产计划,受下面条件的制约:生产此产品的工人数不超过200人,每个工人年平均约计2100h ,预计此产品明年销售量至少80000袋,每袋需用4h ,每袋需用原料20kg ,年底库存原料600吨,明年可补充1200吨,试根据这些数据预测明年的产量(写出不等式即可)11、已知-1<a <1,比较a --11与11-+a 的大小。

新人教版必修5第三章不等式练习题及答案ABC卷

新人教版必修5第三章不等式练习题及答案ABC卷

数学5(必修)第三章:不等式[基础训练A 组]一、选择题1.若02522>-+-x x ,则221442-++-x x x 等于( )A .54-xB .3-C .3D .x 45-2.下列各对不等式中同解的是( )A .72<x 与 x x x +<+72B .0)1(2>+x 与 01≠+xC .13>-x 与13>-xD .33)1(x x >+与x x 111<+ 3.若122+x ≤()142x -,则函数2x y =的值域是( ) A .1[,2)8 B .1[,2]8 C .1(,]8-∞ D .[2,)+∞ 4.设11a b >>>-,则下列不等式中恒成立的是 ( )A .b a 11<B .b a 11>C .2a b >D .22a b > 5.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( )A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程22(1)20x a x a +++-=,有一个根比1大,另一个根比1-小, 则a 的取值范围是 ( )A .31a -<<B .20a -<<C .10a -<<D .02a <<二、填空题1.若方程2222(1)34420x m x m mn n ++++++=有实根,则实数m =_______;且实数n =_______。

2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为________________。

3.设函数23()lg()4f x x x =--,则()f x 的单调递减区间是 。

4.当=x ______时,函数)2(22x x y -=有最_______值,且最值是_________。

人教A版数学必修五同步导练作业:第3章 不等式 课时作业(二十二)

人教A版数学必修五同步导练作业:第3章 不等式 课时作业(二十二)

课时作业(二十二) 一元二次不等式及其解法(二)基础要求1.设[x ]表示不超过x 的最大整数,则关于x 的不等式2[x ]2-11[x ]-6≤0的解集是( )A .[0,7)B .(0,7]C .[-1,6)D .(-1,6]解析:由原不等式,有-12≤[x ]≤6. ∴[x ]=0,1,2,3,4,5,6.∴0≤x <7. 答案:A2.若0<a <1,则不等式(a -x )(x -1a )>0的解集是( ) A .{x |a <x <1a } B .{x |1a <x <a } C .{x |x <a 或x >1a } D .{x |x <1a 或x >a }解析:原不等式⇔(x -a )(x -1a )<0⇔a <x <1a . 答案:A3.不等式组⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}解析:⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0⇒⎩⎨⎧-1<x <10<x <3⇒0<x <1.答案:C4.设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N =( ) A .[1,2) B .[1,2] C .(2,3]D .[2,3]解析:由x 2+x -6<0,得-3<x <2, ∴M =(-3,2),又N =[1,3],∴M ∩N =[1,2)故选A. 答案:A5.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +bx -2>0的解集是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(1,2)D .(-∞,1)∪(2,+∞)解析:依题意知a >0,且x >ba =1, 所以ax +b x -2=a ·x +b ax -2=a ·x +1x -2>0,即(x +1)(x -2)>0.∴x <-1或x >2.答案:A6.下列选项中,使不等式x <1x <x 2成立的x 的取值范围是( ) A .(-∞,-1) B .(-1,0) C .(0,1)D .(1,+∞)解析:解法1:取x =-2,知符合x <1x <x 2,即-2是此不等式的解集中的一个元素,所以可排除选项B 、C 、D.解法2:由题知,不等式等价于⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211x xx x<0,即(x 2-1)(x 3-1)x 2<0, 从而(x -1)2(x +1)(x 2+x +1)x 2<0, 解得x <-1,即(-∞,-1). 答案:A7.已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A .{x |-1<x <12}B .{x |x <-1或x >12} C .{x |-2<x <1} D .{x |x <-2或x >1}解析:由题意知x =-1,x =2是方程ax 2+bx +2=0的根,由根与系数的关系,得⎩⎪⎨⎪⎧-1+2=-b a (-1)×2=2a ⇒⎩⎪⎨⎪⎧a =-1b =1.∴不等式2x 2+bx +a <0为2x 2+x -1<0, 解得-1<x <12. 答案:A8.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,2x -1,x >0,若f (x )≥1,则x 的取值范围是( )A .(-∞,-1]B .[1,+∞)C .(-∞,0]∪[1,+∞)D .(-∞,-1]∪[1,+∞)解析:当x ≤0时,x 2≥1,则x ≤-1; 当x >0时,2x -1≥1,则x ≥1.综上可得x 的取值范围是(-∞,-1]∪[1,+∞). 答案:D9.已知A =(1,2),B ={x |x 2-2ax +a 2-1<0},若A ⊆B ,则a 的取值范围是__________.解析:方程x 2-2ax +a 2-1=0的两根为a +1,a -1, 且a +1>a -1,∴B ={x |a -1<x <a +1}.∵A ⊆B ,∴⎩⎪⎨⎪⎧a -1≤1a +1≥2,解得1≤a ≤2. 答案:1≤a ≤210.某摩托车厂上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?解:(1)由题意得y =[1.2×(1+0.75x )-1×(1+x )]×1 000(1+0.6x )(0<x <1), 整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧y -(1.2-1)×1 000>0,0<x <1,即⎩⎨⎧-60x 2+20x >0,0<x <1.解得0<x <13. 能力要求1.已知a =(m ,2m +3),b =(-m ,1),且a 与b 的夹角大于90°,则实数m 的取值范围是( )A .-1≤m ≤3B .m ≥3或m ≤-1C .-1<m <3D .m >3或m <-1解析:依题意有a ·b <0,即-m 2+2m +3<0⇔ m 2-2m -3>0⇔m >3或m <-1. 答案:D2. 若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是__________.解析:当k =1时,-1<0恒成立;当k ≠1时,由题意得⎩⎪⎨⎪⎧k -1<0(k -1)2+4(k -1)<0, 解得-3<k <1,因此实数k 的取值范围为(-3,1]. 答案:(-3,1]3.若不等式a ·4x -2x +1>0对一切x ∈R 恒成立,则实数a 的取值范围是________.解析:不等式可变形为a >2x -14x =(12)x -(14)x .令(12)x =t ,则t >0, 所以y =(12)x -(14)x =t -t 2=-(t -12)2+14, 因此当t =12时,y 取得最大值14, 故实数a 的取值范围是(14,+∞). 答案:(14,+∞)4.(2019年山东省实验中学月考)若不等式x 2+x -1<m 2x 2-mx 对任意的x ∈R 恒成立,求实数m 的取值范围.解:原不等式可化为(1-m 2)x 2+(1+m )x -1<0.①当1-m 2=0时,解得m =1或-1.若m =-1,不等式化为-1<0,显然恒成立; 若m =1,不等式化为2x -1<0,解得x <12, 故不等式的解集不是R ,不合题意. ②当1-m 2≠0时,由不等式恒成立可得⎩⎪⎨⎪⎧1-m 2<0Δ=(1+m )2-4(1-m 2)×(-1)<0, 解得m <-1或m >53.综上,实数m 的取值范围为(-∞,-1]∪(53,+∞).拓展要求在某海滨城市的附近海面有一台风,据监测,当前台风中心位于城市O (如图22—1所示)的南偏东90°-θ(cos θ=210)方向300 km 的海面P 处,并以20 km/h 的速度向北偏西45°方向移动,台风侵袭的范围为圆形区域,其当前半径为60 km ,并以10 km/h 的速度不断扩大,问几小时后该城市开始受到台风的侵袭?图22-1解:设t h 后该城市受到侵袭,此时台风侵袭的圆形区域半径为(10t +60)km ,连结AO ,由余弦定理知OA 2=OP 2+P A 2-2·OP ·P A ·cos ∠OP A , 由于OP =300 km ,P A =20t ,∠OP A =θ-45°, ∴cos ∠OP A =cos(θ-45°) =cos θ·cos45°+sin θsin45° =210×22+1-(210)2×22=45,故OA 2=3002+(20t )2-2×300×20t ×45 =202·t 2-9600t +3002≤(10t +60)2, 即t 2-36t +288≤0, 解得12≤t ≤24.∴12小时后该城市开始受到台风的侵袭.由Ruize收集整理。

人教A版高中数学必修五河北省张家口第三章不等式课时作业

人教A版高中数学必修五河北省张家口第三章不等式课时作业

周练3 不等式一.选择题。

(每小题6分)1、如果a ,b ,c 满足a b c <<且0<ac ,那么下列选项中不一定成立的是( )A 、ac ab >B 、0)(>-a b cC 、22ab cb <D 、0)(<-c a ac2.已知集合{}0232<--=x x x A ,{}0<-=a x x B ,且A B ⊄,则a 的取值范围( )A 、1≤aB 、21≤a πC 、1a fD 、2≤a3.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值 4.下列各函数中,最小值为2的是 ( )A .y=x +x 1B .y= sinx +x sin 1,x ∈(0,2π) C .y=2322++x x D .y=x +12-x5.如果x 2+y 2=1,则3x -4y 的最大值是 ( )A .3B .51 C .4 D .5 6.若不等式0≤x 2-ax +a ≤1有唯一解,则a 的取值为 ( )A .0B .2C .4D .6二.填空题(每小题6分)7.不等式01442>+-x x 的解集为____________.8.一元二次不等式ax 2+bx +2>0的解集是(-21,31),则a +b 的值是_____。

9.不等式0212<-+xx 的解集是__________________。

10.设x 、y ∈R + 且yx 91+=1,则x+y 的最小值为________.一、 选择题 题号 12 3 4 5 6 答案二、 填空题 7. 8. 9. 10.三.解答题。

11.(20分)不等式049)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。

人教A版高中数学必修五3不等式综合.docx

人教A版高中数学必修五3不等式综合.docx

一、选择题1.若xy >0,则对 x y +yx说法正确的是( )A .有最大值-2B .有最小值2C .无最大值和最小值D .无法确定2.已知12314(00)(11)()23P P P ,,,,,,则在不等式2x-3y+1≤0表示的平面区域内的点是( )(A)P 1、P 2 (B)P 2 (C)P 2、P 3 (D)P 33.函数y =3x 2+6x 2+1的最小值是( ) A .32-3 B .-3 C .6 2 D .62-34变量x 、y 满足条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩则使z=3x +2y 的值最小的(x ,y )是( )(A)(4.5,3) (B)(3,6) (C)(9,2) (D)(6,4)5设动点坐标(x ,y )满足⎩⎨⎧≥≥-++-3)4)(1(x y x y x ,则x 2+y 2的最小值为(A)5 (B)10 (C)217(D)10 6.给出下面四个推导过程:①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·ab=2;②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;③∵a ∈R ,a ≠0,∴4a+a ≥24a·a =4;w w w .x k b 1.c o m④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x)]≤-2(-x y )(-y x)=-2.其中正确的推导过程为( ) A .①② B .②③ C .③④ D .①④ 7.已知x 、y 均为正数,xy =8x +2y ,则xy 有( )A .最大值64B .最大值164C .最小值64D .最小值1648.已知x ,y 满足⎪⎩⎪⎨⎧≤≥+≥+-1002x y x y x 则z=2x+4y 的最值为(A)z max =16,z min =-2 (B)z max =14,z min =-2 (C)z max =2,z min =-2 (D)z max =2,z min =-149.已知a >0,b >0,则1a +1b+2ab 的最小值是( )A .2B .2 2C .4D .510图中阴影部分表示的平面区域可用二元一次不等式组表示成(A)⎩⎨⎧≥+-≥-+02201y x y x (B)⎩⎨⎧≤+-<-+02201y x y x(C)⎩⎨⎧>+-≥-+02201y x y x (D)⎩⎨⎧≥+-<-+02201y x y x二.填空题1. 若实数满足2=+b a ,则ba33+的最小值是 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(二十八)
1.不等式a 2+1≥2a 中等号成立的条件是( ) A .a =±1 B .a =1 C .a =-1 D .a =0
答案 B
2.设a>b>0,则下列不等式中一定成立的是( ) A .a -b<0 B .0<a b <1
C.ab<
a +b
2
D .ab>a +b 答案 C
3.已知a ≥0,b ≥0,且a +b =2,则( ) A .ab ≤1
2
B .ab ≥1
2
C .a 2+b 2≥2
D .a 2+b 2≤2
答案 C
4.如果log 3m +log 3n =4,那么m +n 的最小值是( ) A .4 B .18 C .4 3 D .9
答案 B
解析 ∵log 3m +log 3n =log 3mn =log 334,∴mn =34. 又∵⎝⎛⎭⎫m +n 22
≥mn ,∴m +n ≥18.
5.已知x>1,y>1且lgx +lgy =4,则lgxlgy 的最大值是( ) A .4 B .2 C .1 D.14
答案 A
解析 ∵x>1,y>1,∴lgx>0,lgy>0.
∴lgxlgy ≤⎝⎛⎭⎫lgx +lgy 22
=4,当且仅当lgx =lgy =2, 即x =y =100时取等号.
6.若a ,b ∈R 且a +b =0,则2a +2b 的最小值是( ) A .2 B .3 C .4 D .5
答案 A
7.设0<x<3
2,则函数y =x(3-2x)的最大值是( )
A.916
B.94 C .2 D.98
答案 D
8.若a >0,b >0,且a ≠b ,则下列不等式中总能成立的是( ) A.2ab a +b
>a +b 2>ab
B.a +b 2>2ab a +b >ab
C.a +b 2>ab >2ab
a +b
D.2ab a +b
>ab >a +b 2
答案 C
9.设x>0,则y =3-3x -1
x 的最大值是( )
A .3
B .3-2 2
C .3-2 3
D .-1
答案 C
解析 y =3-3x -1
x =3-⎝⎛⎭⎫3x +1x ≤3-23x·1x =3-23,当且仅当3x =1x ,即x =3
3
时取等号.
10.我市某公司,第一年产值增长率为p ,第二年产值增长率为q ,这两年的平均增长率为x ,那么x 与p +q
2的大小关系是________.
答案 x ≤p +q
2
11.设x >0,y >0,且x +2y =202,则lgx +lgy 的最大值为________. 答案 2
解析 202=x +2y ≥22xy ⇒xy ≤100,∴lgx +lgy =lg(xy)≤lg100=2. 12.周长为l 的矩形对角线长的最小值为________. 答案
24
l 13.若x ,y ∈R +
,且x +4y =1,则xy 的最大值为________. 答案
1
16
14.若log m n =-1,则3n +m 的最小值是________. 答案 2 3
15.函数f(x)=3+lgx +4
lgx (0<x<1)的最大值为________.
答案 -1
16.设0<x<2,求函数y =3x (8-3x )的最大值. 答案 4
17.已知a>3,求a +4
a -3
的最小值.
解析 利用a>3的条件及结构式中一为分式,一为整式的特点配凑: a +4a -3=(a -3)+4a -3
+3≥2(a -3)·4a -3+3=7,等号在a -3=4
a -3
即a =5时成立.
18.已知x<54,求函数f(x)=4x -2+1
4x -5的最大值.
解析 ∵x<5
4,∴5-4x>0.
∴y =4x -2+1
4x -5
=-⎣⎡⎦⎤(5-4x )+15-4x +3≤-2
(5-4x )×1
5-4x
+3=-2+3=
1.
当且仅当5-4x =1
5-4x ,即x =1时,上式等号成立.
故当x =1时,f(x)max =1.
1.若xy>0,则对x y +y
x 说法正确的是( )
A .有最大值-2
B .有最小值2
C .无最大值和最小值
D .无法确定
答案 B
2.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是( ) A .400 B .100 C .40 D .20 答案 A
由Ruize收集整理。

感谢您的支持!。

相关文档
最新文档